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Abstract

This paper explores the role played by a multilingual feature representation for the task of word

sense disambiguation. We translate the context of an ambiguous word in multiple languages, and

show through experiments on standard datasets that by using a multilingual vector space we can

obtain error rate reductions of up to 25%, as compared to a monolingual classifier.

1 Introduction

Ambiguity is inherent to human language. In particular, word sense ambiguity is prevalent in all natural

languages, with a large number of the words in any given language carrying more than one meaning.

For instance, the English noun plant can mean green plant or factory; similarly the French word feuille

can mean leaf or paper. The correct sense of an ambiguous word can be selected based on the context

where it occurs, and correspondingly the problem of word sense disambiguation is defined as the task of

automatically assigning the most appropriate meaning to a polysemous word within a given context.

Among the various knowledge-based (Lesk, 1986; Mihalcea et al., 2004) and data-driven (Yarowsky,

1995; Ng and Lee, 1996) word sense disambiguation methods that have been proposed to date, supervised

systems have been constantly observed as leading to the highest performance. In these systems, the sense

disambiguation problem is formulated as a supervised learning task, where each sense-tagged occurrence

of a particular word is transformed into a feature vector which is then used in an automatic learning

process. One of the main drawbacks associated with these methods is the fact that their performance is

closely connected to the amount of labeled data available at hand.

In this paper, we investigate a new supervised word sense disambiguation method that is able to take

additional advantage of the sense-labeled examples by exploiting the information that can be obtained

from a multilingual representation. We show that by representing the features in a multilingual space,

we are able to improve the performance of a word sense disambiguation system by a significant margin,

as compared to a traditional system that uses only monolingual features.

2 Related Work

Despite the large number of word sense disambiguation methods that have been proposed so far, targeting

the resolution of word ambiguity in different languages, there are only a few methods that try to explore

more than one language at a time. The work that is perhaps most closely related to ours is the bilin-

gual bootstrapping method introduced in (Li and Li, 2002), where word translations are automatically

disambiguated using information iteratively drawn from two languages. Unlike that approach, which

iterates between two languages to select the correct translation for a given target word, in our method we

simultaneously use the features extracted from several languages. In fact, our method can handle more

than two languages at a time, and we show that the accuracy of the disambiguation algorithm increases

with the number of languages used.

There have also been a number of attempts to exploit parallel corpora for word sense disambiguation

(Resnik and Yarowsky, 1999; Diab and Resnik, 2002; Ng et al., 2003), but in that line of work the parallel
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texts were mainly used as a way to induce word senses or to create sense-tagged corpora, rather than as

a source of additional multilingual views for the disambiguation features. Another related technique is

concerned with the selection of correct word senses in context using large corpora in a second language

(Dagan and Itai, 1994), but as before, the additional language is used to help distinguishing between the

word senses in the original language, and not as a source of additional information for the disambiguation

context.

Also related is the recent SEMEVAL task that has been proposed for cross-lingual lexical substitution,

where the word sense disambiguation task was more flexibly formulated as the identification of cross-

lingual lexical substitutes in context (Mihalcea et al., 2010). A number of different approaches have been

proposed by the teams participating in the task, and although several of them involved the translation of

contexts or substitutes from one language to another, none of them attempted to make simultaneous use

of the information available in the two languages.

Finally, although the multilingual subjectivity classifier proposed in Banea et al. (2010) is not directly

applicable to the disambiguation task we address in this paper, their findings are similar to ours. In that

paper, the authors showed how a natural language task can benefit from the use of features drawn from

multiple languages, thus supporting the hypothesis that multilingual features can be effectively used to

improve the accuracy of a monolingual classifier.

3 Motivation

Our work seeks to explore the expansion of a monolingual feature set with features drawn from multiple

languages in order to generate a more robust and more effective vector-space representation that can be

used for the task of word sense disambiguation. While traditional monolingual representations allow a

supervised learning systems to achieve a certain accuracy, we try to surpass this limitation by infusing

additional information in the model, mainly in the form of features extracted from the machine translated

view of the monolingual data. A statistical machine translation (MT) engine does not only provide

a dictionary-based translation of the words surrounding a given ambiguous word, but it also encodes

the translation knowledge derived from very large parallel corpora, thus accounting for the contextual

dependencies between the words.

In order to better explain why a multilingual vector space provides for a better representation for

the word sense disambiguation task, consider the following examples centered around the ambiguous

verb build.1 For illustration purposes, we only show examples for four out of the ten possible meanings

in WordNet (Fellbaum, 1998), and we only show the translations in one language (French). All the

translations are performed using the Google Translate engine.

En 1: Telegraph Co. said it will spend $20 million to build a factory in Guadalajara, Mex-

ico, to make telephone answering machines. (sense id 1)

Fr 1: Telegraph Co. a annoncé qu’il dépensera 20 millions de dollars pour construire une

usine á Guadalajara, au Mexique, pour faire répondeurs téléphoniques.

En 2: A member in the House leadership and skilled legislator, Mr. Fazio nonetheless found

himself burdened not only by California’s needs but by Hurricane Hugo amendments he ac-

cepted in a vain effort to build support in the panel. (sense id 3)

Fr 2: Un membre de la direction de la Chambre et le législateur compétent, M. Fazio a

néanmoins conclu lui-même souffre, non seulement par les besoins de la Californie, mais

par l’ouragan Hugo amendements qu’il a accepté dans un vain effort pour renforcer le sou-

tien dans le panneau.

En 3: Burmah Oil PLC, a British independent oil and specialty-chemicals marketing con-

cern, said SHV Holdings N.V. has built up a 7.5% stake in the company. (sense id 3)

1The sentences provided and their annotations are extracted from the SEMEVAL corpus.
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Fr 3: Burmah Oil PLC, une huile indépendant britannique et le souci de commercialisation

des produits chimiques de spécialité, a déclaré SHV Holdings NV a acquis une participation

de 7,5% dans la société.

En 4: Plaintiffs’ lawyers say that buildings become “sick” when inadequate fresh air and

poor ventilation systems lead pollutants to build up inside. (sense id 2)

Fr 4: Avocats des plaignants disent que les bâtiments tombent malades quand l’insuffisance

d’air frais et des systèmes de ventilation insuffisante de plomb polluants de s’accumuler à

l’intérieur.

As illustrated by these examples, the multilingual representation helps in two important ways. First,

it attempts to disambiguate the target ambiguous word by assigning it a different translation depending

on the context where it occurs. For instance, the first example includes a usage for the verb build in its

most frequent sense, namely that of construct (WordNet: make by combining materials and parts), and

this sense is correctly translated into French as construire. In the second sentence, build is used as part

of the verbal expression build support where it means to form or accumulate steadily (WordNet), and

it is accurately translated in both French sentences as renforcer. For sentences three and four, build is

followed by the adverb up, yet in the first case, its sense id in WordNet is 3, build or establish something

abstract, while in the second one is 2, form or accumulate steadily. Being able to infer from the co-

occurrence of additional words appearing the context, the MT engine differentiates the two usages in

French, translating the first occurrence as acquis and the second one as accumuler.

Second, the multilingual representation also significantly enriches the feature space, by adding fea-

tures drawn from multiple languages. For instance, the feature vector for the first example will not only

include English features such as factory and make, but it will also include additional French features

such as usine and faire. Similarly, the second example will have a feature vector including words such

as buildings and systems, and also bâtiments and systèmes. While this multilingual representation can

sometime result in redundancy when there is a one-to-one translation between languages, in most cases

however the translations will enrich the feature space, by either indicating that two features in English

share the same meaning (e.g., the words manufactory and factory will both be translated as usine in

French), or by disambiguating ambiguous English features using different translations (e.g., the context

word plant will be translated in French as usine or plante, depending on its meaning).

Appending therefore multilingual features to the monolingual vector generates a more orthogonal

vector space. If, previously, the different senses of build were completely dependent on their surrounding

context in the source language, now they are additionally dependent on the disambiguated translation of

build given its context, as well as the context itself and the translation of the context.

4 Multilingual Vector Space Representations for WSD

4.1 Datasets

We test our model on two publicly available word sense disambiguation datasets. Each dataset includes

a number of ambiguous words. For each word, a number of sample contexts were extracted and then

manually labeled with their correct sense. Therefore, both datasets follow a Zipfian distribution of senses

in context, given their natural usage. Note also that senses do not cross part-of-speech boundaries.

The TWA2 (two-way ambiguities) dataset contains sense tagged examples for six words that have

two-way ambiguities (bass, crane, motion, palm, plant, tank). These are words that have been previously

used in word sense disambiguation experiments reported in (Yarowsky, 1995; Mihalcea, 2003). Each

word has approximately 100 to 200 examples extracted from the British National Corpus. Since the

words included in this dataset have only two homonym senses, the classification task is easier.

2http://www.cse.unt.edu/˜rada/downloads.html\#twa
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Expanded multilingual features 

De 

Es 
Fr En 

English features 

En: suppose you let me 

explain actually 

Es: supongamos que 

vamos explicar la 

verdad 

Fr: supposons que vous 

laissez moi vous 

expliquer en fait 

De: angenommen sie 

lassen mir eigentlich 

erklären 

Figure 1: Construction of a multilingual vector (combinations of target languages C(3, k), where k = 0..3

The second dataset is the SEMEVAL corpus 2007 (Pradhan et al., 2007),3 consisting of a sample of 35

nouns and 65 verbs with usage examples extracted from the Penn Treebank as well as the Brown corpus,

and annotated with OntoNotes sense tags (Hovy et al., 2006). These senses are more coarse grained

when compared to the traditional sense repository encoded in the WordNet lexical database. While

OntoNotes attains over 90% inter-annotator agreement, rendering it particularly useful for supervised

learning approaches, WordNet is too fine grained even for human judges to agree (Hovy et al., 2006).

The number of examples available per word and per sense varies greatly; some words have as few as

50 examples, while some others can have as many as 2,000 examples. Some of these contexts are

considerably longer than those appearing in TWA, containing around 200 words. For the experiments

reported in this paper, given the limitations imposed by the number of contexts that can be translated by

the online translation engine,4 we randomly selected a subset of 31 nouns and verbs from this dataset.

4.2 Model

In order to generate a multilingual representation for the TWA and SEMEVAL datasets, we rely on the

method proposed in Banea et al. (2010) and use Google Translate to transfer the data from English into

several other languages and produce multilingual representations. We experiment with three languages,

namely French (Fr), German (De) and Spanish (Es). Our choice is motivated by the fact that when

Google made public their statistical machine translation system in 2007, these were the only languages

covered by their service, and we therefore assume that the underlying statistical translation models are

also the most robust. Upon translation, the data is aligned at instance level, so that the original English

context is augmented with three mirroring contexts in French, German, and Spanish, respectively.

We extract the word unigrams from each of these contexts, and then generate vectors that consist of

the original English unigrams followed by the multilingual portion resulted from all possible combina-

tions of the three languages taken 0 through 3 at a time, or more formally C(3, k), where k = 0..3 (see

Figure 1). For instance, a vector resulting from C(3, 0) is the traditional monolingual vector, whereas a

vector built from the combination C(3, 3) contains features extracted from all languages.

3http://nlp.cs.swarthmore.edu/semeval/tasks/task17/description.shtml
4We use Google Translate (http://translate.google.com/), which has a limitation of 1,000 translations per day.
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Figure 2: Example of sentence whose words are weighted based on a normal distribution with variance of 5, and

an amplification factor of 20

4.2.1 Feature Weighting

For weighting, we use a parametrized weighting based on a normal distribution scheme, to better leverage

the multilingual features. Let us consider the following sentence:

We made the non-slip surfaces by stippling the tops with a <head> bass </head> broom a

fairly new one works best.

Every instance in our datasets contains an XML-marking before and after the word to be disam-

biguated (also known as a headword), in order to identify it from the context. For instance, in the

example above, the headword is bass. The position of this headword in the context can be considered

the mean of a normal distribution. When considering a σ2 = 5, five words to the left and right of the

mean are activated with a value above 10−2 (see the dotted line in Figure 2). However, all the features

are actually activated by some amount, allowing this weighting model to capture a continuous weight

distribution across the entire context. In order to attain a higher level of discrepancy between the weight

of consecutive words, we amplify the normal distribution curve by an empirically determined factor of

20, effectively mapping the values to an interval ranging from 0 to 4. We apply this amplified activation

to every occurrence of a headword in a context. If two activation curves overlap, meaning that a given

word has two possible weights, the final weight is set to the highest (generated by the closest headword in

context). Similar weighting is also performed on the translated contexts, allowing for the highest weight

to be attained by the headword translated into the target language, and a decrementally lower weight for

its surrounding context.

This method therefore allows the vector-space model to capture information pertaining to both the

headword and its translations in the other languages, as well as a language dependent gradient of the

neighboring context usage. While a traditional bigram or trigram model only captures an exact expres-

sion, a normal distribution based model is able to account for wild cards, and transforms the traditionally

sparse feature space into one that is richer and more compact at the same time.

4.3 Adjustments

We encountered several technical difficulties in translating the XML-formatted datasets, which we will

expand on in this section.
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4.3.1 XML-formatting and alignment

First of all, as every instance in our datasets contains an XML-marked headword (as shown in Section

4.2.1), the tags interfere with the MT system, and we had to remove them from the context before

proceeding with the translation. The difficulty came from the fact that the translated context provides

no way of identifying the translation of the original headword. In order to acquire candidate translations

of the English headword we query the Google Multilingual Dictionary5 (setting the dictionary direction

from English to the target language) and consider only the candidates listed under the correct part-of-

speech. We then scan the translated context for any of the occurrences mined from the dictionary, and

locate the candidates.

In some of the cases we also identify candidate headwords in the translated context that do not mirror

the occurrence of a headword in the English context (i.e., the number of candidates is higher than the

number of headwords in English). We solve this problem by relying on the assumption that there is an

ideal position for a headword candidate, and this ideal position should reflect the relative position of the

original headword with regard to its context. This alignment procedure is supported by the fact that the

languages we use follow a somewhat similar sentence structure; given parallel paragraphs of text, these

cross-lingual “context anchors” will lie in close vicinity. We therefore create two lists: the first list is

the reference English list, and contains the indexes of the English headwords (normalized to 100); the

second list contains the normalized indexes of the candidate headwords in the target language context.

For each candidate headword in the target language, we calculate the shortest distance to a headword

appearing in the reference English list. Once the overall shortest distance is found, both the candidate

headword’s index in the target language and its corresponding English headword’s index are removed

from their respective list. The process continues until the reference English list is empty.

4.3.2 Inflections

There are also cases when we are not able to identify a headword due to the fact that we are trying to find

the lemma (extracted from the multilingual dictionary) in a fully inflected context, where most probably

the candidate translation is inflected as well. As French, German and Spanish are all highly inflected

languages, we are faced with two options: to either lemmatize the contexts in each of the languages,

which requires a lemmatizer tuned for each language individually, or to stem them. We chose the latter

option, and used the Lingua::Stem::Snowball,6 which is a publicly available implementation of the Porter

stemmer in multiple languages.

To summarize, all the translations are stemmed to obtain maximum coverage, and alignment is performed

when the number of candidate entries found in a translated context does not match the frequency of

candidate headwords in the reference English context. Also, all the contexts are processed to remove any

special symbols and numbers.

5 Results and Discussion

5.1 Experimental Setup

In order to determine the effect of the multilingual expanded feature space on word sense disambiguation,

we conduct several experiments using the TWA and SEMEVAL datasets. The results are shown in Tables

1 and 2.

Our proposed model relies on a multilingual vector space, where each individual feature is weighted

using a scheme based on a modified normal distribution (Section 4.2.1). As eight possible combinations

are available when selecting one main language (English) and combinations of three additional languages

5http://www.google.com/dictionary
6http://search.cpan.org/dist/Lingua-Stem-Snowball/lib/Lingua/Stem/Snowball.pm
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taken 0 through 3 at a time (Spanish, French and German), we train eight Naı̈ve Bayes learners7 on the

resulted datasets: one monolingual (En), three bilingual (En-De, En-Fr, En-Es), three tri-lingual (En-

De-Es, En-De-Fr, En-Fr-Es), and one quadri-lingual (En-Fr-De-Es). Each dataset is evaluated using ten

fold cross-validation; the resulting micro-accuracy measures are averaged across each of the language

groupings and they appear in Tables 1 and 2 in ND-L1 (column 4), ND-L2 (column 5), ND-L3 (column

6), and ND-L4 (column 7), respectively. Our hypothesis is that as more languages are added to the mix

(and therefore the number of features increases), the learner will be able to distinguish better between

the various senses.

5.2 Baselines

Our baseline consists of the predictions made by a majority class learner, which labels all examples with

the predominant sense encountered in the training data.8 Note that the most frequent sense baseline

is often times difficult to surpass because many of the words exhibit a disproportionate usage of their

main sense (i.e., higher than 90%), such as the noun bass or the verb approve. Despite the fact that the

majority vote learner provides us with a supervised baseline, it does not take into consideration actual

features pertaining to the instances. We therefore introduce a second, more informed baseline that relies

on binary-weighted features extracted from the English view of the datasets and we train a multinomial

Naı̈ve Bayes learner on this data. For every word included in our datasets, the binary-weighted Naı̈ve

Bayes learner achieves the same or higher accuracy as the most frequent sense baseline.

5.3 Experiments

Comparing the accuracies obtained when training on the monolingual data, the binary weighted baseline

surpasses the normal distribution-based weighting model in only three out of six cases on the TWA

dataset (difference ranging from .5% to 4.81%), and in 6 out of 31 cases on the SEMEVAL dataset

(difference ranging from .53% to 7.57%, where for 5 of the words, the difference is lower than 3%). The

normal distribution-based model is thus able to activate regions around a particular headword, and not

an entire context, ensuring more accurate sense boundaries, and allowing this behavior to be expressed

in multilingual vector spaces as well (as seen in columns 7-9 in Tables 1 and 2).

When comparing the normal distribution-based model using one language versus more languages,

5 out of 6 words in TWA score highest when the expanded feature space includes all languages, and

one scores highest for combinations of 3 languages (only .17% higher than the accuracy obtained for

all languages). We notice the same behavior in the SEMEVAL dataset, where 18 of the words exhibit

their highest accuracy when all four languages are taken into consideration, and 3 achieve the highest

score for three-language groupings (at most .37% higher than the accuracy obtained for the four language

grouping). While the model displays a steady improvement as more languages are added to the mix, four

of the SEMEVAL words are unable to benefit from this expansion, namely the verbs buy (-0.61%), care

(-1.45%), feel (-0.29%) and propose (-2.94%). Even so, we are able to achieve error rate reductions

ranging from 6.52% to 63.41% for TWA, and from 3.33% to 34.62% for SEMEVAL.

To summarize the performance of the model based on the expanded feature set and the proposed

baselines, we aggregate all the accuracies from Tables 1 and 2, and present the results obtained in Table 3.

The monolingual modified normal-distribution model is able to exceed the most common sense baseline

and the binary-weighted Naı̈ve Bayes learner for both datasets, proving its superiority as compared to

a purely binary-weighted model. Furthermore, we notice a consistent increase in accuracy as more

languages are added to the vector space, displaying an average increment of 1.7% at every step for

TWA, and 0.67% for SEMEVAL. The highest accuracy is achieved when all languages are taken into

consideration: 86.02% for TWA and 83.36% for SEMEVAL, corresponding to an error reduction of

25.96% and 10.58%, respectively.

7We use the multinomial Naı̈ve Bayes implementation provided by the Weka machine learning software (Hall et al., 2009).
8Our baseline it is not the same as the traditional most common sense baseline that uses WordNet’s first sense heuristic,

because our data sets are not annotated with WordNet senses.
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1 2 3 4 5 6 7 8 9 10

Word # Inst # Senses MCS BIN-L1 ND-L1 ND-L2 ND-L3 ND-L4 Error Red.

bass.n 107 2 90.65 90.65 90.65 91.28 91.90 92.52 20.00

crane.n 95 2 75.79 75.79 76.84 76.14 76.49 78.95 9.09

motion.n 201 2 70.65 81.09 79.60 86.73 89.88 92.54 63.41

palm.n 201 2 71.14 73.13 87.06 88.89 89.72 89.55 19.23

plant.n 187 2 54.55 79.14 74.33 77.90 81.82 83.96 37.50

tank.n 201 2 62.69 77.61 77.11 76.29 76.45 78.61 6.52

Table 1: Accuracies obtained on the TWA dataset; Columns: 1 - words contained in the corpus, 2 - number of

examples for a given word, 3 - number of senses covered by the examples, 4 - micro-accuracy obtained when

using the most common sense (MCS), 5 - micro-accuracy obtained using the multinomial Naı̈ve Bayes classifier

on binary weighted monolingual features in English, 6 - 9 - average micro-accuracy computed over all possible

combinations of English and 3 languages taken 0 through 3 at a time, resulted from features weighted following

a modified normal distribution with σ2 = 5 and an amplification factor of 20 using a multinomial Naı̈ve Bayes

learner, where 6 - one language, 7 - 2 languages, 8 - 3 languages, 9 - 4 languages, 10 - error reduction calculated

between ND-L1 (6) and ND-L4 (9)

6 Conclusion

This paper explored the cumulative ability of features originating from multiple languages to improve

on the monolingual word sense disambiguation task. We showed that a multilingual model is suited to

better leverage two aspects of the semantics of text by using a machine translation engine. First, the

various senses of a target word may be translated into other languages by using different words, which

constitute unique, yet highly salient features that effectively expand the target word’s space. Second, the

translated context words themselves embed co-occurrence information that a translation engine gathers

from very large parallel corpora. This information is infused in the model and allows for thematic spaces

to emerge, where features from multiple languages can be grouped together based on their semantics,

leading to a more effective context representation for word sense disambiguation. The average micro-

accuracy results showed a steadily increasing progression as more languages are added to the vector

space. Using two standard word sense disambiguation datasets, we showed that a classifier based on a

multilingual representation can lead to an error reduction ranging from 10.58% (SEMEVAL) to 25.96%

(TWA) as compared to the monolingual classifier.
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1 2 3 4 5 6 7 8 9 10

Word # Inst # Senses MCS BIN-L1 ND-L1 ND-L2 ND-L3 ND-L4 Error Red.

approve.v 53 2 94.34 94.34 94.34 94.34 95.60 96.23 33.33

ask.v 348 6 64.94 68.39 72.41 73.66 74.71 75.00 9.37

bill.n 404 3 65.10 88.12 90.59 91.75 92.41 92.82 23.68

buy.v 164 5 78.66 78.66 78.05 77.64 77.44 77.44 -2.78

capital.n 278 4 92.81 92.81 92.81 92.81 93.17 93.53 10.00

care.v 69 3 78.26 78.26 86.96 86.47 85.99 85.51 -11.11

effect.n 178 3 82.02 82.02 84.83 85.96 86.33 85.96 7.41

exchange.n 363 5 71.90 73.83 78.51 82.37 84.85 85.95 34.62

explain.v 85 2 88.24 88.24 88.24 88.24 88.24 88.24 0.00

feel.v 347 3 82.13 82.13 82.13 82.04 81.94 81.84 -1.61

grant.v 19 2 63.16 73.68 73.68 71.93 71.93 78.95 20.00

hold.v 129 8 34.88 45.74 43.41 43.41 43.41 43.41 0.00

hour.n 187 4 84.49 84.49 83.96 83.78 83.78 84.49 3.33

job.n 188 3 74.47 74.47 80.32 80.67 82.62 84.04 18.92

part.n 481 4 81.91 81.91 82.12 83.30 84.13 85.45 18.60

people.n 754 4 91.11 91.11 91.11 91.29 92.22 93.37 25.37

point.n 469 9 71.64 73.99 77.61 82.09 83.51 84.22 29.52

position.n 268 7 27.61 60.82 61.19 66.17 68.91 68.66 19.23

power.n 251 3 47.81 84.46 76.89 81.94 82.87 83.27 27.59

president.n 879 3 86.23 89.87 87.14 88.28 89.34 90.79 28.32

promise.v 50 2 88.00 88.00 86.00 86.67 87.33 88.00 14.29

propose.v 34 2 85.29 85.29 88.24 87.25 86.27 85.29 -25.00

rate.n 1009 2 84.64 86.92 87.02 88.07 88.64 89.30 17.56

remember.v 121 2 99.17 99.17 99.17 99.17 99.17 99.17 0.00

rush.v 28 2 92.86 92.86 92.86 92.86 92.86 92.86 0.00

say.v 2161 5 97.78 97.78 97.78 97.78 97.78 97.78 0.00

see.v 158 6 44.94 47.47 49.37 51.05 51.69 52.53 6.25

state.n 617 3 83.14 83.95 85.25 85.25 85.47 85.74 3.30

system.n 450 5 55.56 72.44 74.00 73.85 75.26 75.78 6.84

value.n 335 3 89.25 89.25 89.25 89.35 89.45 89.85 5.56

work.v 230 7 64.78 65.65 66.96 68.26 68.99 68.70 5.26

Table 2: Accuracies obtained on the SEMEVAL dataset; Columns: 1 - words contained in the corpus, 2 - number

of examples for a given word, 3 - number of senses covered by the examples, 4 - micro-accuracy obtained when

using the most common sense (MCS), 5 - micro-accuracy obtained using the multinomial Naı̈ve Bayes classifier

on binary weighted monolingual features in English, 6 - 9 - average micro-accuracy computed over all possible

combinations of English and 3 languages taken 0 through 3 at a time, resulted from features weighted following

a modified normal distribution with σ2 = 5 and an amplification factor of 20 using a multinomial Naı̈ve Bayes

learner, where 6 - one language, 7 - 2 languages, 8 - 3 languages, 9 - 4 languages, 10 - error reduction calculated

between ND-L1 (6) and ND-L4 (9)

1 2 3 4 5 6 7 8

Dataset MCS BIN-L1 ND-L1 ND-L2 ND-L3 ND-L4 Error Red.

TWA 70.91 79.57 80.93 82.87 84.38 86.02 25.96

SEMEVAL 75.71 80.52 81.36 82.18 82.78 83.36 10.58

Table 3: Aggregate accuracies obtained on the TWA and SEMEVAL datasets; Columns: 1 - dataset, 2 - average

micro-accuracy obtained when using the most common sense (MCS), 3 - average micro-accuracy obtained using

the multinomial Naı̈ve Bayes classifier on binary weighted monolingual features in English, 4 - 7 - average micro-

accuracy computed over all possible combinations of English and 3 languages taken 0 through 3 at a time, resulted

from features weighted following a modified normal distribution with σ2 = 5 and an amplification factor of 20

using a multinomial Naı̈ve Bayes learner, where 4 - one language, 5 - 2 languages, 6 - 3 languages, 7 - 4 languages,

8 - error reduction calculated between ND-L1 (4) and ND-L4 (7)
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