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Abstract

In this paper we present SUCRE (Kobdani

and Schütze, 2010) that is a modular coref-

erence resolution system participating in the

CoNLL-2011 Shared Task: Modeling Unre-

stricted Coreference in OntoNote (Pradhan et

al., 2011). The SUCRE’s modular architecture

provides a clean separation between data stor-

age, feature engineering and machine learning

algorithms.

1 Introduction

Noun phrase coreference resolution is the process

of finding markables (noun phrase) referring to the

same real world entity or concept. In other words,

this process groups the markables of a document

into entities (equivalence classes) so that all mark-

ables in an entity are coreferent. Examples of ap-

plications of coreference resolution are Informa-

tion Extraction, Question Answering and Automatic

Summarization.

Coreference is an equivalence relation between

two markables, i.e., it is reflexive, symmetric and

transitive. The first solution that intuitively comes

to mind is binary classification of markable pairs

(links). Therefore at the heart of most existing ap-

proaches there is a binary classifier that classifies

links to coreferent/disreferent. One can also use the

transitive property of coreference relation to build

the entities; this is done using a clustering method.

Our approach in this paper consist of the above

mentioned steps, namely:

1. Classification of links to coreferent/disreferent.

2. Clustering of links which are classified as

coreferent.

This paper is organized as follows. In Section 2,

we present our feature engineering approach. Sec-

tion 3 presents the system architecture. Data set is

described in Section 4. Sections 5 and 6 present re-

sults and conclusions.

2 Feature Engineering

In recent years there has been substantial work on

the problem of coreference resolution. Most meth-

ods present and report on the benchmark data sets

for English. The feature sets they use are based on

(Soon et al., 2001). These features consist of string-

based features, distance features, span features, part-

of-speech features, grammatical features, and agree-

ment features.

We defined a comprehensive set of features based

on previous coreference resolution systems for En-

glish, e.g. (Bengtson and Roth, 2008). In the com-

mon approach to coreference resolution we have

chosen, features are link features, i.e., features are

defined over a pair of markables. For link feature

definition and extraction, the head words of mark-

ables are usually used, but in some cases the head

word is not a suitable choice. For example, con-

sider these two markables: the book and a book, in

both cases book is the head word but to distinguish

which markable is definite and which indefinite ad-

ditional information about the markables has to be

taken into account. Now consider these two mark-

ables: the university students in Germany and the

university students in France in this case the head

words and the first four words of each markable

are the same but they cannot be coreferent, and this

could be detected only by looking at the entire noun

phrase. Some features require complex preprocess-
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ing or complex definitions. Consider the two mark-

ables the members of parliament and the members of

the European Union. The semantic class ofmembers

is person in the first case and country in the second.

To cover all such cases, we introduced a feature defi-

nition language (Kobdani et al., 2010). With the fea-

ture definition language we will be able to access all

information that is connected to a markable, includ-

ing the first, last and head words of the two mark-

ables; all other words of the two markables; and the

two markables as atomic elements.

After defining new features (new definition from

scratch or definition by combination of existing fea-

tures), we have to evaluate them. In principle, we

could use any figure of merit to evaluate the useful-

ness of a feature or to compare two similar features,

including Gini coefficient, mutual information, and

correlation coefficient. In our current system, ex-

pected information gain (IG) and information gain

ratio (IGR) are used.

As an example, consider the following two fea-

tures, which can be considered different attempts to

formalize the same linguistic property:

1. The noun phrase has a subject role and is def-

inite (e.g. markable begins with a definite arti-

cle)

2. The noun phrase has a subject role and is not

indefinite (e.g. markable begins with an indefi-

nite article)

The information gain ratios of the above men-

tioned features are equal to 0.0026 for the first and

0.0051 for the second one – this shows that the sec-

ond one is a better choice. We now define IG and

IGR.

The change in entropy from a prior state to a state

that takes some information is the expected informa-

tion gain (Mitchell, 1997):

IG (f) = H (C) − Hf (C) (1)

Where f is the feature value, C its corresponding

class, and entropy is defined as follows:

H (C) = −
∑

i

P (Ci) log2P (Ci) (2)

Hf (C) =
∑

f

|Cf |

|C|
H (Cf ) (3)

If a feature takes a large number of distinct values,

the information gain would not be a good measure

for deciding its relevance. In such cases the infor-

mation gain ratio is used instead. The information

gain ratio for a feature is calculated as follows:

IGR (f) =
IG (f)

SInf (C)
(4)

SInf(C) = −
∑

i

|Ci|

|C|
log2

|Ci|

|C|
(5)

Equation (4) can be used as an indicator for which

features are likely to improve classification accu-

racy.

3 System Architecture

The architecture of the system has two main parts:

preprocessing and coreference resolution.

In preprocessing the text corpus is converted to

a relational data model. The main purpose of the

relational model in our system is the use of a fea-

ture definition language (Kobdani et al., 2010). Af-

ter modeling the text corpus, coreference resolution

can be performed.

The main steps of the system are presented as fol-

lows.

3.1 Preliminary text conversion

In this step, tokens are extracted from the corpus. In

the CoNLL-2011 Shared Task this step is as simple

as reading each line of the input data set and extract-

ing its corresponding token.

3.2 Atomic attributes of tokens

Atomic features of the tokens are extracted

in this step. The extracted atomic features

are: part of speech, number, pronoun person

(first, second and third), pronoun type (subjec-

tive,,predeterminer,reflexive,objective and posses-

sive), WordNet semantic class and gender.

We use a rather simple method to extract semantic

class of each token from WordNet. We look at the

synonyms of the token and if one of them is in the

predefined keyword set, we take it as its correspond-

ing semantic class. The example of the keywords

are person, time, abstraction, device, human action,

organization, place and animal.
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3.3 Markable Detection

In this step all noun phrases from the parse tree are

extracted. After clustering step all markables which

are not included in a chain are deleted from the list

of markables. In other word we will not have any

cluster with less than 2 members.

Figure 1 presents the simple markable detection

method which we used in the SUCRE.

3.4 Atomic attributes of markables

In this step, the atomic attributes of the markables

are extracted. In the data set of the CoNLL-2011

shared task the named entity property of a markable

can be used as its atomic attribute.

3.5 Link Generator

For training, the system generates a positive train-

ing instance for an adjacent coreferent markable pair

(m, n) and negative training instances for the mark-

able m and all markables disreferent with m that oc-

cur before n (Soon et al., 2001). For decoding it

generates all the possible links inside a window of

100 markables.

3.6 Link feature definition and extraction

The output of the link generator, which is the list of

the generated links, is the input to the link feature

extractor for creating train and test data sets. To do

this, the feature definitions are used to extract the

feature values of the links (Kobdani et al., 2011).

3.7 Learning

For learning we implemented a decision tree classi-

fier (Quinlan, 1993). To achieve state-of-the-art per-

formance, in addition to decision tree we also tried

support vector machine and maximum entropy that

did not perform better than decision tree.

3.8 Classification and Clustering

In this part, the links inside one document are clas-

sified then the coreference chains are created. We

use best-first clustering for this purpose. It searches

for the best predicted antecedent from right to left

starting from the end of the document. For the docu-

ments with more than a predefined number of mark-

ables we apply a limit for searching. In this way, in

addition to better efficiency, the results also improve.

Markable Detection PSG A (W1, W2, . . . , Wn)

1. A markable M is presented by a set of

three words:

Begin (Mb), End (Me) and Head (Mh).

2. Let DM be the set of detected markables.

3. Let Ti be the node i in the parse tree with

label Li

(if node is a word then Li is equal to Wi).

4. Start from parse tree root Tr:

Find Markables(Tr,Lr,DM )

Find Markables(T ,L,DM )

1. If L is equal to noun phrase, then extract

the markable M :

(a) Set the begin word of the markable:

Mb = Noun Phrase Begin(T ,L)

(b) Set the end word of the markable:

Me = Noun Phrase End(T ,L)

(c) Set the head word of the markable:

Mh = Noun Phrase Head(T ,L)

(d) Add the markable M to the set of de-

tected markables DM .

2. Repeat for all Ti the daughters of T :

Find Markables(Ti,Li,DM )

Noun Phrase Begin(T ,L)

If T has no daughter then return L;

else set Tb to the first daughter of T and return

Noun Phrase Begin(Tb,Lb).

Noun Phrase End(T ,L)

If T has no daughter then return L;

else set Tb to the last daughter of T and return

Noun Phrase End(Tb,Lb).

Noun Phrase Head(T ,L)

If T has no daughter then return L;

else set Th to the biggest noun phrase daughter

of T and return Noun Phrase Head(Th,Lh).

Figure 1: Markable Detection from Parse Tree (all possi-

ble markables) .
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Automatic Gold

Rec. Prec. F1 Rec. Prec. F1

MD 60.17 60.92 60.55 62.50 61.62 62.06

MUC 54.30 51.84 53.06 57.44 53.15 55.21

B3 71.39 64.68 67.87 74.07 64.39 68.89

CEAFM 46.36 46.36 46.36 47.07 47.07 47.07

CEAFE 35.38 37.26 35.30 35.19 38.44 36.74

BLANC 65.01 64.93 64.97 66.23 65.16 65.67

Table 1: Results of SUCRE on the development data set

for the automatically detected markables. MD: Markable

Detection.

4 Data Sets

OntoNotes has been used for the CoNLL-2011

shared task. The OntoNotes project 1 is to provide

a large-scale, accurate corpus for general anaphoric

coreference. It aims to cover entities and events (i.e.

it is not limited to noun phrases or a limited set of

entity types) (Pradhan et al., 2007).

For training we used 4674 documents containing

a total of 1909175 tokens, 190700 markables and

50612 chains.

SUCRE participated in the closed track of the

shared task. Experiments have been performed for

the two kind of documents, namely, the automati-

cally preprocessed documents and the gold prepro-

cessed documents. In this paper, we report only the

scores on the development data set using the offi-

cial scorer of the shared task. The automatically

preprocessed part consists of 303 documents con-

taining a total of 136257 tokens, 52189 automati-

cally detected markables, 14291 true markables and

3752 chains. The gold preprocessed part consists of

303 documents containing a total of 136257 tokens,

52262 automatically detected markables, 13789 true

markables and 3752 chains.

5 Results

We report recall, precision, and F1 for MUC (Vi-

lain et al., 1995), B3 (Bagga and Baldwin, 1998),

CEAFM /CEAFE (Luo, 2005) and BLANC (Re-

casens et al., 2010).

Table 1 presents results of our system for the

automatically detected markables. It is apparent

from this table that the application of the gold pre-

processed documents slightly improves the perfor-

mance (MD-F1: +1.51; MUC-F1: +2.15; B3-F1:

1http://www.bbn.com/ontonotes/

Automatic Gold

Rec. Prec. F1 Rec. Prec. F1

MUC 58.63 87.88 70.34 60.48 88.25 71.78

B3 57.91 86.47 69.36 59.21 86.25 70.22

CEAFM 59.81 59.81 59.81 60.91 60.91 60.91

CEAFE 70.49 36.43 48.04 71.09 37.73 49.30

BLANC 69.67 76.27 72.34 70.34 76.01 72.71

Table 2: Results of SUCRE on the development data set

for the true markables (i.e. no singletone is included).

+1.02; CEAFM -F1: +0.71; CEAFE-F1: +1.44;

BLANC-F1: +0.70 ).

Table 2 presents results of our system for the true

markables that were all and only part of coreference

chains. Again the results show that the application

of gold preprocessed documents slightly improves

the performance (MUC-F1: +1.44; B3-F1: +0.86;

CEAFM -F1: +1.1; CEAFE-F1: +1.26; BLANC-F1:

+0.37 ).

Comparing the results of tables 1 and 2, there is a

significant difference between the scores on the au-

tomatically detected markables and the scores on the

true markables (e.g. for the automatically prepro-

cessed documents: MUC-F1: +17.28; CEAFM -F1:

+13.45; CEAFE-F1: +12.74; BLANC-F1: +7.37).

No significant improvement in B3 is seen (auto-

matic: +1.49; gold: +1.33). We suspect that this is

partly due to the very sensitive nature of B3 against

the singleton chains. Because in the implementation

of scorer for the CoNLL-2011 shared task the non-

detected key markables are automatically included

into the response as singletons.

6 Conclusion

In this paper, we have presented our system SUCRE

participated in the CoNLL-2011 shared task. We

took a deeper look at the feature engineering of SU-

CRE. We presented the markable detection method

we applied.

We showed that the application of the gold pre-

processed documents improves the performance. It

has been demonstrated that the availability of the

true markables significantly improves the results.

Also it has been shown that the singletons have a

large impact on the B3 scores.
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