
Generating LTAG grammars from a lexicon-ontology interface

Christina Unger Felix Hieber
Semantic Computing Group

Cognitive Interaction Technology – Center of Excellence (CITEC)
University of Bielefeld, Germany

{cunger,fhieber,cimiano}@cit-ec.uni-bielefeld.de

Philipp Cimiano

Abstract

This paper shows how domain-specific gram-
mars can be automatically generated from a
declarative model of the lexicon-ontology in-
terface and how those grammars can be used
for question answering. We show a spe-
cific implementation of the approach using
Lexicalized Tree Adjoining Grammars. The
main characteristic of the generated elemen-
tary trees is that they constitute domains of lo-
cality that span lexicalizations of ontological
concepts rather than being based on require-
ments of single lexical heads.

1 Introduction

Many approaches to the interpretation of natural lan-
guage represent meanings as generic logical forms.
However, some domain-specific applications require
semantic representations that are aligned to a spe-
cific ontology and thus cannot be provided by a
generic, ontology-independent semantic construc-
tion. To illustrate this, consider the example of a
geographical ontology that contains a data property1

population relating states to their number of inhab-
itants. When constructing a natural language inter-
face to this ontology, it has to be taken into account
that population can be expressed in different ways
– directly as in 1, or with related vocabulary as in 2
and 3.

1. The population of Hawaii is 1 300 000.

1Ontologies distinguish two kinds of relations: object prop-

erties, that link individuals to individuals, and data properties,
that link individuals to data values (e.g. strings or integers).

2. Hawaii has 1 300 000 inhabitants.

3. 1 300 000 people live in Hawaii.

For these sentences, Boxer (Bos, 2008) generates
generic Discourse Representation Structures (DRSs)
that can roughly be represented as in 4 (for the sen-
tence in 1) and 5 (for the sentences in 2 and 3).

4.
x0 x1
hawaii(x0)
population(x1)
of(x1, x0)
| x1 | ≥ 74 000 000

5.
x0 x1 x2
hawaii(x0)
inhabitant(x1)
have(x2)
agent(x2, x0)
patient(x2, x1)
| x1 | ≥ 74 000 000

x0 x1 x2
hawaii(x0)
people(x1)
live(x2)
agent(x2, x1)
in(x2, x0)
| x1 | ≥ 74 000 000

Note that while the predicate population can be
taken to directly correspond to the concept popu-

lation in the ontology, the predicates live and in-

habitant, for example, would yield an empty exten-
sion if evaluated with respect to the ontology. We
would need additional meaning postulates that re-
late these predicates to population, or, alternatively,
some postprocessing that transforms generic forms
like in 5 into a more specific form equivalent to 4.

An arguably more elegant and useful solution is
to let the semantic vocabulary follow the vocabu-
lary of the ontology in the first place, i.e. to right

Generating LTAG grammars from a lexicon/ontology interface

61

away construct the specifc logical form 4 also for the
sentences in 2 and 3. This, however, raises another
problem. In order to arrive at the meaning in 4, the
semantic contributions of the lexical items have to be
adjusted. In the case of 3, for example, the predicate
population can be assumed to be the semantic con-
tribution of the noun phrase inhabitants, while the
verb have is semantically empty. In 2, on the other
hand, the predicate population might be contributed
by the verb live, while the noun people is seman-
tically empty. Although this does not seem prob-
lematic in this case, there might not exist a general
way to assign meanings to lexical items consistently.
Imagine, for example, the ontology also contains a
concept people, which plays a role in a different con-
text. Then the noun people needs a non-empty se-
mantic interpretation – possibly one which clashes
with its use in 3.

The challenging goal thus is to construct an inter-
pretation for sentences that uses the vocabulary of
the ontology and therefore might deviate from the
surface structure of the sentence. We propose to
meet this challenge by determining basic semantic
units with respect to an ontology. Assuming a tight
connection between syntactic and semantic units,
then also basic syntactic units turn out to depend on
a particular ontology, and hence the whole syntax-
semantics interface becomes ontology-specific.

We show an implementation of this approach us-
ing Lexicalized Tree Adjoining Grammars. They
are particularly well-suited for the task of compo-
sitional ontology-specific interpretation due to their
extended domain of locality and their tight connec-
tion between syntax and semantics. The general pro-
cedure we follow consists of two steps. First, the
ontology is connected to a lexicon model that spec-
ifies how concepts in the ontology can be realized
(e.g. the concept borders can be realized as the tran-
sitive verb to border or as a noun with a preposi-
tional phrase, border of). And second, this lexicon
model is used to automatically construct grammar
entries that are aligned to the underlying ontology.
Both steps will be described in the next section.

2 Generating ontology-specific grammars

We assume a grammar to be composed of two
parts: an ontology-specific part and an ontology-

independent part. The ontology-specific part con-
tains lexical entries that refer to individuals, con-
cepts and properties in the underlying ontology. It
is generated automatically from an ontology-lexicon
interface model, as described below. The ontology-
independent part comprises domain-independent ex-
pressions like determiners and auxiliary verbs. It
needs to be specified by hand, but can be reused
across domains.

We assume grammar entries to be pairs of a syn-
tactic and a semantic representation. As syntac-
tic representation we take trees from Lexicalized
Tree Adjoining Grammar (Schabes 1990), LTAG for
short. LTAG is very well-suited for ontology-based
grammar generation, mainly because it allows for
flexible basic units; we will demonstrate the impor-
tance of this below. As semantic representations
we take DUDEs (Cimiano, 2009) – representations
similar to Underspecified Discourse Representation
Structures (UDRSs) (Reyle, 1993) augmented with
information that facilitate a flexible semantic com-
position. This semantic flexibility nicely matches
the syntactic flexibility provided by LTAG.

The first step in generating the domain-specific
part of a grammar is to enrich the underlying ontol-
ogy with linguistic information. The framework we
use for this is LexInfo (Buitelaar et al., 2009). Lex-
Info offers a general frame for creating a declarative
specification of the lexicon-ontology interface by
connecting concepts of the ontology to information
about their linguistic realization, in particular word
forms, morphological information, subcategorizia-
tion frames and mappings between syntactic and se-
mantic arguments. For example, the LexInfo entry
for the verb to border looks as depicted in Figure
1. It comprises the verb’s lemma together with other
written forms (in principle all inflected forms, gener-
ated by a separate morphology module), and its syn-
tactic behaviour. The syntactic behaviour specifies
the syntactic arguments on the one hand, here sim-
ply called subject and object, and the semantic argu-
ments on the other hand. The semantic arguments
correspond to domain and range of a predicate that
refers to the concept borders in the ontology (in our
case a relation between two states). The predicative
representation also specifies mappings between the
syntactic and semantic arguments, more specifically
between the subject of the verb and the domain of

Christina Unger, Felix Hieber, Philipp Cimiano

62

border:TransitiveVP

Lemma
hasWrittenForm:“border”

WrittenForm
hasWrittenForm:“borders”

SyntacticProperty
SynPropName:“person”
SynPropValue:“3SG”

SyntacticBehaviourSubcatFrame

Object

Subject

PredicativeRepresentation

Domain

Range

SynSemCorrespondence

SynSemArgMap

SynSemArgMap

PropertyPredicate

borders:ObjectProperty

Figure 1: LexInfo entry for to border

the denoted relation, as well as the object of the verb
and the range of the relation.

Analogously, LexInfo provides general structures
for specifying the syntactic and semantic properties
of other categories such as intransitive verbs, noun
phrases, nouns with prepositional arguments, and so
on. An example of a noun with a prepositional ar-
gument is border of; the according LexInfo entry is
given in Figure 2. Its structure is very similar to the
transitive verb entry, the main difference being the
additional specification of the preposition required
by the noun.

Associating concepts of the ontology with such
LexInfo structures is a one-to-many mapping, since
most concepts can have different lexicalizations. For
the relation borders, for example, we would spec-
ify the TransitiveVP entry in Figure 1 as well as the
NounPP entry in Figure 2. Note that both denote a
predicate that is related to the same relation borders

in the ontology.
The process of specifying all possible lexicaliza-

tion alternatives is, up to now, done by hand. How-
ever it can in principle be automatized if the ontol-
ogy labels are chosen in a way such that they can be
processed by a part-of-speech tagger and related to
possible realizations, e.g. with the help of a corpus.

Once a LexInfo model of the ontology is spec-
ified, the next step is to generate grammar entries
from it. To this end, the lexical entries specified in
the LexInfo model are input to a general mechanism

that automatically generates corresponding pairs of
syntactic and semantic representations. For the tran-
sitive verb entry of to border in Figure 1, for exam-
ple, a number of elementary LTAG trees are gener-
ated – two of them are given in 6 and 7. Both trees
are paired with the DUDE in 8.

6. S

DP1 ↓ VP

V
borders

DP2 ↓

7. S

DP2 ↓ VP

AUX
is

VP

V
bordered

PP

P
by

DP1 ↓

8.
e, l1

l1 :
e

e : geobase#border (x, y)

〈DP1, x, l1〉, 〈DP2, y, l1〉

Generating LTAG grammars from a lexicon/ontology interface

63

border:NounPP

Lemma
hasWrittenForm:“border”

WrittenForm
hasWrittenForm:“borders”

SyntacticProperty
SynPropName:“number”
SynPropValue:“PL”

SyntacticBehaviourSubcatFrame

PObject

Preposition
hasWrittenForm:“of”

Subject

PredicativeRepresentation

Domain

Range

SynSemCorrespondence

SynSemArgMap

SynSemArgMap

PropertyPredicate

borders:ObjectProperty

Figure 2: LexInfo entry for border of

This semantic representation contains a
DRS labeled l1, which provides the predicate
geobase#border corresponding to the intended
concept in the ontology. This correspondence is
ensured by using the vocabulary of the ontology, i.e.
by using the URI of the concept instead of a more
generic predicate. The prefix geobase# is short for
http://www.geobase.org/ and specifies the
namespace of the Geobase ontology, which we use
(more on this in the next section). Furthermore, the
semantic representation contains information about
which substitution nodes in the syntactic structure
provide the semantic arguments x and y. That is, the
semantic referent provided by the meaning of the
tree substituted for DP1 corresponds to the domain
of the semantic predicate, while the semantic refer-
ent provided by the meaning of the tree substituted
for DP2 corresponds to the predicate’s range. Note
that the order of the substitution nodes is reversed
in the passive tree structure in 7.

Additional grammar entries generated from the
LexInfo model in Figure 1 are adjunction trees for
relative clauses and the gerund bordering, together
with a semantic representation similar to 8. In all
these cases the syntactic structure encoded in the el-
ementary trees captures the lexical material that is
needed for verbalizing the concept borders. This
is the reason why the generated syntactic structures
slightly differ from what one would expect from an

LTAG elementary tree. Elementary trees are com-
monly assumed to constitute extended projections
of lexical items, comprising their syntactic and se-
mantic arguments, cf. (Frank, 1992). In our gen-
erated grammar, however, elementary trees do not
build around lexical items but rather around lexical-
izations of concepts from the ontology. That is, not
only the semantic primitives but also the syntactic
domain of locality are imposed by the underlying
ontology. In many cases, this domain does not ex-
tend beyond the familiar lexical projections (recall
the tree in 6), however it might contain more lexical
material. For example, for the population example
from the beginning we would need a tree like in 9.

9. S

DP↓ VP

V
has

DP

DET↓ NP
inhabitants

Also, for a concept such as highest point, that relates
states and locations, we would want to generate a
tree like in 10.

Christina Unger, Felix Hieber, Philipp Cimiano

64

10.
NP

ADJ
highest

NP

N
point

PP

P
of

DP↓

As one of the reviewers points out, an alterna-
tive approach to dealing with such cases would be
to generate derivation trees that are composed of
a more conventional set of elementary trees. Al-
though this is doubtlessly a reasonable and elegant
idea, we confined ourselves to generating grammar
entries solely from the ontology, i.e. without refer-
ence to an additional, given set of basic structures.

Yet another example worth considering is the case
of adjectives. Figure 3 shows the LexInfo entry for
the adjective high in its attributive use. Semanti-
cally, it refers to a data property height in the ontol-
ogy, that maps mountains to integers. The domain
of this property corresponds to the syntactic argu-
ment which the adjective requires (namely the noun
that it modifies), and it is also linked to the ontology
via a selectional restriction that specifies to which
class the domain must belong, in this case mountain.
When building a grammar entry, this selectional re-
striction is encoded in the DUDE’s argument re-
quirements. Additionally, the PredicativePresenta-
tion contains information about the polarity of high

(which provides the ≥ in the adjective’s semantics)
and the value from which on something counts as
high. So a generated grammar entry for high would
contain the following LTAG tree and DUDE:

NP

ADJ
high

NP↓

x, l1

l1 :
geobase#height (x) ≥ 1000

〈NP, x,mountain, l1〉

From the same LexInfo model, grammar entries
for the comparative and the superlative case are gen-
erated. The written form of the adjective in these
cases is determined by the morphology module ac-

cording to the MorphologicalPattern.2

The methods for generating grammar entries from
the LexInfo model run automatically. They build
on templates that are defined for every LexInfo type
(or syntactic category, if you want), i.e. for intran-
sitive and transitive verbs, for nouns with preposi-
tional complements, for adjectives, and so on. They
use the subcategorization frame of a lexical entry in
LexInfo in order to build an appropriate LTAG tree,
and they use the mapping between syntactic and se-
mantic arguments to connect substitution nodes in
the tree with argument requirements in the semantic
representation.

Although the templates that guide the generation
of grammar entries have to be specified by hand for
each language one wants to cover, they are com-
pletely general in the sense that they are not tied to a
particular LexInfo model. Therefore they need to be
built only once and can be reused when other Lex-
Info models are built for other ontologies. Up to now
we provide extensive templates for English and ba-
sic ones for German. However there is no principled
restriction to certain languages since LexInfo is de-
signed in a largely language-independent way.

In the following section we demonstrate our ap-
proach with a particular application, a question an-
swering system, and point out the amount of work
that is needed for lexicalizing an ontology.

3 Applying the approach to question
answering on Geobase

We deployed the approach sketched in the previous
section in the context of a question answering sys-
tem on Raymond Mooney’s Geobase dataset, which
comprises geographical information about the US.
Our OWL version of it contains 10 classes (such as
city, state, river, mountain), 692 individuals instan-
tiating them, 9 object properties (such as borders,

capital, flows through) and another 9 data properties
(such as population and height).

The LexInfo model constructed for this ontology
contains 762 lexical entries. 692 of them correspond
to common nouns representing individuals, which
are constructed automatically. The remaining 70 en-
tries were built by hand, using the API that LexInfo

2For more details on adjectives in LexInfo see (Buitelaar et
al., 2009).

Generating LTAG grammars from a lexicon/ontology interface

65

high:Adjective

Lemma
hasWrittenForm:“high”

MorphologicalPattern
RegularEnglishAdjectivePattern

SyntacticBehaviourSubcatFrame

Mod

PredicativeRepresentation

Domain

mountain:Class

Polarity
positive

DataValue
1000

SynSemCorrespondence

SynSemArgMap

PropertyPredicate

height:DataProperty

Figure 3: LexInfo entry for high

provides. If we generously assume an effort of 5
minutes for building one such entry, the amount of
work needed for lexicalizing the ontology amounts
to approximately 6 hours. Then from those Lex-
Info entries, 2785 grammar entries (i.e. pairs of
LTAG trees and DUDEs) were automatically gener-
ated according to the templates we specified. In ad-
dition, we manually specified 149 grammar entries
for domain-independent elements such as determin-
ers, wh-words, auxiliary verbs, and so on.

The complete set of grammar entries finally
constitutes a domain-specific grammar that can be
used for parsing and interpretation. We demonstrate
this by feeding it into our question answering
system Pythia. (For the Geobase dataset, the
LexInfo model, the grammar files and a demo check
http://sc.cit-ec.uni-bielefeld/pythia).
Its architecture is depicted in Figure 4. First, the
input is handed to a parser that works along the
lines of the Earley-type parser devised by Schabes
& Joshi (Schabes & Joshi, 1988). It constructs
an LTAG derivation tree, considering only the
syntactic components of the lexical entries involved.
Next, syntactic and semantic composition rules
apply in tandem in order to construct a derived tree
together with an according DUDE. The syntactic
composition rules are TAG’s familiar substitution
and adjoin operation, and the semantic composi-
tion rules are parallel operations on DUDEs: an
argument saturating operation (much like function
application) that interprets substitution, and a union

operation that interprets adjoin. Once all argument
slots are filled, the constructed DUDE corresponds
to an equivalent UDRS, which is then subject to
scope resolution, resulting in a set of disambiguated
Discourse Representation Structures. Those can
subsequently be translated into a query language.

As an example, consider the input question
Which states border Hawaii?. The parser pro-
duces the following derivation tree:

S

DP↓ VP

V
border

DP↓
DP

DET
which

NP↓

NP
states

DP
Hawaii

Applying all substitutions yields the derived tree:

S

DP

DET
which

NP
states

VP

V
border

DP
Hawaii

Parallel to this, a semantic representation is built
which resolves to the following DRS:

Christina Unger, Felix Hieber, Philipp Cimiano

66

Input

Parser

ontology-independent grammar entries

ontology-specific grammar entries

LTAG derivation tree

syntactic construction

LTAG derived tree

semantic construction

DUDE

DRS

Query

Figure 4: Architecture of Pythia

?x y

geobase#state(x)
y = geobase#hawaii

geobase#border(x, y)

Subsequently, this DRS is translated into the fol-
lowing FLogic query (Kifer & Lausen, 1989):

FORALL X Y <- X:geobase#state

AND equal(Y,geobase#hawaii)

AND X[geobase#border -> Y].

orderedby X

The query is then evaluated with respect to the on-
tology using the OntoBroker Engine (Decker et al.,
1999). Since there are no states bordering Hawaii,
the returned result is empty.

4 Related work

Our work bears strong resemblance to semantic
grammars (Burton, 1976; Hendrix, 1977), for their
motivation was very similar to ours: Since some
syntactic constituents contribute little or nothing to
meaning, and since meaning components may be
distributed across parse trees, grammar rules should
not be syntax-driven but tailored to a particular se-
mantic domain. Burton and Hendrix therefore speci-
fied phrase-structure grammars that rely on semantic
classes instead of syntactic categories. The main dis-
advantage, however, are its limited possibilities for
reuse. A semantic grammar is tailored to one spe-
cific domain and cannot easily be ported to another
one. Although our approach also yields a grammar

which is aligned to a given ontology, it builds on a
principled syntactic and semantic theory and there-
fore bears enough linguistic generality to be easily
portable to new domains.

Our approach is also related to the Ontological Se-

mantics framework of Nirenburg & Raskin (Niren-
burg & Raskin, 2004), which attempts to construct
ontological representations as well. However, in
their case the ontology is assumed to be fixed and
cannot be exchanged. The strength of our approach
is that it can be adapted to different domains by the
fact that the grammar is directly generated from an
abstract specification of the lexicon-ontology inter-
face.

Our approach is also close to recent work by
Bobrow and others (Bobrow et al., 2009). The
main difference, however, is that they rely on
rewriting steps while we directly construct an
ontology-specific underspecified semantic represen-
tation. Thus, in our case the syntax-semantics inter-
face itself is ontology-specific. This is an advantage,
in our view, as the ontology can be used at construc-
tion time for disambiguation, for example. But it is
still up to future research to show whether rewriting
or direct mapping approaches are more suitable to
ontology-specific interpretation.

5 Conclusion

A range of applications, such as question answer-
ing with respect to a particular domain, require a
domain-specific interpretation of natural language
expressions. We argued that building generic log-

Generating LTAG grammars from a lexicon/ontology interface

67

ical forms is often not suitable for this task. We
therefore proposed an approach that relies on gen-
erating grammars from an underlying ontology. We
took grammar entries to consist of semantic repre-
sentations with a vocabulary that is aligned to that of
the ontology, and syntactic representations that com-
prise all lexical material needed for verbalizing the
ontology concepts.

We demonstrated that Tree Adjoining Grammars
fit such an approach very nicely, mainly because of
their extended domain of locality, the resulting flexi-
bility regarding basic syntactic units, and due to their
tight syntax-semantics interface.

Although the grammars we generate are aligned
to one specific ontology, the mechanism that gen-
erates them is completely general and works inde-
pendent of the underlying ontology. This is because
it does not generate grammar entries from the on-
tology itself but rather relies on a mediating lexicon
model that contains all relevant linguistic informa-
tion. Whenever we want to port our question an-
swering system, for example, to a different domain,
only the lexicon model would need to be replaced.

We illustrated that the lexicalization of an ontol-
ogy requires only a reasonable amount of manual
engineering. However, it does not easily scale to
very large ontologies. It will therefore be subject
of future research to automatize this process.

Another area for further work is the amount of
LTAG trees that are generated. Up to now, they
comprise all possible alternations; for example, for a
transitive verb, the basic transitive structure is gen-
erated, together with corresponding wh-movement
trees, passive trees, relative clause trees, and so on.
This leads to redundancies in the grammar genera-
tion mechanism and misses important linguistic gen-
eralizations. A more principled approach would in-
volve general rules that derive those additional trees
from the basic transitive structure.

Acknowledgments

We would like to thank the reviewers for their help-
ful comments and John McCrae for all LexInfo-
related work and discussions.

References

Daniel G. Bobrow and Cleo Condoravdi and Lauri Kart-
tunen and Annie Zaenen. 2009. Learning by read-

ing: normalizing complex linguistic structures onto a

knowledge representation. AAAI Symposium 2009:
Learning by Reading and Learning to Read.

Johan Bos. 2008. Wide-Coverage Semantic Analysis

with Boxer. Proceedings of Semantics in Text Process-
ing (STEP 2008), pages 277–286. Research in Compu-
tational Semantics, College Publications.

Paul Buitelaar and Philipp Cimiano and Peter Haase
and Michael Sintek. 2009. Towards Linguistically

Grounded Ontologies. Proceedings of the 6th Annual
European Semantic Web Conference (ESWC).

Richard R. Burton. 1976. Semantic Grammar: An Engi-

neering Technique for Constructing Natural Language

Understanding Systems. Tech. Report 3453, Bolt, Be-
ranak and Newman Inc., Cambridge, MA.

Philipp Cimiano. 2009. Flexible Composition with

DUDES. Proceedings of the 8th International Confer-
ence on Computational Semantics (IWCS’09).

Stefan Decker and Michael Erdmann and Dieter Fensel
and Rudi Studer. 1999. Ontobroker: Ontology Based

Access to Distributed and Semi-Structured Informa-

tion. Database Semantics: Semantic Issues in Mul-
timedia Systems, Kluwer. Pages 351–369.

Robert Frank. 1992. Syntactic Locality and Tree Adjoin-

ing Grammar: Grammatical, Acquisition and Process-

ing Perspectives. Ph.D. thesis, University of Pennsyl-
vania.

Gary G. Hendrix. 1977. Human engineering for ap-

plied natural language processing. Proceedings of the
Fifth International Joint Conference on Artificial Intel-
ligence, pages 183–191.

Michael Kifer and Georg Lausen. 1989. F-Logic:

A Higher-Order language for Reasoning about Ob-

jects, Inheritance, and Scheme. SIGMOD Record
18(2): 134–146. ACM, New York.

Sergei Nirenburg and Victor Raskin. 2004. Ontological

Semantics. MIT Press.
Uwe Reyle 1993. Dealing with ambiguities by under-

specification: construction, representation and deduc-

tion. Journal of Semantics 10: 123–179.
Yves Schabes and Aravind K. Joshi 1988. An Earley-

type parsing algorithm for Tree Adjoining Grammars.
Proceedings of the 26th annual meeting on Association
for Computational Linguistics (ACL), pages 258–269.

Christina Unger, Felix Hieber, Philipp Cimiano

68

