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Abstract

We show that Viterbi (or “hard”) EM is
well-suited to unsupervised grammar in-
duction. It ismoreaccurate than standard
inside-outside re-estimation (classic EM),
significantly faster, and simpler. Our ex-
periments with Klein and Manning’s De-
pendency Model with Valence (DMV) at-
tain state-of-the-art performance — 44.8%
accuracy on Section 23 (all sentences) of
the Wall Street Journal corpus — without
clever initialization; with a good initial-
izer, Viterbi training improves to 47.9%.
This generalizes to the Brown corpus,
our held-out set, where accuracy reaches
50.8% — a 7.5% gain over previous best
results. We find that classic EM learns bet-
ter from short sentences but cannot cope
with longer ones, where Viterbi thrives.
However, we explain that both algorithms
optimize the wrong objectives and prove
that there are fundamental disconnects be-
tween the likelihoods of sentences, best
parses, and true parses, beyond the well-
established discrepancies between likeli-
hood, accuracy and extrinsic performance.

1 Introduction

Unsupervised learning is hard, often involving dif-
ficult objective functions. A typical approach is
to attempt maximizing the likelihood of unlabeled
data, in accordance with a probabilistic model.
Sadly, such functions are riddled with local op-
tima (Charniak, 1993, Ch. 7,inter alia), since their
number of peaks grows exponentially with in-
stances of hidden variables. Furthermore, a higher
likelihood does not always translate into superior

task-specific accuracy (Elworthy, 1994; Merialdo,
1994). Both complications are real, but we will
discuss perhaps more significant shortcomings.

We prove that learning can be error-prone even
in cases when likelihoodis an appropriate mea-
sure of extrinsic performanceand where global
optimization is feasible. This is because a key
challenge in unsupervised learning is that thede-
sired likelihood is unknown. Its absence renders
tasks like structure discovery inherently under-
constrained. Search-based algorithms adopt sur-
rogate metrics, gambling on convergence to the
“right” regularities in data. Their wrong objec-
tives create cases in whichbothefficiencyandper-
formance improve when expensive exact learning
techniques are replaced by cheap approximations.

We propose using Viterbi training (Brown
et al., 1993), instead of inside-outside re-
estimation (Baker, 1979), to induce hierarchical
syntactic structure from natural language text. Our
experiments with Klein and Manning’s (2004) De-
pendency Model with Valence (DMV), a popular
state-of-the-art model (Headden et al., 2009; Co-
hen and Smith, 2009; Spitkovsky et al., 2009),
beat previous benchmark accuracies by 3.8% (on
Section 23 of WSJ) and 7.5% (on parsed Brown).

Since objective functions used in unsupervised
grammar induction are provably wrong, advan-
tages of exact inference may not apply. It makes
sense to try the Viterbi approximation — it is also
wrong, only simpler and cheaper than classic EM.
As it turns out, Viterbi EM is not only faster but
also more accurate, consistent with hypotheses of
de Marcken (1995) and Spitkovsky et al. (2009).

We begin by reviewing the model, standard data
sets and metrics, and our experimental results. Af-
ter relating our contributions to prior work, we
delve into proofs by construction, using the DMV.

9



Corpus Sentences POS Tokens Corpus Sentences POS Tokens
WSJ1 159 159 WSJ13 12,270 110,760
WSJ2 499 839 WSJ14 14,095 136,310
WSJ3 876 1,970 WSJ15 15,922 163,715
WSJ4 1,394 4,042 WSJ20 25,523 336,555
WSJ5 2,008 7,112 WSJ25 34,431 540,895
WSJ6 2,745 11,534 WSJ30 41,227 730,099
WSJ7 3,623 17,680 WSJ35 45,191 860,053
WSJ8 4,730 26,536 WSJ40 47,385 942,801
WSJ9 5,938 37,408 WSJ45 48,418 986,830
WSJ10 7,422 52,248 WSJ100 49,206 1,028,054
WSJ11 8,856 68,022 Section 23 2,353 48,201
WSJ12 10,500 87,750 Brown100 24,208 391,796
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Figure 1: Sizes of WSJ{1, . . . , 45, 100}, Section 23 of WSJ∞ and Brown100 (Spitkovsky et al., 2009).

NNS VBD IN NN ♦

Payrolls fell in September .

P = (1−

0
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PSTOP(⋄, L, T)) × PATTACH(⋄, L, VBD)
× (1− PSTOP(VBD, L, T)) × PATTACH(VBD, L, NNS)
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Figure 2: A dependency structure for a short sen-
tence and its probability, as factored by the DMV,
after summing outPORDER (Spitkovsky et al., 2009).

2 Dependency Model with Valence

The DMV (Klein and Manning, 2004) is a single-
state head automata model (Alshawi, 1996) over
lexical word classes{cw} — POS tags. Its gener-
ative story for a sub-tree rooted at a head (of class
ch) rests on three types of independent decisions:
(i) initial direction dir ∈ {L, R} in which to attach
children, via probabilityPORDER(ch); (ii) whether to
sealdir, stopping with probabilityPSTOP(ch, dir, adj),
conditioned onadj ∈ {T, F} (true iff considering
dir’s first, i.e., adjacent, child); and (iii) attach-
ments (of classca), according toPATTACH(ch, dir, ca).
This produces only projective trees. A root token
♦ generates the head of a sentence as its left (and
only) child. Figure 2 displays a simple example.

The DMV lends itself to unsupervised learn-
ing via inside-outside re-estimation (Baker, 1979).
Viterbi training (Brown et al., 1993) re-estimates
each next model as if supervised by the previous
best parse trees. And supervised learning from

reference parse trees is straight-forward, since
maximum-likelihood estimation reduces to count-
ing: P̂ATTACH(ch, dir, ca) is the fraction of children —
those of classca — attached on thedir side of a
head of classch; P̂STOP(ch, dir, adj = T), the frac-
tion of words of classch with no children on the
dir side; and̂PSTOP(ch, dir, adj = F), the ratio1 of the
number of words of classch having a child on the
dir side to their total number of such children.

3 Standard Data Sets and Evaluation

The DMV is traditionally trained and tested on
customized subsets of Penn English Treebank’s
Wall Street Journal portion (Marcus et al., 1993).
Following Klein and Manning (2004), we be-
gin with reference constituent parses and com-
pare against deterministically derived dependen-
cies: after pruning out all empty sub-trees, punc-
tuation and terminals (tagged# and $) not pro-
nounced where they appear, we drop all sentences
with more than a prescribed number of tokens
remaining and use automatic “head-percolation”
rules (Collins, 1999) to convert the rest, as is stan-
dard practice. We experiment with WSJk (sen-
tences with at mostk tokens), for1 ≤ k ≤ 45, and
Section 23 of WSJ∞ (all sentence lengths). We
also evaluate on Brown100, similarly derived from
the parsed portion of the Brown corpus (Francis
and Kucera, 1979), as our held-out set. Figure 1
shows these corpora’s sentence and token counts.

Proposed parse trees are judged on accuracy: a
directed scoreis simply the overall fraction of cor-
rectly guessed dependencies. LetS be a set of
sentences, with|s| the number of terminals (to-

1The expected number of trials needed to get one
Bernoulli(p) success isn ∼ Geometric(p), with n ∈ Z

+,
P(n) = (1 − p)n−1p and E(n) = p−1; MoM and MLE
agree,̂p = (# of successes)/(# of trials).
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(b) %-Accuracy forViterbi (Hard EM)
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Figure 3: Directed dependency accuracies attained by the DMV, when trained on WSJk, smoothed, then
tested against a fixed evaluation set, WSJ40, for three different initialization strategies (Spitkovsky et al.,
2009). Red, green and blue graphs represent the supervised (maximum-likelihood oracle) initialization,
a linguistically-biased initializer (Ad-Hoc∗) and the uninformed (uniform) prior. Panel (b) shows results
obtained with Viterbi training instead of classic EM — Panel(a), but is otherwise identical (in both, each
of the 45 vertical slices captures five new experimental results and arrows connect starting performance
with final accuracy, emphasizing the impact of learning). Panels (c) and (d) show the corresponding
numbers of iterations until EM’s convergence.

kens) for eachs ∈ S. Denote byT (s) the set
of all dependency parse trees ofs, and letti(s)
stand for the parent of tokeni, 1 ≤ i ≤ |s|, in
t(s) ∈ T (s). Call the gold referencet∗(s) ∈ T (s).
For a given model of grammar, parameterized by
θ, let t̂θ(s) ∈ T (s) be a (not necessarily unique)
likeliest (also known as Viterbi) parse ofs:

t̂θ(s) ∈

{

arg max
t∈T (s)

Pθ(t)

}

;

thenθ’s directed accuracy on a reference setR is

100% ·

∑

s∈R

∑|s|
i=1 1{t̂θ

i
(s)=t∗

i
(s)}

∑

s∈R
|s|

.

4 Experimental Setup and Results

Following Spitkovsky et al. (2009), we trained the
DMV on data sets WSJ{1, . . . , 45} using three ini-
tialization strategies: (i) the uninformed uniform
prior; (ii) a linguistically-biased initializer, Ad-
Hoc∗;2 and (iii) an oracle — the supervised MLE
solution. Standard training is without smoothing,
iterating each run until successive changes in over-
all per-token cross-entropy drop below2−20 bits.

We re-trained all models using Viterbi EM
instead of inside-outside re-estimation, explored
Laplace (add-one) smoothing during training, and
experimented with hybrid initialization strategies.

2Ad-Hoc∗ is Spitkovsky et al.’s (2009) variation on Klein
and Manning’s (2004) “ad-hoc harmonic” completion.
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Figure 4: Superimposes directed accuracies attained by DMVmodels trainedwith Laplace smoothing
(brightly-colored curves) over Figure 3(a,b); violet curves represent Baby Steps (Spitkovsky et al., 2009).

4.1 Result #1: Viterbi-Trained Models

The results of Spitkovsky et al. (2009), tested
against WSJ40, are re-printed in Figure 3(a); our
corresponding Viterbi runs appear in Figure 3(b).

We observe crucial differences between the two
training modes for each of the three initialization
strategies. Both algorithms walk away from the
supervised maximum-likelihood solution; how-
ever, Viterbi EM loses at most a few points of
accuracy (3.7% at WSJ40), whereas classic EM
drops nearly twenty points (19.1% at WSJ45). In
both cases, the single best unsupervised result is
with good initialization, although Viterbi peaks
earlier (45.9% at WSJ8) and in a narrower range
(WSJ8-9) than classic EM (44.3% at WSJ15;
WSJ13-20). The uniform prior never quite gets off
the ground with classic EM but manages quite well
under Viterbi training,3 given sufficient data — it
even beats the “clever” initializer everywhere past
WSJ10. The “sweet spot” at WSJ15 — a neigh-
borhood where both Ad-Hoc∗ and the oracle ex-
cel under classic EM — disappears with Viterbi.
Furthermore, Viterbi does not degrade with more
(complex) data, except with a biased initializer.

More than a simple efficiency hack, Viterbi EM
actually improves performance. And its benefits to
running times are also non-trivial: it not only skips
computing the outside charts in every iteration but
also converges (sometimes an order of magnitude)

3In a concurrently published related work, Cohen and
Smith (2010) prove that the uniform-at-random initializeris a
competitive starting M-step for Viterbi EM; our uninformed
prior consists of uniform multinomials, seeding the E-step.

faster than classic EM (see Figure 3(c,d)).4

4.2 Result #2: Smoothed Models

Smoothing rarely helps classic EM and hurts in
the case of oracle training (see Figure 4(a)). With
Viterbi, supervised initialization suffers much less,
the biased initializer is a wash, and the uninformed
uniform prior generally gains a few points of ac-
curacy, e.g., up 2.9% (from 42.4% to 45.2%, eval-
uated against WSJ40) at WSJ15 (see Figure 4(b)).

Baby Steps (Spitkovsky et al., 2009) — iterative
re-training with increasingly more complex data
sets, WSJ1, . . . ,WSJ45 — using smoothed Viterbi
training fails miserably (see Figure 4(b)), due to
Viterbi’s poor initial performance at short sen-
tences (possibly because of data sparsity and sen-
sitivity to non-sentences — see examples in§7.3).

4.3 Result #3: State-of-the-Art Models

Simply training up smoothed Viterbi at WSJ15,
using the uninformed uniform prior, yields 44.8%
accuracy on Section 23 of WSJ∞, already beating
previous state-of-the-art by 0.7% (see Table 1(A)).

Since both classic EM and Ad-Hoc∗ initializers
work well with short sentences (see Figure 3(a)),
it makes sense to use their pre-trained models to
initialize Viterbi training, mixing the two strate-
gies. We judged all Ad-Hoc∗ initializers against
WSJ15 and found that the one for WSJ8 mini-
mizes sentence-level cross-entropy (see Figure 5).
This approach does not involve reference parse

4For classic EM, the number of iterations to convergence
appears sometimes inversely related to performance, giving
credence to the notion of early termination as a regularizer.
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Model Incarnation WSJ10 WSJ20 WSJ∞

DMV Bilingual Log-Normals (tie-verb-noun) (Cohen and Smith, 2009) 62.0 48.0 42.2 Brown100
Less is More(Ad-Hoc∗ @15) (Spitkovsky et al., 2009) 56.2 48.2 44.1 43.3

A. Smoothed Viterbi Training (@15), Initialized with the Uniform Prior 59.9 50.0 44.8 48.1
B. A Good Initializer (Ad-Hoc∗’s @8), Classically Pre-Trained (@15) 63.8 52.3 46.2 49.3
C. Smoothed Viterbi Training (@15), Initialized withB 64.4 53.5 47.8 50.5
D. Smoothed Viterbi Training (@45), Initialized withC 65.3 53.8 47.9 50.8

EVG Smoothed (skip-head), Lexicalized (Headden et al., 2009) 68.8

Table 1: Accuracies on Section 23 of WSJ{10, 20,∞ } and Brown100 for three recent state-of-the-art
systems, our initializer, and smoothed Viterbi-trained runs that employ different initialization strategies.
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lowest cross-entropy (4.32bpt) attained at WSJ8
x-Entropyh (in bits per token) on WSJ15

Figure 5: Sentence-level cross-entropy on WSJ15
for Ad-Hoc∗ initializers of WSJ{1, . . . , 45}.

trees and is therefore still unsupervised. Using the
Ad-Hoc∗ initializer based on WSJ8 to seed classic
training at WSJ15 yields a further 1.4% gain in ac-
curacy, scoring 46.2% on WSJ∞ (see Table 1(B)).

This good initializer boosts accuracy attained
by smoothed Viterbi at WSJ15 to 47.8% (see Ta-
ble 1(C)). Using its solution to re-initialize train-
ing at WSJ45 gives a tiny further improvement
(0.1%) on Section 23 of WSJ∞ but bigger gains
on WSJ10 (0.9%) and WSJ20 (see Table 1(D)).

Our results generalize. Gains due to smoothed
Viterbi training and favorable initialization carry
over to Brown100 — accuracy improves by 7.5%
over previous published numbers (see Table 1).5

5 Discussion of Experimental Results

The DMV has no parameters to capture syntactic
relationships beyond local trees, e.g., agreement.
Spitkovsky et al. (2009) suggest that classic EM
breaks down as sentences get longer precisely be-
cause the model makes unwarranted independence
assumptions. They hypothesize that the DMV re-
serves too much probability mass for what should
be unlikely productions. Since EM faithfully al-
locates such re-distributions across the possible
parse trees, once sentences grow sufficiently long,
this process begins to deplete what began as like-
lier structures. But medium lengths avoid a flood
of exponentially-confusing longer sentences (and

5In a sister paper, Spitkovsky et al. (2010) improve perfor-
mance by incorporating parsing constraints harvested from
the web into Viterbi training; nevertheless, results presented
in this paper remain the best of models trained purely on WSJ.

the sparseness of unrepresentative shorter ones).6

Our experiments corroborate this hypothesis.
First of all, Viterbi manages to hang on to su-
pervised solutions much better than classic EM.
Second, Viterbi does not universally degrade with
more (complex) training sets, except with a biased
initializer. And third, Viterbi learns poorly from
small data sets of short sentences (WSJk, k < 5).

Viterbi may be better suited to unsupervised
grammar induction compared with classic EM, but
neither is sufficient, by itself. Both algorithms
abandon good solutions and make no guarantees
with respect to extrinsic performance. Unfortu-
nately, these two approaches share a deep flaw.

6 Related Work on Improper Objectives

It is well-known that maximizing likelihood may,
in fact, degrade accuracy (Pereira and Schabes,
1992; Elworthy, 1994; Merialdo, 1994). de Mar-
cken (1995) showed that classic EM suffers from
a fatal attraction towards deterministic grammars
and suggested a Viterbi training scheme as a rem-
edy. Liang and Klein’s (2008) analysis of errors
in unsupervised learning began with the inappro-
priateness of the likelihood objective (approxima-
tion), explored problems of data sparsity (estima-
tion) and focused on EM-specific issues related to
non-convexity (identifiability and optimization).

Previous literature primarily relied on experi-
mental evidence. de Marcken’s analytical result is
an exception but pertains only to EM-specific lo-
cal attractors. Our analysis confirms his intuitions
and moreover shows that there can beglobal pref-
erences for deterministic grammars — problems
that would persist with tractable optimization. We
prove that there is a fundamental disconnect be-
tween objective functions even when likelihood is
a reasonable metric and training data are infinite.

6Klein and Manning (2004) originally trained the DMV
on WSJ10 and Gillenwater et al. (2009) found it useful to dis-
card data from WSJ3, which is mostly incomplete sentences.
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7 Proofs (by Construction)

There is a subtle distinction betweenthreediffer-
ent probability distributions that arise in parsing,
each of which can be legitimately termed “likeli-
hood” — the mass that a particular model assigns
to (i) highest-scoring (Viterbi) parse trees; (ii) the
correct (gold) reference trees; and (iii) the sen-
tence strings (sums over all derivations). A classic
unsupervised parser trains to optimize the third,
makes actual parsing decisions according to the
first, and is evaluated against the second. There
are several potential disconnects here. First of all,
the true generative modelθ∗ may not yield the
largest margin separations for discriminating be-
tween gold parse trees and next best alternatives;
and second,θ∗ may assign sub-optimal mass to
string probabilities. There is no reason why an op-
timal estimateθ̂ should make the best parser or
coincide with a peak of an unsupervised objective.

7.1 The Three Likelihood Objectives

A supervised parser finds the “best” parameters
θ̂ by maximizing the likelihood of all reference
structurest∗(s) — the product, over all sentences,
of the probabilities that it assigns to each such tree:

θ̂SUP = arg max
θ

L(θ) = arg max
θ

∏

s

Pθ(t
∗(s)).

For the DMV, this objective function is convex —
its unique peak is easy to find and should match
the true distributionθ∗ given enough data, barring
practical problems caused by numerical instability
and inappropriate independence assumptions. It is
often easier to work in log-probability space:

θ̂SUP = arg maxθ logL(θ)
= arg maxθ

∑

s
log Pθ(t

∗(s)).

Cross-entropy, measured in bits per token (bpt),
offers an interpretable proxy for a model’s quality:

h(θ) = −

∑

s
lg Pθ(t

∗(s))
∑

s
|s|

.

Clearly,arg maxθ L(θ) = θ̂SUP = arg minθ h(θ).
Unsupervised parsers cannot rely on references

and attempt to jointly maximize the probability of
eachsentenceinstead, summing over the probabil-
ities of all possible trees, according to a modelθ:

θ̂UNS = arg max
θ

∑

s

log
∑

t∈T (s)

Pθ(t)

︸ ︷︷ ︸

Pθ(s)

.

This objective function is not convex and in gen-
eral does not have a unique peak, so in practice one
usually settles for̃θUNS — a fixed point. There is no
reason whŷθSUP should agree witĥθUNS, which is
in turn (often badly) approximated bỹθUNS, in our
case using EM. A logical alternative to maximiz-
ing the probability of sentences is to maximize the
probability of the most likely parse trees instead:7

θ̂VIT = arg max
θ

∑

s

log Pθ(t̂
θ(s)).

This 1-best approximation similarly arrives atθ̃VIT ,
with no claims of optimality. Each next model is
re-estimated as if supervised by reference parses.

7.2 A Warm-Up Case: Accuracy vs. θ̂SUP 6= θ∗

A simple way to derail accuracy is to maximize
the likelihood of an incorrect model, e.g., one that
makes false independence assumptions. Consider
fitting the DMV to a contrived distribution — two
equiprobable structures over identical three-token
sentences from a unary vocabulary{ a©}:

(i)
x x

a© a© a©; (ii)
y y

a© a© a©.

There are six tokens and only two have children
on any given side, so adjacent stopping MLEs are:

P̂STOP( a©, L, T) = P̂STOP( a©, R, T) = 1−
2

6
=

2

3
.

The rest of the estimated model is deterministic:

P̂ATTACH(♦, L, a©) = P̂ATTACH( a©, ∗, a©) = 1

andP̂STOP( a©, ∗, F) = 1,

since all dependents area© and every one is an
only child. But the DMV generates left- and right-
attachments independently, allowing a third parse:

(iii)
x y

a© a© a©.

It also cannot capture the fact that all structures are
local (or that all dependency arcs point in the same
direction), admitting two additional parse trees:

(iv) a©
x

a© a©; (v)
y

a© a© a©.

Each possible structure must make four (out of six)
adjacent stops, incurring identical probabilities:

P̂STOP( a©, ∗, T)4 × (1− P̂STOP( a©, ∗, T))2 =
24

36
.

7It is also possible to usek-best Viterbi, withk > 1.
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Thus, the MLE model does not break symmetry
and rates each of the five parse trees as equally
likely. Therefore, its expected per-token accuracy
is 40%. Average overlaps between structures (i-v)
and answers (i,ii) are (i) 100% or 0; (ii) 0 or 100%;
and (iii,iv,v) 33.3%: (3+3)/(5×3) = 2/5 = 0.4.

A decoy model without left- or right-branching,

i.e., P̃STOP( a©, L, T) = 1 or P̃STOP( a©, R, T) = 1,

would assign zero probability to some of the train-
ing data. It would be forced to parse every instance
of a© a© a© either as (i) or as (ii), deterministically.
Nevertheless, it would attain a higher per-token ac-
curacy of 50%. (Judged on exact matches, at the
granularity of whole trees, the decoy’s guaranteed
50% accuracy clobbers the MLE’s expected 20%.)

Our toy data set could be replicatedn-fold with-
out changing the analysis. This confirms that, even
in the absence of estimation errors or data sparsity,
there can be a fundamental disconnect between
likelihood and accuracy, if the model is wrong.8

7.3 A Subtler Case: θ∗ = θ̂SUP vs. θ̂UNS vs. θ̂VIT

We now prove that, even with theright model,
mismatches between the different objective like-
lihoods can also handicap the truth. Our calcula-
tions are again exact, so there are no issues with
numerical stability. We work with a set of param-
etersθ∗ already factored by the DMV, so that its
problems could not be blamed on invalid indepen-
dence assumptions. Yet we are able to find another
impostor distributioñθ that outshineŝθSUP = θ∗ on
both unsupervised metrics, which proves that the
true modelŝθSUP andθ∗ are not globally optimal,
as judged by the two surrogate objective functions.

This next example is organic. We began with
WSJ10 and confirmed that classic EM abandons
the supervised solution. We then iteratively dis-
carded large portions of the data set, so long as
the remainder maintained the (un)desired effect —
EM walking away from itsθ̂SUP. This procedure
isolated such behavior, arriving at a minimal set:

NP : NNP NNP ♦

— Marvin Alisky.

S : NNP VBD ♦

(Braniff declined).

NP-LOC : NNP NNP ♦

Victoria, Texas

8And as George Box quipped, “Essentially, all models are
wrong, but some are useful” (Box and Draper, 1987, p. 424).

This kernel is tiny, but, as before, our analysis is
invariant ton-fold replication: the problem cannot
be explained away by a small training size — it
persists even in infinitely large data sets. And so,
we consider three reference parse trees for two-
token sentences over a binary vocabulary{ a©, z©}:

(i)
x

a© a©; (ii)
x

a© z©; (iii)
y

a© a©.

One third of the time,z© is the head; onlya© can
be a child; and onlya© has right-dependents. Trees
(i)-(iii) are the only two-terminal parses generated
by the model and are equiprobable. Thus, these
sentences are representative of a length-two re-
striction of everything generated by the trueθ∗:

PATTACH(♦, L, a©) =
2

3
and PSTOP( a©, ∗, T) =

4

5
,

since a© is the head two out of three times, and
since only one out of fivea©’s attaches a child on
either side. Elsewhere, the model is deterministic:

PSTOP( z©, L, T) = 0;

PSTOP(∗, ∗, F) = PSTOP( z©, R, T) = 1;

PATTACH( a©, ∗, a©) = PATTACH( z©, L, a©) = 1.

Contrast the optimal estimatêθSUP = θ∗ with the
decoyfixed point9 θ̃ that is identical toθ∗, except

P̃STOP( a©, L, T) =
3

5
and P̃STOP( a©, R, T) = 1.

The probability of stopping is now 3/5 on the left
and 1 on the right, instead of 4/5 on both sides —
θ̃ disallows a©’s right-dependents but preserves its
overall fertility. The probabilities of leavesa© (no
children), under the modelŝθSUP andθ̃, are:

P̂( a©) = P̂STOP( a©, L, T)×P̂STOP( a©, R, T) =

(
4

5

)2

and P̃( a©) = P̃STOP( a©, L, T)×P̃STOP( a©, R, T) =
3

5
.

And the probabilities of, e.g., structure
x

a© z©, are:

P̂ATTACH(♦, L, z©)× P̂STOP( z©, R, T)

× (1− P̂STOP( z©, L, T))× P̂STOP( z©, L, F)

× P̂ATTACH( z©, L, a©)× P̂( a©)

9The model estimated from the parse trees induced byθ̃

over the three sentences is againθ̃, for both soft and hard EM.
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= P̂ATTACH(♦, L, z©)× P̂( a©) =
1

3
·
16

25

and P̃ATTACH(♦, L, z©)× P̃( a©) =
1

3
·
3

5
.

Similarly, the probabilities of all four possible
parse trees for the two distinct sentences,a© a© and
a© z©, under the two models,̂θSUP = θ∗ andθ̃, are:

θ̂SUP = θ∗ θ̃
x

a© z© 1

3

`
16

25

´
= 1

3

`
3

5

´
=

16

75
= 0.213 1

5
= 0.2

y

a© z© 0 0

x

a© a© 2

3

`
4

5

´ `
1− 4

5

´ `
16

25

´
= 2

3

`
1− 3

5

´ `
3

5

´
=

128

1875
= 0.06826 4

25
= 0.16

y

a© a© 0.06826 0

To the threetrue parses, θ̂SUP assigns probability
(

16
75

) (
128
1875

)2
≈ 0.0009942 — about 1.66bpt;θ̃

leaves zero mass for (iii), corresponding to a larger
(infinite) cross-entropy, consistent with theory.

So far so good, but if asked forbest (Viterbi)
parses, θ̂SUP could still produce the actual trees,
whereasθ̃ would happily parse sentences of (iii)
and (i) the same, perceiving a joint probability of
(0.2)(0.16)2 = 0.00512 — just 1.27bpt, appear-
ing to outperformθ̂SUP = θ∗! Asked for sentence
probabilities, θ̃ would remain unchanged (it parses
each sentence unambiguously), butθ̂SUP would ag-
gregate to

(
16
75

) (
2 · 128

1875

)2
≈ 0.003977, improv-

ing to 1.33bpt, but still noticeably “worse” thañθ.
Despite leaving zero probability to the truth,θ̃

beatsθ∗ on both surrogate metrics, globally. This
seems like an egregious error. Judged by (extrin-
sic) accuracy,θ̃ still holds its own: it gets four
directed edges from predicting parse trees (i) and
(ii) completely right, but none of (iii) — a solid
66.7%. Subject to tie-breaking,θ∗ is equally likely
to get (i) and/or (iii) entirely right or totally wrong
(they are indistinguishable): it could earn a perfect
100%, tieθ̃, or score a low 33.3%, at 1:2:1 odds,
respectively — same as̃θ’s deterministic 66.7%
accuracy, in expectation, but with higher variance.

8 Discussion of Theoretical Results

Daumé et al. (2009) questioned the benefits of us-
ing exact models in approximate inference. In our
case, the model already makes strong simplifying
assumptionsand the objective is also incorrect. It
makes sense that Viterbi EM sometimes works,
since an approximate wrong “solution”could, by
chance, be better than one that is exactly wrong.

One reason why Viterbi EM may work well is
that its score is used in selecting actual output
parse trees. Wainwright (2006) provided strong
theoretical and empirical arguments for using the
same approximate inference method in training
as in performing predictions for a learned model.
He showed that if inference involves an approxi-
mation, then using the same approximate method
to train the model gives even better performance
guarantees than exact training methods. If our task
were not parsing but language modeling, where
the relevant score is the sum of the probabilities
over individual derivations, perhaps classic EM
would not be doing as badly, compared to Viterbi.

Viterbi training is not only faster and more accu-
rate but also free of inside-outside’s recursion con-
straints. It therefore invites more flexible model-
ing techniques, including discriminative, feature-
rich approaches that targetconditionallikelihoods,
essentially via (unsupervised) self-training (Clark
et al., 2003; Ng and Cardie, 2003; McClosky et
al., 2006a; McClosky et al., 2006b,inter alia).

Such “learning by doing” approaches may be
relevant to understanding human language ac-
quisition, as children frequently find themselves
forced to interpret a sentence in order to inter-
act with the world. Since most models ofhuman
probabilistic parsing are massively pruned (Juraf-
sky, 1996; Chater et al., 1998; Lewis and Vasishth,
2005, inter alia), the serial nature of Viterbi EM
— or the very limited parallelism ofk-best Viterbi
— may be more appropriate in modeling this task
than the fully-integrated inside-outside solution.

9 Conclusion

Without a known objective, as in unsupervised
learning, correct exact optimization becomes im-
possible. In such cases, approximations, although
liable to pass over a true optimum, may achieve
faster convergence and stillimproveperformance.
We showed that this is the case with Viterbi
training, a cheap alternative to inside-outside re-
estimation, for unsupervised dependency parsing.

We explained why Viterbi EM may be partic-
ularly well-suited to learning from longer sen-
tences, in addition to any general benefits to syn-
chronizing approximation methods across learn-
ing and inference. Our best algorithm is sim-
pler and an order of magnitude faster than clas-
sic EM. It achieves state-of-the-art performance:
3.8% higher accuracy than previous published best
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results on Section 23 (all sentences) of the Wall
Street Journal corpus. This improvement general-
izes to the Brown corpus, our held-out evaluation
set, where the same model registers a 7.5% gain.

Unfortunately, approximations alone do not
bridge the real gap between objective functions.
This deeper issue could be addressed by drawing
parsing constraints (Pereira and Schabes, 1992)
from specific applications. One example of such
an approach, tied to machine translation, is syn-
chronous grammars (Alshawi and Douglas, 2000).
An alternative — observing constraints induced by
hyper-text mark-up, harvested from the web — is
explored in a sister paper (Spitkovsky et al., 2010),
published concurrently.
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