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Abstract 

This paper presents our work for 
participation in the 2010 CIPS-SIGHAN 
evaluation on two tasks which are Event 
Description Sub-sentence (EDSs) 
Analysis and Complete Sentence (CS) 
Parsing in Chinese Parsing. The paper 
describes the implementation of our 
system as well as the results we have 
achieved and the analysis. 

1 Introduction 

The paper describes the parsing system of SAU 
in 1st CLPS-SIGHAN evaluation task 2. We 
participate in two tasks - EDS Analysis and CS 
Parsing. The testing set only provides 
segmentation results, therefore, we divide our 
system into the following subsystems: (1) Part-
of-Speech (POS) tagging system, we mainly 
make use of Conditional Random Fields (CRFs) 
model for POS tagging; (2) parsing system, the 
paper adopts divide-and-conquer strategy to 
parsing, which uses CCRFs model for parsing 
and adopts searching algorithm to build trees in 
decoding; (3) head recognition system, which 
also makes use of CCRFs model. 

The rest of the paper is organized as follows: 
Section 2 describes the POS tagging system; 
Section 3 describes the structure of our parsing 
system; Section 4 describes head recognition 
system in parsing tree; Section 5 presents the 
results of our system and the analysis; Section 6 
concludes the paper. 

2 Part-of-Speech Tagging 

We use CRFs model and post-processing 
method for POS tagging. In the first step, we tag 

POS based on CRFs. The second step is the 
post-processing after tagging, which is 
correcting by using dictionary drawn from 
training set. The system architecture of POS 
tagging is shown in Figure 1. 

2.1 Features 

Feature selection significantly influences the 
performance of CRFs. We use the following 
features in our system. 

Atom Template 
word(-2) , word(-1) , word(0) , word(1) , word(2) 

prefix( word (0) ) ,suffix( word(0) ) 
includeDot1(word ( 0 )) 

includeDot2(word ( 0 )) 
Complex Template 

word(-1)& word(0) ， word(0)& word(1) 
word(0)& prefix( word (0) ) 
word(0)& suffix( word(0) ) 

word(0)& includeDot1(word ( 0 )) 
word(0)& includeDot2(word ( 0 )) 

Table 1: Feature templates used in POS tagger. 
word(i) represents the ith word, prefix( word (i) ) 
represents the first character of the ith word, 
suffix( word (i) ) represents the last character of  
the ith word, ncludeDot1(word ( i)) represents 
the ith word containing ‘· ’ or not, and 
includeDot2(word ( i)) represnts the ith word 
containing ‘.’ or not. 

2.2 Post-processing 

The post-processing module adopts the 
following processing by analyzing the errors 
from tagging result based on CRFs. We firstly 
need to build two dictionaries which are single 
class word dictionary and ambiguity word 
dictionary before the post-processing. The 
single class word dictionary and ambiguity 
word dictionary are built by drawing from 
training set. 



 
The single class word is the word having 

single POS in training set, and the ambiguity 
word is the word having multi POS in training 
set. Besides, we build rules for words with 
distinctive features aiming at correcting errors, 
such as “的”, numbers and English characters, 
etc. 

Figure 2 shows the post-processing step after 
POS tagging by CRFs model. As shown in 
Figure 2, we respectively post-process single 
class words and ambiguity words according to 
CRF score. 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(1) Single class word processing module 

The post-processing of single class words 
consults the single class word dictionary and 
CRFs score. When the score from CRFs is 
higher than 0.9, we take the POS from CRFs as 
the final POS; otherwise, POS of the word is 
corrected by the POS in the single class word 
dictionary. 
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Figure2: Post-processing architecture after CRF labeling 
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Figure 1: System architecture of POS tagging



(2) Ambiguity word processing module 
The post-processing of ambiguity words 
consults the ambiguity word dictionary and 
CRFs score. When the POS from CRFs belongs 
to the POS of the word in the ambiguity word 
dictionary, we take the POS from CRFs as the 
final POS; otherwise, we examine the score of 
CRF, if the score is less than 0.4, the final POS 
of the word is the POS who has the highest 
score (has highest frequency), or else taking 
POS from CRF as the final POS. 

(3) Unknown word processing module 
The unknown words are the words not in 
training set. By analyzing the examples, we find 
that there are great deals of person names, 
location names, organization names and 
numbers, etc. And the words have 
characteristics when building word, therefore, 
we set up rules for processing. 

2.3 Experiment results 

 Table 2 shows the comparative experimental 
results of POS tagging using two methods. 

Table 2: Comparative POS tagging results 

3 Parsing system 

The paper uses divide-and-conquer strategy 
(Shiuan 1996 et al., Braun 2000 et al., Lyon 
1997 et al.)for parsing. Firstly, we recognize 
MNP for an input sentence, which divide the 
sentence into two kinds of parts. One kind is 
MNPs, and the other one is frame which is a 
new sentence generating by replacing MNP 
using its head word. Secondly, we use parsing 
approach based on chunking (Abney, 1991, Erik 
Tjong and Kim Sang, 2001) and a searching 
algorithm in decoding. Thirdly, we combine the 
parsing trees of MNPs and frame, which obtains 
the full parsing tree of the original sentence. 
Figure 3 shows the architecture of paring 
system. 

3.1 MNP recognition 

Maximal Noun Phrase (MNP) is the noun 
phrase which is not contained by any other noun 
phrases. We use Berkeley parser (2009 1.0) for 

MNP recognition. We first use Berkeley parser 
to parse sentences after POS tagging, and then 
we tag MNPs from the parsing results. As the 
following example: 
Berkeley parser result: dj[ 中国/nS vp[ 重视/v 
vp[ 发展/v np[ pp[ 与/p np[ 欧洲/nS 国家/n ] ] 的
/uJDE 关系/n ] ] ] ] 
MNP recognition result: 中国/nS 重视/v 发展

/v np[ 与/p 欧洲/nS 国家/n 的/uJDE 关系/n ]  
The results of MNP recognition EDSs 

analysis and CS parsing are as table3: 
 
 P R F 

EDSs 85.3202% 85.998% 85.6578% 
CS 77.7102% 79.2782% 78.4864% 

Table 3: Results of MNP recognition 

3.2 Head recognition of MNP and 
generation of frame 

 In this paper, the new sentence in which MNPs 
are replaced by their head word is defined as the 
sentence’s frame. The head of MNPs is 
identified after MNP recognition and then they 
are used to replace the original MNP, and 
finally the sentence’s frame is formed. We use 
the rules to recognize the head of MNP. Usually, 
the last word of MNP is the head of the phrase, 
which can represent the MNP in function. For 
example: “[该/r 学派/n] 同样/ad 主张/v 消除/v 
[ 干预 /v 造成 /v 的 /u 阻碍 /n] 。 ” In this 
sentence“ 该 /r学派 /n” and “ 干预/v 造成/v 

的/u 阻碍/n” are MNPs. If we omit the 
modifier in MNP, for example “[学派/n] 同样

/ad 主张/v 消除/v [阻碍/n]。”, the meaning of 
the sentence will not be changed. Because the 
head can represent the syntax function of MNP, 
we can use the head for parsing, which can 
avoid the effect of the modifier of MNP on 
parsing and reduce the complexity of parsing. 

Method EDSs 
precision 

CS 
precision

CRF 92.83% 89.42% 
CRF +  

post-processing 93.96% 91.05% 

However, the components of MNP are 
complicated, not all of the last word of MNP 
can be the head of MNP. The paper shows that 
if MNP has parentheses, we can use the last 
word before parentheses as the head. When the 
last word of MNP is “等”, we use the second last 
word as the head.  

3.3 Chunking with CRFs 

The accuracy of chunk parsing is highly 
dependent on the accuracy of each level of  



 
chunking. This section describes our approach 
to the chunking task. A common approach to 
the chunking problem is to convert the problem 
into a sequence tagging task by using the 
“BIEO” (B for beginning, I for inside, E for 
ending, and O for outside) representation. 

This representation enables us to use the 
linear chain CRF model to perform chunking, 
since the task is simply assigning appropriate 
labels to sequence. 

3.3.1 Features 

Table 4 shows feature templates used in the 
whole levels of chunking. In the whole levels of 
chunking, we can use a rich set of features 
because the chunker has access to the 
information about the partial trees that have 
been already created (Yoshimasa et al., 2009). It 
uses the words and POS tags around the edges 
of the covered by the current non-terminal 
symbol. 

Table 4: Feature templates used in parsing system.  
W represents a word, P represents the part-of-speech 
of the word, C represents the sum of the chunk 
containing the word, F represents the first word of 
the chunk containing the word, L represents the last 
word of the chunk containing the word, S represents 
that the word is a non-terminal symbol or not. Wj is 
the current word; Wj-1 is the word preceding Wj, Wj+1 
is the word following Wj. 

 

 

 

 

 

 

 

 

3.4 Searching for the Best Parse 

The probability for an entire parsing tree is 
computed as the product of the probabilities 
output by the individual CRF chunkers: 

0

(y / )
h

i i
i

score p x
=

=∏  

We use a searching algorithm to find the highest 
probability derivation. CRF can score each 
chunker result by A* search algorithm, 
therefore, we use the score as the probability of 
each chunker. We do not give pseudo code, but 
the basic idea is as figure 4. 

 
 

1: inti parser(sent) 
2: Parse(sent, 1, 0) 

    3: 
    4: function Parse(sent, m, n) 
    5:  if sent is chunked as a complete sentence 
    6:     return m 
    7:  H = Chunking(sent, m/n) 
    8:   for h∈H do 
    9:    r = m * h.probability 
    10:     if r＞n then 
    11:        sent2 = Update(sent, h) 
    12:        s = Parse(sent2, r, n) 
    13:        if s＞n then n = s 
    14:    return n 

15: function Chunking(sent, t) 
    16: perform chunking with a CRF chunker and 
return a set of chunking hypotheses whose  

17: probabilities are greater than t. 
18: function Update(sent, h) 
19:  update sequence sent according to chunking 

hypothesis h and return the updated sequence. 
Figure 4: Searching algorithm for the best parse  

 
It is straightforward to introduce beam search 

in this search algorithm—we simply limit the 
number of hypotheses generated by the CRF 
chunker. We examine how the width of the 
beam affects the parsing performance in the 

Word Unigrams W-2 , W-1, W0, W1, W2,
Word Bigrams W-2W-1, W-1W0, W0W1, 

W1W2, W0W-2, W0W2,  
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POS Unigrams P-3, P-2 , P-1 , P0 , P1, P2, P3,
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P0P1P2, P1P2P3
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Figure3: Parsing system architecture 



experiments. We experiment beam width and 
we adopt the beam width of 4 at last. 

3.5 Head Finding 

Head finding is a post process after parsing in 
our system. The paper uses method combining 
statistics and rules to find head. The selected 
statistical method is CRF model. The first step 
is to train a CRF classifier to classify each 
context-free production into several categories. 
Then a rule-based method is used to post 
process the identification results and gets the 
final recognition results. The rule-based post-
processing module mainly uses rule base and 
case base to carry out post-processing. 

3.6 Head finding based on CRFs 

The head finding procedure proceeds in the 
bottom-up fashion, so that the head words of 
productions in lower layers could be used as 
features for the productions of higher layers 
(Xiao chen et al. 2009). 
 

Atom template Definition 
CurPhraseTag The label of the current word 
LCh_Word The left most child 
RCh_Word The right most child 
LCh_Pos The POS of the left most child
MCh_Pos The POS of the middle child 
RCh_Pos The POS of the right most child
NumCh The number of children 

CurPhraseTag 1 ± The labels of the former phrase 
and the latter 

Table 5: Atom templates for Head finding 
 

Table 6: Complex templates for Head finding 
 

The atom templates are not sufficient for 
labeling context; therefore, we use some 
complex templates by combining the upper 
atom templates for more effectively describing 
context. When the feature function is fixed, the 
atom templates in complex templates are 
instantiated, which will generate features. 

The final feature templates are composed of 
the atom templates and the complex templates. 
The feature templates of the head recognition in 
phrases contain 24 types. 

3.7 Head Finding based on rules 

Through the analysis of error examples, we 
found that some CRFs recognition results are 
clearly inconsistent with the actual situation; we 
can use rules to correct these errors, thus 
forming a rule base. Example-base is a chunk-
based library built through analysis and 
processing on the training corpus. The 
Example-base is composed of all the bottom 
chunk and high-level chunk in training corpus. 
High-level phrases are the bottom chunk 
replaced by heads. 

3.8 Experiment results of head finding 

Table 7 shows the comparative experiment 
results of head recognition. 

 

Table7: Comparative results of head recognition 

4 Experiment of parsing system 

We perform experiments on the training set and 
testing set of Tsinghua Treebank provided by 
CIPS-SIGHAN-ParsEval-2010. For the direct 

fluence of parsing result by the length of 
sentence, we count the length distribution of 
corpus. 

in

Table 8 shows that the length of training set 
and testing set of EDSs is mostly less than 20 
words. The length of training set of CS is evenly 
distributed, while the length of testing set is 
between 30 and 40 words. 

Complex Template 
CurPhraseTag/ NumCh, CurPhraseTag/ LCh_Word, 
CurPhraseTag/LCh_Pos, 
CurPhraseTag/LCh_Pos/RCh_Pos, 
CurPhraseTag/NumCh/LCh_Pos/ RCh_Pos, 
CurPhraseTag/NumCh/LCh_Word/LCh_Pos/MCh_
Pos/RCh_Word/RCh_Pos,  
LCh_Word/LCh_Pos, CurPhraseTag/MCh_Pos, 
NumCh/LCh_Pos/ MCh_Pos/ RCh_Pos, 
 CurPhraseTag/ NumCh/ MCh_Pos, 
CurPhraseTag/LCh_Word/LCh_Pos/MCh_Pos/RCh
_Word/RCh_Pos,  
LCh_Word/ LCh_Pos, LCh_Pos/ MCh_Pos, 
 CurPhraseTag/NumCh, RCh_Word/RCh_Pos,  
NumCh/LCh_Word/LCh_Pos/MCh_Pos/RCh_Word
/RCh_Pos 

 Total 
Num 

Wrong 
Num Precision 

CRFs 7035 93 98.68% 
CRFs + 

rule-base+ 
case-base 

7035 74 98.95% 

The paper adopts divide-and-conquer strategy 
to parsing; therefore, we conduct the 



frame whose length is less than 5 words, the frame 
length distribution of training set is 9.17% higher 
than the testing set; for the frame whose length is 
more than 5 words and less than 10 words, the 
training set is 7.65% lower than testing; and for the 
frame whose length is between 10 words and 20 
words, the testing set is 20.09% higher compared 
with the training set. From another aspect, in 
testing set, CS is 46.2% lower compared with 
EDSs for frame whose length is less than 5. 
Therefore, the complexity of frame in CS is higher 
than in EDSs. 

comparative experiment of MNP parsing and 
frame parsing. In addition, the results of MNP 
parsing and frame parsing depend on the length 
largely, so we list the length distribution of 
MNP and frame of EDSs and CS as table 9 and 
table 10. 

 

As shown in Table 8, 9 and 10, the length 
distribution of testing set shows that the paring unit 
length of EDSs is reduced to less than 10 from less 
than 20 in original sentence and CS is reduced to 
less than 20 from between 30 and 40 after dividing 
an original sentence into MNPs parts and frame 
part. The above data indicate the divide-and-
conquer strategy reduces the complexity of 
sentences significantly. 

Table 8: Length distribution of EDSs and CS 

 EDSs CS 

length training 
set 

testing 
set 

training 
set 

testing 
set 

[0, 10) 50.68% 64.30% 10.59% 0 

[10,20) 37.27% 29.50% 27.55% 0 
[20,30) 8.64% 5.40% 26.37% 79.9%
[30,40) 2.31% 0.60% 16.63% 20.1%

40≤ 1.10% 0.20% 18.86% 0 

 
We define Simple MNP (SMNP) whose 

length is less than 5 words and Complete MNP 
(CMNP) whose length is more than 5 words. 

 We can conclude that the parsing result of CS 
is lower than EDSs from Table 11, which is due 
to the higher complexity of MNP and frame in CS 
compared with EDSs from the results of Table 9 
and Table 10. In addition, we obtain about 1% 
improvement compared with Berkeley parser in 
MNP and Frame parsing result in EDSs from 
Table 11 and Table 12, which indicates that our 
method is effective for short length parsing units. In 
particular, Table 12 shows that our result is 1.8% 
higher than Berkeley parser in the frame parsing of 
CS. Due to the non-consistent frame length 
distribution of training set and testing set in CS 
from Table 10, we find that Berkeley parser largely 
depends on training set compared with our method. 

Table 9: Length distribution of MNP  

 EDSs CS 

length training 
set 

testing 
set 

training 
set 

testing 
set 

[0,5) 55.30% 62.46% 55.42% 59.45%
[5,10) 32.66% 29.69% 32.57% 30.77%
[10,20) 10.03% 6.75% 10.03% 8.65%
20≤ 2.00% 1.09% 1.98% 1.12%

 
Table 9 shows the length distribution of MNP 

in training set and testing set of sub-sentence is 
consistent in basic, but the SMNP distribution 
of EDSs is 3.01% less than CS, which 
illuminates the complexity of MNP in CS is 
higher than in EDSs. 

 
 EDSs CS 

length training 
set 

testing 
set 

training 
set 

testing 
set 

[0,5) 45.84% 47.20% 10.17% 1.00%
[5,10) 43.58% 44.00% 24.14% 10.80%
[10,20) 9.98% 8.70% 41.31% 62.20%
20≤ 0.60% 0.10% 24.38% 26.00%

To more fairly compare the performance of 
our proposed method, the comparative results 
are shown as Table 13, the first one (Model01) 
is combination method of MNP pre-processing 
and chunk-based, and the chunk-based result 
which adopts CCRFs method with searching 
algorithm; the second one (Berkeley) is the 
parsing result of Berkeley parser; the third one 
(Model02) also is combination method of MNP 
pre-processing and chunk-based, and the chunk-
based result which adopts CCRFs method only; 
and the lase one (Model03) is the chunk-based 
result which adopts CCRFs method with 
searching algorithm. 

Table 10: Length distribution of frame 
 

Table 10 shows the length distribution of frame 
in training set and testing set of EDSs is consistent 
in basic, while the CS is non-consistent. For the 

  
    



 method P R F 
Berkeley 87.5746% 87.8365% 87.7053% 

EDSs 
Proposed Method 88.5752% 88.6341% 88.6047% 

Berkeley 84.4755% 84.9182% 84.6963% CS 
Proposed Method 84.7535% 85.046% 84.8995% 

Table 11: Comparative results of MNP parsing 
 

 method P R F 
Berkeley 91.3411% 91.1823% 91.2617% 

EDSs 
Proposed Method 92.4669% 92.0765% 92.2713% 

Berkeley 85.4388% 85.3023% 85.3705% 
CS 

Proposed Method 87.3357% 87.0357% 87.1854% 
Table12: Comparative results of Frame parsing 

 
 P R F 

Model 01 85.42% 85.35% 85.39%
Berkeley 84.56% 84.62% 84.59%

Models 02 85.31% 85.30% 85.31%
Models 03 83.99% 83.77% 83.88%

Table13: Comparative results of EDSs 
 

dj constituent fj constituent overall F 

P R P R F F F 
Model 01 78.64% 78.73% 78.69% 70.22% 71.62% 70.91% 74.80% 
Berkeley 78.37% 78.16% 78.26% 69.43% 72.42% 70.89% 74.58% 

Models 02 78.18% 78.30% 78.24% 70.20% 70.98% 70.59% 74.41% 
Models 03 77.38% 77.41% 77.39% 70.39% 70.01% 70.24% 73.82% 

Table14: Comparative results of CS 
 
From Table 13, we can see that Model01 
performance in EDSs is improved by 0.08% 
than Model02, and the searching algorithm 
helps little in EDSs analysis. From Table 14, we 
can see that Model01 performance in CS is 
improved by 0.4% than Model02, better than 
Berkeley parser result with search algorism. 
Overall, in EDSs analysis, Model01 
performance is improved by 0.8% than 
Berkeley parser, and in overall F-measure of CS, 
Model01 performance is 0.22% higher than 
Berkeley parser. From Table 13 and 14, We can 
see that Model01 performance in EDSs is 
improved by 1.51% than Model03 and the 
Model01 in CS is improved by 0.98% than 
Model03, and the MNP pre-processing helps. 

5 Conclusions 

We participate in two tasks - EDS Analysis 
and CS Parsing in CLPS-SIGHAN- ParsEval-

2010. We use divide-and-conquer strategy for 
parsing and a chunking-based discriminative 
approach to full parsing by using CRF for 
chunking. As we all know, CRF is effective for  
chunking task. However, the chunking result in 
the current level is based on the upper level in 
the chunking-based parsing approach, which 
will enhance ambiguity problems when the 
input of the current level contains non-terminal 
symbols, therefore, the features used in 
chunking is crucial. This paper, for effectively 
using the information of partial trees that have 
been already created, keeps the terminal 
symbols in the node containing non-terminal 
symbols for features. Our experiments show 
that these features are effective for ambiguity 
problems. 

We suppose that MNP pre-processing before 
statistical model can significantly simplify the 
analysis of complex sentences, which will have 
more satisfatory results compared with using 
statistical model singly. The current results 



show that the MNP pre-processing does 
simplify the complex sentences. However, the 
performance of MNP recognition and the 
parsing of MNP need to be improved, which 
will be our next work. 
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