
Proceedings of EMNLP 2011, Conference on Empirical Methods in Natural Language Processing, pages 24–34,
Edinburgh, Scotland, UK, July 27–31, 2011. c©2011 Association for Computational Linguistics

Reducing the Size of the Representation for the uDOP-Estimate

Christoph Teichmann
Abteilung Automatische Sprachverarbeitung

Institute of Computerscience

University of Leipzig

Max Planck Institute for Human Cognitive and Brain Sciences

Leipzig

teichmann@informatik.uni-leipzig.de

Abstract

The unsupervised Data Oriented Parsing
(uDOP) approach has been repeatedly re-
ported to achieve state of the art perfor-
mance in experiments on parsing of dif-
ferent corpora. At the same time the ap-
proach is demanding both in computation
time and memory. This paper describes an
approach which decreases these demands.
First the problem is translated into the
generation of probabilistic bottom up tree
automata (pBTA). Then it is explained
how solving two standard problems for
these automata results in a reduction in
the size of the grammar. The reduction of
the grammar size by using efficient algo-
rithms for pBTAs is the main contribution
of this paper. Experiments suggest that
this leads to a reduction in grammar size
by a factor of 2. This paper also suggests
some extensions of the original uDOP al-
gorithm that are made possible or aided by
the use of tree automata.

1 Introduction

The approaches to unsupervised parsing given
by Bod (2006a,2006b,2007) are all based on us-
ing all possible subtrees over a training corpus.
This means that a great number of subtrees has
to be represented. For every sentence the num-
ber of binary trees that can be proposed for that
sentence1 is given by the Catalan number of the
length of the sentence. The number of subtrees

Acknowledgments: The author would like to
thank Amit Kirschbaum, Robert Remus, Anna Janska
and the anonymus reviewers for their remarks.

1Only a single nonterminal X is used

for a tree in this set is exponential with respect
to the length of the sentence.

In Bod (2007) a packed representation for
all subtrees was proposed that is based on a
technique for supervised Data Oriented Parsing
(DOP) given in Goodman (2003). This paper
aims to relate the problem of representing an
estimate for all subtrees over a corpus to the
field of tree automata (Fülöp and Vogler, 2009).
With this step it will be possible to reduce the
size of the packed representation of the subtrees
even further. This newly formulated approach
will also consider working with partially brack-
eted corpora.

The next step in this paper will be a short
discussion of uDOP. Then the necessary termi-
nology is introduced. The reduction approach
of this paper is given in section 4. In the final
section it will be discussed how the step to tree
automata creates additional possibilities to in-
fluence the final estimate produced by the uDOP
estimator. In section 5 some evaluation results
will be given for the decrease in grammar size
that can be achieved by the techniques presented
here.

2 A Short Discussion of uDOP

The unsupervised Data Oriented Parsing
(uDOP) approach (Bod 2006a,2006b,2007) is
defined by two steps. The first step is proposing
every binary parse tree for each sentence in the
corpus. This is followed by adding any subtree
that occurs in the trees to the grammar as a
possible derivation step. Since binary trees have
more subtrees than nonbinary trees, the binary

24

X

john

X

X

X X

sees jim

(a) A possible tree pro-
posed over a corpus
sentence

X

X X

sees

(b) another pos-
sible subtree

Figure 1: an example for the uDOP approach

ones would always be the parses the approach
prefers. Therefore the uDOP approach only uses
the binary trees. The only nonterminal used is
a new symbol usually refered to as ‘X’.

The second step is estimation. For each sub-
tree the number of occurrences in the proposed
trees is counted. This number is divided by the
sum of all occurrences of subtrees starting with
the same nonterminal, which allows to derive a
probability distribution over all trees.

If one takes the sentence ‘john sees jim’, one
tree that can be proposed is shown in Figure
1(a). Then one possible subtree is shown in Fig-
ure 1(b). The subtree in Figure 1(b) would oc-
cur twice among the parses for the sentence ‘jim
sees the french guest’, since there are two pos-
sible binary parses with the nonterminal ‘X’ for
the substring ‘the french guest’. One is given by

X(X(X(the)X(french))X(guest)) (1)

the other is given by:

X(X(the)X(X(french)X(guest))) (2)

In this paper a small extension of the original
uDOP algorithm is considered. The idea is well
known from Pereira and Schabes (1992). The
extension is assuming that the corpus may con-
sist of partial parses. The algorithm is changed
so that for every partial tree all binary trees that
are completions of the partial tree are proposed.
Labels for the constituents in the partial tree are

kept. Only a single nonterminal is used for the
completions.

Take for example the sentence ‘john sees the
reporter’. If one is confident that ‘the reporter’
is a constituent of the type NP then the corpus
entry would be:

X(X(john)X(sees)NP (X(the)X(reporter)))
(3)

This entry has two completions, the first one
is given by:

X(X(X(john)X(sees))NP (X(the)X(reporter)))
(4)

The second one is given by:

X(X(john)X(X(sees)NP (X(the)X(reporter))))
(5)

So making a parse complete means introduc-
ing additional brackets until the tree is binary.
One may also consider not introducing brackets
inside of existing brackets in order to allow for
nonbinary branching.

These two parses contain subtrees starting
and terminating with the nonterminalNP . This
shows that such partial brackets and their class
labels can create recursion on the introduced la-
bels. These partial parses could come from other
algorithms and reduce the final grammar size.

Approaches like the ones in Hänig (2010),
Santamaria and Araujo (2010) and Ponvert et
al. (2011) could be combined with the uDOP
approach using this simple extension. All three
approaches do not necessarily produce binary
parse trees. This could be used to extend uDOP
to nonbinary trees. Using the low level bracket-
ings from the algorithms would reduce the size of
an uDOP grammar estimated from them. Par-
tial bracketing could also be approximated by
using HTML annotation, punctuation and se-
mantical annotation (Spitkovsky et al., 2010;
Spitkovsky et al., 2011; Naseem and Barzilay,
2011).

25

3 Terminology

This section introduces stochastic tree substitu-
tion grammars. It will also introduce a version
of probabilistic bottom up tree automata suited
for representation of large stochastic tree substi-
tution grammars. Furthermore it gives a more
formal definition of the uDOP-estimate. Some
definitions are not standard.2

The first definition necessary is the concept of
trees.

Definition 1 (Trees). The set of trees over
leaf nodes L and internal nodes I is denoted by
T (L, I) and is defined as the smallest set con-
forming to:

∀α ∈ (T (L, I) ∪ L)∗ : ∀y ∈ I : y(α) ∈ T (L, I)
(6)

Where X∗ denotes all tuples over the set X.3

If a tree has the form y(α) then y ∈ I is called
the root node. The leftmost node of an element
t ∈ (L ∪ T (L, I)) is denoted by lm(t) and given
by:

lm(t) =

{
t if t ∈ L
lm(x1) if t = y(x1, . . . , xn)

(7)

This definition basically states that trees are
bracketed structures. Annotation gives the type
of the bracket. Note that the definition of trees
excludes trees that consist of only a single leaf
node. This is a restriction that is common for
STSGs.

The next element that needs to be defined is
the concept of extending a tree. If a node in
a tree has more than two daughters, then the
tree can be extended. This is done by replacing
two of the daughter nodes by a new node N
labeled with any nonterminal and making the
two removed daughter nodes the daughter nodes
of the new node N . A complete tree is a tree that
has no extensions. In other words, a complete
tree has only nodes with less than two daughters.
A tree t is a completion of the tree t′ if t is
complete and can be generated from t′ by any

2No rank is assumed for the labels of trees, to give an
example.

3The empty tuple is included.

number of completions. Next it is necessary to
define subtrees.

Definition 2 (Subtrees). Let

t =L(. . .M(N1(. . .), . . . , Ni(α),

. . . , Nk(. . .)) . . .)

be a tree then

t′ =M(N1(. . .), . . . , Ni(α),

. . . , Nk(. . .))

is a direct subtree of t and if the root of α is
in I then

t′′ =L(. . .M(N1(. . .), . . . , Ni(),

. . . , Nk(. . .)) . . .)

is also a direct subtree of t. The set of subtrees
for a tree t is denoted by ST (t) and contains t
and all direct subtrees of trees in ST (t).

The first important fact about subtrees is that
each node has either all or none of its daughters
included in a subtree. The second important
fact is that subtrees of less than two nodes are
not allowed.

Definition 3 (Stochastic Tree Substitution
Grammar). A stochastic tree substitution gram-
mar (STSG) is a tuple 〈Σ, N, τ,N0, ω〉 where Σ
is a finite alphabet of terminals, N is a finite set
of nonterminals, N0 ∈ N is the start nontermi-
nal, τ ⊆ T ((Σ ∪ N), N) is the set of trees4 and
ω : τ → R+ is the weight function, where R+ is
the set of positive real numbers.

For space reasons it will not be discussed how
a STSG defines a distribution over strings and
trees. Note that since a CFG can be found that
defines the same distribution over strings for ev-
ery STSG (Goodman, 2003) similar constraints
hold for STSGs and CFGs when it comes to
defining proper distributions. In order to ensure
that all string weights sum up to 1 the trees in

4This set may be finite or infinite. The uDOP Esti-
mate results in a finite set if the corpus is finite.

26

T for each possible root nonterminal must sum
to one.5

Definition 4 (Probabilistic Bottom Up Tree
Automaton). A probabilistic bottom up tree au-
tomaton (pBTA) is a tuple 〈Q,Σ, δ, q0, ω, λ〉
where Q is a finite set of states, Σ is the finite
alphabet, δ ⊆ Q+×Σ×Q is the finite set of tran-
sitions where Q+ denotes all nonempty tuples
over the states, q0 is the start state, ω : δ → R+

is the transition weight function and λ : δ → R+

is the final weight function.

Definition 5 (Weight of a Tree in a pBTA).
The weight of an element t ∈ T (Σ, Q×Σ∪{q0}∪
Σ) given an automaton A = 〈Q,Σ, δ, q0, ω, λ〉 is
denoted by Ω(t, A) and is defined by:

Ω(q0, A) =1 (8)

Ω(q, l(α), A) =
∑
β∈Qn

ω(〈〈β〉, l, q〉)·

∏
lm(tm)∈α

Ω(qm, lm(tm), A) (9)

Where α = l1(t1), . . . , ln(tn) and β =
q1, . . . , qn. Where these formulas do not define
a weight, it is assumed to be 0.

The final weight of the tree t =
l(l1(t1), . . . , ln(tn)) for the automaton A is
denoted by Λ(l(l1(t1), . . . , ln(tn)), A) and is
defined as:

Λ(l(α), A) =
∑
q∈Q

∑
β∈Qn

λ(〈〈β〉, l, q〉)·

∏
tm∈α

Ω(qm, lm(t1), A) (10)

Where again α = l1(t1), . . . , ln(tn) and β =
q1, . . . , qn.

The definitions for pBTAs basically specify a
bottom up parsing proceedure in which finished
trees are combined. The intermediate trees are
labeled with states that guide the derivation
process.

5Ensuring that the weight of the finite strings sums
to one is more difficult. See Nederhof and Satta (2006).

Definition 6 (Language). The Language of a
pBTA A denoted L(A) is the set:

L(A) = {t|Λ(t, A) 6= 0} (11)

The penultimate set of definitions is con-
cerned with the language weight of a pBTA, in-
side and outside weights.

Definition 7 (Language Weight). The language
weight for a pBTA A = 〈Q,Σ, δ, q0, ω, λ〉 is de-
noted by wl(A) and defined by:

wl(A) =
∑

t∈T (Σ,Σ)

Λ(t, A) (12)

The inside weight for a state q ∈ Q for an
automaton A = 〈Q,Σ, δ, q0, ω, λ〉 is denoted by
inside(q, A). It is the language weight of A′.
Here A′ is A changed so that it only has one final
transition from 〈q〉 to some state with weight 1.

The outside weight for a state q ∈ Q needs
a recursive definition. The weight is made up
of two summands. The first summand is the
outside weight of the right hand side of all tran-
sitions q occurs in.6 This is multiplied with the
inside weight of all states other than q in the left
hand side of the transition. Finally this value is
taken times the number of occurrences of q in
the left hand side. The second summand is the
same as the first only with the outside weight
replaced by the final weight of the transitions.

Now only the uDOP estimate and the connec-
tion between STSGs and pBTAs are still miss-
ing.

Definition 8 (uDOP Estimate). For a STSG
G = 〈Σ, {X}, T,N0, ω〉 and a corpus c =
〈c1, . . . , cm〉 such that each cl is a tree of the
form L(L1(x1), . . . , Ln(xn)) or an extension of
such a tree. Let c′ be derived from c by replac-
ing each cl by all the complete trees in Ext(cl).
Then the uDOP estimate uDOP(t, c) is given by:

ω(t) =

∑
c1∈c′ num(t, c1)∑

t′∈T (N,N∪Σ)

∑
c1∈c′ num(t′, c1)

(13)

where num(t, x) is the number of times sub-
tree t occurs in the tree x.

6In a transition 〈α, l, q〉 α is the left hand side and q
the right hand side.

27

Here c′ is a corpus that contains each com-
pletion t′ once for every tree t in the original
corpus, such that t′ is a completion of t. This
corpus is of course never generated explictly and
only used in the definition.

Definition 9 (STSG Given by a pBTA). Let
G = 〈Σ, N, τ,N0, ω〉 be a STSG. The grammar
is given by a pBTA A if t ∈ T ↔ L(A) and
ω(x) = Ω(x,A).

This definition states that the set of trees is
the language of the automaton and the weight
of each tree is the weight the automaton assigns
to it.

The goal of this paper can now be described
in the following way: given a corpus of trees
〈c1, . . . , cn〉 find a pBTA A that gives the uDOP
estimate and is as small as possible. The rele-
vant measure here is the number of transitions.
The number of states that are useful, the num-
ber of labels that are used and the number of
entries for the weight function are all dependent
on the number of transitions. This measure is
also independent of any specific implementation
details. From the connection between STSGs
and pBTAs some extensions to the uDOP algo-
rithm are possible that will be discussed at the
end of the paper in section 6.

Only completion with the nonterminal X is
used. All algorithms given in this paper can be
adapted to more brackets by creating a transi-
tion for the additional labels whenever one for
X is created.

4 Reducing the Size of the Estimate

The generation process for the uDOP estimate
that this paper proposes is as follows. First
generate a pBTA representing all the complete
parse trees for the corpus. Every tree t in the
corpus will have as its weight in the automaton
the number of times it occurs in the completed
corpus. The completed corpus is again the cor-
pus with each tree replaced by all the trees com-
pletions.

As a second step manipulate the automaton
for the set of completions in such a way that
the set of subtrees is given and they are asso-
ciated with the intended relative weights. Then

apply normalization similar to the one employed
by Maletti and Satta (2009). The normalization
algorithm has to be slightly changed to account
for the fact that the trees are not supposed to
stand on their own, but rather be used in an
STSG. A sketch will be given. For all final tran-
sition with label l sum up the final weight of the
transition times the inside weight of all states on
the left hand side of the transition. Then mul-
tiply the weight of final transitions with label l
with the multiplication of the inside weights of
their left hand side states and divide the weight
by the sum for the label l. All other weights
are normalized as described in Maletti and Satta
(2009).

The reduction that will be proposed here is
based on reducing the size of the representation
of all trees. Once this is achieved, a simple algo-
rithm can be applied that gives the uDOP esti-
mate and only increases the size of the represen-
tation by a maximum factor of 2 · |I| + |I|2 + 1
plus one transition for every nonterminal label.7

To understand the mapping to subtrees con-
sider the following: If an automaton gives the set
of all trees, then the outside weight of any state
will be the number of trees this state is embed-
ded in. The inside weight will be the number of
trees embedded at this position. This is the case
because inside and outside weights sum over the
possible derivations.

For each nonterminal label l a state ql is cre-
ated only to represent the introduction of l. A
transition of the form 〈〈q0〉, l, ql〉 is added to the
representation of all trees.8 This transition is
weighted by 1.

Denote the automaton representing all trees
by AT . Let r = 〈〈q1, q2〉, X, q〉 be a transition in
AT . For each label l:

inlab(qx, l) =
∑

〈α,l,qx〉∈δ

ω(r) ·
∏
qy∈α

inside(qx, AT)

(14)

7I is the set of labels that occur on internal nodes
or - in other words - the nonterminal labels. The factor
is explained further into the section. Note that for the
standard uDOP approach |I| = 1.

8q0 is assumed to be the start state.

28

For each nonterminal label l create the rules9:

r1 =〈〈ql, q2〉, X, q〉 (15)

r2 =〈〈q1, ql〉, X, q〉 (16)

For each pair of nonterminal labels l1, l2 create
a rule10:

r3 = 〈〈ql1 , ql2〉, X, q〉 (17)

Let w be the weight of the original transition.
Set ω(r1) = in(q2, l) ·w,ω(r2) = in(q1, l) ·w and
ω(r3) = in(q1, l1)·in(q2, l2)·w respectively. Add
final weight out(q) to each transition.11 This as-
signs to each subtree the number of counts. Af-
ter the transformation each transition can be a
point at which a derivation ends. Outside weight
is assigned according to the number of trees the
subtree is embedded in. The derivation can also
start with any node. Therefore inside weight
is added according to the number of embedded
trees.

Normalizing the automaton afterwards gives
the weights according to the uDOP estimator.

Bansal and Klein (2010) give a transformation
from parse trees to subtrees that reduces the size
of the representation even further. Since a ver-
sion of the transformation from their paper can
be applied to any representation of the full parse
trees, it is complementary to the approach used
here. For this reason it will not be discussed
here and it should suffice to say that using this
transformation would improve the results in this
paper even further.

Before it is discussed how the size of the rep-
resentation of all trees can be reduced further,
the first step will be to present the approach by
Goodman (2003).

4.1 The Goodman Reduction

The approach from Goodman (2003) was in-
tended for use with the supervised version of

9This accounts for the factor 2 · |I|.
10This accounts for the factor |I|2.
11An actual implementation would not create a rule if

all weights are 0.

Data Oriented Parsing. We will discuss a ver-
sion of the algorithm that is based on tree au-
tomata and the considerations made so far.

The original approach works by creating a
state for every node in the corpus. Each group of
daughter nodes is then connected to its mother
node by a weighted transition with weight 1.
The transition from the daughters of the root
node of a sentence is assigned a final weight of
1. Finally, the projection to the subtrees is ap-
plied.

The version for unsupervised parsing is sim-
ilar to and based on parse forests and parse
items. The states correspond to parsing items
as in the CYK algorithm.12

The reduction can be described as follows:
create a state/parse item 〈i, j, k〉 for every sen-
tence k and every range from i to j in the sen-
tence. Also create one state for every type of
terminal node. This is illustrated in Figures 2(a)
and 2(b). Rules are introduced from the start
state for each possible terminal to the terminal
type nodes with weight 1. If terminal x occurs in
sentence k from i to i+1, create a transition from
the terminal state for x to the state 〈i, i + 1, k〉
with weight 1. Label those transitions with X
or with the appropriate preterminal nontermi-
nal if there is one in the partial corpus tree. All
states with a difference greater than 1 between
the start and the end point are connected to all
state pairs 〈i,m, k〉, 〈m, j, k〉. Here m is a point
between i and j. These transitions are again la-
beled by X unless there is a bracket labeled by
L from i to j in this case the transition is labeled
by L. The weight for each such transition is 1.

If i is 0 and j is the length of the sentence
number k then the final weight for transitions
to the state 〈i, j, k〉 is 1.

In order to comply with the requirement that
we only use completions of the given trees, one
adjustment is necessary. When a bracket a, b
is present, no state i, j, k is proposed such that
a < i < b < j ∨ i < a < j < b. Thereby all
crossing brackets are ruled out.

12See for example (Younger, 1967).

29

4.2 Making the Representation of All
Trees Deterministic

A possible step in size reduction is making the
representation deterministic. Generally deter-
minization does not lead to a reduction in size
of a finite state automaton. Here however, de-
terminization means simply that states repre-
senting equivalent subtrees are merged. This is
similar to the graph packing idea used in Bansal
and Klein (2010).

Assume a partial tree is given in the string
form that was used in section 3, i.e. , as a
string of brackets and symbols. Then two iden-
tical strings represent identical trees which have
identical completions. Let the bracketing for se-
quence from i to j in sentence k be identical to
the bracketing for the sequence from l to m in
sentence n. Assume also that the sequences rep-
resent the same string. Then the state 〈i, j, k〉
may be replaced in every transition by the state
〈l,m, n〉. The only thing that has to be kept
track of is how many times a certain string cor-
responded to a full corpus entry. In the Good-
man approach a final weight of 1 is used, since
new states are created for every sentence. In the
deterministic case the final weight for all tran-
sitions reaching a state that represents a brack-
eted sequence x must be increased by 1 for each
time x occurs in the corpus. An illustration of
the idea13 is given in Figures 2(c) and 2(d).

4.3 Using Minimization

Finally one can try finding the minimal deter-
ministic weighted tree automaton for the distri-
bution. This is a well defined notion.

Definition 10 (Minimal determinis-
tic pBTA). The minimal deterministic
pBTA A′ = 〈Q′,Σ′, δ′, q′0, ω′, λ′〉 for a
given pBTA A = 〈Q,Σ, δ, q0, ω, λ〉 fulfills
Ω(x, p) = Ω(x,A′) and there is no automaton
A′′ = 〈Q′′,Σ′′, δ′′, q′′0 , ω′′, λ′′〉 fulfilling this
criterion with |Q′′| < |Q′|.

A minimal deterministic pBTA is unique for
the distribution it represents up to renaming the
states.

13Here shown without any bracketing data

X|0,1,1

john

X|0,3,1

X|1,3,1

X|2,3,1

X|0,2,1

X|1,2,1

sees jim

(a) Goodman reduction states

X|0,1,2

john

X|0,3,2

X|1,3,2

X|2,3,2

X|0,2,2

X|1,2,2

sees frank

(b) Goodman reduction states

X|john

john

X|john sees jim

X|sees jim

X|jim

X|john sees

X|sees

sees jim

(c) Deterministic reduction states

Note that this means that after the minimiza-
tion the automaton is as small as possible for a
deterministic pBTA. The only way to improve
on this while staying in the pBTA framework
would be to find a minimal nondeterministic
automaton. That this is possible is shown in
Bozapalidis (1991). It is however not clear that
this problem could be solved in reasonable time
for an automaton with hundreds of thousands of
states.

In order to generate a minimal automaton,
an efficiently verifiable criterion for two states

30

X|john

john

X|john sees frank

X|sees frank

X|frank

X|john sees

X|sees

sees frank

(d) Deterministic reduction states

X|john

john

X|john sees 1

X|sees 1

X| 1

X|john sees

X|sees

sees jim

(e) Minimization reduction states

X|john

john

X|john sees 1

X|sees 1

X| 1

X|john sees

X|sees

sees frank

(f) Minimization reduction states

Figure 2: the different reduction approaches illus-
trated, different edge colors correspond to different
parses. The Figures 2(b) and 2(a) are for the Good-
man approach. Every span of words has its own state
proposed. Figures 2(c) and 2(d) show how equals
spans of words will lead to the repetition of the same
state in the deterministic approach. Figures 2(e) and
2(f) show how two states that have equal contexts are
merged into one state called ’1’. This is an illustra-
tion of the minimization approach.

to be equivalent is necessary. For deterministic
pBTA this is given by Maletti (2009). Since the

automaton for all trees is nonrecursive after the
deterministic construction, normalization allows
minimizing the automaton in linear time, de-
pending on the number of transitions.14 For the
algorithms to work, the fact that a deterministic
pBTA is constructed is a necessary precondition.

Figures 2(e) and 2(f) illustrate this approach.
The tree X(jim) is distributed equally to the
tree X(frank). Since this is the case, a merged
state for both trees is introduced. This state is
labeled as 1.

5 Experimental Results

The algorithm was tested in two domains. The
first one was the Negra Corpus (Skut et al.,
1997). The second one was the Brown Corpus
(Francis, 1964). The standard approach in unsu-
pervised parsing is to use sequences of tags with
certain punctuation removed (Klein and Man-
ning, 2002). This is supposed to simulate spo-
ken language. Once the punctuation is removed
all sequences of length 10 or less are used for
most approaches in unsupervised parsing. This
ensures that the hypothesis space is relatively
small for the sentences left in the corpus. The
same approach is chosen for this paper, as this is
the context in which uDOP grammars are most
likely to be evaluated. A slightly different def-
inition of punctuation is used. Note that no
bracketing structure is used. This means that
for every string in the corpus, a number of tran-
sitions has to be created that is limited by n3 in
the worst case, were n is the length of the string.

Note that the removal of more punctuation
marks will lead to a sample that is harder to re-
duce in size by determinization and minimiza-
tion. Punctuation occurs frequently and can
therefore easily net a great number of reductions
by merging states.

For the Negra Corpus all tags matching

/\$ \S∗/
are removed.15 This leads to a corpus of 7248

14The normalization can also be implemented in linear
time for nonrecursive pBTA.

15Here
/\$ \S∗/
is an regular expression according to the ruby regu-

lar expression specifications (Flanagan and Matsumoto,

31

negra brown5000

Goodman Based 1528256 1238717

Deterministic 857150 785427

Minimized 633907 602491

brown10000 brown15000

Goodman Based 2389442 3603050

Deterministic 1402536 2030252

Minimized 1029786 1457499

Table 1: The results from the experimental evalua-
tion. The numbers given reflect the number of tran-
sitions after the transformation to subtrees.

tag sequences of length 10 or less.

For the Brown Corpus the tags that are re-
moved are specified by the regular expression

/\W+/

Not the whole sample from the Brown Cor-
pus is used. Instead samples of 5000,10000 and
15000 sequences of tags are used.

The results of the algorithms can be seen in
Table 5. In order to make the comparison im-
plementation independent, the number of tran-
sitions after the transformation to subtrees, as
explained in section 4, is given.

The results show that the minimization algo-
rithm tends to cut the number of transitions
in half for all corpora. This means these re-
ductions in the number of transitions could be
used to double the size of the corpus used in
uDOP.16 Note that if one was to extend the cor-
pus with more strings of limited size the bene-
fit of the new approaches should become more
pronounced. This is the case since the deter-
minstic construction only introduces one state
per observed substring. The set of possible tag
sequences of length 10 or less is limited. This
holds especially true if one considers linguistic
constraints. This tendency can be seen from the
statistics for 15000 sentences from the Brown
corpus.

2008).
16This is the case, since the number of states grows

linearly with corpus size for fixed sentence length.

6 Possible Extensions

Note that tree automata are closed under inter-
section (Fülöp and Vogler, 2009). Bansal and
Klein (2010) propose improving a DOP estimate
by changing the weights of the subtrees. This
is done by using a weighting scheme that dis-
tributes along the packed representation. This
can be extended with the techniques in this pa-
per in the following way: Assume one wants to
give the weight of the subtree as the joint prob-
ability of a tree automaton model that has pre-
viously been given and the uDOP estimate. All
that is necessary to achieve this would be to rep-
resent the uDOP estimate as a tree automaton,
intersect it with the previously given automaton
and apply a normalization as discussed above.17.

The algorithm allows another generalization
in addition to the one proposed. This is the
case since the mapping to subtrees can be im-
plemented by application of a tree transducer
(Knight and Graehl, 2005). Therefore, the final
estimation can be made more complex. Simply
replace the mapping step by the application of
a transducer.

7 Conclusion

In this paper it was discussed how the size of
the unsupervised Data Oriented Parsing esti-
mate for STSGs can be reduced. By translating
the problem into the domain of finite tree au-
tomata, the problem of reducing the grammar
size could be handled by solving standard prob-
lems in that domain.

The code used for the experiments in this pa-
per can be found at http://code.google.com/
p/gragra/.

References

Mohit Bansal and Dan Klein. 2010. Simple, accu-
rate parsing with an all-fragments grammar. In
ACL 2010, Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguis-
tics, Uppsala, Sweden, pages 1098–1107. The As-
sociation for Computer Linguistics.

17the last step is necessary for the subtree probabilities
to sum to 1

32

Rens Bod. 2006a. An all-subtrees approach to unsu-
pervised parsing. In ACL-44: Proceedings of the
21st International Conference on Computational
Linguistics and the 44th annual meeting of the
Association for Computational Linguistics, pages
865–872. The Association for Computational Lin-
guistics.

Rens Bod. 2006b. Unsupervised parsing with u-
dop. In CoNLL-X ’06: Proceedings of the Tenth
Conference on Computational Natural Language
Learning, pages 85–92. Association for Computa-
tional Linguistics.

Rens Bod. 2007. Is the end of supervised parsing in
sight? In Proceedings of the 45th Annual Meeting
of the Association for Computational Linguistics,
pages 400–407. The Association for Computer Lin-
guistics.

Symeon Bozapalidis. 1991. Effective construction of
the syntactic algebra of a recognizable series on
trees. Acta Informatica, 28(4):351–363.

David Flanagan and Yukihiro Matsumoto. 2008.
The ruby programming language. O’Reilly, first
edition.

W. Nelson Francis. 1964. A standard sample of
present-day english for use with digital comput-
ers. Technical report, Brown University.

Zoltan Fülöp and Heiko Vogler, 2009. Weighted Tree
Automata and Tree Transducers, chapter 9, pages
313–394. Springer Publishing Company, Incorpo-
rated, 1st edition.

Joshua Goodman. 1998. Parsing Inside-Out. Ph.D.
thesis, Harvard University.

Joshua Goodman. 2003. Efficient algorithms for the
dop model. In Data Oriented Parsing. Center for
the Study of Language and Information, Stanford,
California.

Christian Hänig. 2010. Improvements in unsuper-
vised co-occurrence based parsing. In Proceedings
of the Fourteenth Conference on Computational
Natural Language Learning, pages 1–8. Associa-
tion for Computational Linguistics.

Dan Klein and Christopher D. Manning. 2002. A
generative constituent-context model for improved
grammar induction. In Proceedings of the Associ-
ation for Computational Linguistics, pages 128–
135. Association for Computational Linguistics.

Kevin Knight and Jonathan Graehl. 2005. An
overview of probabilistic tree transducers for nat-
ural language processing. In CICLing, volume vol-
ume 3406 of Lecture Notes in Computer Science,
pages 1–24.

Andreas Maletti and Giorgio Satta. 2009. Parsing
algorithms based on tree automata. In IWPT ’09:

Proceedings of the 11th International Conference
on Parsing Technologies, pages 1–12. Association
for Computational Linguistics.

Andreas Maletti. 2009. Minimizing deterministic
weighted tree automata. Information and Com-
putation, 207(11):1284–1299.

Tahira Naseem and Regina Barzilay. 2011. Us-
ing semantic cues to learn syntax. In AAAI
2011: Twenty-Fifth Conference on Artificial In-
telligence.

Mark-Jan Nederhof and Giorgio Satta. 2006. Es-
timation of consistent probabilistic context-free
grammars. In Proceedings of the main confer-
ence on Human Language Technology Conference
of the North American Chapter of the Associa-
tion of Computational Linguistics, pages 343–350,
Morristown, NJ, USA. Association for Computa-
tional Linguistics.

Fernando Pereira and Yves Schabes. 1992. Inside-
outside reestimation from partially bracketed cor-
pora. In Proceedings of the 30th annual meeting on
Association for Computational Linguistics, ACL
’92, pages 128–135, Stroudsburg, PA, USA. Asso-
ciation for Computational Linguistics.

Elias Ponvert, Jason Baldridge, and Katrin Erk.
2011. Simple unsupervised grammar induction
from raw text with cascaded finite state models.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Hu-
man Language Technologies.

Jesus Santamaria and Lourdes Araujo. 2010. Identi-
fying patterns for unsupervised grammar induc-
tion. In Proceedings of the Fourteenth Confer-
ence on Computational Natural Language Learn-
ing (CoNLL). Association for Computational Lin-
guistics.

Wojciech Skut, Brigitte Krenn, Thorsten Brants,
and Hans Uszkoreit. 1997. An annotation scheme
for free word order languages. In Proceedings of
the fifth conference on Applied natural language
processing, ANLC ’97, pages 88–95. Association
for Computational Linguistics.

Valentin I. Spitkovsky, Daniel Jurafsky, and Hiyan
Alshawi. 2010. Profiting from mark-up: hyper-
text annotations for guided parsing. In Proceed-
ings of the 48th Annual Meeting of the Association
for Computational Linguistics, ACL ’10, pages
1278–1287, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel
Jurafsky. 2011. Punctuation: Making a point in
unsupervised dependency parsing. In In Proceed-
ings of the Fifteenth Conference on Computational
Natural Language Learning (CoNLL-2011).

33

Daniel H. Younger. 1967. Recognition and parsing
of context-free languages in time n3. Information
and Control, 10:189–208.

34

