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Abstract

Survival analysis is often used in medical and
biological studies to examine the time until
some specified event occurs, such as the time
until death of terminally ill patients. In this
paper, however, we apply survival analysis to
eye movement data in order to model the sur-
vival function of fixation time distributions in
reading. Semiparametric regression modeling
and novel evaluation methods for probabilis-
tic models of eye movements are presented.
Survival models adjusting for the influence of
linguistic and cognitive effects are shown to
reduce prediction error within a critical time
period, roughly between 150 and 250 ms fol-
lowing fixation onset.

1 Introduction

During reading, the eyes move on average four times
per second with substantial variation in individual
fixation times, reflecting, at least in part, momentary
changes in on-line language processing demands.
In psycholinguistics, it is commonly assumed that
derivative measures of fixation times, such as first
fixation duration and gaze duration, reflect cognitive
processes during reading. It is less clear, however,
how the distribution of individual fixation times in
reading is affected by on-line processing activities.
In eye movement oriented research, models that at-
tempt to model the distribution of individual fix-
ation times in reading typically assume that sac-
cadic movements are executed relatively randomly
in time, with cognition only occasionally influenc-
ing the timing of saccades (Feng, 2006; McConkie

et al., 1994; Yang and McConkie, 2001; Yang,
2006). In the model by Yang and McConkie (2001),
for example, it is assumed that cognitive control
can have a direct influence over the timing of sac-
cades only with very long fixations, after the normal
saccade has been canceled due to processing diffi-
culty. Distributional models have often made use
of the hazard function in order to analyze fixation
times in reading (Feng, 2006; Feng, 2009; Yang and
McConkie, 2001). The hazard function, in general
terms, is a function of time representing the instan-
taneous risk that an event (e.g., a saccade) will occur
at some specified time t given that it has not occurred
prior to time t.

In this paper, we model the distribution of fixa-
tion times in terms of a different but related quan-
tity, namely the survival function, which defines the
probability of being alive, i.e., the probability of the
event not having occurred, at some specified time
t. We use semiparametric regression for modeling
the influence of linguistic and cognitive effects on
the survival function, and we assess the results us-
ing survival-based time-dependent evaluation met-
rics. More specifically, our objectives are as follows.
We first estimate the survival functions for ten differ-
ent readers using the Kaplan-Meier method (Kaplan
and Meier, 1958) in order to establish the general
shape of the survival function for reading time data.
Then, we estimate adjusted survival functions using
Cox proportional hazards model (Cox, 1972) in or-
der to examine the influence of stimulus variables
on survival. Finally, we assess the adjusted survival
models both with respect to the estimated effects of
covariates and with respect to the predictive perfor-
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mance on held out data. The experiments we report
in this paper are based on first fixation data (multi-
ple refixations discarded) from the English section
of the Dundee Corpus of eye movements in reading
(Kennedy and Pynte, 2005).

The remainder of this paper is organized as fol-
lows. Section 2 introduces survival analysis and
further motivates its use for modeling fixation du-
rations in reading. Section 3 introduces and applies
the Kaplan-Meier estimate, to compare the survival
functions for the different readers in the corpus.
Section 4 introduces the Cox proportional hazards
model and section 5 outlines two methods for assess-
ing the performance of survival models on new data.
Section 6 presents the experimental evaluation of us-
ing Cox proportional hazards to model the survival
function and summarize and discuss the results. Sec-
tion 7, finally, concludes this paper.

2 Background

Survival analysis is the study and modeling of the
time it takes for events to occur. Because methods
for survival analysis originally were developed for
studying the lifetime distributions of humans in an
epidemiological context, the prototypical event in
these studies is death and the primary variable of in-
terest thus time until death occurs. The use of sur-
vival analysis, however, reaches beyond the clinical
and medical sciences and survival methods apply to
any study with a naturally identifiable starting point
and a well-defined event of interest as end point. In
non-medical contexts, survival analysis often goes
by other names, such as failure time analysis or re-
liability analysis in engineering applications, event
history analysis in sociology, or simply duration
analysis in yet other contexts.

A defining characteristic of survival analysis is the
ability to deal with censoring in a principled manner.
Censoring is said to occur when only partial infor-
mation about the survival time of an individual (hu-
man or other) is available. The most common type
of censoring is referred to as right-censoring, which
occurs when an individual is not subject to the event
of interest during the course of the observation pe-
riod. In this case, it is only known that the individual
did not experience the event prior to the end of the
study, but may perhaps do so at a later point in time

and this piece of partial information about the cen-
sored survival time is included in the analysis.

There are, however, potentially good reasons for
using survival analysis even in time-to-event studies
that do not necessarily involve censored data, such
as when measuring the brief periods of time elaps-
ing between a stimulus appearance and a button-
press in response-time studies, or when measuring
the time between one saccade and the next during
reading using eye-tracking. Such data is usually not
normally distributed and even in the absence of cen-
soring one may take advantage of the fact that sur-
vival data is almost never assumed to be normally
distributed and the methods of survival analysis are
designed to reflect this. Furthermore, if the correct
parametric model for the data is not known, or one is
not confident enough that a given parametric model
is appropriate, the Cox proportional hazards model
provides a robust1 and widely used semiparametric
regression method for time-to-event data. With re-
spect to eye movement data, the Cox model appears
appealing because, as pointed out by Feng (2006,
2009), several different types of distributions have
been proposed as models of fixation times in reading
at one time or another, suggesting there is indeed lit-
tle agreement with respect to the correct parametric
model.

2.1 Survival and Hazard

Survival data is commonly analyzed and modeled in
terms of the survival and the hazard function.

The survival function describes the probabilistic
relationship between survival and time. Let T be
a random variable denoting an individuals’ survival
time (T ≥ 0). The survival function, S(t), defines
the probability that the individual survives longer
than some specified time t:

S(t) = P (T > t) (1)

The survival function is a monotonically decreas-
ing function heading downward as t increases and
has the following theoretical properties: S(0) = 1,
the probability of surviving past time 0 is 1; and
S(∞) = 0, eventually nobody survives and S(t)

1Cox proportional hazards model is “robust” in the sense
that the results will be reasonably close to those obtained using
the correct parametric model.
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falls to zero as t tends to infinity. Notice also that
if F (t) is the cumulative distribution function for T ,
the survival function, S(t), is 1− F (t).

In the present study, we let the event of interest
be the occurrence of a saccade following a fixation
period, and the most reasonable starting point for
our measurements, at least in practice, appears to be
the beginning, or the onset, of the fixation period.
We will refer to the period onset-to-saccade inter-
changeably as the fixation time or the survival time.
Thus, in this context, the survival function S(t) sim-
ply expresses the probability that a given fixation
lasts, or survives, longer than some specified time
t.

The hazard function, h(t), gives the instantaneous
potential, per unit time, for an event to occur in some
small time interval after t, given survival up to time
t:

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t | T ≥ t)
∆t

(2)

The conditional probability in the formula for the
hazard function expresses the probability that the
survival time, T , will lie in the time interval between
t and t + ∆t, given that the survival time is greater
than or equal to t, where ∆t denotes an infinitesi-
mally small interval of time. As already suggested,
in this study the hazard function represents the in-
stantaneous risk, or hazard, of a saccade occurring
following a fixation at some specified time t, given
that it has not yet occurred.

3 Kaplan-Meier Survival Estimate

The survival function for time-to-event data can be
estimated from a sample of survival times, both cen-
sored and uncensored, using the Kaplan-Meier (aka
Product-Limit) method. This is a non-parametric
estimate of the survival function which orders the
survival times, from the shortest to the longest, and
adjusts, for each of the event times, the number of
cases still alive according to the number of cases
that were either subject to the event or censored in
the previous time period.

Let dj be the number of saccades that occur at
time tj , and let nj be the number of fixations for
which no saccade has yet occurred at time tj . The
Kaplan-Meier estimate of the survival function S(t)

is then given by:

Ŝ(t) =
∏

t(j)≤t

(1− dj

nj
) (3)

In the absence of censored observations, the Kaplan-
Meier estimate is equivalent to the empirical dis-
tribution, and the cumulative survival probability at
time tj reduces to the number of surviving fixations
at time tj divided by the total number of fixations in
the sample. The value of Ŝ(t) is constant between
event times and the estimated function is therefore a
step function that changes value only at times when
one or more saccades occur.

3.1 Kaplan-Meier Survival of Reading Data

Feng (2009) estimated the hazard function for the
distribution of fixation times for the readers of the
Dundee corpus. Here, we give a complementary
account by estimating the corresponding survival
function for these readers using the Kaplan-Meier
method. Figure 1 shows the survival functions for
each reader plotted against time. Individual differ-
ences in the survival function emerge soon after 50
ms and at 100 ms we can spot different tendencies
with respect to how fast or slow the curves decline.
Overall, however, the behavior of the survival func-
tion appears similar across readers. Typically, the
survival function begins with a slow decline up until
about 150 ms and is then followed by a very rapid
decline during the next 100 ms. Thus, we can see
in figure 1 that the overall survival rates drop from
about 80% to 20% in the time interval 150-250 ms.
Thereafter, the function flattens again and at about
400 ms it appears to be converging between the read-
ers. It is worth noting, however, that the reliability
of the estimate decreases with time since the number
of surviving fixations becomes fewer and fewer.

Median survival time is the point in time when
50% of the total number of fixations has been termi-
nated by a saccade. It is thus read off the plot as the
time where the probability of survival is 0.5. Median
survival time ranges from 168 ms (reader g) to 220
ms (reader b). Mean median survival time across all
ten readers is 191.4 ms with a standard deviation of
14.9 ms.
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Figure 1: Kaplan-Meier curves for fixation durations showing the cumulative survival probability, following fixation
onset, grouped by individual reader (subject a-j).

4 Cox Proportional Hazards Model

This section introduces the Cox proportional haz-
ards model. We will later apply this model in the
experimental part of the paper to obtain adjusted es-
timates of the survival function for the readers in the
Dundee corpus.

The Cox proportional hazards model is a semi-
parametric regression model for survival data relat-
ing survival time to one or more predictors or co-
variates. More precisely, the Cox model regresses
the hazard function on a set of predictors, providing
estimates of their effects in terms of hazard ratios.
The Cox proportional hazards model has the follow-
ing form:

h(t) = h0(t) exp{β1x1 + β2x2 + . . .+ βnxn} (4)

where h0(t) is the baseline hazard function at time t,
x1 . . . xn are the set of covariates or predictor vari-
ables, and β1 . . . βn are the corresponding coeffi-
cients to be estimated2. Thus, this model gives an
expression for the hazard at time t for a particular
individual with a given set of covariates.

The baseline hazard, h0(t), represents the value
of the hazard function when all covariates are equal
to zero, and in the Cox model this baseline haz-
ard is left unspecified and varies as a function of
time. Since no assumptions are made with respect

2Parameter estimates in the Cox model are obtained by max-
imizing the “partial” likelihood, as opposed to the (full) likeli-
hood. Details of procedures for parameter estimation can be
found, for example, in Kalbfleisch and Prentice (1980).

to the form or distribution of the baseline hazard,
this can be regarded as the nonparametric part of the
Cox proportional hazards model. However, the Cox
model assumes a parametric form with respect to the
effect of the predictors on the hazard. In particu-
lar, as seen in equation 4, the predictors are assumed
to multiply hazard at any point in time. This is an
important assumption of the Cox model referred to
as the assumption of proportional hazards. It means
that the hazard functions for any two individuals at
any point in time should be proportional. In other
words, if a certain individual has a risk of the event at
some initial point in time that is twice as high as that
of another individual, then, under the proportional
hazards assumption the risk remains twice as high
also at all later times. There are a variety of different
graphical and goodness-of-fit based procedures that
can be used to evaluate the proportional hazards as-
sumption for survival data (see Kleinbaum and Klein
(2005) for an overview.).

The parameter estimates in a fitted Cox model are
commonly interpreted in terms of their hazard ra-
tios. If bi is the value of the coefficient for predictor
xi, the exponentiated coefficient, ebi , gives the esti-
mated hazard ratio for xi. For continuous variables,
the hazard ratio refers to the risk change associated
with one unit increase in xi, controlling for the effect
of the other variables. A hazard ratio above one indi-
cates a raised risk of the event occurring and the pre-
dictor is in this case thus negatively associated with
survival. Correspondingly, a value below one indi-
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cates a decreased risk and the predictor is thus posi-
tively associated with survival. Lastly, if the hazard
ratio is equal to one, there is no indication of any
associated risk change.

5 Assessment of Survival Models

Accurate prognoses are of critical importance in
many areas where survival analysis apply, for in-
stance in medical contexts where doctors have to es-
timate the expected remaining life time for termi-
nally ill patients. Survival models are thus often as-
sessed with respect to their predictive performance
on novel data, in addition to the statistical signifi-
cance of model covariates. We now briefly review
two of the most commonly used measures for as-
sessing the quality of survival models on indepen-
dent data sets.

5.1 Prediction Error Curves

The prediction error for survival data is defined as a
function of time and can be measured by the Brier
score (Brier, 1950). Intuitively, if an individual is
alive at time t, the predicted survival probability
should be close to 1, and otherwise close to 0. The
prediction error, or Brier score, at time point t is
defined as the mean squared error between the ob-
served survival status Yi(t) for the individual i at
time t, which is equal to 1 if the individual is alive at
t, and 0 otherwise, and the predicted survival proba-
bility for i at time t:

B̂S(t) =
1

n

n∑
i=1

{Yi(t)− Si(t)}2 (5)

The lower the Brier score, the lower the predic-
tion error. Various benchmark values for the Brier
score at time t exists. The values 0.25 and 0.33,
for example, correspond to a constant predicted sur-
vival probability of 50% and to a randomly pre-
dicted value between 0 and 1, respectively. Often,
however, the Kaplan-Meier estimate of the survival
function over the training sample is used. In this
case, the benchmark prediction at time point t cor-
responds to the proportion of individuals surviving
past t, thus ignoring all available covariate informa-
tion. By tracking the prediction error over time we
get the prediction error curve (Graf et al., 1999) and

a summary measure of the error for the whole ob-
servation period can be obtained by integrating over
time (the integrated Brier score).

5.2 Concordance Index

The concordance index (Harrell et al., 1982), or C-
index, estimates the probability that a given predic-
tion agrees, or concurs, with the observed outcome.
For uncensored data, the concordance index is given
by the relative frequency of concordant pairs among
all pairs of individuals. A pair is said to be concor-
dant if the individual with the shorter survival time
is also predicted by the model to have the highest
risk of the two. Useful reference values for the con-
cordance index are 0.5 which indicates that the pre-
dictions are no better than chance, and 1 which indi-
cates that the model discriminates the pairs perfectly.

6 Experimental Evaluation

In order to study the influence of cognitive and lin-
guistic effects on the survival function, the following
experiment is performed. First, the Cox proportional
hazards model is used to regress fixation times on
five different stimulus variables associated with the
current fixation, thus providing estimates of the haz-
ard ratios for the effects of each variable adjusted for
the other variables in the model. Second, we obtain
adjusted survival functions, i.e. survival curves that
adjust for the stimulus variables used as covariates,
and we assess these curves with respect to the gen-
eralization error on held-out corpus data.

It is worth pointing out that regression studies on
the Dundee Corpus of eye movements have been
carried out before (e.g., Demberg and Keller, 2008;
Pynte and Kennedy, 2006). Our experiment, how-
ever, differs from previous studies in at least three
ways: (1) our goal is to model the survival func-
tion of fixation time distributions in reading, which
means that we use the survival time of individual fix-
ations as the unit of analysis; (2) we assess the sur-
vival model not only with respect to the estimated
regression coefficients, but also with respect to the
models’ predictive performance on unseen data; (3)
we use a semiparametric regression method for sur-
vival data which has not been previously applied,
as far as we know, to reading-time data. It is also
worth pointing out that although we believe that a

111



Table 1: Results of Cox proportional hazards model of fixation times in the Dundee Corpus section 01-16: hazard
ratios (HR) and significance levels (p) for all covariates in the model, and for each individual model of reader a-j.

a b c d e f g h i j

Variable HR p HR p HR p HR p HR p HR p HR p HR p HR p HR p

Word length 1.015 < .001 0.983 < .001 0.979 < .001 0.988 < .001 0.992 < .05 0.992 < .01 0.992 < .01 0.985 < .001 0.990 < .01 0.987 < .001

Word frequency 1.055 < .001 1.042 < .001 1.036 < .001 1.051 < .001 1.051 < .001 1.014 < .001 1.031 < .001 1.028 < .001 1.040 < .001 1.044 < .001

Bigram probability 1.108 < .001 1.196 < .1 1.092 < .05 1.006 < .01 1.013 < .05 1.014 < .001 0.953 1.011 < .001 1.003 1.005 < .05

Surprisal 1.001 0.986 < .001 0.994 < .01 0.984 < .001 0.998 < .01 0.991 < .05 1.002 0.994 0.993 < .05 0.996 < .01

Entropy 0.966 < .001 0.986 < .01 0.980 < .001 0.988 < .01 0.963 < .001 1.002 0.990 < .05 0.992 < .05 0.969 < .001 0.978 < .001

careful comparison of the results obtained using sur-
vival analysis to those reported for other regression
methods would be useful and interesting, it is never-
theless beyond the scope of this paper.

Most of the stimulus variables included in the
analysis have been shown to correlate with reading
times in other regression studies: the number of let-
ters in the word, the logarithm of the word’s rela-
tive frequency (based on occurrences in the British
National Corpus), the logarithm of the conditional
(bigram) probability of the word (based on occur-
rences in the Google Web 1T 5-gram corpus (Brants
and Franz, 2006)), the syntactic surprisal and en-
tropy scores3 (computed here using the probabilis-
tic PCFG parser by Roark et al. (2009)). The sur-
prisal (Hale, 2001) at word wi refers to the nega-
tive log probability of wi given the preceding words,
computed using the prefix probabilities of the parser.
A number of studies have previously established a
positive relation between surprisal and word-reading
times (Boston et al., 2008; Demberg and Keller,
2008; Roark et al., 2009). The entropy, as quantified
here, approximates the structural uncertainty associ-
ated with the rest of the sentence, or what is yet to
be computed (Roark et al., 2009).

In this experiment, we use the first 16 texts in
the Dundee corpus for parameter estimation, and the
following two texts, 17 and 18 for model assessment
of the generalization error. To avoid introducing bi-
ases that may result from pooling distributional data
together, we model each of the readers in the cor-
pus separately. Prior to running the experiments,
we also validated the Cox proportional hazards as-
sumption using a goodness-of-fit approach based on
the Schoenfeld residuals (Schoenfeld, 1982). The
outcome of this test indicated a slight violation of

3To ease interpretation of the estimated hazard ratios, no in-
teraction terms were included in this model.

the proportional hazards assumption. However, it
is well-known that a slight violation may occur for
large data samples, given that p-values can be driven
by sample size (Kleinbaum and Klein, 2005).

6.1 Results

6.1.1 Hazard Ratios
Table 1 shows the results of the Cox proportional
hazards regression models. The estimated hazard ra-
tio for each covariate along with the corresponding
significance level is reported for each reader. Recall
that a hazard ratio above one indicates a worse sur-
vival prognosis, i.e. shorter fixation times, while a
hazard ratio below one indicates better survival, i.e.
longer fixation times.

Overall, the effects go in the directions expected
for these variables based on previous research.
There is a significant positive effect of word length
on survival for all but one reader. The hazard ra-
tio for the significant effects ranges between 0.979
and 0.992. Word length thus decreases the hazard by
about 1-2% for each additional letter in a word when
adjusting for the effects of the other covariates in
the model. Word frequency is significantly and neg-
atively related to survival across all readers. More
frequent words have shorter survival times. The av-
erage hazard ratio among the readers is 1.0392 and
the estimated risk of a saccade increases thus on av-
erage by a factor of 1.0392 for each unit increase
in log word frequency. Bigram probability is nega-
tively and significantly related to survival for eight
readers with an average hazard ratio of 1.0569. Sur-
prisal is significantly and positively related to sur-
vival for seven readers. Among these, the hazard
decreases by 1% for each unit increase in surprisal.
Entropy has a significant and positive effect on sur-
vival on all but one readers. The hazard ratios range
between 0.963 and 0.992, corresponding to a de-
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Brier score t

t.100 t.150 t.200 t.250 t.300

Model Cox KM Cox KM Cox KM Cox KM Cox KM

a 0.05 0.05 0.14 0.15 0.24 0.25 0.14 0.15 0.05 0.06

b 0.05 0.05 0.12 0.13 0.23 0.25 0.21 0.23 0.12 0.13

c 0.13 0.13 0.23 0.24 0.17 0.18 0.06 0.07 0.02 0.02

d 0.07 0.07 0.17 0.18 0.23 0.25 0.15 0.16 0.06 0.06

e 0.05 0.05 0.15 0.15 0.23 0.25 0.14 0.15 0.05 0.05

f 0.09 0.09 0.21 0.21 0.22 0.23 0.12 0.12 0.06 0.06

g 0.16 0.16 0.23 0.23 0.24 0.25 0.12 0.13 0.07 0.07

h 0.07 0.07 0.15 0.15 0.24 0.25 0.20 0.20 0.12 0.12

i 0.04 0.04 0.13 0.13 0.23 0.25 0.10 0.10 0.03 0.03

j 0.06 0.06 0.18 0.19 0.23 0.25 0.12 0.12 0.05 0.05

Avg. 0.077 0.077 0.171 0.176 0.226 0.241 0.136 0.143 0.063 0.065

Table 2: Prediction error on held-out data between the observed survival status and the predicted survival probability
at different times t, for Kaplan-Meier and Cox-model adjusted survival, and for all models of readers a-j.

creased risk by 1-4% per additional unit increase,
after adjusting for the effects of the other predic-
tors. While Frank (2010) recently showed that sen-
tence entropy, i.e. non-structural entropy, accounts
for a significant fraction of the variance in reading
times, our results provide additional support for the
influence of structural sentence entropy on reading
times. Moreover, it is noteworthy that the effect of
entropy appears reliably robust in individual first fix-
ation times, suggesting that the effects of structural
processing demands can be immediate rather than
delayed in the eye movement record.

6.1.2 Adjusted Survival
We summarize the results of the evaluation of the
adjusted survival function on held-out data in table
2 and in table 3. Table 2 shows the Brier score com-
puted at different points in time in the interval 100
to 300 ms. Results are reported both for the Kaplan-
Meier estimate of the survival function and for the
fitted Cox-models. We present the results for each
individual model. The bottom row gives the results
obtained when averaging over all models at the spec-
ified time t.

Recall that the Brier score, or prediction error,
at any specified time t, is computed over all fixa-
tions in the held-out set and gives the average of the
squared distances between the actual survival status
and the predicted survival probability at time t. Al-
though the differences between the Cox-model and

the Kaplan-Meier estimate are small overall, there
are two subtle but notable results. First, the ad-
justed survival model is never underperforming the
Kaplan-Meier survival estimate. The prediction er-
ror of the Cox model is consistently lower or equal to
the Kaplan-Meier prediction error at each time point
and for each reader. Second, in comparison to the
Kaplan-Meier error, the prediction error of the ad-
justed model is systematically lower in the time win-
dow 150-250 ms, but essentially the same prior to,
and after, this time period. This is readily reflected
in the average scores, for example. One interpre-
tation of these small but systematic differences sug-
gests that there is a limited period, approximately no
earlier than 150 ms. and no later than 250 ms. on av-
erage, during which the covariates in the model are
primarily influencing the survival time. Before and
after this period, the stimulus variables of the fixated
word appear to have little or no influence on the time
when saccades are generated. In other words, we ob-
serve an improved agreement to the observed data in
the interval 150-250 ms. under the assumption that
each individual fixation has an independent survival
function whose value at time t is influenced by the
specific values for the stimulus variables of the fix-
ation. Recall that the benchmark, the Kaplan-Meier
estimate, in contrast, assumes one and the same un-
derlying survival function for all fixations, ignoring
all available covariate information. By plotting the
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Figure 2: Prediction error curves on held-out data between the observed survival status and the predicted survival
probability, for Kaplan-Meier and Cox-model adjusted survival, for the model of reader d.

Model IBSC C-index

Kaplan-Meier 0.041 0.582

Cox 0.043 0.598

Table 3: Integrated Brier score (IBSC) and Concordance
index (C-index) on held-out data, for Kaplan-Meier and
Cox-model adjusted survival, averaged over the results
obtained for each model of reader a-j.

time-dependent prediction error, subtle differences
in survival over the time course are more easily spot-
ted. Figure 2 shows, as an example, the prediction
error curve for one of the models.

Table 3 gives the integrated brier score, i.e., the
prediction error obtained when integrating over all
event times, and the concordance index C, for
both the Kaplan-Meier estimate and the Cox model.
These results are averaged over the results of the in-
dividual models. The integrated Brier score verifies
that the Cox model fares somewhat better, although
the impact of the model variables appears limited in
time. The C-value for both the Kaplan-Meier and
the Cox model is significantly better than chance
(0.5). A C-value of 0.6 - 0.7 is a common result
for survival data.

7 Conclusion

In this paper we applied survival analysis to model
fixation times in reading. In particular, we modeled
the survival function of fixation time distributions
using the Kaplan-Meier estimate, and the Cox pro-
portional hazards model to adjust for cognitive and
linguistic effects on survival. The adjusted survival
models were assessed with respect to the effect of
covariates on hazard rates, and with respect to their
predictive performance using evaluation metrics that
are novel in the context of eye-movement and psy-
cholinguistic modeling.

The results of the analysis suggests that: (1) struc-
tural sentence entropy influences survival, i.e., in-
creasing structural uncertainty about the rest of the
sentence decreases the risk of moving the eyes; (2)
stimulus variables associated with the current fixa-
tion influence the survival of the fixation in a limited
time frame, roughly between 150 and 250 ms fol-
lowing onset; and (3) linguistic and cognitive effects
may influence the timing of saccades earlier than is
sometimes assumed.

Looking ahead, important topics to be inves-
tigated in the future include frailty models and
competing risks survival analysis. Frailty models
are survival-based regression models with random
effects, designed to account for variance due to
individual-level factors otherwise unaccounted for.
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Competing risks survival analysis apply to situations
where a finite number of different types of events are
possible, but only one of the events can actually oc-
cur per individual, e.g., dying from either lung can-
cer or stroke. In the current study we did not dif-
ferentiate between different types of events follow-
ing a fixation. A competing risks analysis, however,
would let us differentiate between different types of
saccades and study the influence of predictors on the
survival function based on the type of the saccade
following a fixation, e.g., whether it is a forward-
directed saccade, refixation or regression. These and
other issues will be addressed.
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