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Abstract

This paper presents the preparation, resources,
results and analysis of the Epigenetics and
Post-translational Modifications (EPI) task, a
main task of the BioNLP Shared Task 2011.
The task concerns the extraction of detailed
representations of 14 protein and DNA modifi-
cation events, the catalysis of these reactions,
and the identification of instances of negated
or speculatively stated event instances. Seven
teams submitted final results to the EPI task in
the shared task, with the highest-performing
system achieving 53% F-score in the full task
and 69% F-score in the extraction of a simpli-
fied set of core event arguments.

1 Introduction

The Epigenetics and Post-translational Modifica-
tions (EPI) task is a shared task on event extrac-
tion from biomedical domain scientific publications,
first introduced as a main task in the BioNLP Shared
Task 2011 (Kim et al., 2011a).

The EPI task focuses on events relating to epige-
netic change, including DNA methylation and hi-
stone methylation and acetylation (see e.g. (Hol-
liday, 1987; Jaenisch and Bird, 2003)), as well
as other common protein post-translational modi-
fications (PTMs) (Witze et al., 2007). PTMs are
chemical modifications of the amino acid residues
of proteins, and DNA methylation a parallel mod-
ification of the nucleotides on DNA. While these
modifications are chemically simple reactions and
can thus be straightforwardly represented in full de-
tail, they have a crucial role in the regulation of

gene expression and protein function: the modifi-
cations can alter the conformation of DNA or pro-
teins and thus control their ability to associate with
other molecules, making PTMs key steps in protein
biosynthesis for introducing the full range of protein
functions. For instance, protein phosphorylation –
the attachment of phosphate – is a common mecha-
nism for activating or inactivating enzymes by alter-
ing the conformation of protein active sites (Stock
et al., 1989; Barford et al., 1998), and protein ubiq-
uitination – the post-translational attachment of the
small protein ubiquitin – is the first step of a major
mechanism for the destruction (breakdown) of many
proteins (Glickman and Ciechanover, 2002).

Many of the PTMs targeted in the EPI task in-
volve modification of histone, a core protein that
forms an octameric complex that has a crucial role in
packaging chromosomal DNA. The level of methy-
lation and acetylation of histones controls the tight-
ness of the chromatin structure, and only “unwound”
chromatin exposes the gene packed around the hi-
stone core to the transcriptional machinery. Since
histone modification is of substantial current inter-
est in epigenetics, we designed aspects of the EPI
task to capture the full detail in which histone mod-
ification events are stated in text. Finally, the DNA
methylation of gene regulatory elements controls the
expression of the gene by altering the affinity with
which DNA-binding proteins (including transcrip-
tion factors) bind, and highly methylated genes are
not transcribed at all (Riggs, 1975; Holliday and
Pugh, 1975). DNA methylation can thus “switch
off” genes, “removing” them from the genome in a
way that is reversible through DNA demethylation.
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Figure 1: Three views of protein methylation. a)
chemical formula b) event representation c) modification
database entry.

The BioNLP’09 Shared Task on Event Extrac-
tion (Kim et al., 2009), the first task in the present
shared task series, involved the extraction of nine
event types including one PTM type, PHOSPHORY-
LATION. The results of the shared task showed this
PTM event to be the single most reliably extracted
event type in the task, with the best-performing
system for the type achieving 91% precision and
76% recall (83% F-score) in its extraction (Buyko
et al., 2009). The results suggest both that the
event representation is well applicable to PTM ex-
traction and that current extraction methods are ca-
pable of reliable PTM extraction. The EPI task
follows up on these opportunities, introducing spe-
cific, strongly biologically motivated extraction tar-
gets that are expected to be both feasible for high-
accuracy event extraction, relevant to the needs of
present-day molecular biology, and closely appli-
cable to biomolecular database curation needs (see
Figure 1) (Ohta et al., 2010a).

2 Task Setting

The EPI task is an event extraction task in the sense
popularized by a number of recent domain resources
and challenges (e.g. (Pyysalo et al., 2007; Kim et al.,
2008; Thompson et al., 2009; Kim et al., 2009; Ana-
niadou et al., 2010)). In broad outline, the task fo-
cuses on the extraction of information on statements
regarding change in the state or properties of (physi-
cal) entities, modeled using an event representation.

Figure 2: Illustration of the event representation. An
event of type METHYLATION (expressed through the text
“methylation”) with two participants of the types PRO-
TEIN (“histone H3”) and ENTITY (“Lys9”), participating
in the event in Theme and Site roles, respectively.

In this representation, events are typed n-ary asso-
ciations of participants (entities or other events) in
specific roles. Events are bound to specific expres-
sions in text (the event trigger or text binding) and
are primary objects of annotation, allowing them to
be marked in turn e.g. as negated or as participants
in other events. Figure 2 illustrates these concepts.

In its specific formulation, EPI broadly follows
the definition of the BioNLP’09 shared task on event
extraction. Basic modification events are defined
similarly to the PHOSPHORYLATION event type tar-
geted in the ’09 and the 2011 GE and ID tasks (Kim
et al., 2011b; Pyysalo et al., 2011b), with the full
task extending previously defined arguments with
two additional ones, Sidechain and Contextgene.

2.1 Entities
The EPI task follows the general policy of the
BioNLP Shared Task in isolating the basic task of
named entity recognition from the event extraction
task by providing task participants with manually
annotated gene and gene product entities as a start-
ing point for extraction. The entity types follow the
BioNLP’09 Shared Task scheme, where genes and
their products are simply marked as PROTEIN.1

In addition to the given PROTEIN entities, some
events involve other entities, such as the modifica-
tion Site. These entities are not given and must thus
be identified by systems targeting the full task (see
Section 4). In part to reduce the demands of this
entity recognition component of the task, these ad-
ditional entities are not given specific types but are
generically marked as ENTITY.

1While most of the modifications targeted in the task involve
proteins, this naming is somewhat inaccurate for the Themes of
DNA METHYLATION and DNA DEMETHYLATION events and
for Contextgene arguments, which refer to genes. Despite this
inaccuracy, we chose to follow this naming scheme for consis-
tency with other tasks.
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Type Core arguments Additional arguments
HYDROXYLATION Theme(PROTEIN) Site(ENTITY)
PHOSPHORYLATION Theme(PROTEIN) Site(ENTITY)
UBIQUITINATION Theme(PROTEIN) Site(ENTITY)
DNA METHYLATION Theme(PROTEIN) Site(ENTITY)
GLYCOSYLATION Theme(PROTEIN) Site(ENTITY), Sidechain(ENTITY)
ACETYLATION Theme(PROTEIN) Site(ENTITY), Contextgene(PROTEIN)
METHYLATION Theme(PROTEIN) Site(ENTITY), Contextgene(PROTEIN)
CATALYSIS Theme(Event), Cause(PROTEIN)

Table 1: Event types and their arguments. The type of entity allowed as argument is specified in parenthesis. For each
event type except CATALYSIS, the reverse reaction (e.g. DEACETYLATION for ACETYLATION) is also defined, with
identical arguments. The total number of event types in the task is thus 15.

2.2 Relations

The EPI task does not define any explicit relation
extraction targets. However, the task annotation in-
volves one relation type, EQUIV. This is a binary,
symmetric, transitive relation between entities that
defines two entities to be equivalent (Hoehndorf et
al., 2010). The relation is used in the gold annota-
tion to mark local aliases such as the full and abbre-
viated forms of a protein name as referring to the
same real-world entity. While the ’09 task only rec-
ognized equivalent PROTEIN entities, EPI extends
on the scope of EQUIV annotations in allowing enti-
ties of any type to be marked equivalent. In evalua-
tion, references to any of a set of equivalent entities
are treated identically.

2.3 Events

While the EPI task entity definition closely follows
that of the previous shared task, the task introduces
considerable novelty in the targeted events, adding a
total of 14 novel event types and two new participant
roles. Table 1 summarizes the targeted event types
and their arguments.

As in the BioNLP’09 shared task, Theme argu-
ments identify the entity that the event is about, such
as the protein that is acetylated in an acetylation
event. A Theme is always mandatory for all EPI task
events. Site arguments identify the modification site
on the Theme entity, such as a specific residue on a
modified protein or a specific region on a methylated
gene. The Sidechain argument, specific to GLYCO-
SYLATION and DEGLYCOSYLATION among the tar-
geted events, identifies the moiety attached or re-

moved in the event (in glycosylation, the sugar).2 Fi-
nally, the Contextgene argument, specific to ACETY-
LATION and METHYLATION events and their re-
verse reactions, identifies the gene whose expression
is controlled by these modifications. This argument
applies specifically for histone protein modification:
the modification of the histones that form the nu-
cleosomes that structure DNA are key to the epige-
netic control of gene expression. The Site, Sidechain
and Contextgene arguments are not mandatory, and
should only be extracted when explicitly stated.

For CATALYSIS events, representing the cataly-
sis of protein or DNA modification by another pro-
tein, both Theme and Cause are mandatory. While
CATALYSIS is a new event type, it is related to
the ’09 POSITIVE REGULATION type by a class-
subclass relation: any CATALYSIS event is a POS-
ITIVE REGULATION event in the ’09 task terms (but
not vice versa).

2.4 Event modifications

In addition to events, the EPI task defines two
event modification extraction targets: NEGATION

and SPECULATION. Both are represented as simple
binary “flags” that apply to events, marking them as
being explicitly negated (e.g. H2A is not methylated)
or stated in a speculative context (e.g. H2A may be
methylated). Events may be both negated and spec-
ulated.

2Note that while arguments similar to Sidechain could be
defined for other event types also, their extraction would pro-
vide no additional information: the attached molecule is always
acetyl in acetylation, methyl in methylation, etc.
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3 Data

The primary EPI task data were annotated specifi-
cally for the BioNLP Shared Task 2011 and are not
based on any previously released resource. Before
starting this annotation effort, we performed two
preparatory studies using in part previously released
related datasets: in (Ohta et al., 2010a) we consid-
ered the extraction of four protein post-translational
modifications event types with reference to annota-
tions originally created for the Protein Information
Resource3 (PIR) (Wu et al., 2003), and in (Ohta et
al., 2010b) we studied the annotation and extraction
of DNA methylation events with reference to anno-
tations created for the PubMeth4 (Ongenaert et al.,
2008) database. The corpus text selection and anno-
tation scheme were then defined following the un-
derstanding formed in these studies.

3.1 Document selection

The texts for the EPI task corpus were drawn from
PubMed abstracts. In selecting the primary cor-
pus texts, we aimed to gather a representative sam-
ple of all PubMed documents relevant to selected
modification events, avoiding bias toward, for ex-
ample, specific genes/proteins, species, forms of
event expression, or subdomains. We primarily tar-
geted DNA methylation and the “prominent PTM
types” identified in (Ohta et al., 2010a). We de-
fined the following document selection protocol: for
each of the targeted event types, 1) Select a ran-
dom sample of PubMed abstracts annotated with the
MeSH term corresponding to the target event (e.g.
Acetylation) 2) Automatically tag protein/gene
entities in the selected abstracts, removing ones
where fewer than a specific cutoff are found 3) Per-
form manual filtering removing documents not rele-
vant to the targeted topic (optional).

MeSH is a controlled vocabulary of over 25,000
terms that is used to manually annotate each docu-
ment in PubMed. By performing initial document
retrieval using MeSH terms it is possible to se-
lect relevant documents without bias toward specific
expressions in text. While search for documents
tagged with e.g. the Acetylation MeSH term is
sufficient to select documents relevant to the modi-

3http://pir.georgetown.edu
4http://www.pubmeth.org/

fication, not all such documents necessarily concern
specifically protein modification, necessitating a fil-
tering step. Following preliminary experiments, we
chose to apply the BANNER named entity tagger
(Leaman and Gonzalez, 2008) trained on the GENE-
TAG corpus (Tanabe et al., 2005) and to filter docu-
ments where fewer than five entities were identified.
Finally, for some modification types this protocol se-
lected also a substantial number of non-relevant doc-
uments. In these cases a manual filtering step was
performed prior to full annotation to avoid marking
large numbers of non-relevant abstracts.

This primary corpus text selection protocol does
not explicitly target reverse reactions such as
deacetylation, and the total number of these events
in the resulting corpus was low for many types. To
be able to measure the extraction performance for
these types, we defined a secondary selection pro-
tocol that augmented the primary protocol with a
regular expression-based filter removing documents
that did not (likely) contain mentions of reverse re-
actions. This protocol was used to select a secondary
set of test abstracts enriched in mentions of reverse
reactions. Performance on this secondary test set
was also evaluated, but is not part of the primary task
evaluation. Due to space considerations, we only
present the primary test set results in this paper, re-
ferring to the shared task website for the secondary
results.

3.2 Annotation

Annotation was performed manually. The
gene/protein entities automatically detected in
the document selection step were provided to
annotators for reference for creating PROTEIN

annotations, but all entity annotations were checked
and revised to conform to the specific guidelines for
the task.5 For the annotation of PROTEIN entities,
we adopted the GENIA gene/gene product (GGP)
annotation guidelines (Ohta et al., 2009), adding
one specific exception: while the primary guidelines
require that only specific individual gene or gene
product names are annotated, we allowed also the
annotation of mentions of groups of histones or

5This revision was substantial: only approximately 65% of
final PROTEIN annotations exactly match an automatically pre-
dicted one due to differences in annotation criteria (Wang et al.,
2009).
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the entire histone protein family to capture histone
modification events also in cases where only the
group is mentioned.

All event annotations were created from scratch
without automatic support to avoid bias toward spe-
cific automatic extraction methods or approaches.
The event annotation follows the GENIA event cor-
pus annotation guidelines (Kim et al., 2008) as they
apply to protein modifications, with CATALYSIS be-
ing annotated following the criteria for the POSI-
TIVE REGULATION event type with the additional
constraints that the Cause of the event is a gene or
gene product entity and the form of regulation is
catalysis of a modification reaction.

The manual annotation was performed by three
experienced annotators with a molecular biology
background, with one chief annotator with extensive
experience in domain event annotation organizing
and supervising the annotator training and the over-
all process. After completion of primary annotation,
we performed a final check targeting simple human
errors using an automatic extraction system.6 This
correction process resulted in the revision of approx-
imately 2% of the event annotations. To evaluate the
consistency of the annotation, we performed inde-
pendent event annotation (taking PROTEIN annota-
tions as given) for a random sample of 10% of the
corpus documents. Comparison of the two manually
created sets of event annotations under the primary
task evaluation criteria gave an F-score of 82% for
the full task and 89% for the core task.7 We found
that CATALYSIS events were particularly challeng-
ing, showing just 65% agreement for the core task.

Table 2 shows the statistics of the primary task
data. We note that while the corpus is broadly com-
parable in size to the BioNLP’09 shared task dataset
(Kim et al., 2009) in terms of the number of ab-
stracts and annotated entities, the number of anno-
tated events in the EPI corpus is approximately 20%
of that in the ’09 dataset, reflecting the more focused
event types.

6High-confidence system predictions differing from gold
annotations were provided to a human annotator, not used di-
rectly to change corpus data. To further reduce the risk of bias,
we only informed the annotator of the entities involved, not of
the predicted event structure.

7Due to symmetry of precision/recall and the applied crite-
ria, this score was not affected by the choice of which set of
annotations to consider as “gold” for the comparison.

Item Training Devel Test
Abstract 600 200 400

Word 127,312 43,497 82,819
Protein 7,595 2,499 5,096
Event 1,852 601 1,261

Modification 173 79 117

Table 2: Statistics of the EPI corpus. Test set statistics
shown only for the primary test data.

4 Evaluation

Evaluation is instance- and event-oriented and based
on the standard precision/recall/F-score8 metrics.
The primary evaluation criteria are the same as in the
BioNLP’09 shared task, incorporating the “approx-
imate span matching” and “approximate recursive
matching” variants to strict matching. In brief, un-
der these criteria text-bound annotations (event trig-
gers and entities) in a submission are considered to
match a corresponding gold annotation if their span
is contained within the (mildly extended) span of
the gold annotation, and events that refer to other
events as arguments are considered to match if the
Theme arguments of the recursively referred events
match, that is, non-Theme arguments are ignored in
recursively referred events. For a detailed descrip-
tion of these evaluation criteria, we refer to (Kim et
al., 2009).

In addition to the primary evaluation criteria, we
introduced a new relaxed evaluation criterion we
term single partial penalty. Under the primary cri-
teria, when a predicted event matches a gold event
in some of its arguments but lacks one or more ar-
guments of the gold event, the submission is ar-
guably given a double penalty: the predicted event
is counted as a false positive (FP), and the gold
event is counted as a false negative (FN). Under the
single partial penalty evaluation criterion, predicted
events that match a gold event in all their arguments
are not counted as FP, although the corresponding
gold event still counts as FN (the “single penalty”).
Analogously, gold events that partially match a pre-
dicted event are not counted as FN, although the cor-
responding predicted event with “extra” arguments
counts as FP. This criterion can give a more nuanced
view of performance for partially correctly predicted
events.

8Specifically F1. F is used for short throughout.
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NLP Events Other resources
Rank Team Org word parse trigger arg group modif. corpora other
1 UTurku 1BI Porter McCCJ + SD SVM SVM SVM SVM - hedge words

2 FAUST 3NLP
CoreNLP,
SnowBall

McCCJ + SD (UMass+Stanford as features) - - word clusters

3 MSR-NLP
1SDE,
3NLP

Porter,
custom

McCCJ + SD,
Enju

SVM SVM SVM - -
triggers, word
clusters

4 UMass 1NLP
CoreNLP,
SnowBall

McCCJ + SD Joint, dual decomposition - - -

5 Stanford 3NLP custom McCCJ + SD MaxEnt Joint, MSTParser - - word clusters

6 CCP-BTMG 3BI
Porter,
WN-lemma

Stanford + SD Graph extraction & matching - - -

7 ConcordU 2NLP - McCCJ + SD Dict Rules Rules Rules -
triggers and
hedge words

Table 3: Participants and summary of system descriptions. Abbreviations: BI=Bioinformatician, NLP=Natural Lan-
guage Processing researcher, SDE=Software Development Engineer, CoreNLP=Stanford CoreNLP, Porter=Porter
stemmer, Snowball=Snowball stemmer, WN-lemma=WordNet lemmatization, McCCJ=McClosky-Charniak-Johnson
parser, Charniak=Charniak parser, SD=Stanford Dependency conversion, Dict=Dictionary

The full EPI task involves many partially indepen-
dent challenges, incorporating what were treated in
the BioNLP’09 shared task as separate subtasks: the
identification of additional non-Theme event partic-
ipants (Task 2 in ’09) and the detection of negated
and speculated events (Task 3 in ’09). The EPI task
does not include explicit subtasks. However, we
specifies minimal core extraction targets in addition
to the full task targets. Results are reported sepa-
rately for core targets and full task, allowing partic-
ipants to choose to only extract core targets. The
full task results are considered the primary evalua-
tion for the task e.g. for the purposes of determining
the ranking of participating systems.

5 Results

5.1 Participation

Table 3 summarizes the participating groups and the
features of their extraction systems. We note that,
similarly to the ’09 task, machine learning-based
systems remain dominant overall, although there is
considerable divergence in the specific methods ap-
plied. In addition to domain mainstays such as sup-
port vector machines and maximum entropy mod-
els, we find increased application of joint models
(Riedel et al., 2011; McClosky et al., 2011; Riedel
and McCallum, 2011) as opposed to pure pipeline
systems (Björne and Salakoski, 2011; Quirk et al.,
2011) . Remarkably, the application of full pars-

ing together with dependency-based representations
of syntactic analyses is adopted by all participants,
with the parser of Charniak and Johnson (2005) with
the biomedical domain model of McClosky (2009)
is applied in all but one system (Liu et al., 2011) and
the Stanford Dependency representation (de Marn-
effe et al., 2006) in all. These choices may be mo-
tivated in part by the success of systems using the
tools in the previous shared task and the availability
of the analyses as supporting resources (Stenetorp et
al., 2011).

Despite the availability of PTM and DNA methy-
lation resources other than those specifically intro-
duced for the task and the PHOSPHORYLATION an-
notations in the GE task (Kim et al., 2011b), no par-
ticipant chose to apply other corpora for training.
With the exception of externally acquired unlabeled
data such as PubMed-derived word clusters applied
by three groups, the task results thus reflect a closed
task setting in which only the given data is used for
training.

5.2 Evaluation results

Table 4 presents a the primary results by event type,
and Table 5 summarizes these results. We note
that only two teams, UTurku (Björne and Salakoski,
2011) and ConcordU (Kilicoglu and Bergler, 2011),
predicted event modifications, and only UTurku pre-
dicted additional (non-core) event arguments (data
not shown). The other five systems thus addressed
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MSR-
NLP

CCP-
BTMG

Con-
cordUUTurku FAUST UMass Stanford Size

HYDROXYLATION 42.25 10.26 10.20 12.80 9.45 12.84 6.32 139
DEHYDROXYLATION - - - - - - - 1
PHOSPHORYLATION 67.12 51.61 50.00 49.18 40.98 47.06 44.44 130
DEPHOSPHORYLATION 0.00 0.00 0.00 0.00 0.00 50.00 0.00 3
UBIQUITINATION 75.34 72.95 67.88 72.94 67.44 70.87 69.97 340
DEUBIQUITINATION 54.55 40.00 0.00 31.58 0.00 42.11 14.29 17
DNA METHYLATION 60.21 31.21 34.54 23.82 31.02 15.65 8.22 416
DNA DEMETHYLATION 26.67 0.00 0.00 0.00 0.00 0.00 0.00 21
Simple event total 63.05 45.17 44.97 43.01 40.96 40.62 37.84 1067
GLYCOSYLATION 49.43 41.10 38.87 40.00 37.22 25.62 25.94 347
DEGLYCOSYLATION 40.00 35.29 0.00 38.10 30.00 35.29 26.67 27
ACETYLATION 57.22 40.00 41.42 40.25 35.12 37.50 38.19 337
DEACETYLATION 54.90 28.00 31.82 29.17 21.74 24.56 27.27 50
METHYLATION 57.67 24.82 19.57 23.67 18.54 16.99 15.50 374
DEMETHYLATION 35.71 0.00 0.00 0.00 0.00 0.00 0.00 13
Non-simple event total 54.36 33.86 31.85 33.07 29.28 25.06 25.10 1148
CATALYSIS 7.06 6.58 7.75 5.00 2.84 7.58 1.74 238
Subtotal 55.02 36.93 36.17 35.30 32.85 30.58 28.92 2453
NEGATION 18.60 0.00 0.00 0.00 0.00 0.00 26.51 149
SPECULATION 37.65 0.00 0.00 0.00 0.00 0.00 6.82 103
Modification total 28.07 0.00 0.00 0.00 0.00 0.00 16.37 252
Total 53.33 35.03 34.27 33.52 31.22 28.97 27.88 2705
Addition total 59.33 40.27 39.05 38.65 36.03 32.75 31.50 2038
Removal total 44.29 22.41 15.73 22.76 14.41 23.53 17.48 132

Table 4: Primary evaluation F-scores by event type. The “size” column gives the number of annotations of each type
in the given data (training+development). Best result for each type shown in bold. For DEHYDROXYLATION, no
examples were present in the test data and none were predicted by any participant.

Team recall prec. F-score
UTurku 52.69 53.98 53.33
FAUST 28.88 44.51 35.03
MSR-NLP 27.79 44.69 34.27
UMass 28.08 41.55 33.52
Stanford 26.56 37.85 31.22
CCP-BTMG 23.44 37.93 28.97
ConcordU 20.83 42.14 27.88

Table 5: Primary evaluation results

only the core task. For the full task, this differ-
ence in approach is reflected in the substantial per-
formance advantage for the UTurku system, which
exhibits highest performance overall as well as for
most individual event types.

Extraction performance for simple events tak-
ing only Theme and Site arguments is consistently
higher than for other event types, with absolute F-
score differences of over 10% points for many sys-

tems. Similar notable performance differences are
seen between the addition events, for which am-
ple training data was available, and the removal
types for which data was limited. This effect is
particularly noticeable for DEPHOSPHORYLATION,
DNA DEMETHYLATION and DEMETHYLATION,
for which the clear majority of systems failed to pre-
dict any correct events. Extraction performance for
CATALYSIS events is very low despite a relatively
large set of training examples, indicating that the
extraction of nested event structures remains very
challenging. This low performance may also be re-
lated to the fact that CATALYSIS events are often
triggered by the same word as the catalysed mod-
ification (e.g. Figure 1b), requiring the assignment
of multiple event labels to a single word in typical
system architectures.

Table 6 summarizes the full task results with the
addition of the single partial penalty criterion. The
F-scores for the seven participants under this crite-
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Team recall prec. F-score ∆
UTurku 54.79 58.42 56.55 3.22
FAUST 28.88 72.05 41.24 6.21
MSR-NLP 27.79 66.72 39.24 4.97
UMass 28.08 63.28 38.90 5.38
Stanford 26.56 56.83 36.20 4.98
CCP-BTMG 23.44 50.79 32.08 3.11
ConcordU 20.83 60.55 30.99 3.11

Table 6: Full task evaluation results for primary criteria
and with single partial penalty. The ∆ column gives F-
score difference to the primary results.

rion are on average over 4% points higher than un-
der the primary criteria, with the most substantial
increases seen for high-ranking participants only ad-
dressing the core task: for example, the precision
of the FAUST system (Riedel et al., 2011) is nearly
30% higher under the relaxed criterion. These re-
sults provide new perspective deserving further de-
tailed study into the question of what are the most
meaningful criteria for event extraction system eval-
uation.

Table 7 summarizes the core task results. While
all systems show notably higher performance than
for the full task, high-ranking participants focusing
on the core task gain most dramatically, with the
FAUST system core task F-score essentially match-
ing that of the top system (UTurku). For the core
task, all participants achieve F-scores over 50% –
a result achieved by only a single system in the ’09
task – and the top four participants average over 65%
F-score. These results confirm that current event
extraction technology is well applicable to the core
PTM extraction task even when the number of tar-
geted event types is relatively high and may be ready
to address the challenges of exhaustive PTM extrac-
tion (Pyysalo et al., 2011a). The best core tasks re-
sults, approaching 70% F-score, are particularly en-
couraging as the level of performance is comparable
to or better than state-of-the-art results for many ref-
erence resources for protein-protein interaction ex-
traction (see e.g. Tikk et al. (2010))) using the simple
untyped entity pair representation, a standard task
that has been extensively studied in the domain.

6 Discussion and Conclusions

This paper has presented the preparation, resources,
results and analysis of the BioNLP Shared Task

Team recall prec. F-score ∆1 ∆2

UTurku 68.51 69.20 68.86 15.53 12.31
FAUST 59.88 80.25 68.59 33.56 27.35
MSR-NLP 55.70 77.60 64.85 30.58 25.61
UMass 57.04 73.30 64.15 30.63 25.25
Stanford 56.87 70.22 62.84 31.62 26.64
ConcordU 40.28 76.71 52.83 24.95 21.84
CCP-BTMG 45.06 63.37 52.67 23.70 20.59

Table 7: Core task evaluation results. The ∆1 column
gives F-score difference to primary full task results, ∆2

to full task results with single partial penalty.

2011 Epigenetics and Post-translational modifica-
tions (EPI) main task. The results demonstrate that
the core extraction target of identifying statements
of 14 different modification types with the modified
gene or gene product can be reliably addressed by
current event extraction methods, with two systems
approaching 70% F-score at this task. Nevertheless,
challenges remain in detecting statements regarding
the catalysis of these events as well as in resolving
the full detail of such modification events, a task at-
tempted by only one participant and at which perfor-
mance remains at somewhat above 50% in F-score.

Detailed evaluation showed that the highly com-
petitive participating systems differ substantially in
their relative strengths, indicating potential for fur-
ther development at protein and DNA modification
event detection. The task results are available in
full detail from the shared task webpage, http:
//sites.google.com/site/bionlpst/.

In the future, we will follow the example of the
BioNLP’09 shared task in making the data and re-
sources of the EPI task open to all interested par-
ties to encourage further study of event extraction
for epigenetics and post-translational modification
events, to facilitate system comparison on a well-
defined standard task, and to support the develop-
ment of further applications of event extraction tech-
nology in this important area of biomolecular sci-
ence.
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