
Proceedings of the 15th Conference on Computational Natural Language Learning: Shared Task, pages 122–126,
Portland, Oregon, 23-24 June 2011. c©2011 Association for Computational Linguistics

Reconciling OntoNotes: Unrestricted Coreference Resolution in
OntoNotes with Reconcile

Veselin Stoyanov
CLSP

Johns Hopkins University
Baltimore, MD

Uday Babbar and Pracheer Gupta and Claire Cardie
Department of Computer Science

Cornell University
Ithaca, NY

Abstract
This paper describes our entry to the 2011 CoNLL
closed task (Pradhan et al., 2011) on modeling un-
restricted coreference in OntoNotes. Our system is
based on the Reconcile coreference resolution re-
search platform. Reconcile is a general software in-
frastructure for the development of learning-based
noun phrase (NP) coreference resolution systems.
Our entry for the CoNLL closed task is a configura-
tion of Reconcile intended to do well on OntoNotes
data. This paper describes our configuration of Rec-
oncile as well as the changes that we had to imple-
ment to integrate with the OntoNotes task definition
and data formats. We also present and discuss the
performance of our system under different testing
conditions on a withheld validation set.

1 Introduction
Noun phrase (NP) coreference resolution is one of
the fundamental tasks of the field of Natural Lan-
guage Processing (NLP). Recently, the creation of
the OntoNotes corpus (Pradhan et al., 2007) has
provided researchers with a large standard data
collection with which to create and empirically
compare coreference resolution systems.

Reconcile (Stoyanov et al., 2010b) is a general
coreference resolution research platform that aims
to abstract the architecture of different learning-
based coreference systems and to provide infras-
tructure for their quick implementation. Recon-
cile is distributed with several state-of-the art NLP
components and a set of optimized feature imple-
mentations. We decided to adapt Reconcile for
the OntoNotes corpus and enter it in the 2011
CoNLL shared task with three goals in mind: (i) to
compare the architecture and components of Rec-
oncile with other state-of-the-art coreference sys-
tems, (ii) to implement and provide the capabil-
ity of running Reconcile on the OntoNotes corpus,
and, (iii) to provide a baseline for future algorithm
implementations in Reconcile that evaluate on the
OntoNotes corpus.

Although Reconcile can be easily adapted to
new corpora, doing so requires introducing new
components. More precisely, the system has to
be modified to be consistent with the specific def-
inition of the coreference task embodied in the

OntoNotes annotation instructions. Additionally,
different corpora use different data formats, so the
system needs to implement capabilities for dealing
with these new formats. Finally, Reconcile can be
configured with different features and components
to create an instantiation that models well the par-
ticular data.

In this paper we describe, ReconcileCoNLL,
our entry to the 2011 CoNLL shared task based on
the Reconcile research platform. We begin by de-
scribing the general Reconcile architecture (Sec-
tion 2), then describe the changes that we incor-
porated in order to enable Reconcile to work on
OntoNotes data (Sections 3 and 4). Finally, we
describe our experimental set up and results from
running ReconcileCoNLL under different condi-
tions (Section 5).

2 Overview of Reconcile
In this section we give a high-level overview of the
Reconcile platform. We refer the reader for more
details to Stoyanov et al. (2010a) and Stoyanov et
al. (2010b). Results from running a Reconcile-
based coreference resolution system on different
corpora can be found in Stoyanov et al. (2009).

Reconcile was developed to be a coreference
resolution research platform that allows for quick
implementation of coreference resolution systems.
The platform abstracts the major processing steps
(components) of current state-of-the-art learning-
based coreference resolution systems. A descrip-
tion of the steps and the available components can
be found in the referenced papers.

3 The ReconcileCoNLL System
To participate in the 2011 CoNLL shared task, we
configured Reconcile to conform to the OntoNotes
general coreference resolution task. We will use
the name ReconcileCoNLL, to refer to this par-
ticular instantiation of the general Reconcile plat-
form. The remainder of this section describe the
changes required to enable ReconcileCoNLL to
run (accurately) on OntoNotes data.

122



ReconcileCoNLL employs the same basic
pipelined architecture as Reconcile. We describe
the specific components used in each step.

1. Preprocessing. Documents in the OntoNotes
corpus are manually (or semi-automatically) an-
notated with many types of linguistic information.
This information includes tokens, part-of-speech
tags, and named entity information as well as a
constituent syntactic parse of the text. For the pur-
pose of participating in the shared task, we rely on
these manual annotations, when available. Thus,
we do not run most of the standard Reconcile pre-
processing components. One type of information
not provided in the OntoNotes corpus is a depen-
dency parse. Several of Reconcile’s features rely
on a dependency parse of the text. Thus, we ran
the Stanford dependency parser (Klein and Man-
ning, 2003), which performs a constituent parse
and uses rules to convert to a dependency format.1

Two additional changes to the preprocessing
step were necessary for running on the OntoNotes
data. The first is the implementation of compo-
nents that can convert data from the OntoNotes
format to the Reconcile internal format. The sec-
ond is adaptation of the Coreference Element (CE)
extractor to conform to the OntoNotes definition
of what can constitute a CE. Our implementations
for these two tasks are briefly described in Sec-
tions 4.1 and 4.2, respectively.

2. Feature generation. ReconcileCoNLL was
configured with 61 features that have proven suc-
cessful for coreference resolution on other data
sets. Due to the lack of time we performed
no feature engineering or selection specific to
OntoNotes. We used a new component for gener-
ating the pairwise CEs that comprise training and
test instances, which we dub SMARTPG (for smart
pair generator). This is described in Section 4.3.

3. Classification. We train a linear classifier us-
ing the averaged perceptron algorithm (Freund and
Schapire, 1999). We use a subset of 750 randomly
selected documents for training, since training on
the entire set required too much memory.2 As a
result, we had ample validation data for tuning
thresholds, etc.

1A better approach would be to use the rules to create the
dependency parse from the manual constituent parse. We de-
cided against this approach due to implementation overhead.

2It is easy to address the memory issue in the on-line per-
ceptron setting, but in the interest of time we chose to reduce
the size of the training data. Training on the set of 750 docu-
ments is done efficiently in memory by allocating 4GB to the
Java virtual machine.

4. Clustering. We use Reconcile’s single-link
clustering algorithm. In other words, we compute
the transitive closure of the positive pairwise pre-
dictions. Note that what constitutes a positive pre-
diction depends on a threshold set for the classifier
from the previous step. This clustering threshold
is optimized using validation data. More details
about the influence of the validation process can
be found in Section 5.

5. Scoring. The 2011 CoNLL shared task pro-
vides a scorer that computes a set of commonly
used coreference resolution evaluation metrics.
We report results using this scorer in Section 5.
However, we used the Reconcile-internal versions
of scorers to optimize the threshold. This was
done for pragmatic reasons – time pressure pre-
vented us from incorporating the CoNLL scorer in
the system. We also report the Reconcile-internal
scores in the experiment section.

This concludes the high-level description of
the ReconcileCoNLL system. Next, we describe
in more detail the main changes implemented to
adapt to the OntoNotes data.

4 Adapting to OntoNotes
The first two subsection below describe the two
main tasks that need to be addressed when running
Reconcile on a new data set: annotation conver-
sion and CE extraction. The third subsection de-
scribes the new Smart CE Pairwise instance gen-
erator — a general component that can be used for
any coreference data set.

4.1 Annotation Conversion
There are fundamental differences between the an-
notation format used by OntoNotes and that used
internally by Reconcile. While OntoNotes relies
on token-based representations, Reconcile uses a
stand-off bytespan annotation. A significant part
of the development of ReconcileCoNLL was de-
voted to conversion of the OntoNotes manual to-
ken, parse, named-entity and coreference annota-
tions. In general, we prefer the stand-off bytespan
format because it allows the reference text of the
document to remain unchanged while annotation
layers are added as needed.

4.2 Coreference Element Extraction

The definition of what can constitute an element
participating in the coreference relation (i.e., a
Coreference Element or CE) depends on the par-
ticular dataset. Optimizing the CE extraction com-

123



Optimized Thres- B- CEAF MUC
Metric hold Cubed

BCubed 0.4470 0.7112 0.1622 0.6094
CEAF 0.4542 0.7054 0.1650 0.6141
MUC 0.4578 0.7031 0.1638 0.6148

Table 1: Reconcile-internal scores for different
thresholds. The table lists the best threshold for
the validation data and results using that threshold.

Pair Gen. BCubed CEAFe MUC
SMARTPG 0.6993 0.1634 0.6126
All Pairs 0.6990 0.1603 0.6095

Table 3: Influence of different pair generators.

ponent for the particular task definition can result
in dramatic improvements in performance. An ac-
curate implementation limits the number of ele-
ments that the coreference system needs to con-
sider while keeping the recall high.

The CE extractor that we implemented for
OntoNotes extends the existing Reconcile ACE05
CE extractor (ACE05, 2005) via the following
modifications:

Named Entities: We exclude named entities of
type CARDINAL NUMBER, MONEY and NORP,
the latter of which captures nationality, religion,
political and other entities.

Possessives: In the OntoNotes corpus, posses-
sives are included as coreference elements, while
in ACE they are not.

ReconcileCoNLL ignores the fact that verbs can
also be CEs for the OntoNotes coreference task as
this change would have constituted a significant
implementation effort.

Overall, our CE extractor achieves recall of over
96%, extracting roughly twice the number of CEs
in the answer key (precision is about 50%). High
recall is desirable for the CE extractor at the cost of
precision since the job of the coreference system is
to further narrow down the set of anaphoric CEs.

4.3 Smart Pair Generator
Like most current coreference resolution systems,
at the heart of Reconcile lies a pairwise classifier.
The job of the classifier is to decide whether or not
two CEs are coreferent or not. We use the term
pair generation to refer to the process of creating
the CE pairs that the classifier considers. The most
straightforward way of generating pairs is by enu-
merating all possible unique combinations. This
approach has two undesirable properties – it re-

quires time in the order of O(n2) for a given doc-
ument (where n is the number of CEs in the docu-
ment) and it produces highly imbalanced data sets
with the number of positive instances (i.e., coref-
erent CEs) being a small fraction of the number of
negative instances. The latter issue has been ad-
dressed by a technique named instance generation
(Soon et al., 2001): during training, each CE is
matched with the first preceding CE with which it
corefers and all other CEs that reside in between
the two. During testing, a CE is compared to all
preceding CEs until a coreferent CE is found or
the beginning of the document is reached. This
technique reduces class imbalance, but it has the
same worst-case runtime complexity of O(n2).

We employ a new type of pair generation that
aims to address both the class imbalance and
improves the worst-case runtime. We will use
SMARTPG to refer to this component. Our pair
generator relies on linguistic intuitions and is
based on the type of each CE. For a given CE,
we use a rule-based algorithm to guess its type.
Based on the type, we restrict the scope of possi-
ble antecedents to which the CE can refer in the
following way:

Proper Name (Named Entity): A proper name
is compared against all proper names in the 20 pre-
ceding sentences. In addition, it is compared to all
other CEs in the two preceding sentences.

Definite noun phrase: Compared to all CEs in
the six preceding sentences.

Common noun phrase: Compared to all CEs
in the two preceding sentences.

Pronoun: Compared to all CEs in the two pre-
ceding sentences unless it is a first person pronoun.
First person pronouns are additionally compared
to first person pronouns in the preceding 20 sen-
tences.

During development, we used SMARTPG
on coreference resolution corpora other than
OntoNotes and determined that the pair generator
tends to lead to more accurate results. It also has
runtime linear in the number of CEs in a docu-
ment, which leads to a sizable reduction in run-
ning time for large documents. Training files gen-
erated by SMARTPG also tend to be more bal-
anced. Finally, by omitting pairs that are un-
likely to be coreferent, SMARTPG produces much
smaller training sets. This leads to faster learning
and allows us to train on more documents.

124



Optimized Metric Threshold BCubed CEAFe MUC BLANC CEAFm Combined
BCubed 0.4470 0.6651 0.4134 0.6156 0.6581 0.5249 0.5647
CEAF 0.4542 0.6886 0.4336 0.6206 0.7012 0.5512 0.5809
MUC 0.4578 0.6938 0.4353 0.6215 0.7108 0.5552 0.5835

Table 2: CoNLL scores for different thresholds on validation data.

CoNLL Official Test Scores BCubed CEAFe MUC BLANC CEAFm Combined
Closed Task 0.6144 0.3588 0.5843 0.6088 0.4608 0.5192

Gold Mentions 0.6248 0.3664 0.6154 0.6296 0.4808 0.5355
Table 4: Official CoNLL 2011 test scores. Combined score is the average of MUC, BCubed and CEAFe.

5 Experiments

In this section we present and discuss the results
for ReconcileCoNLLwhen trained and evaluated
on OntoNotes data. For all experiments, we train
on a set of 750 randomly selected documents from
the OntoNotes corpus. We use another 674 ran-
domly selected documents for validation. We re-
port scores using the scorers implemented inter-
nally in Reconcile as well as the scorers supplied
by the CoNLL shared task.

In the rest of the section, we describe our results
when controlling two aspects of the system – the
threshold of the pairwise CE classifier, which is
tuned on training data, and the method used for
pair generation. We conclude by presenting the
official results for the CoNLL shared task.

Influence of Classifier Threshold As previ-
ously mentioned, the threshold above which the
decision of the classifier is considered positive
provides us with a knob that controls the preci-
sion/recall trade-off. Reconcile includes a mod-
ule that can automatically search for a threshold
value that optimizes a particular evaluation met-
ric. Results using three Reconcile-internal scor-
ers (BCubed, CEAF, MUC) are shown in Table
1. First, we see that the threshold that optimizes
performance on the validation data also exhibits
the best results on the test data. The same does
not hold when using the CoNLL scorer for test-
ing, however: as Table 2 shows, the best results
for almost all of the CoNLL scores are achieved at
the threshold that optimizes the Reconcile-internal
MUC score. Note that we did not optimize thresh-
olds for the external scorer in the name of sav-
ing implementation effort. Unfortunately, the re-
sults that we submitted for the official evaluations
were for the suboptimal threshold that optimizes
Reconcile-internal BCubed score.

Influence of Pair Generation Strategies Next,
we evaluate the performance of SMARTPG pair
generators. We run the same system set-up as
above substituting the pair generation module. Re-
sults (using the internal scorer), displayed in Table
3, show our SMARTPG performs identically to the
generator producing all pairs, while it runs in time
linear in the number of CEs.

Official Scores for the CoNLL 2011 Shared
Task Table 4 summarizes the official scores of
ReconcileCoNLL on the CoNLL shared task. Sur-
prisingly, the scores are substationally lower than
the scores on our held-out training set. So far, we
have no explanation for these differences in perfor-
mance. We also observe that using gold-standard
instead of system-extracted CEs leads to improve-
ment in score of about point and a half.

The official score places us 8th out of 21 sys-
tems on the closed task. We note that because
of the threshold optimization mix-up we suffered
about 2 points in combined score performance.
Realistically our system should score around 0.54
placing us 5th or 6th on the task.

6 Conclusions
In this paper, we presented ReconcileCoNLL, our
system for the 2011 CoNLL shared task based on
the Reconcile research platform. We described
the overall Reconcile platform, our configuration
for the CoNLL task and the changes that we im-
plemented specific to the task. We presented the
results of an empirical evaluation performed on
held-out training data. We discovered that results
for our system on this data are quite different from
the official score that our system achieved.

Acknowledgments
This material is based upon work supported by
the National Science Foundation under Grant #
0937060 to the Computing Research Association
for the CIFellows Project.

125



References
ACE05. 2005. NIST ACE evaluation website. In

http://www.nist.gov/speech/tests/ace/2005.

Yoav Freund and Robert E. Schapire. 1999. Large
margin classification using the perceptron algorithm.
In Machine Learning, pages 277–296.

D. Klein and C. Manning. 2003. Fast Exact Inference
with a Factored Model for Natural Language Pars-
ing. In Advances in Neural Information Processing
(NIPS 2003).

Sameer S. Pradhan, Lance Ramshaw, Ralph
Weischedel, Jessica MacBride, and Linnea Micci-
ulla. 2007. Unrestricted coreference: Identifying
entities and events in ontonotes. In Proceedings
of the International Conference on Semantic
Computing.

Sameer Pradhan, Lance Ramshaw, Mitchell Marcus,
Martha Palmer, Ralph Weischedel, and Nianwen
Xue. 2011. Conll-2011 shared task: Modeling un-
restricted coreference in ontonotes. In Proceedings
of the Fifteenth Conference on Computational Nat-
ural Language Learning (CoNLL 2011), Portland,
Oregon, June.

W. Soon, H. Ng, and D. Lim. 2001. A Machine
Learning Approach to Coreference of Noun Phrases.
Computational Linguistics, 27(4):521–541.

V. Stoyanov, N. Gilbert, C. Cardie, and E. Riloff. 2009.
Conundrums in noun phrase coreference resolution:
Making sense of the state-of-the-art. In Proceedings
of ACL/IJCNLP.

V. Stoyanov, C. Cardie, N. Gilbert, E. Riloff, D. But-
tler, and D. Hysom. 2010a. Reconcile: A corefer-
ence resolution research platform. Technical report,
Cornell University.

Veselin Stoyanov, Claire Cardie, Nathan Gilbert, Ellen
Riloff, David Buttler, and David Hysom. 2010b.
Coreference resolution with reconcile. In Proceed-
ings of the ACL 2010.

126


