
Proceedings of the 5th ACL-HLT Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities, pages 54–62,
Portland, OR, USA, 24 June 2011. c©2011 Association for Computational Linguistics

Structure-Preserving Pipelines for Digital Libraries

Massimo Poesio
University of Essex, UK and

Università di Trento, Italy

Eduard Barbu
Egon W. Stemle

Università di Trento, Italy
{massimo.poesio,eduard.barbu,egon.stemle}

@unitn.it

Christian Girardi
FBK-irst, Trento, Italy
cgirardi@fbk.eu

Abstract

Most existing HLT pipelines assume the input
is pure text or, at most, HTML and either ig-
nore (logical) document structure or remove
it. We argue that identifying the structure of
documents is essential in digital library and
other types of applications, and show that it
is relatively straightforward to extend existing
pipelines to achieve ones in which the struc-
ture of a document is preserved.

1 Introduction

Many off-the-shelf Human Language Technology
(HLT) pipelines are now freely available (examples
include LingPipe,1 OpenNLP,2 GATE3 (Cunning-
ham et al., 2002), TextPro4 (Pianta et al., 2008)),
and although they support a variety of document for-
mats as input, actual processing (mostly) takes no
advantage of structural information, i.e. structural
information is not used, or stripped off during pre-
processing. Such processing can be considered safe,
e.g. in case of news wire snippets, when processing
does not need to be aware of sentence or paragraph
boundaries, or of text being part of a table or a fig-
ure caption. However, when processing large doc-
uments, section or chapter boundaries may be con-
sidered an important segmentation to use, and when
working with the type of data typically found in dig-
ital libraries or historical archives, such as whole

1http://alias-i.com/lingpipe/
2http://incubator.apache.org/opennlp/
3http://http://gate.ac.uk/
4http://textpro.fbk.eu/

books, exhibition catalogs, scientific articles, con-
tracts we should keep the structure. At least three
types of problems can be observed when trying to
use a standard HLT pipeline for documents whose
structure cannot be easily ignored:

• techniques for extracting content from plain
text do not work on, say, bibliographic refer-
ences, or lists;

• simply removing the parts of a document that
do not contain plain text may not be the right
thing to do for all applications, as sometimes
the information contained in them may also be
useful (e.g., keywords are often useful for clas-
sification, bibliographic references are useful in
a variety of applications) or even the most im-
portant parts of a text (e.g., in topic classifica-
tion information provided by titles and other
types of document structure is often the most
important part of a document);

• even for parts of a document that still can be
considered as containing basically text—e.g.,
titles—knowing that we are dealing with what
we will call here non-paragraph text can be
useful to achieve good - or improve - perfor-
mance as e.g., the syntactic conventions used
in those type of document elements may be dif-
ferent - e.g., the syntax of NPs in titles can be
pretty different from that in other sections of
text.

In this paper we summarize several years of work
on developing structure-preserving pipelines for dif-
ferent applications. We discuss the incorporation of

54

document structure parsers both in pipelines which
the information is passed in BOI format (Ramshaw
and Marcus, 1995), such as the TEXTPRO pipeline
(Pianta et al., 2008), and in pipelines based on a
standoff XML (Ide, 1998). We also present sev-
eral distinct applications that require preserving doc-
ument structure.

The structure of the paper is as follows. We first
discuss the notion of document structure and previ-
ous work in extracting it. We then introduce our ar-
chitecture for a structure-preserving pipeline. Next,
we discuss two pipelines based on this general archi-
tecture. A discussion follows.

2 The Logical Structure of a Document

Documents have at least two types of structure5.
The term geometrical, or layout, structure, refers
to the structuring of a document according to its vi-
sual appearance, its graphical representation (pages,
columns, etc). The logical structure (Luong et al.,
2011) refers instead to the content’s organization to
fulfill an intended overall communicative purpose
(title, author list, chapter, section, bibliography, etc).
Both of these structures can be represented as trees;
however, these two tree structures may not be mu-
tually compatible (i.e. representable within a single
tree structure with non-overlapping structural ele-
ments): e.g. a single page may contain the end of
one section and the beginning of the next, or a para-
graph may just span part of a page or column. In this
paper we will be exclusively concerned with logical
structure.

2.1 Proposals concerning logical structure

Early on the separation of presentation and content,
i.e. of layout and logical structure, was promoted by
the early adopters of computers within the typeset-
ting community; well-known, still widely used, sys-
tems include the LATEXmeta-package for electronic
typesetting. The importance of separating document
logical structure from document content for elec-
tronic document processing and for the document
creators lead to the ISO 8613-1:1989(E) specifica-
tion where logical structure is defined as the result
of dividing and subdividing the content of a docu-

5other structure types include e.g. (hyper)links, cross-
references, citations, temporal and spatial relationships

ment into increasingly smaller parts, on the basis of
the human-perceptible meaning of the content, for
example, into chapters, sections, subsections, and
paragraphs. The influential ISO 8879:1986 Stan-
dard Generalized Markup Language (SGML) spec-
ification fostered document format definitions like
the Open Document Architecture (ODA) and inter-
change format, CCITT T.411-T.424 / ISO 8613.

Even though the latter format never gained
wide-spread support, its technological ideas influ-
enced many of today’s formats, like HTML and
CSS as well as, the Extensible Markup Language
(XML), today’s successor of SGML. Today, the ISO
26300:2006 Open Document Format for Office Ap-
plications (ODF), and the ISO 29500:2008 Office
Open XML (OOXML) format are the important
XML-based document file formats.

For the work on digital libraries the Text Encod-
ing Initiative (TEI)6,most notably, developed guide-
lines specifying encoding methods for machine-
readable texts. They have been widely used, e.g. by
libraries, museums, and publishers.

The most common logical elements in such
proposals—chapters, sections, paragraphs, foot-
notes, etc.—can all be found in HTML, LATEX, or
any other modern text processor. It should be
pointed out however that many modern types of doc-
uments found on the Web do not fit this pattern:
e.g. blog posts with comments, and the structure of
reply threads and inner-linkings to other comments
cannot be captured; or much of wikipedia’s non-
paragraph text. (For an in depth comparison and
discussion of logical formats, and formal characteri-
zations thereof we suggest (Power et al., 2003; Sum-
mers, 1998).)

2.2 Extracting logical structure

Two families of methods have been developed to ex-
tract document structure. Older systems tend to fol-
low the template-matching paradigm. In this ap-
proach the assignment of the categories to parts of
the string is done by matching a sequence of hand
crafted templates against the input string S. An
instance of this kind of systems is DeLos (Deriva-
tion of Logical Structure) (Niyogi and Srihari, 1995)
which uses control rules, strategy rules and knowl-

6http://www.tei-c.org

55

edge rules to derive the logical document structure
from a scanned image of the document. A more elab-
orate procedure for the same task is employed by
Ishitani (Ishitani, 1999). He uses rules to classify the
text lines derived from scanned document image and
then employs a set of heuristics to assign the classi-
fied lines to logical document components. The tem-
plate based approach is also used by the ParaTools,
a set of Perl modules for parsing reference strings
(Jewell, 2000). The drawback of the template based
approaches is that they are usually not portable to
new domains and are not flexible enough to accom-
modate errors. Domain adaptation requires the de-
vising of new rules many of them from scratch. Fur-
ther the scanned documents or the text content ex-
tracted from PDF have errors which are not easily
dealt with by template based systems.

Newer systems use supervised machine learning
techniques which are much more flexible but re-
quire training data. Extracting document structure
is an instance of (hierarchical) sequence labeling,
a well known problem which naturally arises in di-
verse fields like speech recognition, digital signal
processing or bioinformatics. Two kinds of machine
learning techniques are most commonly used for this
problem: Hidden Markov Models (HMM) and Con-
ditional Random Fields (CRF). A system for pars-
ing reference strings based on HMMs was developed
in (Hetzner, 2008) for the California Digital Library.
The system implements a first order HMM where the
set of states of the model are represented by the cat-
egories in C; the alphabet is hand built and tailored
for the task and the probabilities in the probability
matrix are derived empirically. The system obtains
an average F1 measure of 93 for the Cora dataset.
A better performance for sequence labeling is ob-
tained if CRF replaces the traditional HMM. The
reason for this is that CRF systems better tolerate
errors and they have good performance even when
richer features are not available. A system which
uses CRF and a series of post-processing rules for
both document logical structure identification and
reference string parsing is ParsCit (Councill et al.,
2008). ParsCit comprises three sub-modules: Sect-
Label and ParseHead for document logical structure
identification and ParsCit for reference string pars-
ing. The system is built on top of the well known
CRF++ package.

The linguistic surface level, i.e. the linear order
of words, sentences, and paragraphs, and the hi-
erarchical, tree-like, logical structure also lends it-
self to parsing-like methods for the structure analy-
sis. However, the complexity of fostering, maintain-
ing, and augmenting document structure grammars
is challenging, and the notorious uncertainty of the
input demands for the whole set of stochastic tech-
niques the field has to offer – this comes at a high
computing price; cf. e.g.,(Lee et al., 2003; Mao et
al., 2003). It is therefore not surprising that high-
throughput internet sites like CiteSeerX7 use a flat
text classifier (Day et al., 2007).8

3 Digital Libraries and Document
Structure Preservation

Our first example of application in which document
structure preservation is essential are digital libraries
(Witten et al., 2003). In a digital library setting, HLT

techniques can be used for a variety of purposes,
ranging from indexing the documents in the library
for search to classifying them to automatically ex-
tracting metadata. It is therefore becoming more and
more common for HLT techniques to be incorporated
in document management platforms and used to sup-
port a librarian when he / she enters a new document
in the library. Clearly, it would be beneficial if such
a pipeline could identify the logical structure of the
documents being entered, and preserve it: this infor-
mation could be used by the document management
platform to, for instance, suggest the librarian the
most important keywords, find the text to be indexed
or even summarized, and produce citations lists, pos-
sibly to be compared with the digital library’s list of
citations to decide whether to add them.

We are in the process of developing a Portal
for Research in the Humanities (Portale Ricerca
Umanistica-PRU). This digital library will eventu-
ally include research articles about the Trentino re-
gion from Archeology, History, and History of Art.
So far, the pipeline to be discussed next has been
used to include in the library texts from the Italian
archeology journal Preistoria Alpina. One of our
goals was to develop a pipeline that could be used

7http://citeseerx.ist.psu.edu/
8Still, especially multimedia documents with their possible

temporal and spatial relationships might need more sophisti-
cated methods.

56

whenever a librarian uploads an article in this digital
library, to identify title, authors, abstract, keywords,
content, and bibliographic references from the arti-
cle. The implemented portal already incorporates in-
formation extraction techniques that are used to iden-
tify in the ’content’ part of the output of the pipeline
temporal expressions, locations, and entities such
as archeological sites, cultures, and artifacts. This
information is used to allow spatial, temporal, and
entity-based access to articles.

We are in the process of enriching the portal so
that title and author information are also used to au-
tomatically produce a bibliographical card for the ar-
ticle that will be entered in the PRU Library Catalog,
and bibliographical references are processed in or-
der to link the article to related articles and to the
catalog as well. The next step will be to modify the
pipeline (in particular, to modify the Named Entity
Recognition component) to include in the library ar-
ticles from other areas of research in the Humanities,
starting with History. There are also plans to make
it possible for authors themselves to insert their re-
search articles and books in the Portal, as done e.g.,
in the Semantics Archive.9.

We believe the functionalities offered by this por-
tal are or will become pretty standard in digital li-
braries, and therefore that the proposals discussed in
this paper could find an application beyond the use
in our Portal. We will also see below that a docu-
ment structure-sensitive pipeline can find other ap-
plications.

4 Turning an Existing Pipeline into One
that Extracts and Preserves Document
Structure

Most freely available HLT pipelines simply elimi-
nate markup during the initial phases of processing
in order to eliminate parts of the document struc-
ture that cannot be easily processed by their mod-
ules (e.g., bibliographic references), but this is not
appropriate for the Portal described in the previous
section, where different parts of the output of the
pipeline need to be processed in different ways. On
the other end, it was not really feasible to develop
a completely new pipeline from scratch. The ap-
proach we pursued in this work was to take an exist-

9http://semanticsarchive.net/

ing pipeline and turn it into one which extracts and
outputs document structure. In this Section we dis-
cuss the approach we followed. In the next Section
we discuss the first pipeline we developed according
to this approach; then we discuss how the approach
was adopted for other purposes, as well.

Incorporating a document structure extractor in a
pipeline requires the solution of two basic problems:
where to insert the module, and how to pass on doc-
ument structure information. Concerning the first
issue, we decided to insert the document structure
parser after tokenization but before sentence process-
ing. In regards to the second issue, there are at
present three main formats for exchanging informa-
tion between elements of an HLT pipeline:

• inline, where each module inserts information
in a pre-defined fashion into the file received as
input;

• tabular format as done in CONLL, where to-
kens occupy the first column and each new
layer of information is annotated in a separate
new column, using the so-called IOB format
to represent bracketing (Ramshaw and Marcus,
1995);

• standoff format, where new layers of informa-
tion are stored in separate files.

The two main formats used by modern HLT pipelines
are tabular format, and inline or standoff XML for-
mat. Even though we will illustrate the problem of
preserving document structure in a pipeline of the
former type the PRU pipeline itself supports tabular
format and inline XML (TEI compliant).

The solution we adopted, illustrated in Figure 1,
involves using sentence headers to preserve docu-
ment structure information. In most pipelines using
a tabular interchange information, the output of a
module consists of a number of sentences each of
which consists of

• a header: a series of lines with a hash character
at the beginning;

• a set of tab-delimited lines representing tokens
and token annotations;

• an empty EOF line.

57

� �
FILE: 11

PART: id1

SECTION: title

FIELDS: token tokenstart sentence pos lemma entity nerType

Spondylus 0 - SPN Spondylus O B-SITE

gaederopus 10 - YF gaederopus O O

, 20 - XPW , O O

gioiello 22 - SS gioiello O O

dell ' 31 - E dell ' O O

Europa 36 - SPN europa B-GPE B-SITE

preistorica 43 - AS preistorico O O

. 55 <eos > XPS full_stop O O

FILE: 11

PART: id2

SECTION: author

FIELDS: token tokenstart sentence pos lemma entity nerType

MARIA 0 - SPN maria B-PER O

A 6 - E a I-PER O

BORRELLO 8 - SPN BORRELLO I-PER O

& 17 - XPO & O O

. 19 <eos > XPS full_stop O O

(TEI compliant inline XML snippet :)

<text >

<body >

<div type=" section" xml:lang="it">

[...]

<p id="p2" type=" author">

<s id="p2s1"><name key="PER1" type=" person">MARIA A BORRELLO </name >&.</s>

</p>

</div >

</body >

</text >� �
Figure 1: Using sentence headers to preserve document structure information. For illustration, the TEI compliant
inline XML snippet of the second sentence has been added.

58

The header in such pipelines normally specifies only
the file id (constant through the file), the number of
the sentence within the file, and the columns (see
Figure 1). This format however can also be used
to pass on document structure information provided
that the pipeline modules ignore all lines beginning
with a hash, as these lines can then be used to pro-
vide additional meta information. We introduce an
additional tag, SECTION, with the following mean-
ing: a line beginning with # SECTION: specifies the
position in the document structure of the following
sentence. Thus for instance, in Figure 1, the line

SECTION: title

specifies that the following sentence is a title.

5 An Pipeline for Research Articles in
Archeology

The pipeline currently in use in the PRU Portal
we are developing is based on the strategy just dis-
cussed. In this Section We discuss the pipeline in
more detail.

5.1 Modules

The pipeline for processing archaeological articles
integrates three main modules: a module for recov-
ering the logical structure of the documents, a mod-
ule for Italian and English POS tagging and a gen-
eral Name Entity Recognizer and finally, a Gazetteer
Based Name Entity Recognizer. The architecture of
the system is presented in figure 2. Each module
except the first one takes as input the output of the
previous module in the sequence.

1. Text Extraction. This module extracts the text
from PDF documents. Text extraction from
PDF is a notoriously challenging task. We ex-
perimented with many software packages and
obtained the best results with pdftotext. This is
a component of XPDF, an open source viewer
for PDF documents. pdftotext allows the extrac-
tion of the text content of PDF documents in a
variety of encodings. The main drawback of the
text extractor is that it does not always preserve
the original text order.

2. Language Identification. The archeology
repository contains articles written in one of

the two languages: Italian or English. This
module uses the TextCat language guesser10 for
guessing the language of sentences. The lan-
guage identification task is complicated by the
fact that some articles contain text in both lan-
guages: for example, an article written in En-
glish may have an Italian abstract and/or an Ital-
ian conclusion.

3. Logical Structure Identification. This mod-
ule extracts the logical structure of a document.
For example, it identifies important parts like
the title, the authors, the main headers, tables
or figures. For this task we train the SectLa-
bel component of ParsCit on the articles in the
archeology repository. Details on the training
process, the tag set and the performance of the
module are provided in section 5.2.

4. Linguistic Processing. A set of modules in the
pipeline then perform linguistic processing on
specific parts of the document (the Bibliogra-
phy Section is excluded for example). First En-
glish or Italian POS is carried out as appropri-
ate, followed by English or Italian NER. NER
adaptation techniques have been developed to
identify non-standard types entities that are im-
portant in the domain, such as Archeological
Sites and Archeological Cultures. (This work
is discussed elsewhere.)

5. Reference Parsing. This module relies on
the output of ParsCit software to update the
Archeology Database Bibliography table with
the parsed references for each article. First,
each parsed reference is corrected in an auto-
matic post processing step. Then, the module
checks, using a simple heuristic, if the entry al-
ready exists in the table and updates the table,
if appropriate, with the new record.

Finally, the documents processed by the pipeline
are indexed using the Lucene search engine.

5.2 Training the Logical Document Structure
Identifier

As mentioned in Section 5, we use ParsCit to find the
logical structure of the documents in the archeology

10http://odur.let.rug.nl/~vannoord/TextCat/

59

Figure 2: The pipeline of the system for PDF article processing in the Archeology Domain

domain. ParsCit comes with general CRF trained
models; unfortunately, they do not perform well on
archeology documents. There are some particulari-
ties of archeology repository articles that require the
retraining of the models. First, as said before, the
text extracted from PDF is not perfect. Second, the
archeology articles contain many figures with bilin-
gual captions. Third, the articles have portions of
the texts in both languages: Italian and English. To
improve the parsing performance two models are
trained: the first model should capture the logical
documents structure for those documents that have
Italian as main language but might contain portions
in English (like the abstract or summary). The sec-
ond model is trained with documents that have En-
glish as main language but might contain fragments
in Italian (like abstract or summary).

The document structure annotation was per-
formed by a student in the archeology department,
and was checked by one of the authors. In total 55
documents have been annotated (35 with Italian as
main language, 20 with English as main Language).
The tagset used for the annotation was specifically
devised for archeology articles. However, as it can
be seen below most of the devised tags can also be
found in general scientific articles. In Table 1 we
present the tag set used for annotation. The column
"Tag Count" gives the number of each tag in the an-
notated documents.

In general the meaning of the tags is self-
explanatory with the possible exception of the

tag VolumeInfo, which reports information for vol-
ume the article is part of. An annotation exam-
ple using this tag is: "<VolumeInfo> Preistoria
Alpina v. 38 (2002) Trento 2002 ISSN 0393-0157
</VolumeInfo>". The volume information can be
further processed by extracting the volume number,
the year of the issue and the International Standard
Serial Number (ISSN). To asses the performance of
the trained models we performed a five fold cross-
validation. The results are reported in the table 2
and are obtained for each tag using the F1 measure
(1):

F1 =
2×P×R

P+R
(1)

The results obtained for the Archeology articles
are in line with those obtained by the authors of
ParsCit and reported in (Luong et al., 2011). The
tag categories for which the performance of the sys-
tem is bad are the multilingual tags (e.g. ItalianAb-
stract or Italian Summary in articles where the main
language is English). We will address this issue in
the future by adapting the language identifier to label
multilingual documents. We also noticed that many
mis-tagged titles, notes or section headers are split
on multiple lines after the text extraction stage. The
system performance might be further improved if a
pre-processing step immediately after the text extrac-
tion is introduced.

60

Tag Tag Count
ItalianFigureCaption 456
ItalianBodyText 347
EnglishFigureCaption 313
SectionHeader 248
EnglishTableCaption 58
ItalianTableCaption 58
Author 71
AuthorEmail 71
AuthorAddress 65
SubsectionHeader 50
VolumeInfo 57
Bibliography 55
English Summary 31
ItalianKeywords 35
EnglishKeywords 35
Title 55
ItalianSummary 29
ItalianAbstract 10
Table 25
EnglishAbstract 13
Note 18

Table 1: The tag set used for Archeology Article Annota-
tion.

6 Additional Applications for
Structure-Sensitive Pipelines

The pipeline discussed above can be used for a va-
riety of other types of documents–archeology doc-
uments from other collections, or documents from
other domains–by simply replacing the document
structure extractor. We also found however that the
pipeline is useful for a variety of other text-analysis
tasks. We briefly discuss these in turn.

6.1 Blogs and Microblogging platforms

Content creation platforms like blogs, microblogs,
community QA sites, forums, etc., contain user gen-
erated data. This data may be emotional, opin-
ionated, personal, and sentimental, and as such,
makes it interesting for sentiment analysis, opinion
retrieval, and mood detection. In their survey on
opinion mining and sentiment analysis Pang and Lee
(2008) report that logical structure can be used to uti-
lize the relationships between different units of con-
tent, in order to achieve a more accurate labeling;

Tag F1

ItalianFigureCaption 70
ItalianBodyText 90
EnglishFigureCaption 71
SectionHeader 90
EnglishTableCaption 70
ItalianTableCaption 75
Author 72
AuthorEmail 75
AuthorAddress 73
SubsectionHeader 65
VolumeInfo 85
Bibliography 98
English Summary 40
ItalianKeywords 55
EnglishKeywords 56
Title 73
ItalianSummary 40
ItalianAbstract 50
Table 67
EnglishAbstract 50
Note 70

Table 2: The Precision and Recall for the trained models.

e.g. the relationships between discourse participants
in discussions on controversial topics when respond-
ing are more likely to be antagonistic than to be re-
inforcing, or the way of quoting–a user can refer to
another post by quoting part of it or by addressing
the other user by name or user ID–in posts on politi-
cal debates hints at the perceived opposite end of the
political spectrum of the quoted user.

We are in the process of creating an annotated cor-
pus of blogs; the pipeline discussed in this paper
was easily adapted to pre-process this type of data
as well.

6.2 HTML pages

In the IR literature it has often been observed that
certain parts of document structure contain infor-
mation that is particularly useful for document re-
trieval. For instance, Kruschwitz (2003) automati-
cally builds domain models – simple trees of related
terms – from documents marked up in HTML to
assist users during search tasks by performing auto-
matic query refinements, and improves users’ experi-

61

ence for browsing the document collection. He uses
term counts in different markup contexts like non-
paragraph text and running text, and markups like
bold, italic, underline to identify concepts and the
corresponding shallow trees. However, this domain-
independent method is suited for all types of data
with logical structure annotation and similar data
sources can be found in many places, e.g. corporate
intranets, electronic archives, etc.

6.3 Processing Wikipedia pages

Wikipedia, as a publicly available web knowledge
base, has been leveraged for semantic information
in much work, including from our lab. Wikipedia
articles consist mostly of free text, but also con-
tain different types of structured information, e.g. in-
foboxes, categorization and geo information, links
to other articles, to other wiki projects, and to exter-
nal Web pages. Preserving this information is there-
fore useful for a variety of projects.

7 Discussion and Conclusions

The main point of this paper is to argue that the field
should switch to structure-sensitive pipelines. These
are particularly crucial in digital library applications,
but novel type of documents require them as well.
We showed that such extension can be achieved
rather painlessly even in tabular-based pipelines pro-
vided they allow for meta-lines.

References

Isaac G. Councill, C. Lee Giles, and Min-Yen Kan. 2008.
Parscit: An open-source crf reference string parsing
package. In Proceedings of the Language Resources
and Evaluation Conference (LREC 08), May.

Hamish Cunningham, Diana Maynard, Kalina Bontcheva,
and Valentin Tablan. 2002. GATE: A framework and
graphical development environment for robust NLP
tools and applications. In Proceedings of the 40th
Anniversary Meeting of the Association for Computa-
tional Linguistics.

Min-Yuh Day, Richard Tzong-Han Tsai, Cheng-Lung
Sung, Chiu-Chen Hsieh, Cheng-Wei Lee, Shih-Hung
Wu, Kun-Pin Wu, Chorng-Shyong Ong, and Wen-Lian
Hsu. 2007. Reference metadata extraction using a hi-
erarchical knowledge representation framework. Deci-
sion Support Systems, 43(1):152–167, February.

Erik Hetzner. 2008. A simple method for citation meta-
data extraction using hidden markov models. In Pro-
ceedings of the 8th ACM/IEEE-CS joint conference
on Digital libraries, JCDL ’08, pages 280–284, New
York, NY, USA. ACM.

Nancy Ide. 1998. Corpus encoding standard: SGML
guidelines for encoding linguistic corpora. In Proceed-
ings of LREC, pages 463–70, Granada.

Yasuto Ishitani. 1999. Logical structure analysis of doc-
ument images based on emergent computation. In
Proceedings of International Conference on Document
Analysis and Recognition.

Michael Jewell. 2000. Paracite: An overview.
Udo Kruschwitz. 2003. An Adaptable Search System for

Collections of Partially Structured Documents. IEEE
Intelligent Systems, 18(4):44–52, July.

Kyong-Ho Lee, Yoon-Chul Choy, and Sung-Bae Cho.
2003. Logical structure analysis and generation for
structured documents: a syntactic approach. IEEE
transactions on knowledge and data engineering,
15(5):1277–1294, September.

Minh-Thang Luong, Thuy Dung Nguyen, and Min-Yen
Kan. 2011. Logical structure recovery in scholarly
articles with rich document feature. Journal of Digital
Library Systems. Forthcoming.

Song Mao, Azriel Rosenfeld, and Tapas Kanungo. 2003.
Document Structure Analysis Algorithms: A Litera-
ture Survey.

Debashish Niyogi and Sargur N. Srihari. 1995.
Knowledge-based derivation of document logical
structure. In Proceedings of International Conference
on Document Analysis and Recognition, pages 472–
475.

Bo Pang and Lillian Lee. 2008. Opinion Mining and
Sentiment Analysis. Foundations and Trends in Infor-
mation Retrieval, 2(1-2):1–135, January.

Emanuele Pianta, Christian Girardi, and Roberto Zanoli.
2008. The TextPro tool suite. In LREC, 6th edition of
the Language Resources and Evaluation Conference,
Marrakech (Marocco).

Richard Power, Donia Scott, and Nadjet Bouayad-Agha.
2003. Document Structure. Computational Linguis-
tics, 29(2):211–260, June.

Lance A. Ramshaw and Mitchell P. Marcus. 1995. Text
chunking using tranformation-based learning. In Pro-
ceedings of Third ACL Workshop on Very Large Cor-
pora, pages 82–94.

Kristen M. Summers. 1998. Automatic discovery of log-
ical document structure. Ph.D. thesis, Cornell Univer-
sity.

Ian H. Witten, David Bainbridge, and David M. Nichols.
2003. How to build a digital library. Morgan Kauf-
mann.

62

