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Abstract

Finding the right representation for words is
critical for building accurate NLP systems
when domain-specific labeled data for the
task is scarce. This paper investigates lan-
guage model representations, in which lan-
guage models trained on unlabeled corpora
are used to generate real-valued feature vec-
tors for words. We investigate ngram mod-
els and probabilistic graphical models, includ-
ing a novel lattice-structured Markov Random
Field. Experiments indicate that language
model representations outperform traditional
representations, and that graphical model rep-
resentations outperform ngram models, espe-
cially on sparse and polysemous words.

1 Introduction

NLP systems often rely on hand-crafted, carefully
engineered sets of features to achieve strong perfor-
mance. Thus, a part-of-speech (POS) tagger would
traditionally use a feature like, “the previous token
is the” to help classify a given token as a noun or
adjective. For supervised NLP tasks with sufficient
domain-specific training data, these traditional fea-
tures yield state-of-the-art results. However, NLP
systems are increasingly being applied to texts like
the Web, scientific domains, and personal commu-
nications like emails, all of which have very differ-
ent characteristics from traditional training corpora.
Collecting labeled training data for each new target
domain is typically prohibitively expensive. We in-
vestigate representations that can be applied when
domain-specific labeled training data is scarce.

An increasing body of theoretical and empirical
evidence suggests that traditional, manually-crafted

features limit systems’ performance in this setting
for two reasons. First, featuresparsityprevents sys-
tems from generalizing accurately to words and fea-
tures not seen during training. Because word fre-
quencies are Zipf distributed, this often means that
there is little relevant training data for a substantial
fraction of parameters (Bikel, 2004), especially in
new domains (Huang and Yates, 2009). For exam-
ple, word-type features form the backbone of most
POS-tagging systems, but types like “gene” and
“pathway” show up frequently in biomedical liter-
ature, and rarely in newswire text. Thus, a classifier
trained on newswire data and tested on biomedical
data will have seen few training examples related to
sentences with features “gene” and “pathway” (Ben-
David et al., 2009; Blitzer et al., 2006).

Further, because words arepolysemous, word-
type features prevent systems from generalizing to
situations in which words have different meanings.
For instance, the word type “signaling” appears pri-
marily as a present participle (VBG) in Wall Street
Journal (WSJ) text, as in, “Interest rates rose, sig-
naling that . . . ” (Marcus et al., 1993). In biomedical
text, however, “signaling” appears primarily in the
phrase “signaling pathway,” where it is considered
a noun (NN) (PennBioIE, 2005); this phrase never
appears in the WSJ portion of the Penn Treebank
(Huang and Yates, 2010a).

Our response to these problems with traditional
NLP representations is to seek new representations
that allow systems to generalize more accurately to
previously unseen examples. Our approach depends
on the well-knowndistributional hypothesis, which
states that a word’s meaning is identified with the
contexts in which it appears (Harris, 1954; Hin-
dle, 1990). Our goal is to develop probabilistic lan-
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guage models that describe the contexts of individ-
ual words accurately. We then constructrepresen-
tations, or mappings from word tokens and types
to real-valued vectors, from these language models.
Since the language models are designed to model
words’ contexts, the features they produce can be
used to combat problems with polysemy. And by
careful design of the language models, we can limit
the number of features that they produce, controlling
how sparse those features are in training data.

In this paper, we analyze the performance
of language-model-based representations on tasks
where domain-specific training data is scarce. Our
contributions are as follows:
1. We introduce a novel factorial graphical model
representation, a Partial-Lattice Markov Random
Field (PL-MRF), which is a tractable variation of
a Factorial Hidden Markov Model (HMM) for lan-
guage modeling.
2. In experiments on POS tagging in a domain adap-
tation setting and on weakly-supervised informa-
tion extraction (IE), we quantify the performance of
representations derived from language models. We
show that graphical models outperform ngram rep-
resentations. The PL-MRF representation achieves a
state-of-the-art 93.8% accuracy on the POS tagging
task, while the HMM representation improves over
the ngram model by 10% on the IE task.
3. We analyze how the performance of the different
representations varies due to the fundamental chal-
lenges of sparsity and polysemy.

The next section discusses previous work. Sec-
tions 3 and 4 present the existing representations we
investigate and the new PL-MRF, respectively. Sec-
tions 5 and 6 describe our two tasks and the results
of using our representations on each of them. Sec-
tion 7 concludes.

2 Previous Work

There is a long tradition of NLP research on rep-
resentations, mostly falling into one of four cate-
gories: 1) vector space models of meaning based
on document-level lexical cooccurrence statistics
(Salton and McGill, 1983; Turney and Pantel, 2010;
Sahlgren, 2006); 2) dimensionality reduction tech-
niques for vector space models (Deerwester et al.,
1990; Honkela, 1997; Kaski, 1998; Sahlgren, 2005;
Blei et al., 2003; V̈ayrynen et al., 2007); 3) using
clusters that are induced from distributional similar-
ity (Brown et al., 1992; Pereira et al., 1993; Mar-

tin et al., 1998) as non-sparse features (Lin and Wu,
2009; Candito and Crabbe, 2009; Koo et al., 2008;
Zhao et al., 2009); 4) and recently, language models
(Bengio, 2008; Mnih and Hinton, 2009) as represen-
tations (Weston et al., 2008; Collobert and Weston,
2008; Bengio et al., 2009), some of which have al-
ready yielded state of the art performance on domain
adaptation tasks (Huang and Yates, 2009; Huang and
Yates, 2010a; Huang and Yates, 2010b; Turian et al.,
2010) and IE (Ahuja and Downey, 2010; Downey et
al., 2007b). In contrast to this previous work, we de-
velop a novel Partial Lattice MRF language model
that incorporates a factorial representation of latent
states, and demonstrate that it outperforms the pre-
vious state-of-the-art in POS tagging in a domain
adaptation setting. We also analyze the novel PL-
MRF representation on an IE task, and several repre-
sentations along the key dimensions of sparsity and
polysemy.

Most previous work on domain adaptation has fo-
cused on the case where some labeled data is avail-
able in both the source and target domains (Daumé
III, 2007; Jiang and Zhai, 2007; Daumé III and
Marcu, 2006; Finkel and Manning, 2009; Dredze
et al., 2010; Dredze and Crammer, 2008). Learn-
ing bounds are known (Blitzer et al., 2007; Man-
sour et al., 2009). Dauḿe III et al. (2010) use semi-
supervised learning to incorporate labeled and unla-
beled data from the target domain. In contrast, we
investigate a domain adaptation setting where no la-
beled data is available for the target domain.

3 Representations

A representationis a set of features that describe
instances for a classifier. Formally, letX be an
instance set, and letZ be the set of labels for a
classification task. A representation is a function
R : X → Y for some suitable feature spaceY (such
asR

d). We refer to dimensions ofY asfeatures, and
for an instancex ∈ X we refer to values for partic-
ular dimensions ofR(x) as features ofx.

3.1 Traditional POS-Tagging Representations

As a baseline for POS tagging experiments and an
example of our terminology, we describe a repre-
sentation used in traditional supervised POS taggers.
The instance setX is the set of English sentences,
andZ is the set of POS tag sequences. A traditional
representation TRAD-R maps a sentencex ∈ X to a
sequence of boolean-valued vectors, one vector per
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Representation Feature

TRAD-R ∀w1[xi = w]
∀s∈Suffixes1[xi ends withs]
1[xi contains a digit]

NGRAM-R ∀w′,w′′P (w′ww′′)/P (w)

HMM -TOKEN-R ∀k1[yi∗ = k]
HMM -TYPE-R ∀kP (y = k|x = w)
I-HMM -TOKEN-R ∀j,k1[yi,j∗ = k]
BROWN-TOKEN-R ∀j∈{−2,−1,0,1,2}

∀p∈{4,6,10,20} prefix(yi+j , p)
BROWN-TYPE-R ∀p prefix(y, p)

LATTICE-TOKEN-R ∀j,k1[yi,j∗ = k]
LATTICE-TYPE-R ∀kP (y = k|x = w)

Table 1: Summary of features provided by our repre-
sentations. ∀a1[g(a)] represents a set of boolean fea-
tures, one for each value ofa, where the feature is
true iff g(a) is true. xi represents a token at position
i in sentencex, w represents a word type, Suffixes=
{-ing,-ogy,-ed,-s,-ly,-ion,-tion,-ity}, k (andk) represents
a value for a latent state (set of latent states) in a latent-
variable model,y∗ represents the optimal setting of latent
statesy for x, yi is the latent variable forxi, andyi,j is
the latent variable forxi at layerj. prefix(y,p) is thep-
length prefix of the Brown clustery.

wordxi in the sentence. Dimensions for each latent
vector include indicators for the word type ofxi and
various orthographic features. Table 1 presents the
full list of features in TRAD-R. Since our IE task
classifies word types rather than tokens, this base-
line is not appropriate for that task. Below, we de-
scribe how we can learn representationsR by using
a variety of language models, for use in both our IE
and POS tagging tasks. All representations for POS
tagging inherit the features from TRAD-R; all repre-
sentations for IE do not.

3.2 Ngram Representations

N-gram representations model a word typew in
terms of the n-gram contexts in whichw appears
in a corpus. Specifically, for wordw we generate
the vectorP (w′ww′′)/P (w), the conditional prob-
ability of observing the word sequencew′ to the left
andw′′ to the right ofw. The experimental section
describes the particular corpora and language mod-
eling methods used for estimating probabilities.

3.3 HMM-based Representations

In previous work, we have implemented several
representations based on HMMs (Rabiner, 1989),
which we used for both POS tagging (Huang and
Yates, 2009) and IE (Downey et al., 2007b). An
HMM is a generative probabilistic model that gen-
erates each wordxi in the corpus conditioned on a
latent variableyi. Eachyi in the model takes on in-
tegral values from1 to K, and each one is generated
by the latent variable for the preceding word,yi−1.
The joint distribution for a corpusx = (x1, . . . , xN )
and a set of state vectorsy = (y1, . . . , yN ) is
given by: P (x,y) =

∏
i P (xi|yi)P (yi|yi−1). Us-

ing Expectation-Maximization (EM) (Dempster et
al., 1977), it is possible to estimate the distributions
for P (xi|yi) andP (yi|yi−1) from unlabeled data.

We construct two different representations from
HMMs, one for POS tagging and one for IE. For
POS tagging, we use the Viterbi algorithm to pro-
duce the optimal settingy∗ of the latent states for a
given sentencex, or y∗ = arg maxy P (x,y). We
use the value ofyi∗ as a new feature forxi that repre-
sents a cluster of distributionally-similar words. For
IE, we require features for word typesw, rather than
tokensxi. We use theK-dimensional vector that
represents the distributionP (y|x = w) as the fea-
ture vector for word typew. This set of features
represents a “soft clustering” ofw into K different
clusters. We refer to these representations as HMM -
TOKEN-R and HMM -TYPE-R, respectively.

Because HMM-based representations offer a
small number of discrete states as features, they have
a much greater potential to combat feature sparsity
than do ngram models. Furthermore, for token-
based representations, these models can potentially
handle polysemy better than ngram language models
by providing different features in different contexts.

We also compare against a variation of the HMM
from our previous work (Huang and Yates, 2010a),
henceforth HY10. This model independently trains
M separate HMM models on the same corpus, ini-
tializing each one randomly. We can then use the
Viterbi-optimal decoded latent state of each inde-
pendent HMM model as a separate feature for a to-
ken. We refer to this language model as an I-HMM,
and the representation as I-HMM -TOKEN-R.

Finally, we compare against Brown clusters
(Brown et al., 1992) as learned features. Although
not traditionally described as such, Brown cluster-
ing involves constructing an HMM model in which
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each type is restricted to having exactly one latent
state that may generate it. Brownet al. describe a
greedy agglomerative clustering algorithm for train-
ing this model on unlabeled text. Following Turian
et al. (2010), we use Percy Liang’s implementation
of this algorithm for our comparison, and we test
runs with 100, 320, and 1000 clusters. We use fea-
tures from these clusters identical to Turianet al.’s.1

Turianet al. have shown that Brown clusters match
or exceed the performance of neural network-based
language models in domain adaptation experiments
for named-entity recognition, as well as in-domain
experiments for NER and chunking.

4 A Novel Lattice Language Model
Representation

Our final language model is a novel latent-variable
language model with rich latent structure, shown in
Figure 1. The model contains a lattice ofM ×N la-
tent states, whereN is the number of words in a sen-
tence andM is the number of layers in the model.
We can justify the choice of this model from a lin-
guistic perspective as a way to capture the multi-
dimensional nature of words. Linguists have long
argued that words have many different features in a
high dimensional space: they can be separately de-
scribed by part of speech, gender, number, case, per-
son, tense, voice, aspect, mass vs. count, and a host
of semantic categories (agency, animate vs. inani-
mate, physical vs. abstract, etc.), to name a few (Sag
et al., 2003). Our model seeks to capture a multi-
dimensional representation of words by creating a
separate layer of latent variables for each dimension.
The values of theM layers of latent variables for a
single word can be used asM distinct features in
our representation. The I-HMM attempts to model
the same intuition, but unlike a lattice model the I-
HMM layers are entirely independent, and as a re-
sult there is no mechanism to enforce that the layers
model different dimensions. Duh (2005) previously
used a 2-layer lattice for tagging and chunking, but
in a supervised setting rather than for representation
learning.

Let Cliq(x,y) represent the set of all maximal
cliques in the graph of the MRF model forx andy.

1Percy Liang’s implementation is available at
http://metaoptimize.com/projects/wordreprs/. Turian et al.
also tested a run with 3200 clusters in their experiments, which
we have been training for months, but which has not finished in
time for publication.
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Figure 1: The Partial Lattice MRF (PL-MRF) Model for a
5-word sentence and a 4-layer lattice. Dashed gray edges
are part of a full lattice, but not the PL-MRF.

Expressing the lattice model in log-linear form, we
can write the marginal probabilityP (x) of a given
sentencex as:

∑

y

∏
c∈Cliq(x,y) score(c,x,y)

∑
x′,y′

∏
c∈Cliq(x′,y′) score(c,x′,y′)

where score(c,x,y) = exp(θc · fc(xc,yc)). Our
model includes parameters for transitions between
two adjacent latent variables on layerj: θtrans

i,s,i+1,s′,j

for yi,j = s andyi+1,j = s′. It also includes obser-
vation parameters for latent variables and tokens, as
well as for pairs of adjacent latent variables in differ-
ent layers and their tokens:θobs

i,j,s,w andθobs
i,j,s,j+1,s′,w

for yi,j = s, yi,j+1 = s′, andxi = w.
Computationally, the lattice MRF is preferable to

a näıve Factorial HMM (Ghahramani and Jordan,
1997) representation, which would requireO(2M )
parameters for anM -layer model. However, ex-
act training and inference in supervised settings are
still intractable for this model (Sutton et al., 2007),
and thus it has not yet been explored as a language
model, which requires even more difficult, unsuper-
vised training. Training is intractable in part because
of the difficulty in enumerating and summing over
the exponentially-many configurationsy for a given
x. We address this difficulty in two ways: by modi-
fying the model, and by modifying the training pro-
cedure.

4.1 Partial Lattice MRF

Instead of the full lattice model, we construct a
Partial Lattice MRF (PL-MRF) model by deleting
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certain edges between latent layers of the model
(dashed gray edges in Figure 1). Letc = bN

2 c,
whereN is the length of the sentence. Ifi < c
and j is odd, or if j is even andi > c, we delete
edges betweenyi,j andyi,j+1. The same lattice of
nodes remains, but fewer edges and paths. A cen-
tral “trunk” at i = c connects all layers of the lat-
tice, and branches from this trunk connect either to
the branches in the layer above or the layer below
(but not both). The result is a model that retains
most2 of the edges of the full model. Additionally,
the pruned model makes the branches conditionally
independent from one another, except through the
trunk. For instance, the right branch at layers 1
and 2 in Figure 1 (y1,4, y1,5, y2,4, andy2,5) are dis-
connected from the right branch at layers 3 and 4
(y3,4, y3,5, y4,4, andy4,5), except through the trunk
and the observed nodes. As a result, excluding the
observed nodes, this model has a lowtree-widthof
2 (excluding observed nodes), and a variety of ef-
ficient dynamic programming and message-passing
algorithms for training and inference can be readily
applied (Bodlaender, 1988).3 Our inference algo-
rithm passes information from the branches inwards
to the trunk, and then upward along the trunk, in
timeO(K4MN).

As with our HMM models, we create two repre-
sentations from PL-MRFs, one for tokens and one
for types. For tokens, we decode the model to com-
putey∗, the matrix of optimal latent state values for
sentencex. For each layerj and and each possi-
ble latent state valuek, we add a boolean feature
for tokenxi that is true iffy∗i,j = k. For types,
we compute distributions over the latent state space.
Let y be the column vector of latent variables for
wordx. For each possible configuration of valuesk

of the latent variablesy, we add a real-valued fea-
tures forx given byP (y = k|x = w). We refer
to these two representations as LATTICE-TOKEN-R
and LATTICE-TYPE-R, respectively.

4.2 Parameter Estimation

We train the PL-MRF using contrastive estimation,
which iteratively optimizes the following objective
function on a corpusX:

∑

x∈X

log

∑
y

∏
c∈Cliq(x,y) score(c,x,y)

∑
x′∈N (x),y′

∏
c∈Cliq(x′,y′) score(c,x′,y′)

2As M, N →∞, 5 out of every 6 edges are kept.
3c.f. a tree-width of min(M ,N ) for the unpruned model

whereN (x), the neighborhood ofx, indicates a
set of perturbed variations of the original sentence
x. Contrastive estimation seeks to move probability
mass away from the perturbed neighborhood sen-
tences and onto the original sentence. We use a
neighborhood function that includes all sentences
which can be obtained from the original sentence by
swapping the order of a consecutive pair of words.
Training uses gradient descent over this non-convex
objective function with a standard software package
(Liu and Nocedal, 1989) and converges to a local
maximum (Smith and Eisner, 2005).

For tractability, we modify the training procedure
to train the PL-MRF one layer at a time. Letθi rep-
resent the set of parameters relating to features of
layer i, and letθ¬i represent all other parameters.
We fix θ¬0 = 0, and optimizeθ0 using contrastive
estimation. After convergence, we fixθ¬1, and opti-
mizeθ1, and so on. We use a convergence threshold
of 10−6, and each layer typically converges in under
100 iterations.

5 Domain Adaptation for a POS Tagger

We evaluate the representations described above on
a POS tagging task in a domain adaptation setting.

5.1 Experimental Setup

We use the same experimental setup as in HY10:
the Penn Treebank (Marcus et al., 1993) Wall Street
Journal portion for our labeled training data; 561
MEDLINE sentences (9576 types, 14554 tokens,
23% OOV tokens) from the Penn BioIE project
(PennBioIE, 2005) for our labeled test set; and all of
the unlabeled text from the Penn Treebank WSJ por-
tion plus a MEDLINE corpus of 71,306 unlabeled
sentences to train our language models. The two
texts come from two very different domains, mak-
ing this data a tough test for domain adaptation.

We use an open source Conditional Random Field
(CRF) (Lafferty et al., 2001) software package4 de-
signed by Sunita Sarawagi and William W. Cohen
to implement our supervised models. LetX be a
training corpus,Z the corresponding labels, andR
a representation function. For each tokenxi in X,
we include a parameter in our CRF model for all
featuresR(xi) and all possible labels inZ. Further-
more, we include transition parameters for pairs of
consecutive labelszi, zi+1.

4Available fromhttp://sourceforge.net/projects/crf/
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For representations, we tested TRAD-R,
NGRAM-R, HMM -TOKEN-R, I-HMM -TOKEN-R
(between 2 and 8 layers), and LATTICE-TOKEN-R
(8, 12, 16, and 20 layers). Following HY10, each
latent node in the I-HMMs have 80 possible values,
creating808 ≈ 1015 possible configurations of the
8-layer I-HMM for a single word. Each node in
the PL-MRF is binary, creating a much smaller
number (220 ≈ 106) of possible configurations for
each word in a 20-layer representation. NGRAM-R
was trained using an unsmoothed trigram model on
the Web 1Tgram corpus. To keep the feature set
manageable, we included the top 500 most common
ngrams for each word type, and then used mutual
information on the training data to select the top
10,000 most relevant ngram features for all word
types. We incorporated ngram features as binary
values indicating whetherxi appeared with the
ngram or not. We also report on the performance
of Brown clusters and Blitzeret al.’s Structural
Correspondence Learning (SCL) (2006) technique,
which uses manually-selected “pivot” words (like
“of”, “the”) to learn domain-independent features.
Finally, we compare against the self-training CRF
technique from HY10.

5.2 Results and Discussion

For each representation, we measured the accuracy
of the POS tagger on the biomedical test text. Ta-
ble 2 shows the results for the best variation of each
kind of model — 20 layers for the PL-MRF, 7 lay-
ers for the I-HMM, and 1000 clusters for the Brown
clustering. All language model representations sig-
nificantly outperform the SCL model and the TRAD-
R baseline. The novel PL-MRF model outperforms
the previous state of the art, the I-HMM model, and
much of the performance increase comes from a
11.3% relative reduction in error on words that ap-
pear in biomedical texts but not in newswire texts.
Both graphical model representations significantly
outperform the ngram model, which is trained on far
more text. For comparison, our best model, the PL-
MRF, achieved a 96.8% in-domain accuracy on sec-
tions 22-24 of the Penn Treebank, about 0.5% shy
of a state-of-the-art in-domain system (Shen et al.,
2007) with more sophisticated supervised learning.

We expected that language model representations
perform well in part because they provide meaning-
ful features for sparse and polysemous words. To
test this, we selected 109 polysemous word types

model % error OOV % error

TRAD-R 11.7 32.7
TRAD-R+self-training 11.5 29.6
SCL 11.1 -
BROWN-TOKEN-R 10.8 25.4
HMM -TOKEN-R 9.5 24.8
NGRAM-R 6.9 24.4
I-HMM -TOKEN-R 6.7 24
LATTICE-TOKEN-R 6.2 21.3

SCL+500bio 3.9 -

Table 2: PL-MRF representations reduce error by 7.5%
relative to the previous state-of-the-art I-HMM, and ap-
proach within 2.3% absolute error a SCL+500bio model
with access to 500 labeled sentences from the target do-
main. 1.8% of the tags in the test set are new tags that
do not occur in the WSJ training data, so an error rate of
3.9+1.8 = 5.7% error is a reasonable bound for the best
possible performance of a model that has seen no exam-
ples from the target domain.

from our test data, along with 296 non-polysemous
word types, chosen based on POS tags and manual
inspection. We further define sparse word types as
those that appear 5 times or fewer in all of our unla-
beled data, and non-sparse word types as those that
appear at least 50 times in our unlabeled data. Table
3 shows results on these subsets of the data.

As expected, all of our language models outper-
form the baseline by a larger margin on polysemous
words than on non-polysemous words. The mar-
gin between graphical model representations and the
ngram model also increases on polysemous words,
presumably because the Viterbi decoding of these
models takes into account the tokens in the sur-
rounding sentence. The same behavior is evident for
sparsity: all of the language model representations
outperform the baseline by a larger margin on sparse
words than not-sparse words, and all of the graphical
models perform better relative to the ngram model
on sparse words as well. Thus representations based
on graphical models address two key issues in build-
ing representations for POS tagging.

6 Information Extraction Experiments

In this section, we evaluate our learned representa-
tions on a different task that investigates the abil-
ity of each representation to capture semantic, rather
than syntactic, information. Specifically, we inves-

130



POS Tagging Information Extraction
polys. not polys. sparse not sparse polys. not polys. sparse not sparse

tokens/types 159 4321 463 12194 222 210 266 166
categories - - - - 12 4 13 3
TRAD-R 59.5 78.5 52.5 89.6 - - - -
Ngram 68.2 85.3 61.8 94.0 0.07 0.17 0.06 0.25
HMM 67.9 83.4 60.2 91.6 0.14 0.26 0.15 0.32
(-Ngram) (-0.3) (-1.9) (-1.6) (-2.4) (+0.07) (+0.09) (+0.09) (+0.07)

I-HMM 75.6 85.2 62.9 94.5 - - - -
(-Ngram) (+7.4) (-0.1) (+1.1) (+0.5) - - - -

PL-MRF 70.5 86.9 65.2 94.6 0.09 0.15 0.1 0.19
(-Ngram) (+2.3) (+1.6) (+3.4) (+0.6) (+0.02) (-0.02) (+0.04) (-0.06)

Table 3: Graphical models consistently outperform ngram models by a larger margin on sparse words than not-sparse
words. On polysemous words, the difference between graphical model performance and ngram performance grows
for POS tagging, where the context surrounding polysemous words is available to the language model, but not for
information extraction. For tagging, we show number of tokens and accuracies. For IE, we show number of types,
categories, and AUCs.

tigate aset-expansiontask in which we’re given a
corpus and a few “seed” noun phrases from a se-
mantic category (e.g. Superheroes), and our goal is
to identify other examples of the category in the cor-
pus. This is aweakly-supervisedtask because we are
given only a handful of examples of the category,
rather than a large sample of positively and nega-
tively labeled training examples.

Existing set-expansion techniques utilize the dis-
tributional hypothesis: candidate noun phrases for a
given semantic class are ranked based on how sim-
ilar their contextual distributions are to those of the
seeds. Here, we measure how performance on the
set-expansion task varies when we employ different
representations for the contextual distributions.

6.1 Methods

The set-expansion task we address is formalized as
follows: given a corpus, a set of seeds from some
semantic categoryC, and a separate set of candidate
phrasesP , output a ranking of the phrases inP in
decreasing order of likelihood of membership inC.

For any given representationR, the set-expansion
algorithm we investigate is straightforward: we cre-
ate a prototypical “seed representation vector” equal
to the mean of the representation vectors for each
of the seeds. Then, we rank candidate phrases in
increasing order of the distance between the candi-
date phrase representation and the seed representa-
tion vector. As a measure of distance between rep-
resentations, we compute the average of five stan-

dard distance measures, including KL and Jensen-
Shannon divergence, and cosine, Euclidean, and L1
distance. In experiments, we found that improving
upon this simple averaging was not easy—in fact,
tuning a weighted average of the distance measures
for each representation did not improve results sig-
nificantly on held-out data.

Because set expansion is performed at the level
of word types rather than tokens, it requires type-
based representations. We compare HMM -TYPE-
R, NGRAM-R, LATTICE-TYPE-R, and BROWN-
TYPE-R in this experiment. We used a 25-state
HMM, and the same PL-MRF as in the previous
section. Following previous set-expansion experi-
ments with n-grams (Ahuja and Downey, 2010), we
employ a trigram model with Kneser-Ney smooth-
ing for NGRAM-R. For Brown clusters, instead of
distance metrics like KL divergence (which assume
distributions), we rank extractions by the number
of matches between a word’s BROWN-TYPE-R fea-
tures and seed features.

6.2 Data Sets

We utilized a set of approximately 100,000 sen-
tences of Web text, joining multi-word named enti-
ties in the corpus into single tokens using the Lex
algorithm (Downey et al., 2007a). This process
enables each named entity (the focus of the set-
expansion experiments) to be treated as a single to-
ken, with a single representation vector for compar-
ison. We developed all word type representations
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model AUC
HMM -TYPE-R 0.18
BROWN-TYPE-R 0.16
LATTICE-TYPE-R 0.11
NGRAM-R 0.10
Random baseline 0.10

Table 4: HMM -TYPE-R outperforms the other methods,
improving performance by 12.5% over Brown clusters,
and by 80% over the traditional NGRAM-R.

using this corpus.
To obtain examples of multiple semantic cat-

egories, we utilized selected Wikipedia “listOf”
pages from (Pantel et al., 2009) and augmented these
with our own manually defined categories, such that
each list contained at least ten distinct examples oc-
curring in our corpus. In all, we had 432 exam-
ples across 16 distinct categories such as Countries,
Greek Islands, and Police TV Dramas.

6.3 Results

For each semantic category, we tested five differ-
ent random selections of five seed examples, treating
the unselected members of the category as positive
examples, and all other candidate phrases as nega-
tive examples. We evaluate using the area under the
precision-recall curve (AUC) metric.

The results are shown in Table 4. All represen-
tations improve performance over a random base-
line, equal to the average AUC over five random or-
derings for each category, and the graphical models
outperform the ngram representation. HMM -TYPE-
R performs the best overall, and Brown clustering
with 1000 clusters is comparable (320 and 100 clus-
ter perform slightly worse).

As with POS tagging, we expect that language
model representations improve performance on the
IE task by providing informative features for sparse
word types. However, because the IE task classifies
word types rather than tokens, we expect the rep-
resentations to provide less benefit for polysemous
word types. To test these hypotheses, we measured
how IE performance changed in sparse or polyse-
mous settings. We identified polysemous categories
as those for which fewer than 90% of the category
members had the category as a clear dominant sense
(estimated manually); other categories were consid-
ered non-polysemous. Categories whose members

had a median number of occurrences in the cor-
pus less than 30 were deemed sparse, and others
non-sparse. IE performance on these subsets of the
data are shown in Table 3. Both graphical model
representations outperform the ngram representation
more on sparse words, as expected. For polysemy,
the picture is mixed: the PL-MRF outperform n-
grams on polysemous categories, whereas HMM’s
performance advantage over n-grams decreases.

One surprise on the IE task is that the LATTICE-
TYPE-R performs significantly less well than the
HMM -TYPE-R, whereas the reverse is true on POS
tagging. We suspect that the difference is due to the
issue of classifying types vs. tokens. Because of
their more complex structure, PL-MRFs tend to de-
pend more on transition parameters than do HMMs.
Furthermore, our decision to train the PL-MRFs
using contrastive estimation with a neighborhood
that swaps consecutive pairs of words also tends to
emphasize transition parameters. As a result, we
believe the posterior distribution over latent states
given a word type is more informative in our HMM
model than the PL-MRF model. We measured the
entropy of these distributions for the two models,
and found thatH(PPL-MRF(y|x = w)) = 9.95 bits,
compared withH(PHMM (y|x = w)) = 2.74 bits,
which supports the hypothesis that the drop in the
PL-MRF’s performance on IE is due to its depen-
dence on transition parameters. Further experiments
are warranted to investigate this issue.

7 Conclusion and Future Work

Our investigation into language models as represen-
tations shows that graphical models can be used to
combat polysemy and, especially, sparsity in rep-
resentations for weakly-supervised classifiers. Our
novel factorial graphical model yields a state-of-the-
art POS tagger for domain adaptation, and HMMs
improve significantly over all other representations
in an information extraction task. Important direc-
tions for future research include models for han-
dling polysemy in IE, and richer language models
that incorporate more linguistic intuitions about how
words interact with their contexts.
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