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Abstract

Information graphics (bar charts, line graphs,
etc.) in popular media generally have a dis-
course goal that contributes to achieving the
communicative intent of a multimodal docu-
ment. This paper presents our work on ab-
stractive summarization of line graphs. Our
methodology involves hypothesizing the in-
tended message of a line graph and using it
as the core of a summary of the graphic. This
core is then augmented with salient proposi-
tions that elaborate on the intended message.

1 Introduction

Summarization research has focused primarily on
summarizing textual documents, and until recently,
other kinds of communicative vehicles have been
largely ignored. As noted by Clark (1996), language
is more than just words — it is any signal that is
intended to convey a message. Information graph-
ics (non-pictorial graphics such as bar charts, line
graphs, etc.) in popular media such as Newsweek,
Businessweek, or newspapers, generally have a com-
municative goal or intended message. For exam-
ple, the graphic in Figure 1 is intended to convey
a changing trend in sea levels — relatively flat from
1900 to 1930 and then rising from 1930 to 2003.
Thus, using Clark’s view of language, information
graphics are a means of communication.

Research has shown that the content of informa-
tion graphics in popular media is usually not re-
peated in the text of the accompanying article (Car-
berry et al., 2006). The captions of such graphics
are also often uninformative or convey little of the

graphic’s high-level message (Elzer et al., 2005).
This contrasts with scientific documents in which
graphics are often used to visualize data, with ex-
plicit references to the graphic being used to explain
their content (e.g., “As shown in Fig. A...”). Infor-
mation graphics in popular media contribute to the
overall communicative goal of a multimodal docu-
ment and should not be ignored.

Our work is concerned with the summarization
of information graphics from popular media. Such
summaries have several major applications: 1) they
can be integrated with the summary of a multimodal
document’s text, thereby producing a richer sum-
mary of the overall document’s content; 2) they can
be stored in a digital library along with the graphic
itself and used to retrieve appropriate graphics in re-
sponse to user queries; and 3) for individuals with
sight impairments, they can be used along with a
screen reader to convey not only the text of a docu-
ment, but also the content of the document’s graph-
ics. In this paper we present our work on summariz-
ing line graphs. This builds on our previous efforts
into summarizing bar charts (Demir et al., 2008;
Elzer et al., 2011); however, line graphs have dif-
ferent messages and communicative signals than bar
charts and their continuous nature requires different
processing. In addition, a very different set of visual
features must be taken into account in deciding the
importance of including a proposition in a summary.

2 Methodology

Most summarization research has focused on ex-
tractive techniques by which segments of text are
extracted and put together to form the summary.
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Figure 1: From “Worry flows from Arctic ice to tropical
waters” in USA Today, May 31, 2006.

However, the Holy Grail of summarization work is
abstractive summarization in which the document’s
content is understood and the important concepts are
integrated into a coherent summary. For informa-
tion graphics, extractive summarization might mean
treating the text in the graphic (e.g., the caption) as if
it were document text. One could imagine perhaps
expanding this view to include selecting particular
data points or segments and constructing sentences
that convey them. Abstractive summarization, on
the other hand, requires that the high-level content
of the graphic be identified and conveyed in the sum-
mary. The goal of our work is abstractive summa-
rization. The main issues are identifying the knowl-
edge conveyed by a graphic, selecting the concepts
that should be conveyed in a summary, and integrat-
ing them into coherent natural language sentences.

As noted in the Introduction, information graphics
in popular media generally have a high-level mes-
sage that they are intended to convey. This mes-
sage constitutes the primary communicative or dis-
course goal (Grosz and Sidner, 1986) of the graphic
and captures its main contribution to the overall dis-
course goal of the entire document. However, the
graphic also includes salient features that are impor-
tant components of the graphic’s content. For exam-
ple, the graphic in Figure 1 is very jagged with sharp
fluctuations, indicating that short-term changes have
been inconsistent. Since the graphic’s intended mes-
sage represents its primary discourse goal, we con-

tend that this message should form the core or fo-
cus of the graphic’s summary. The salient features
should be used to augment the summary of the graph
and elaborate on its intended message. Thus, our
methodology consists of the following steps: 1) hy-
pothesize the graphic’s primary discourse or com-
municative goal (i.e., its intended message), 2) iden-
tify additional propositions that are salient in the
graphic, and 3) construct a natural language sum-
mary that integrates the intended message and the
additional salient propositions into a coherent text.

Section 3 presents our methodology for hypothe-
sizing a line graph’s intended message or discourse
goal. It starts with an XML representation of the
graphic that specifies the x-y coordinates of the sam-
pled pixels along the data series in the line graph, the
axes with tick marks and labels, the caption, etc.;
constructing the XML representation is the respon-
sibility of a Visual Extraction Module similar to the
one for bar charts described by Chester and Elzer
(2005). Section 4 presents our work on identifying
the additional propositions that elaborate on the in-
tended message and should be included in the sum-
mary. Section 5 discusses future work on realizing
the propositions in a natural language summary, and
Section 6 reviews related work in multimodal and
abstractive summarization.

3 Identifying a Line Graph’s Message

Research has shown that human subjects have a
strong tendency to use line graphs to portray trend
relationships, as well as a strong tendency to de-
scribe line graphs in terms of trends (Zacks and
Tversky, 1999). We analyzed a corpus of sim-
ple line graphs collected from various popular me-
dia including USA Today, Businessweek, and The
(Wilmington) News Journal, and identified a set of
10 high-level message categories that capture the
kinds of messages that are conveyed by a simple
line graph. Table 1 defines four of them. The com-
plete list can be found in (Wu et al., 2010b). Each
of these messages requires recognizing the visual
trend(s) in the depicted data. We use a support vec-
tor machine (SVM) to first segment the line graph
into a sequence of visually-distinguishable trends;
this sequence is then input into a Bayesian net-
work that reasons with evidence from the graphic
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Intention Category Description
RT: Rising-trend There is a rising trend from <param1> to <param2>.
CT: Change-trend There is a <direction2> trend from <param2> to <param3> that is signifi-

cantly different from the <direction1> trend from <param1> to <param2>.
CTR:
Change-trend-return

There is a <direction1> trend from <param3> to <param4> that is different
from the <direction2> trend between <param2> and <param3> and reflects
a return to the kind of <direction1> trend from <param1> to <param2>.

BJ: Big-jump There was a very significant sudden jump in value between <param1> and
<param2> which may or may not be sustained.

Table 1: Four categories of High Level Messages for Line Graphs

in order to recognize the graphic’s intended mes-
sage. The next two subsections outline these
steps. (Our corpus of line graphs can be found at
www.cis.udel.edu/∼carberry/Graphs/viewallgraphs.php)

3.1 Segmenting a Line Graph

A line graph can consist of many short, jagged
line segments, although a viewer of the graphic ab-
stracts from it a sequence of visually-distinguishable
trends. For example, the line graph in Figure 1 con-
sists of two trends: a relatively stable trend from
1900 to 1930 and a longer, increasing trend from
1930 to 2003. Our Graph Segmentation Module
(GSM) takes a top-down approach (Keogh et al.,
2001) to generalize the line graph into sequences of
rising, falling, and stable segments, where a segment
is a series of connected data points. The GSM starts
with the entire line graph as a single segment and
uses a learned model to recursively decide whether
each segment should be split into two subsegments;
if the decision is to split, the division is made at the
point being the greatest distance from a straight line
between the two end points of the original segment.
This process is repeated on each subsegment until
no further splits are identified. The GSM returns a
sequence of straight lines representing a linear re-
gression of the points in each subsegment, where
each straight line is presumed to capture a visually-
distinguishable trend in the original graphic.

We used Sequential Minimal Optimization (Platt,
1999) in training an SVM to make segment split-
ting decisions. We chose to use an SVM because it
works well with high-dimensional data and a rela-
tively small training set, and lessens the chance of
overfitting by using the maximum margin separat-
ing hyperplane which minimizes the worst-case gen-

eralization errors (Tan et al., 2005). 18 attributes,
falling into two categories, were used in building
the data model (Wu et al., 2010a). The first cat-
egory captures statistical tests computed from the
sampled data points in the XML representation of
the graphic; these tests estimate how different the
segment is from a linear regression (i.e., a straight
line). The second category of attributes captures
global features of the graphic. For example, one
such attribute relates the segment size to the size of
the entire graphic, based on the hypothesis that seg-
ments comprising more of the total graph may be
stronger candidates for splitting than segments that
comprise only a small portion of the graph.

Our Graph Segmentation Module was trained
on a set of 649 instances that required a split/no-
split decision. Using leave-one-out cross validation,
in which one instance is used for testing and the
other 648 instances are used for training, our model
achieved an overall accuracy rate of 88.29%.

3.2 A Bayesian Recognition System
Once the line graph has been converted into
a sequence of visually-distinguishable trends, a
Bayesian network is built that captures the possible
intended messages for the graphic and the evidence
for or against each message. We adopted a Bayesian
network because it weighs different pieces of evi-
dence and assigns a probability to each candidate
intended message. The next subsections briefly out-
line the Bayesian network and its evaluation; details
can be found in (Wu et al., 2010b).

Structure of the Bayesian Network Figure 2
shows a portion of the Bayesian network constructed
for Figure 1. The top-level node in our Bayesian net-
work represents all of the high-level message cat-
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Figure 2: A portion of the Bayesian network

egories. Each of these possible non-parameterized
message categories is repeated as a child of the
top-level node; this is purely for ease of repre-
sentation. Up to this point, the Bayesian net-
work is a static structure with conditional proba-
bility tables capturing the a priori probability of
each category of intended message. When given
a line graph to analyze, an extension of this net-
work is built dynamically according to the partic-
ulars of the graph itself. Candidate (concrete) in-
tended messages, having actual instantiated param-
eters, appear beneath the high-level message cat-
egory nodes. These candidates are introduced by
a Suggestion Generation Module; it dynamically
constructs all possible intended messages with con-
crete parameters using the visually-distinguishable
trends (rising, falling, or stable) identified by the
Graph Segmentation Module. For example, for each
visually-distinguishable trend, a Rising, Falling, or
Stable trend message is suggested; similary, for each
sequence of two visually-distinguishable trends, a
Change-trend message is suggested. For the graphic
in Figure 1, six candidate messages will be gener-
ated, including RT(1930, 2003), CT(1900, stable,
1930, rise, 2003) and BJ(1930, 2003) (see Table 1).

Entering Evidence into the Bayesian Network
Just as listeners use evidence to identify the intended
meaning of a speaker’s utterance, so also must a
viewer use evidence to recognize a graphic’s in-
tended message. The evidence for or against each

of the candidate intended messages must be entered
into the Bayesian network. We identified three kinds
of evidence that are used in line graphs: attention-
getting devices explicitly added by the graphic de-
signer (e.g., the annotation of a point with its value),
aspects of a graphic that are perceptually-salient
(e.g., the slope of a segment), and clues that sug-
gest the general message category (e.g., a verb [or
noun derived from a verb such as rebound] in the
caption which might indicate a Change-trend mes-
sage). The first two kinds of evidence are attached
to the Bayesian network as children of each candi-
date message node, such as the child nodes of “CT-
Suggestion-1” in Figure 2. The third kind of evi-
dence is attached to the top level node as child nodes
named “Verb in Caption Evidence” and “Adjective
in Caption Evidence” in Figure 2.

Bayesian Network Inference We evaluated the
performance of our system for recognizing a line
graph’s intended message on a corpus of 215 line
graphs using leave-one-out cross validation in which
one graph is held out as a test graph and the con-
ditional probability tables for the Bayesian network
are computed from the other 214 graphs. Our sys-
tem recognized the correct intended message with
the correct parameters for 157 line graphs, resulting
in a 73.36% overall accuracy rate.

4 Identifying Elaborative Propositions

Once the intended message has been determined,
the next step is to identify additional important
informational propositions1 conveyed by the line
graph which should be included in the summary.
To accomplish this, we collected data to determine
what kinds of propositions in what situations were
deemed most important by human subjects, and de-
veloped rules designed to make similar assessments
based on the graphic’s intended message and visual
features present in the graphic.

4.1 Collecting Data from Human Subjects

Participants in our study were given 23 different line
graphs. With each graph, the subjects were provided

1We define a “proposition” as a logical representation de-
scribing a relationship between one or more concepts, while a
“sentence” is a surface form realizing one or more propositions.
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Figure 3: From “This Cable Outfit Is Getting Tuned In”
in Businessweek magazine, Oct 4, 1999.

with an initial sentence describing the overall in-
tended message of the graphic. The subjects were
asked to add additional sentences so that the com-
pleted summary captured the most important infor-
mation conveyed by the graphic. The graphs were
presented to the subjects in different orders, and the
subjects completed as many graphs as they wanted
during the one hour study session. The set covered
the eight most prevalent of our intended message
categories and a variety of visual features. Roughly
half of the graphs were real-world examples from
the corpus used to train the Bayesian network in
Section 3.2, (e.g., Figure 3), with the others created
specifically to fill a gap in the coverage of intended
messages and visual features.

We collected a total of 998 summaries written by
69 human subjects for the 23 different line graphs.
The number of summaries we received per graph
ranged from 37 to 50. Most of the summaries were
between one and four sentences long, in addition to
the initial sentence (capturing the graphic’s intended
message) that was provided for each graph. A rep-
resentative sample summary collected for the line
graph shown in Figure 3 is as follows, with the initial
sentence provided to the study participants in italics:

This line graph shows a big jump in Blon-
der Tongue Laboratories stock price in
August ’99. The graph has many peaks

and valleys between March 26th 1999 to
August ’99 but maintains an average stock
price of around 6 dollars. However, in Au-
gust ’99 the stock price jumps sharply to
around 10 dollars before dropping quickly
to around 9 dollars by September 21st.

4.2 Extracting & Weighting Propositions
The data collected during the study was analyzed by
a human annotator who manually coded the propo-
sitions that appeared in each individual summary in
order to determine, for each graphic, which proposi-
tions were used and how often. For example, the set
of propositions coded in the sample summary from
Section 4.1 were:

• volatile(26Mar99, Aug99)
• average val(26Mar99, Aug99, $6)
• jump 1(Aug99, $10)
• steep(jump 1)
• decrease 1(Aug99, $10, 21Sep99, $9)
• steep(decrease 1)

From this information, we formulated a set of
rules governing the use of each proposition accord-
ing to the intended message category and various
visual features. Our intuition was that by finding
and exploiting a correlation between the intended
message category and/or certain visual features and
the propositions appearing most often in the human-
written summaries, our system could use these in-
dicators to determine which propositions are most
salient in new graphs. Our rules assign a weight
to each proposition in the situation captured by the
rule; these weights are based on the relative fre-
quency of the proposition being used in summaries
reflecting similar situations in our corpus study. The
rules are organized into three types:

1. Message Category-only (M):
IF M = m THEN select P with weight w1

2. Visual Feature-only (V):
IF V = v THEN select P with weight w2

3. Message Category + Visual Feature:
IF M = m and V = v

THEN select P with weight w2

We constructed type 1 (Message Category-only)
rules when a plurality of human-written summaries
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in our corpus for all line graphs belonging to a
given message category contain the proposition. A
weight was assigned according to the frequency with
which the proposition was included. This weighting,
shown in Equation 1, is based on the proportion of
summaries for each line graph in the corpus having
intended message m and containing proposition P.

w1 =
n∏

i=1

Pi

Si
(1)

In this equation, n is the number of line graphs in
this intended message category, Si is the total num-
ber of summaries for a particular line graph with this
intended message category, and Pi is the number of
these summaries that contain the proposition.

Intuitively, a proposition appearing in all sum-
maries for all graphs in a given message category
will have a weight of 1.0, while a proposition which
never appears will have a weight of zero. How-
ever, a proposition appearing in all summaries for
half of the graphs in a category, and rarely for the
other half of the graphs in that category, will have a
much lower weight than one which appears in half
of the summaries for all the graphs in that category,
even though the overall frequencies could be equal
for both. In this case, the message category is an
insufficient signal, and it is likely that the former
proposition is more highly correlated to some par-
ticular visual feature than to the message category.

Weights for type 2 and type 3 rules (Visual
Feature-only and Message Category + Visual Fea-
ture) are slightly more complicated in that they in-
volve a measure of degree for the associated visual
feature rather than simply its presence. The defini-
tion of this measure varies depending on the nature
of the visual feature (e.g., steepness of a trend line,
volatility), but all such measures range from zero to
one. Additionally, since the impact of a visual fea-
ture is a matter of degree, the weighting cannot rely
on a simple proportion of summaries containing the
proposition as in type 1 rules. Instead, it is neces-
sary to find the covariance between the magnitude of
the visual feature (|v|) and how frequently the corre-
sponding proposition is used (P

S ) in the corpus sum-
maries for the n graphs having this visual feature, as

shown in Equation 2.

Cov(|v|, P

S
) =[(∑n

i=1 |vi|
n

∑n
i=1

Pi
Si

n

)
−
∑n

i=1 |vi|Pi
Si

n

] (2)

Then for a particular graphic whose magnitude for
this feature is |v|, we compute the weight w2 for the
proposition P as shown in Equation 3.

w2 = |v| ∗ Cov(|v|, P

S
) (3)

This way, the stronger a certain visual feature is in a
given line graph, the higher the weight for the asso-
ciated proposition.

Type 3 rules (Message Category + Visual Fea-
ture) differ only from type 2 rules in that they are
restricted to a particular intended message category,
rather than any line graph having the visual feature
in question. For example, a proposition compar-
ing the slope of two trends may be appropriate for
a graph in the Change-trend message category, but
does not make sense for a line graph with only a sin-
gle trend (e.g., Rising-trend).

Once all propositions have been extracted and
ranked, these weights are passed along to a graph-
based content selection framework (Demir et al.,
2010) that iteratively selects for inclusion in the ini-
tial summary those propositions which provide the
best coverage of the highest-ranked information.

4.3 Sample Rule Application
Figures 1 and 4 consist of two different line graphs
with the same intended message category: Change-
trend. Figure 1 shows a stable trend in annual sea
level difference from 1900 to 1930, followed by a
rising trend through 2003, while Figure 4 shows a
rising trend in Durango sales from 1997 to 1999,
followed by a falling trend through 2006. Proposi-
tions associated with type 1 rules will have the same
weights for both graphs, but propositions related to
visual features may have different weights. For ex-
ample, the graph in Figure 1 is far more volatile than
the graph in Figure 4. Thus, the type 2 rule associ-
ated with volatility will have a very high weight for
the graph in Figure 1 and will almost certainly be in-
cluded in the initial summary of that line graph (e.g.,
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Figure 4: From “Chrysler: Plant had $800 million im-
pact” in The (Wilmington) News Journal, Feb 15, 2007.

“The values vary a lot...”, “The trend is unstable...”),
possibly displacing a type 1 proposition that would
still appear in the summary for the graph in Figure 4.

5 Future Work

Once the propositions that should be included in the
summary have been selected, they must be coher-
ently organized and realized as natural language sen-
tences. We anticipate using the FUF/SURGE sur-
face realizer (Elhadad and Robin, 1996); our col-
lected corpus of line graph summaries provides a
large set of real-world expressions to draw from
when crafting the surface realization forms our sys-
tem will produce for the final-output summaries.
Our summarization methodology must also be eval-
uated. In particular, we must evaluate the rules for
identifying the additional informational propositions
that are used to elaborate the overall intended mes-
sage, and the quality of the summaries both in terms
of content and coherence.

6 Related Work

Image summarization has focused on constructing a
smaller image that contains the important content of
a larger image (Shi et al., 2009), selecting a set of
representative images that summarize a collection
of images (Baratis et al., 2008), or constructing a
new diagram that summarizes one or more diagrams
(Futrelle, 1999). However, all of these efforts pro-
duce an image as the end product, not a textual sum-
mary of the content of the image(s).

Ferres et al. (2007) developed a system for con-
veying graphs to blind users, but it generates the
same basic information for each instance of a graph
type (e.g., line graphs) regardless of the individual

graph’s specific characteristics. Efforts toward sum-
marizing multimodal documents containing graph-
ics have included naı̈ve approaches relying on cap-
tions and direct references to the image in the text
(Bhatia et al., 2009), while content-based image
analysis and NLP techniques are being combined for
multimodal document indexing and retrieval in the
medical domain (Névéol et al., 2009).

Jing and McKeown (1999) approached abstrac-
tive summarization as a text-to-text generation task,
modifying sentences from the original document via
editing and rewriting. There have been some at-
tempts to do abstractive summarization from seman-
tic models, but most of it has focused on text docu-
ments (Rau et al., 1989; Reimer and Hahn, 1988),
though Alexandersson (2003) used abstraction and
semantic modeling for speech-to-speech translation
and multilingual summary generation.

7 Discussion

Information graphics play an important communica-
tive role in popular media and cannot be ignored.
We have presented our methodology for construct-
ing a summary of a line graph. Our method is ab-
stractive, in that we identify the important high-level
knowledge conveyed by a graphic and capture it in
propositions to be realized in novel, coherent natu-
ral language sentences. The resulting summary can
be integrated with a summary of the document’s text
to produce a rich summary of the entire multimodal
document. In addition, the graphic’s summary can
be used along with a screen reader to provide sight-
impaired users with full access to the knowledge
conveyed by multimodal documents.

Acknowledgments

This work was supported in part by the National In-
stitute on Disability and Rehabilitation Research un-
der Grant No. H133G080047.

References
Jan Alexandersson. 2003. Hybrid Discourse Modeling

and Summarization for a Speech-to-Speech Transla-
tion System. Ph.D. thesis, Saarland University.

Evdoxios Baratis, Euripides Petrakis, and Evangelos Mil-
ios. 2008. Automatic web site summarization by im-
age content: A case study with logo and trademark

47



images. IEEE Transactions on Knowledge and Data
Engineering, 20(9):1195–1204.

Sumit Bhatia, Shibamouli Lahiri, and Prasenjit Mitra.
2009. Generating synopses for document-element
search. In Proceeding of the 18th ACM Conference
on Information and Knowledge Management, CIKM
’09, pages 2003–2006, Hong Kong, November. ACM.

Sandra Carberry, Stephanie Elzer, and Seniz Demir.
2006. Information graphics: an untapped resource for
digital libraries. In Proc. of the 29th Annual Int’l ACM
SIGIR Conf. on Research & Development in Informa-
tion Retrieval, SIGIR ’06, pages 581–588, Seattle, Au-
gust. ACM.

Daniel Chester and Stephanie Elzer. 2005. Getting com-
puters to see information graphics so users do not have
to. In Proceedings of the 15th International Sympo-
sium on Methodologies for Intelligent Systems (LNAI
3488), ISMIS 2005, pages 660–668, Saratoga Springs,
NY, June. Springer-Verlag.

Herbert Clark. 1996. Using Language. Cambridge Uni-
versity Press.

Seniz Demir, Sandra Carberry, and Kathleen F. McCoy.
2008. Generating textual summaries of bar charts.
In Proceedings of the 5th International Natural Lan-
guage Generation Conference, INLG 2008, pages 7–
15, Salt Fork, Ohio, June. ACL.

Seniz Demir, Sandra Carberry, and Kathleen F. Mc-
Coy. 2010. A discourse-aware graph-based content-
selection framework. In Proceedings of the 6th In-
ternational Natural Language Generation Conference,
INLG 2010, pages 17–26, Trim, Ireland, July. ACL.

Michael Elhadad and Jacques Robin. 1996. An overview
of SURGE: a re-usable comprehensive syntactic re-
alization component. In Proceedings of the 8th In-
ternational Natural Language Generation Workshop
(Posters & Demos), Sussex, UK, June. ACL.

Stephanie Elzer, Sandra Carberry, Daniel Chester, Seniz
Demir, Nancy Green, Ingrid Zukerman, and Keith
Trnka. 2005. Exploring and exploiting the limited
utility of captions in recognizing intention in infor-
mation graphics. In Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguis-
tics, pages 223–230, Ann Arbor, June. ACL.

Stephanie Elzer, Sandra Carberry, and Ingrid Zukerman.
2011. The automated understanding of simple bar
charts. Artificial Intelligence, 175:526–555, February.

Leo Ferres, Petro Verkhogliad, Gitte Lindgaard, Louis
Boucher, Antoine Chretien, and Martin Lachance.
2007. Improving accessibility to statistical graphs: the
iGraph-Lite system. In Proc. of the 9th Int’l ACM
SIGACCESS Conf. on Computers & Accessibility, AS-
SETS ’07, pages 67–74, Tempe, October. ACM.

Robert P. Futrelle. 1999. Summarization of diagrams in
documents. In I. Mani and M. Maybury, editors, Ad-
vances in Automatic Text Summarization. MIT Press.

Barbara Grosz and Candace Sidner. 1986. Attention,
Intentions, and the Structure of Discourse. Computa-
tional Linguistics, 12(3):175–204.

Hongyan Jing and Kathleen R. McKeown. 1999. The
decomposition of human-written summary sentences.
In Proc. of the 22nd Annual Int’l ACM SIGIR Conf.
on Research & Development in Information Retrieval,
SIGIR ’99, pages 129–136, Berkeley, August. ACM.

Eamonn J. Keogh, Selina Chu, David Hart, and
Michael J. Pazzani. 2001. An online algorithm
for segmenting time series. In Proceedings of the
2001 IEEE International Conference on Data Mining,
ICDM ’01, pages 289–296, Washington, DC. IEEE.
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