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Abstract

Feature feedback is an alternative to instance
labeling when seeking supervision from hu-
man experts. Combination of instance and
feature feedback has been shown to reduce the
total annotation cost for supervised learning.
However, learning problems may not benefit
equally from feature feedback. It is well un-
derstood that the benefit from feature feed-
back reduces as the amount of training data
increases. We show that other characteristics
such as domain, instance granularity, feature
space, instance selection strategy and propor-
tion of relevant text, have a significant effect
on benefit from feature feedback. We estimate
the maximum benefit feature feedback may
provide; our estimate does not depend on how
the feedback is solicited and incorporated into
the model. We extend the complexity mea-
sures proposed in the literature and propose
some new ones to categorize learning prob-
lems, and find that they are strong indicators
of the benefit from feature feedback.

1 Introduction

Linear classifiers model the response as a weighted
linear combination of the features in input instances.
A supervised approach to learning a linear classifier
involves learning the weights for the features from
labeled data. A large number of labeled instances
may be needed to determine the class association of
the features and learn accurate weights for them. Al-
ternatively, the user may directly label the features.
For example, for a sentiment classification task, the
user may label features, such as words or phrases,

as expressing positive or negative sentiment. Prior
work (Raghavan et al., 2006; Zaidan et al., 2007)
has demonstrated that users are able to reliably pro-
vide useful feedback on features.

Direct feedback on a list of features (Raghavan et
al., 2006; Druck et al., 2008) is limited to simple fea-
tures like unigrams. However, unigrams are limited
in the linguistic phenomena they can capture. Struc-
tured features such as dependency relations, paths in
syntactic parse trees, etc., are often needed for learn-
ing the target concept (Pradhan et al., 2004; Joshi
and Rosé, 2009). It is not clear how direct feature
feedback can be extended straightforwardly to struc-
tured features, as they are difficult to present visu-
ally for feedback and may require special expertise
to comprehend. An alternative approach is to seek
indirect feedback on structured features (Arora and
Nyberg, 2009) by asking the user to highlight spans
of text, called rationales, that support the instance
label (Zaidan et al., 2007). For example, when clas-
sifying the sentiment of a movie review, rationales
are spans of text in the review that support the senti-
ment label for the review.

Assuming a fixed cost per unit of work, it might
be cheaper to ask the user to label a few features, i.e.
identify relevant features and their class association,
than to label several instances. Prior work (Ragha-
van et al., 2006; Druck et al., 2008; Druck et al.,
2009; Zaidan et al., 2007) has shown that a combi-
nation of instance and feature labeling can be used
to reduce the total annotation cost required to learn
the target concept. However, the benefit from feature
feedback may vary across learning problems. If we
can estimate the benefit from feature feedback for a
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given problem, we can minimize the total annotation
cost for achieving the desired performance by select-
ing the optimal annotation strategy (feature feedback
or not) at every stage in learning. In this paper, we
present the ground work for this research problem by
analyzing how benefit from feature feedback varies
across different learning problems and what charac-
teristics of a learning problem have a significant ef-
fect on benefit from feature feedback.

We define a learning problem (P = {D, G, F , L,
I , S}) as a tuple of the domain (D), instance gran-
ularity (G), feature representation (F ), labeled data
units (L), amount of irrelevant text (I) and instance
selection strategy (S).

With enough labeled data, we may not benefit
from feature feedback. Benefit from feature feed-
back also depends on the features used to represent
the instances. If the feature space is large, we may
need several labeled instances to identify the rele-
vant features, while relatively fewer labeled features
may help us quickly find these relevant features.
Apart from the feature space size, it also matters
what types of features are used. When hand crafted
features from a domain expert are used (Pradhan et
al., 2004) we expect to gain less from feature feed-
back as most of the features will be relevant. On
the other hand, when features are extracted automat-
ically as patterns in annotation graphs (Arora et al.,
2010) feature feedback can help to identify relevant
features from the large feature space.

In active learning, instances to be labeled are se-
lectively sampled in each iteration. Benefit from fea-
ture feedback will depend on the instances that were
used to train the model in each iteration. In the case
of indirect feature feedback through rationales or di-
rect feature feedback in context, instances selected
will also determine what features receive feedback.
Hence, instance selection strategy should affect the
benefit from feature feedback.

In text classification, an instance may contain a
large amount of text, and even a simple unigram
representation will generate a lot of features. Often
only a part of the text is relevant for the classifica-
tion task. For example, in movie reviews, often the
reviewers talk about the plot and characters in addi-
tion to providing their opinion about the movie. Of-
ten this extra information is not relevant to the clas-
sification task and bloats the feature space without

adding many useful features. With feature feedback,
we hope to filter out some of this noise and improve
the model. Thus, the amount of irrelevant informa-
tion in the instance should play an important role in
determining the benefit from feature feedback. We
expect to see less of such noise when the text in-
stance is more concise. For example, a movie review
snippet (about a sentence length) tends to have less
irrelevant text than a full movie review (several sen-
tences). In addition to analyzing document instances
with varying amount of noise, we also compare the
benefit from feature feedback for problems with dif-
ferent granularity. Granularity for a learning prob-
lem is defined based on the average amount of text
in its instances.

Benefit from feature feedback will also depend on
how feedback is solicited from the user and how it
is incorporated back into the model. Independently
from these factors, we estimate the maximum pos-
sible benefit and analyze how it varies across prob-
lems. Next we describe measures proposed in the
literature and propose some new ones for categoriz-
ing learning problems. We then discuss our experi-
mental setup and analysis.

2 Related Work

There has been little work on categorizing learn-
ing problems and how benefit from feature feedback
varies with them. To the best of our knowledge
there is only one work in this area by Raghavan et
al. (2007). They categorize problems in terms of
their feature complexity. Feature complexity is de-
fined in terms of the minimum number of features
required to learn a good classifier (close to maxi-
mum performance). If the concept can be described
by a weighted combination of a few well-selected
features, it is considered to be of low complexity.

In this estimate of complexity, an assumption is
made that the best performance is achieved when
the learner has access to all available features and
not for any subset of the features. This is a reason-
able assumption for text classification problems with
robust learners like SVMs together with appropriate
regularization and sufficient training data.

Instead of evaluating all possible combinations of
features to determine the minimum number of fea-
tures required to achieve close to the best perfor-
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mance, feature complexity is estimated using an in-
telligent ranking of the features. This ranking is
based on their discriminative ability determined us-
ing a large amount of labeled data (referred to as
oracle) and a feature selection criterion such as In-
formation Gain (Rijsbergen, 1979). It is intuitive
that the rate of learning, i.e., the rate at which per-
formance improves as we add more features to the
model, is also associated with problem complexity.
Raghavan et al. (2007) define the feature learning
convergence profile (pfl) as the area under the fea-
ture learning curve (performance vs. number of fea-
tures used in training), given by:

pfl =
∑log2N

t=1 F1(M, 2t)
log2N × F1(M, N)

(1)

where F1(M, 2t) is the F1 score on the test data
when using all M instances for training with top
ranked 2t features. The features are added at an ex-
ponentially increasing interval to emphasize the rel-
ative increase in feature space size. The three feature
complexity measures proposed by Raghavan et al.
(2007) are the following: 1) Feature size complex-
ity (Nf ): Logarithm (base 2) of the number of fea-
tures needed to achieve 95% of the best performance
(when all instances are available), 2) Feature profile
complexity (Fpc), given by Fpc = 1 − pfl, and 3)
Combined feature complexity (Cf ) , Cf = Fpc ∗ nf ,
incorporates both the learning profile and the num-
ber of features required.

In order to evaluate the benefit from feature feed-
back, Raghavan et al. (2007) use their tandem learn-
ing approach of interleaving instance and feature
feedback (Raghavan et al., 2006), referred to as
interactive feature selection (ifs). The features
are labeled as ‘relevant’ (feature discriminates well
among the classes), or ‘non-relevant/don’t know’.
The labeled features are incorporated into learning
by scaling the value of the relevant features by a con-
stant factor in all instances.

Raghavan et al. (2007) measure the benefit from
feature feedback as the gain in the learning speed
with feature feedback. The learning speed measures
the rate of performance improvement with increas-
ing amount of supervision. It is defined in terms of
the convergence profile similar to feature learning
convergence profile in Equation 1, except in terms

of the number of labeled units instead of the num-
ber of features. A labeled unit is either a labeled
instance or an equivalent set of labeled features with
the same annotation time. The benefit from feature
feedback is then measured as the difference in the
convergence profile with interactive feature selec-
tion (pifs) and with labeled instances only (pal).

Raghavan et al. (2007) analysed 9 corpora and
358 binary classification tasks. Most of these cor-
pora, such as Reuters (Lewis, 1995), 20-newsgroup
(Lang, 1995), etc., have topic-based category la-
bels. For all classification tasks, they used simple
and fixed feature space containing only unigram fea-
tures (n-gram features were added where it seemed
to improve performance). They observed a negative
correlation (r = −0.65) between the benefit from
feature feedback and combined feature complexity
(Cf ), i.e., feature feedback accelerates active learn-
ing by an amount that is inversely proportional to
the feature complexity of the problem. If a concept
can be expressed using a few well-selected features
from a large feature space, we stand to benefit from
feature feedback as few labeled features can provide
this information. On the other hand, if learning a
concept requires all or most of the features in the
feature space, there is little knowledge that feature
feedback can provide.

3 Estimating Maximum Benefit &
Additional Measures

In this section, we highlight some limitations of the
prior work that we address in this work.

Raghavan et al. (2007) only varied the domain
among different problems they analyzed, i.e, only
the variable D in our problem definition (P =
{D,G,F, L, I, S}). However, as motivated in the
introduction, other characteristics are also important
when categorizing learning problems and it is not
clear if we will observe similar results on problems
that differ in these additional characteristics. In this
work, we apply their measures to problems that dif-
fer in these characteristics in addition to the domain.

Analysis in Raghavan et al. (2007) is specific to
their approach for incorporating feature feedback
into the model, which may not work well for all do-
mains and datasets as also mentioned in their work
(Section 6.1). It is not clear how their results can be
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extended to alternate approaches for seeking and in-
corporating feature feedback. Thus, in this work we
analyze the maximum benefit a given problem can
get from feature feedback independent of the feed-
back solicitation and incorporation approach.

Raghavan et al. (2007) analyze benefit from fea-
ture feedback at a fixed training data size of 42 la-
beled units. However, the difference between learn-
ing problems may vary with the amount of labeled
data. Some problems may benefit significantly from
feature feedback even at relatively larger amount of
labeled data. On the other hand, with very large
training set, the benefit from feature feedback can
be expected to be small and not significant for all
problems and all problems will look similar. Thus,
we evaluate the benefit from feature feedback at dif-
ferent amount of labeled data.

Raghavan et al. (2007) evaluate benefit from fea-
ture feedback in terms of the gain in learning speed.
However, the learning rate does not tell us how much
improvement we get in performance at a given stage
in learning. In fact, even if at every point in the
learning curve performance with feature feedback
was lower than performance without feature feed-
back, the rate of convergence to the corresponding
maximum performance may still be higher when us-
ing feature feedback. Thus, in this work, in addi-
tion to evaluating the improvement in the learning
speed, we also evaluate the improvement in the ab-
solute performance at a given stage in learning.

3.1 Determining the Maximum Benefit

Annotating instances with or without feature feed-
back may require different annotation time. It is
only fair to compare different annotation strategies
at same annotation cost. Raghavan et al. (2006)
found that on average labeling an instance takes the
same amount of time as direct feedback on 5 fea-
tures. Zaidan et al. (2007) found that on average
it takes twice as much time to annotate an instance
with rationales than to annotate one without ratio-
nales. In our analysis, we focus on feedback on fea-
tures in context of the instance they occur in, i.e., in-
direct feature feedback through rationales or direct
feedback on features that occur in the instance be-
ing labeled. Thus, based on the findings in Zaidan et
al. (2007), we assume that on average annotating an
instance with feature feedback takes twice as much

time as annotating an instance without feature feed-
back. We define a currency for annotation cost as
Annotation cost Units (AUs). For an annotation bud-
get of a AUs, we compare two annotation strategies
of annotating a instances without feature feedback
or a

2 instances with feature feedback.
In this work, we only focus on using feature feed-

back as an alternative to labeled data, i.e., to pro-
vide evidence about features in terms of their rele-
vance and class association. Thus, the best feature
feedback can do is provide as much evidence about
features as evidence from a large amount of labeled
data (oracle). Let F1(k,Nm) be the F1 score of a
model trained with features that occur in m train-
ing instances (Nm) and evidence for these features
from k instances (k ≥ m). For an annotation budget
of a AUs, we define the maximum improvement in
performance with feature feedback (IPa) as the dif-
ference in performance with feature feedback from
oracle on a

2 training instances and performance with
a training instances without feature feedback.

IPa = F1(o, Na
2
)− F1(a, Na) (2)

where o is the number of instances in the oracle
dataset (o >> a). We also compare annotation
strategies in terms of the learning rate similar to
Raghavan et al. (2007), except that we estimate and
compare the maximum improvement in the learning
rate. For an annotation budget of a AUs, we define
the maximum improvement in learning rate from 0
to a AUs (ILR0−a) as follows.

ILR0−a = pcp
wFF − pcp

woFF (3)

where pcp
wFF and pcp

woFF are the convergence
profiles with and without feature feedback at same
annotation cost, calculated as follows.

pcp
wFF =

∑log2
a
2

t=1 F1(o, N2t)
log2

a
2 × F1(o, Na

2
)

(4)

pcp
woFF =

∑log2a
t=2 F1(2t, N2t)

(log2a− 1)× F1(a, Na)
(5)

where 2t denotes the training data size in iteration
t. Like Raghavan et al. (2007), we use exponen-
tially increasing intervals to emphasize the relative
increase in the training data size, since adding a few
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labeled instances earlier in learning will give us sig-
nificantly more improvement in performance than
adding the same number of instances later on.

3.2 Additional Metrics

The feature complexity measures require an ‘ora-
cle’, simulated using a large amount of labeled data,
which is often not available. Thus, we need mea-
sures that do not require an oracle.

Benefit from feature feedback will depend on the
uncertainty of the model on its predictions, since it
suggests uncertainty on the features and hence scope
for benefit from feature feedback. We use the proba-
bility of the predicted label from the model as an es-
timate of the model’s uncertainty. We evaluate how
benefit from feature feedback varies with summary
statistics such as mean, median and maximum prob-
ability from the model on labels for instances in a
held out dataset.

4 Experiments, Results and Observations

In this section, we describe the details of our exper-
imental setup followed by the results.

4.1 Data

We analyzed three datasets: 1) Movie reviews
with rationale annotations by Zaidan et al. (2007),
where the task is to classify the sentiment (posi-
tive/negative) of a review, 2) Movie review snippets
from Rotten Tomatoes (Pang and Lee., 2005), and 3)
WebKB dataset with the task of classifying whether
or not a webpage is a faculty member’s homepage.
Raghavan et al. (2007) found that the webpage clas-
sification task has low feature complexity and ben-
efited the most from feature feedback. We compare
our results on this task and the sentiment classifica-
tion task on the movie review datasets.

4.2 Experimental Setup

Table 1 describes the different variables and their
possible values in our experiments. We make a log-
ical distinction for granularity based on whether an
instance in the problem is a document (several sen-
tences) or a sentence. Labeled data is composed of
instances and their class labels with or without fea-
ture feedback. As discussed in Section 3.1, instances
with feature feedback take on average twice as much

time to annotate as instances without feature feed-
back. Thus, we measure the labeled data in terms of
the number of annotation cost units which may mean
different number of labeled instances based on the
annotation strategy. We used two feature configura-
tions of “unigram only” and “unigram+dependency
triples”. The unigram and dependency annotations
are derived from the Stanford Dependency Parser
(Klein and Manning, 2003).

Rationales by definition are spans of text in a re-
view that convey the sentiment of the reviewer and
hence are the part of the document most relevant for
the classification task. In order to vary the amount
of irrelevant text, we vary the amount of text (mea-
sured in terms of the number of characters) around
the rationales that is included in the instance repre-
sentation. We call this the slack around rationales.
When using the rationales with or without the slack,
only features that overlap with the rationales (and
the slack, if used) are used to represent the instance.
Since we only have rationales for the movie review
documents, we only studied the effect of varying the
amount of irrelevant text on this dataset.

Variable Possible Values
Domain (D) {Movie Review classifica-

tion (MR), Webpage classi-
fication (WebKB)}

Instance Granu-
larity (G)

{document (doc), sentence
(sent)}

Feature Space (F ) {unigram only (u), uni-
gram+dependency (u+d)}

Labeled Data
(#AUs) (L)

{64, 128, 256, 512, 1024}

Irrelevant Text (I) {0, 200, 400, 600,∞ }
Instance Selection
Strategy (S))

{deterministic (deter), un-
certainty (uncert)}

Table 1: Experiment space for analysis of learning prob-
lems (P = {D,G, F, L, I, S})

For all our experiments, we used Support Vec-
tor Machines (SVMs) with linear kernel for learn-
ing (libSVM (Chang and Lin, 2001) in Minorthird
(Cohen, 2004)). For identifying the discrimina-
tive features we used the information gain score.
For all datasets we used 1800 total examples with
equal number of positive and negative examples. We
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held out 10% of the data for estimating model’s un-
certainty as explained in Section 3.2. The results
we present are averaged over 10 cross validation
folds on the remaining 90% of the data (1620 in-
stances). In a cross validation fold, 10% data is used
for testing (162 instances) and all of the remaining
1458 instances are used as the ‘oracle’ for calculat-
ing the feature complexity measures and estimating
the maximum benefit from feature feedback as dis-
cussed in Sections 2 and 3.1 respectively. The train-
ing data size is varied from 64 to 1024 instances
(from the total of 1458 instances for training in a
fold), based on the annotation cost budget. Instances
with their label are added to the training set either in
the original order they existed in the dataset, i.e. no
selective sampling (deterministic), or in the decreas-
ing order of current model’s uncertainty on them.
Uncertainty sampling in SVMs (Tong and Koller,
2000) selects the instances closest to the decision
boundary since the model is expected to be most un-
certain about these instances. In each slice of the
data, we ensured that there is equal distribution of
the positive and negative class. SVMs do not yield
probabilistic output but a decision boundary, a com-
mon practice is to fit the decision values from SVMs
to a sigmoid curve to estimate the probability of the
predicted class (Platt, 1999).

4.3 Results and Analysis

To determine the effect of various factors on benefit
from feature feedback, we did an ANOVA analysis
with Generalized Linear Model using a 95% confi-
dence interval. The top part of Table 2 shows the
average F1 score for the two annotation strategies
at same annotation cost. As can be seen, with fea-
ture feedback, we get a significant improvement in
performance.

Next we analyze the significance of the effect of
various problem characteristics discussed above on
benefit from feature feedback in terms of improve-
ment in performance (IP ) at given annotation cost
and improvement in learning rate (ILR). Improve-
ment in learning rate is calculated by comparing
the learning profile for the two annotation strategies
with increasing amount of labeled data, up to the
maximum annotation cost of 1024 AUs.

As can be seen from the second part of Table 2,
most of the factors have a significant effect on bene-

fit from feature feedback. The benefit is significantly
higher for the webpage classification task than the
sentiment classification task in the movie review do-
main. We found that average feature complexity for
the webpage classification task (Nf = 3.07) to be
lower than average feature complexity for the senti-
ment classification task (Nf = 5.18) for 1024 train-
ing examples. Lower feature complexity suggests
that the webpage classification concept can be ex-
pressed with few keywords such as professor, fac-
ulty, etc., and with feature feedback we can quickly
identify these features. Sentiment on the other hand
can be expressed in a variety of ways which explains
the high feature complexity.

The benefit is more for document granularity than
sentence granularity, which is intuitive as feature
space is substantially larger for documents and we
expect to gain more from the user’s feedback on
which features are important. This difference is sig-
nificant for improvement in the learning rate and
marginally significant for improvement in perfor-
mance. Note that here we are comparing docu-
ments (with or without rationale slack) and sen-
tences. However, documents with low rationale
slack should have similar amount of noise as a sen-
tence. Also, a significant difference between do-
mains suggests that documents in WebKB domain
might be quite different from those in Movie Review
domain. This may explain the marginal significant
difference between benefit for documents and sen-
tences. To understand the effect of granularity alone,
we compared the benefit from feature feedback for
documents (without removing any noise) and sen-
tences in movie review domain only and we found
that this difference in also not significant. Thus, con-
trary to our intuition, sentences and documents seem
to benefit equally from feature feedback.

The benefit is more when the feature space is
larger and more diverse, i.e., when dependency fea-
tures are used in addition to unigram features. We
found that on average adding dependency features
to unigram features increases the feature space by
a factor of 10. With larger feature space, feature
feedback can help to identify a few relevant features.
As can also be seen, feature feedback is more help-
ful when there is more irrelevant text, i.e., there is
noise that feature feedback can help to filter out.
Unlike improvement in performance, the improve-

111



ment in learning rate does not decrease monoton-
ically as the amount of rationale slack decreases.
This supports our belief that improvement in perfor-
mance does not necessarily imply improvement in
the learning rate. We saw similar result when com-
paring benefit from feature feedback at different in-
stance granularity. Improvement in learning rate for
problems with different granularity was statistically
significant but improvement in performance was not
significant. Thus, both metrics should be used when
evaluating the benefit from feature feedback.

We also observe that when training examples are
selectively sampled as the most uncertain instances,
we gain more from feature feedback than without
selective sampling. This is intuitive as instances
the model is uncertain about are likely to contain
features it is uncertain about and hence the model
should benefit from feedback on features in these in-
stances. Next we evaluate how well the complexity
measures proposed in Raghavan et al. (2007) corre-
late with improvement in performance and improve-
ment in learning rate.

V ar. V alues AvgF1 Group

Strat. wFF 78.2 A
woFF 68.2 B

V ar. V alues AvgIP GrpIP AvgILR GrpILR

D WebKB 11.9 A 0.32 A
MR 8.0 B 0.20 B

G Doc 10.9 A 0.30 A
Sent 9.0 A 0.22 B

F u+d 12.1 A 0.30 A
u 7.8 B 0.22 B

I

∞ 12.8 A 0.34 A
600 11.2 A B 0.23 B
400 11.1 A B 0.26 A B
200 9.8 B 0.26 A B
0 4.8 C 0.21 B

S Uncer. 12.7 A 0.32 A
Deter. 7.1 B 0.20 B

Table 2: Effect of variables defined in Table 1 on benefit
from feature feedback. AvgIP is the average increase in
performance (F1) and AvgILR is the average increase in
the learning rate. Different letters in GrpIP and GrpILR

indicate significantly different results.

For a given problem with an annotation cost bud-
get of a AUs, we calculate the benefit from feature
feedback by comparing the performance with fea-

ture feedback on a
2 instances and the performance

without feature feedback on a instances as described
in Section 3.1. The feature complexity measures are
calculated using a

2 instances, since it should be the
characteristics of these a

2 training instances that de-
termine whether we would benefit from feature feed-
back on these a

2 instances or from labeling new a
2

instances. As can be seen from Table 3, the correla-
tion of feature complexity measures with both mea-
sures of benefit from feature feedback is strong, neg-
ative and significant. This suggests that problems
with low feature complexity, i.e. concepts that can
be expressed with few well-selected features, benefit
more from feature feedback.

It is intuitive that the benefit from feature feed-
back decreases as amount of labeled data increases.
We found a significant negative correlation (−0.574)
between annotation budget (number of AUs) and
improvement in performance with feature feedback.
However, note that this correlation is not very
strong, which supports our belief that factors other
than the amount of labeled data affect benefit from
feature feedback.

Measure R(IP ) R(ILR)
Nf -0.625 -0.615
Fpc -0.575 -0.735
Cf -0.603 -0.629

Table 3: Correlation coefficient (R) for feature size com-
plexity (Nf ), feature profile complexity (Fpc) and com-
bined feature complexity (Cf ) with improvement in per-
formance (IP ) and improvement in learning rate (ILR).
All results are statistically significant (p < 0.05)

Feature complexity measures require an ‘oracle’
simulated using a large amount of labeled data
which is not available for real annotation tasks.
In Section 3.2, we proposed measures based on
model’s uncertainty that do not require an oracle.
We calculate the mean, maximum and median of
the probability scores from the learned model on in-
stances in the held out dateset. We found a signifi-
cant but low negative correlation of these measures
with improvement in performance with feature feed-
back (maxProb = −0.384, meanProb = −0.256,
medianProb = −0.242). This may seem counter-
intuitive. However, note that when the training data
is very small, the model might be quite certain about
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its prediction even when it is wrong and feature feed-
back may help by correcting the model’s beliefs. We
observed that these probability measures have only
medium and significant positive correlation (around
0.5) with training datasize. Also, the held out dataset
we used may not be representative of the whole set
and using a larger dataset may give us more accurate
estimate of the model’s uncertainty. There are also
other ways to measure the model’s uncertainty, for
example, in SVMs the distance of an instance from
the decision boundary gives us an estimate of the
model’s uncertainty about that instance. We plan to
explore additional measures for model’s uncertainty
in the future.

5 Conclusion and Future Work

In this work, we analyze how the benefit from fea-
ture feedback varies with different problem charac-
teristics and how measures for categorizing learning
problems correlate with benefit from feature feed-
back. We define a problem instance as a tuple of
domain, instance granularity, feature representation,
labeled data, amount of irrelevant text and selective
sampling strategy.

We compare the two annotation strategies, with
and without feature feedback, in terms of both im-
provement in performance at a given stage in learn-
ing and improvement in learning rate. Instead of
evaluating the benefit from feature feedback us-
ing a specific feedback incorporation approach, we
estimate and compare how the maximum benefit
from feature feedback varies across different learn-
ing problems. This tells us what is the best feature
feedback can do for a given learning problem.

We find a strong and significant correlation be-
tween feature complexity measures and the two
measures of maximum benefit from feature feed-
back. However, these measures require an ‘ora-
cle’, simulated using a large amount of labeled data
which is not available in real world annotation tasks.
We present measures based on the uncertainty of the
model on its prediction that do not require an oracle.
The proposed measures have a low but significant
correlation with benefit from feature feedback. In
our current work, we are exploring other measures
of uncertainty of the model. It is intuitive that a met-
ric that measures the uncertainty of the model on

parameter estimates should correlate strongly with
benefit from feature feedback. Variance in param-
eter estimates is one measure of uncertainty. The
Bootstrap or Jacknife method (Efron and Tibshirani,
1994) of resampling from the training data is one
way of estimating variance in parameter estimates
that we are exploring.

So far only a linear relationship of various mea-
sures with benefit from feature feedback has been
considered. However, some of these relationships
may not be linear or a combination of several mea-
sures together may be stronger indicators of the ben-
efit from feature feedback. We plan to do further
analysis in this direction in the future.

We only considered one selective sampling strat-
egy based on model’s uncertainty which we found
to provide more benefit from feature feedback. In
the future, we plan to explore other selective sam-
pling strategies. For example, density-based sam-
pling (Donmez and Carbonell, 2008) selects the in-
stances that are representative of clusters of simi-
lar instances, and may facilitate more effective feed-
back on a diverse set of features.

In this work, feature feedback was simulated us-
ing an oracle. Feedback from the users, however,
might be less accurate. Our next step will be to ana-
lyze how the benefit from feature feedback varies as
the quality of feature feedback varies.

Our eventual goal is to estimate the benefit from
feature feedback for a given problem so that the right
annotation strategy can be selected for a given learn-
ing problem at a given stage in learning and the total
annotation cost for learning the target concept can
be minimized. Note that in addition to the charac-
teristics of the labeled data analyzed so far, expected
benefit from feature feedback will also depend on
the properties of the data to be labeled next for the
two annotation strategies - with or without feature
feedback.
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