
Proceedings of the Fifth Law Workshop (LAW V), pages 65–73,
Portland, Oregon, 23-24 June 2011. c©2011 Association for Computational Linguistics

Reducing the Need for Double Annotation

Dmitriy Dligach
Department of Computer Science
University of Colorado at Boulder

Dmitriy.Dligach@colorado.edu

Martha Palmer
Department of Linguistics

University of Colorado at Boulder
Martha.Palmer@colorado.edu

Abstract

The quality of annotated data is crucial for
supervised learning. To eliminate errors in
single annotated data, a second round of an-
notation is often used. However, is it abso-
lutely necessary to double annotate every ex-
ample? We show that it is possible to reduce
the amount of the second round of annotation
by more than half without sacrificing the per-
formance.

1 Introduction

Supervised learning has become the dominant
paradigm in NLP in recent years thus making the
creation of high-quality annotated corpora a top pri-
ority in the field. A corpus where each instance is
annotated by a single annotator unavoidably con-
tains errors. To improve the quality of the data, one
may choose to annotate each instance twice and ad-
judicate the disagreements thus producing the gold
standard. For example, the OntoNotes (Hovy et al.,
2006) project opted for this approach.

However, is it absolutely necessary to double an-
notate every example? In this paper, we demonstrate
that it is possible to double annotate only a subset of
the single annotated data and still achieve the same
level of performance as with full double annotation.
We accomplish this task by using the single anno-
tated data to guide the selection of the instances to
be double annotated.

We propose several algorithms that accept sin-
gle annotated data as input. The algorithms select
a subset of this data that they recommend for an-
other round of annotation and adjudication. The sin-
gle annotated data our algorithms work with can po-
tentially come from any source. For example, it can

be the single annotated output of active learning or
the data that had been randomly sampled from some
corpus and single annotated. Our approach is ap-
plicable whenever a second round of annotation is
being considered to improve the quality of the data.

Our approach is similar in spirit to active learn-
ing but more practical in a double annotation multi-
tagger environment. We evaluate this approach on
OntoNotes word sense data. Our best algorithm de-
tects 75% of the errors, while the random sampling
baseline only detects less than a half of that amount.
We also show that this algorithm can lead to a 54%
reduction in the amount of annotation needed for the
second round of annotation.

The rest of this paper is structured as follows: we
discuss the relevant work in section 2, we explain
our approach in section 3, we evaluate our approach
in section 4, we discuss the results and draw a con-
clusion in section 5, and finally, we talk about our
plans for future work in section 6.

2 Related Work

Active Learning (Settles, 2009; Olsson, 2009) has
been the traditional avenue for reducing the amount
of annotation. However, in practice, serial active
learning is difficult in a multi-tagger environment
(Settles, 2009) when many annotators are working
in parallel (e.g. OntoNotes employs tens of tag-
gers). At the same time, several papers recently ap-
peared that used OntoNotes data for active learning
experiments (Chen et al., 2006; Zhu, 2007; Zhong et
al., 2008). These works all utilized OntoNotes gold
standard labels, which were obtained via double an-
notation and adjudication. The implicit assumption,
therefore, was that the same process of double anno-

65



tation and adjudication could be reproduced in the
process of active learning. However, this assumption
is not very realistic and in practice, these approaches
may not bring about the kind of annotation cost re-
duction that they report. For example, an instance
would have to be annotated by two taggers (and each
disagreement adjudicated) on each iteration before
the system can be retrained and the next instance se-
lected. Active learning tends to select ambiguous ex-
amples (especially at early stages), which are likely
to cause an unusually high number of disagreements
between taggers. The necessity of frequent manual
adjudication would slow down the overall process.
Thus, if the scenarios of (Chen et al., 2006; Zhu,
2007; Zhong et al., 2008) were used in practice, the
taggers would have to wait on each other, on the ad-
judicator, and on the retraining, before the system
can select the next example. The cost of annotator
waiting time may undermine the savings in annota-
tion cost.

The rationale for our work arises from these dif-
ficulties: because active learning is not practical
in a double annotation scenario, the data is single
annotated first (with the instances selected via ac-
tive learning, random sampling or some other tech-
nique). After that, our algorithms can be applied to
select a subset of the single annotated data for the
second round of annotation and adjudication. Our
algorithms select the data for repeated labeling in a
single batch, which means the selection can be done
off-line. This should greatly simplify the application
of our approach in a real life annotation project.

Our work also borrows from the error detection
literature. Researchers have explored error detec-
tion for manually tagged corpora in the context
of pos-tagging (Eskin, 2000; Květoň and Oliva,
2002; Novák and Razı́mová, 2009), dependency
parsing (Dickinson, 2009), and text-classification
(Fukumoto and Suzuki, 2004). The approaches to
error detection include anomaly detection (Eskin,
2000), finding inconsistent annotations (van Hal-
teren, 2000; Květoň and Oliva, 2002; Novák and
Razı́mová, 2009), and using the weights assigned
by learning algorithms such as boosting (Abney et
al., 1999; Luo et al., 2005) and SVM (Nakagawa
and Matsumoto, 2002; Fukumoto and Suzuki, 2004)
by exploiting the fact that errors tend to concentrate
among the examples with large weights. Some of

these works eliminate the errors (Luo et al., 2005).
Others correct them automatically (Eskin, 2000;
Květoň and Oliva, 2002; Fukumoto and Suzuki,
2004; Dickinson, 2009) or manually (Květoň and
Oliva, 2002). Several authors also demonstrate en-
suing performance improvements (Fukumoto and
Suzuki, 2004; Luo et al., 2005; Dickinson, 2009).
All of these researchers experimented with single
annotated data such as Penn Treebank (Marcus et al.,
1993) and they were often unable to hand-examine
all the data their algorithms marked as errors be-
cause of the large size of their data sets. Instead,
to demonstrate the effectiveness of their approaches,
they examined a selected subset of the detected ex-
amples (e.g. (Abney et al., 1999; Eskin, 2000; Nak-
agawa and Matsumoto, 2002; Novák and Razı́mová,
2009)). In this paper, we experiment with fully dou-
ble annotated and adjudicated data, which allows us
to evaluate the effectiveness of our approach more
precisely. A sizable body of work exists on us-
ing noisy labeling obtained from low-cost annota-
tion services such as Amazon’s Mechanical Turk
(Snow et al., 2008; Sheng et al., 2008; Hsueh et
al., 2009). Hsueh et al. (2009) identify several cri-
teria for selecting high-quality annotations such as
noise level, sentiment ambiguity, and lexical uncer-
tainty. (Sheng et al., 2008) address the relationships
between various repeated labeling strategies and the
quality of the resulting models. They also propose
a set of techniques for selective repeated labeling
which are based on the principles of active learn-
ing and an estimate of uncertainty derived from each
example’s label multiset. These authors focus on
the scenario where multiple (greater than two) labels
can be obtained cheaply. This is not the case with the
data we experiment with: OntoNotes data is double
annotated by expensive human experts. Also, unfor-
tunately, Sheng et al. simulate multiple labeling (the
noise is introduced randomly). However, human an-
notators may have a non-random annotation bias re-
sulting from misreading or misinterpreting the direc-
tions, or from genuine ambiguities. The data we use
in our experiments is annotated by humans.

3 Algorithms

In the approach to double annotation we are propos-
ing, the reduction in annotation effort is achieved by

66



double annotating only the examples selected by our
algorithms instead of double annotating the entire
data set. If we can find most or all the errors made
during the first round of labeling and show that dou-
ble annotating only these instances does not sacri-
fice performance, we will consider the outcome of
this study positive. We propose three algorithms for
selecting a subset of the single annotated data for the
second round of annotation.

Our machine tagger algorithm draws on error de-
tection research. Single annotated data unavoidably
contains errors. The main assumption this algorithm
makes is that a machine learning classifier can form
a theory about how the data should be labeled from
a portion of the single annotated data. The classifier
can be subsequently applied to the rest of the data to
find the examples that contradict this theory. In other
words, the algorithm is geared toward detecting in-
consistent labeling within the single annotated data.
The machine tagger algorithm can also be viewed as
using a machine learning classifier to simulate the
second human annotator. The machine tagger al-
gorithm accepts single annotated data as input and
returns the instances that it believes are labeled in-
consistently.

Our ambiguity detector algorithm is inspired by
uncertainty sampling (Lewis and Gale, 1994), a kind
of active learning in which the model selects the
instances for which its prediction is least certain.
Some instances in the data are intrinsically ambigu-
ous. The main assumption the ambiguity detector
algorithm makes is that a machine learning classifier
trained using a portion of the single annotated data
can be used to detect ambiguous examples in the
rest of the single annotated data. The algorithm is
geared toward finding hard-to-classify instances that
are likely to cause problems for the human annota-
tor. The ambiguity detector algorithm accepts single
annotated data as input and returns the instances that
are potentially ambiguous and thus are likely to be
controversial among different annotators.

It is important to notice that the machine tagger
and ambiguity detector algorithms target two differ-
ent types of errors in the data: the former detects
inconsistent labeling that may be due to inconsistent
views among taggers (in a case when the single an-
notated data is labeled by more than one person) or
the same tagger tagging inconsistently. The latter

finds the examples that are likely to result in dis-
agreements when labeled multiple times due to their
intrinsic ambiguity. Therefore, our goal is not to
compare the performance of the machine tagger and
ambiguity detector algorithms, but rather to provide
a viable solution for reducing the amount of annota-
tion on the second round by detecting as much noise
in the data as possible. Toward that goal we also
consider a hybrid approach, which is a combination
of the first two.

Still, we expect some amount of overlap in the
examples detected by the two approaches. For ex-
ample, the ambiguous instances selected by the sec-
ond algorithm may also turn out to be the ones that
the first one will identify because they are harder
to classify (both by human annotators and machine
learning classifiers). The three algorithms we exper-
iment with are therefore (1) the machine tagger, (2)
the ambiguity detector, and (3) the hybrid of the two.
We will now provide more details about how each of
them is implemented.

3.1 General Framework

All three algorithms accept single annotated data as
input. They output a subset of this data that they rec-
ommend for repeated labeling. All algorithms be-
gin by splitting the single annotated data into N sets
of equal size. They proceed by training a classifier
on N − 1 sets and applying it to the remaining set,
which we will call the pool1. The cycle repeats N
times in the style of N -fold cross-validation. Upon
completion, each single annotated instance has been
examined by the algorithm. A subset of the single
annotated data is selected for the second round of an-
notation based on various criteria. These criteria are
what sets the algorithms apart. Because of the time
constraints, for the experiments we describe in this
paper, we set N to 10. A larger value will increase
the running time but may also result in an improved
performance.

1Notice that the term pool in active learning research typi-
cally refers to the collection of unlabeled data from which the
examples to be labeled are selected. In our case, this term ap-
plies to the data that is already labeled and the goal is to select
data for repeated labeling.

67



3.2 Machine Tagger Algorithm

The main goal of the machine tagger algorithm is
finding inconsistent labeling in the data. This al-
gorithm operates by training a discriminative clas-
sifier and making a prediction for each instance in
the pool. Whenever this prediction disagrees with
the human-assigned label, the instance is selected
for repeated labeling.

For classification we choose a support vector ma-
chine (SVM) classifier because we need a high-
accuracy classifier. The state-of-the art system we
use for our experiments is SVM-based (Dligach and
Palmer, 2008). The specific classification software
we utilize is LibSVM (Chang and Lin, 2001). We
accept the default settings (C = 1 and linear ker-
nel).

3.3 Ambiguity Detector Algorithm

The ambiguity detector algorithm trains a proba-
bilistic classifier and makes a prediction for each
instance in the pool. However, unlike the previous
algorithm, the objective in this case is to find the in-
stances that are potentially hard to annotate due to
their ambiguity. The instances that lie close to the
decision boundary are intrinsically ambiguous and
therefore harder to annotate. We hypothesize that a
human tagger is more likely to make a mistake when
annotating these instances.

We can estimate the proximity to the class bound-
ary using a classifier confidence metric such as the
prediction margin, which is a simple metric often
used in active learning (e.g. (Chen et al., 2006)). For
an instance x, we compute the prediction margin as
follows:

Margin(x) = |P (c1|x)− P (c2|x)| (1)

Where c1 and c2 are the two most probable classes
of x according to the model. We rank the single
annotated instances by their prediction margin and
select selectsize instances with the smallest margin.
The selectsize setting can be manipulated to increase
the recall. We experiment with the settings of select-
size of 20% and larger.

While SVM classifiers can be adapted to produce
a calibrated posterior probability (Platt and Platt,
1999), for simplicity, we use a maximum entropy

classifier, which is an intrinsically probabilistic clas-
sifier and thus has the advantage of being able to
output the probability distribution over the class la-
bels right off-the-shelf. The specific classification
software we utilize is the python maximum entropy
modeling toolkit (Le, 2004) with the default options.

3.4 Hybrid Algorithm

We hypothesize that both the machine tagger and
ambiguity detector algorithms we just described se-
lect the instances that are appropriate for the second
round of human annotation. The hybrid algorithm
simply unions the instances selected by these two
algorithms. As a result, the amount of data selected
by this algorithm is expected to be larger than the
amount selected by each individual algorithm.

4 Evaluation

For evaluation we use the word sense data annotated
by the OntoNotes project. The OntoNotes data was
chosen because it is fully double-blind annotated by
human annotators and the disagreements are adjudi-
cated by a third (more experienced) annotator. This
type of data allows us to: (1) Simulate single anno-
tation by using the labels assigned by the first an-
notator, (2) Simulate the second round of annotation
for selected examples by using the labels assigned
by the second annotator, (3) Evaluate how well our
algorithms capture the errors made by the first anno-
tator, and (4) Measure the performance of the cor-
rected data against the performance of the double
annotated and adjudicated gold standard.

We randomly split the gold standard data into ten
parts of equal size. Nine parts are used as a pool
of data from which a subset is selected for repeated
labeling. The rest is used as a test set. Before pass-
ing the pool to the algorithm, we ”single annotate”
it (i.e. relabel with the labels assigned by the first
annotator). The test set always stays double anno-
tated and adjudicated to make sure the performance
is evaluated against the gold standard labels. The cy-
cle is repeated ten times and the results are averaged.

Since our goal is finding errors in single anno-
tated data, a brief explanation of what we count as
an error is appropriate. In this evaluation, the er-
rors are the disagreements between the first anno-
tator and the gold standard. The fact that our data

68



Sense Definition Sample Context
Accept as true without
verification

I assume his train was
late

Take on a feature, po-
sition, responsibility,
right

When will the new
President assume of-
fice?

Take someone’s soul
into heaven

This is the day when
Mary was assumed
into heaven

Table 1: Senses of to assume

is double annotated allows us to be reasonably sure
that most of the errors made by the first annotator
were caught (as disagreements with the second an-
notator) and resolved. Even though other errors may
still exist in the data (e.g. when the two annotators
made the same mistake), we assume that there are
very few of them and we ignore them for the pur-
pose of this study.

4.1 Task

The task we are using for evaluating our approach
is word sense disambiguation (WSD). Resolution of
lexical ambiguities has for a long time been viewed
as an important problem in natural language pro-
cessing that tests our ability to capture and represent
semantic knowledge and and learn from linguistic
data. More specifically, we experiment with verbs.
There are fewer verbs in English than nouns but the
verbs are more polysemous, which makes the task
of disambiguating verbs harder. As an example, we
list the senses of one of the participating verbs, to
assume, in Table 1.

The goal of WSD is predicting the sense of an am-
biguous word given its context. For example, given
a sentence When will the new President assume of-
fice?, the task consists of determining that the verb
assume in this sentence is used in the Take on a fea-
ture, position, responsibility, right, etc. sense.

4.2 Data

We selected the 215 most frequent verbs in the
OntoNotes data and discarded the 15 most frequent
ones to make the size of the dataset more manage-
able (the 15 most frequent verbs have roughly as
many examples as the next 200 frequent verbs). We

Inter-annotator agreement 86%
Annotator1-gold standard agreement 93%
Share of the most frequent sense 71%
Number of classes (senses) per verb 4.44

Table 2: Evaluation data at a glance

ended up with a dataset containing 58,728 instances
of 200 frequent verbs. Table 2 shows various impor-
tant characteristics of this dataset averaged across
the 200 verbs.

Observe that even though the annotator1-gold
standard agreement is high, it is not perfect: about
7% of the instances are the errors the first annota-
tor made. These are the instances we are target-
ing. OntoNotes double annotated all the instances
to eliminate the errors. Our goal is finding them au-
tomatically.

4.3 System

Our word sense disambiguation system (Dligach and
Palmer, 2008) includes three groups of features.
Lexical features include open class words from the
target sentence and the two surrounding sentences;
two words on both sides of the target verb and their
POS tags. Syntactic features are based on con-
stituency parses of the target sentence and include
the information about whether the target verb has a
subject/object, what their head words and POS tags
are, whether the target verb has a subordinate clause,
and whether the target verb has a PP adjunct. The
semantic features include the information about the
semantic class of the subject and the object of the
target verb. The system uses Libsvm (Chang and
Lin, 2001) software for classification. We train a
single model per verb and average the results across
all 200 verbs.

4.4 Performance Metrics

Our objective is finding errors in single annotated
data. One way to quantify the success of error de-
tection is by means of precision and recall. We com-
pute precision as the ratio of the number of errors
in the data that the algorithm selected and the to-
tal number of instances the algorithm selected. We
compute recall as the ratio of the number of errors
in the data that the algorithm selected to the total

69



number of errors in the data. To compute baseline
precision and recall for an algorithm, we count how
many instances it selected and randomly draw the
same number of instances from the single annotated
data. We then compute precision and recall for the
randomly selected data.

We also evaluate each algorithm in terms of clas-
sification accuracy. For each algorithm, we measure
the accuracy on the test set when the model is trained
on: (1) Single annotated data only, (2) Single anno-
tated data with a random subset of it double anno-
tated2 (of the same size as the data selected by the
algorithm), (3) Single annotated data with the in-
stances selected by the algorithm double annotated,
and (4) Single annotated data with all instances dou-
ble annotated.

4.5 Error Detection Performance

In this experiment we evaluate how well the three
algorithms detect the errors. We split the data for
each word into 90% and 10% parts as described at
the beginning of section 4. We relabel the 90% part
with the labels assigned by the first tagger and use it
as a pool in which we detect the errors. We pass the
pool to each algorithm and compute the precision
and recall of errors in the data the algorithm returns.
We also measure the random baseline performance
by drawing the same number of examples randomly
and computing the precision and recall. The results
are in the top portion of Table 3.

Consider the second column, which shows the
performance of the machine tagger algorithm. The
algorithm identified as errors 16.93% of the total
number of examples that we passed to it. These se-
lected examples contained 60.32% of the total num-
ber of errors found in the data. Of the selected ex-
amples, 23.81% were in fact errors. By drawing the
same number of examples (16.93%) randomly we
recall only 16.79% of the single annotation errors.
The share of errors in the randomly drawn examples
is 6.82%. Thus, the machine tagger outperforms the
random baseline both with respect to precision and
recall.

The ambiguity detector algorithm selected 20% of
the examples with the highest value of the prediction

2Random sampling is often used as a baseline in the active
learning literature (Settles, 2009; Olsson, 2009).

margin and beat the random baseline both with re-
spect to precision and recall. The hybrid algorithm
also beat the random baselines. It recalled 75% of
errors but at the expense of selecting a larger set of
examples, 30.48%. This is the case because it selects
both the data selected by the machine tagger and the
ambiguity detector. The size selected, 30.48%, is
smaller than the sum, 16.93% + 20.01%, because
there is some overlap between the instances selected
by the first two algorithms.

4.6 Model Performance
In this experiment we investigate whether double
annotating and adjudicating selected instances im-
proves the accuracy of the models. We use the same
pool/test split (90%-10%) as was used in the previ-
ous experiment. The results are in the bottom por-
tion of Table 3.

Let us first validate empirically an assumption this
paper makes: we have been assuming that full dou-
ble annotation is justified because it helps to correct
the errors the first annotator made, which in turn
leads to a better performance. If this assumption
does not hold, our task is pointless. In general re-
peated labeling does not always lead to better per-
formance (Sheng et al., 2008), but it does in our
case. We train a model using only the single an-
notated data and test it. We then train a model using
the double annotated and adjudicated version of the
same data and evaluate its performance.

As expected, the models trained on fully double
annotated data perform better. The performance of
the fully double annotated data, 84.15%, is the ceil-
ing performance we can expect to obtain if we detect
all the errors made by the first annotator. The perfor-
mance of the single annotated data, 82.84%, is the
hard baseline. Thus, double annotating is beneficial,
especially if one can avoid double annotating every-
thing by identifying the single annotated instances
where an error is suspected.

All three algorithms beat both the hard and the
random baselines. For example, by double annotat-
ing the examples the hybrid algorithm selected we
achieve an accuracy of 83.82%, which is close to the
full double annotation accuracy, 84.15%. By double
annotating the same number of randomly selected
instances, we reach a lower accuracy, 83.36%. The
differences are statistically significant for all three

70



Metric Machine Tagger, % Ambiguity Detector, % Hybrid, %
Actual size selected 16.93 20.01 30.48
Error detection precision 23.81 10.61 14.70
Error detection recall 60.32 37.94 75.14
Baseline error detection precision 6.82 6.63 6.86
Baseline error detection recall 16.79 19.61 29.06
Single annotation only accuracy 82.84 82.84 82.84
Single + random double accuracy 83.23 83.09 83.36
Single + selected double accuracy 83.58 83.42 83.82
Full double annotation accuracy 84.15 84.15 84.15

Table 3: Results of performance evaluation. Error detection performance is shown at the top part of the table. Model
performance is shown at the bottom.

algorithms (p < 0.05).
Even though the accuracy gains over the random

baseline are modest in absolute terms, the reader
should keep in mind that the maximum possible ac-
curacy gain is 84.15% - 82.84% = 1.31% (when all
the data is double annotated). The hybrid algorithm
came closer to the target accuracy than the other
two algorithms because of a higher recall of errors,
75.14%, but at the expense of selecting almost twice
as much data as, for example, the machine tagger
algorithm.

4.7 Reaching Double Annotation Accuracy

The hybrid algorithm performed better than the
baselines but it still fell short of reaching the accu-
racy our system achieves when trained on fully dou-
ble annotated data. However, we have a simple way
of increasing the recall of error detection. One way
to do it is by increasing the number of instances with
the smallest prediction margin the ambiguity detec-
tor algorithm selects, which in turn will increase the
recall of the hybrid algorithm. In this series of exper-
iments we measure the performance of the hybrid al-
gorithm at various settings of the selection size. The
goal is to keep increasing the recall of errors until the
performance is close to the double annotation accu-
racy.

Again, we split the data for each word into 90%
and 10% parts. We relabel the 90% part with the
labels assigned by the first tagger and pass it to the
hybrid algorithm. We vary the selection size setting
between 20% and 50%. At each setting, we com-
pute the precision and recall of errors in the data

the algorithm returns as well as in the random base-
line. We also measure the performance of the mod-
els trained on on the single annotated data with its
randomly and algorithm-selected subsets double an-
notated. The results are in Table 4.

As we see at the top portion of the Table 4, as we
select more and more examples with a small predic-
tion margin, the recall of errors grows. For exam-
ple, at the 30% setting, the hybrid algorithm selects
37.91% of the total number of single annotated ex-
amples, which contain 80.42% of all errors in the
single annotated data (more than twice as much as
the random baseline).

As can be seen at the bottom portion of the Ta-
ble 4, with increased recall of errors, the accuracy
on the test set also grows and nears the double an-
notation accuracy. At the 40% setting, the algorithm
selects 45.80% of the single annotated instances and
the accuracy with these instances double annotated
reaches 84.06% which is not statistically different
(p < 0.05) from the double annotation accuracy.

5 Discussion and Conclusion

We proposed several simple algorithms for reducing
the amount of the second round of annotation. The
algorithms operate by detecting annotation errors
along with hard-to-annotate and potentially error-
prone instances in single annotated data. We evalu-
ate the algorithms using OntoNotes word sense data.
Because OntoNotes data is double annotated and ad-
judicated we were able to evaluate the error detec-
tion performance of the algorithms as well as their
accuracy on the gold standard test set. All three al-

71



Metric Selection Size
20% 30% 40% 50%

Actual size selected 30.46 37.91 45.80 54.12
Error detection precision 14.63 12.81 11.40 10.28
Error detection recall 75.65 80.42 83.95 87.37
Baseline error detection precision 6.80 6.71 6.78 6.77
Baseline error detection recall 29.86 36.23 45.63 53.30
Single annotation only accuracy 83.04 83.04 83.04 83.04
Single + random double accuracy 83.47 83.49 83.63 83.81
Single + selected double accuracy 83.95 83.99 84.06 84.10
Full double annotation accuracy 84.18 84.18 84.18 84.18

Table 4: Performance at various sizes of selected data.

gorithms outperformed the random sampling base-
line both with respect to error recall and model per-
formance.

By progressively increasing the recall of errors,
we showed that the hybrid algorithm can be used
to replace full double annotation. The hybrid algo-
rithm reached accuracy that is not statistically dif-
ferent from the full double annotation accuracy with
approximately 46% of data double annotated. Thus,
it can potentially save 54% of the second pass of an-
notation effort without sacrificing performance.

While we evaluated the proposed algorithms only
on word sense data, the evaluation was performed
using 200 distinct word type datasets. These words
each have contextual features that are essentially
unique to that word type and consequently, 200
distinct classifiers, one per word type, are trained.
Hence, these could loosely be considered 200 dis-
tinct annotation and classification tasks. Thus, it is
likely that the proposed algorithms will be widely
applicable whenever a second round of annotation
is being contemplated to improve the quality of the
data.

6 Future Work

Toward the same goal of reducing the cost of the sec-
ond round of double annotation, we will explore sev-
eral research directions. We will investigate the util-
ity of more complex error detection algorithms such
as the ones described in (Eskin, 2000) and (Naka-
gawa and Matsumoto, 2002). Currently our algo-
rithms select the instances to be double annotated
in one batch. However it is possible to frame the

selection more like batch active learning, where the
next batch is selected only after the previous one is
annotated, which may result in further reductions in
annotation costs.

Acknowledgements

We gratefully acknowledge the support of the Na-
tional Science Foundation Grant NSF-0715078,
Consistent Criteria for Word Sense Disambiguation,
and the GALE program of the Defense Advanced
Research Projects Agency, Contract No. HR0011-
06-C-0022, a subcontract from the BBN-AGILE
Team. Any opinions, findings, and conclusions
or recommendations expressed in this material are
those of the authors and do not necessarily reflect
the views of the National Science Foundation.

References

Steven Abney, Robert E. Schapire, and Yoram Singer.
1999. Boosting applied to tagging and pp attachment.
In Proceedings of the Joint SIGDAT Conference on
Empirical Methods in Natural Language Processing
and Very Large Corpora, pages 38–45.

Chih-Chung Chang and Chih-Jen Lin, 2001. LIBSVM: a
library for support vector machines.

Jinying Chen, Andrew Schein, Lyle Ungar, and Martha
Palmer. 2006. An empirical study of the behavior
of active learning for word sense disambiguation. In
Proceedings of the main conference on Human Lan-
guage Technology Conference of the North American
Chapter of the Association of Computational Linguis-
tics, pages 120–127, Morristown, NJ, USA. Associa-
tion for Computational Linguistics.

72



Markus Dickinson. 2009. Correcting dependency anno-
tation errors. In EACL ’09: Proceedings of the 12th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics, pages 193–201,
Morristown, NJ, USA. Association for Computational
Linguistics.

Dmitriy Dligach and Martha Palmer. 2008. Novel se-
mantic features for verb sense disambiguation. In
HLT ’08: Proceedings of the 46th Annual Meeting
of the Association for Computational Linguistics on
Human Language Technologies, pages 29–32, Morris-
town, NJ, USA. Association for Computational Lin-
guistics.

Eleazar Eskin. 2000. Detecting errors within a corpus
using anomaly detection. In Proceedings of the 1st
North American chapter of the Association for Com-
putational Linguistics conference, pages 148–153, San
Francisco, CA, USA. Morgan Kaufmann Publishers
Inc.

Fumiyo Fukumoto and Yoshimi Suzuki. 2004. Correct-
ing category errors in text classification. In COLING
’04: Proceedings of the 20th international conference
on Computational Linguistics, page 868, Morristown,
NJ, USA. Association for Computational Linguistics.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. Ontonotes:
the 90% solution. In NAACL ’06: Proceedings of
the Human Language Technology Conference of the
NAACL, Companion Volume: Short Papers on XX,
pages 57–60, Morristown, NJ, USA. Association for
Computational Linguistics.

Pei-Yun Hsueh, Prem Melville, and Vikas Sindhwani.
2009. Data quality from crowdsourcing: a study of
annotation selection criteria. In HLT ’09: Proceedings
of the NAACL HLT 2009 Workshop on Active Learning
for Natural Language Processing, pages 27–35, Mor-
ristown, NJ, USA. Association for Computational Lin-
guistics.

Pavel Květoň and Karel Oliva. 2002. (semi-)automatic
detection of errors in pos-tagged corpora. In Proceed-
ings of the 19th international conference on Compu-
tational linguistics, pages 1–7, Morristown, NJ, USA.
Association for Computational Linguistics.

Zhang Le, 2004. Maximum Entropy Modeling Toolkit for
Python and C++.

David D. Lewis and William A. Gale. 1994. A sequential
algorithm for training text classifiers. In SIGIR ’94:
Proceedings of the 17th annual international ACM SI-
GIR conference on Research and development in in-
formation retrieval, pages 3–12, New York, NY, USA.
Springer-Verlag New York, Inc.

Dingsheng Luo, Xinhao Wang, Xihong Wu, and
Huisheng Chi. 2005. Learning outliers to refine a cor-

pus for chinese webpage categorization. In ICNC (1),
pages 167–178.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of english: the penn treebank. Comput. Linguist.,
19(2):313–330.

Tetsuji Nakagawa and Yuji Matsumoto. 2002. Detect-
ing errors in corpora using support vector machines.
In Proceedings of the 19th international conference
on Computational linguistics, pages 1–7, Morristown,
NJ, USA. Association for Computational Linguistics.

Václav Novák and Magda Razı́mová. 2009. Unsu-
pervised detection of annotation inconsistencies using
apriori algorithm. In ACL-IJCNLP ’09: Proceedings
of the Third Linguistic Annotation Workshop, pages
138–141, Morristown, NJ, USA. Association for Com-
putational Linguistics.

Fredrik Olsson. 2009. A literature survey of active
machine learning in the context of natural language
processing. In Technical Report, Swedish Institute of
Computer Science.

John C. Platt and John C. Platt. 1999. Probabilistic out-
puts for support vector machines and comparisons to
regularized likelihood methods. In Advances in Large
Margin Classifiers, pages 61–74. MIT Press.

Burr Settles. 2009. Active learning literature survey. In
Computer Sciences Technical Report 1648 University
of Wisconsin-Madison.

Victor S. Sheng, Foster Provost, and Panagiotis G. Ipeiro-
tis. 2008. Get another label? improving data qual-
ity and data mining using multiple, noisy labelers. In
KDD ’08: Proceeding of the 14th ACM SIGKDD in-
ternational conference on Knowledge discovery and
data mining, pages 614–622, New York, NY, USA.
ACM.

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and An-
drew Y. Ng. 2008. Cheap and fast—but is it good?:
evaluating non-expert annotations for natural language
tasks. In EMNLP ’08: Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing, pages 254–263, Morristown, NJ, USA. Associa-
tion for Computational Linguistics.

Hans van Halteren. 2000. The detection of inconsistency
in manually tagged text. In Proceedings of LINC-00,
Luxembourg.

Z. Zhong, H.T. Ng, and Y.S. Chan. 2008. Word sense
disambiguation using OntoNotes: An empirical study.
In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, pages 1002–
1010. Association for Computational Linguistics.

Jingbo Zhu. 2007. Active learning for word sense disam-
biguation with methods for addressing the class imbal-
ance problem. In In Proceedings of ACL, pages 783–
790.

73


