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Abstract
The extraction of nested, semantically rich
relationships of biological entities has re-
cently gained popularity in the biomed-
ical text mining community. To move
toward this objective, a method is pro-
posed for reconstructing original seman-
tic relationship graphs from projections,
where each node and edge is mapped to
the representative of its equivalence class,
by determining the relationship argument
combinations that represent real relation-
ships. It generalises the limited postpro-
cessing step of the method of Björne et al.
(2010) and hence extends this extraction
method to arbitrarily deep relationships
with unrestricted primary argument com-
binations. The viability of the method is
shown by successfully extracting nested
relationships in BioInfer and the corpus
of the BioNLP’09 Shared Task on Event
Extraction. The reported results, to the
best of our knowledge, are the first for the
nested relationships in BioInfer on a task
in which only named entities are given.

1 Introduction

A recent shared task in biomedical text mining,
the BioNLP’09 Shared Task on Event Extrac-
tion (Kim et al., 2009), showed that the biomed-
ical natural language processing (BioNLP) com-
munity is greatly interested in heading towards
the extraction of deep, semantically rich relation-
ships. The shared task focused on biomolecu-
lar events involving proteins and called for meth-
ods that are capable of identifying nested struc-
tures. Biomolecular events are a major cate-
gory of relationships in the biomedical domain in

which, among others, relationships involving non-
molecular entities such as diseases and static rela-
tions such as protein family memberships are also
of interest.

Earlier, well-studied extraction tasks typically
cast the problem in such a manner that relation-
ships can be considered as mutually independent
atomic units. However, as a nested semantic struc-
ture grows in its depth and in the total number
of relationship arguments, its simultaneous extrac-
tion becomes difficult, if not impossible. Systems
that bypass this problem by identifying atomic
units of nested structures in a mutually indepen-
dent manner must still decide which of the units
collectively comprise a complete structure.

Another problem arises from the fact that a sin-
gle syntactic token can refer to several, distinct re-
lationships each having a unique combination of
arguments. This is typically induced by coordi-
nations which are common in the biomedical do-
main (Pyysalo et al., 2007). As a result, aside
from the identification and classification of rela-
tionships and their potential arguments, extraction
systems have to make decisions about how many
relationships should be generated and how the ar-
guments should be distributed among them. For
example, the sentence “the binding of A and B to
DNA regulates C and D, respectively” states that
there are two binding events (A–DNA and B–DNA)
the former of which regulates C and the latter D in-
stead of, for example, that both binding events reg-
ulate both C and D or that there is a single binding
event between A, B, and DNA.

This paper focuses on addressing the afore-
mentioned problems in the case of the extrac-
tion method developed by Björne et al. (2010) for
the BioNLP’09 Shared Task and generalises this
method. Björne et al. showed that deep depen-
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Figure 1: A one-node-per-token constrained graph
(projected, B) cannot express the two distinct
phosphorylation events while an unrestricted se-
mantic graph (deprojected, A) can. A parse in the
SD scheme is illustrated in C.

dency analyses in the well-established Stanford
Dependency (SD) scheme (de Marneffe and Man-
ning, 2008) can successfully be utilised in extract-
ing graphs that express semantic entities as nodes
and relationship arguments as edges but are lim-
ited to one node per syntactic token. Nodes and
edges can be extracted in a mutually independent
manner but the resulting graph cannot necessarily
express all the real relationships. Rather, the graph
can be seen as a projection of the original graph:
each node and edge has been mapped to the rep-
resentative of its equivalence class which is deter-
mined by the node and edge types and the referred
tokens.

The research question of this paper is can the
original semantic graphs be reconstructed from
projected graphs with an independent step in an
information extraction (IE) process? The objec-
tive of deprojection is illustrated as a transforma-
tion of the graph B to the graph A in Figure 1.

To answer the question, the problem of re-
constructing complex, nested semantic structures
from their projections is formulated and a generic
deprojection method is proposed. The method
specifically addresses primary arguments, as de-
fined by the BioNLP’09 Shared Task, while leav-
ing the extension to secondary arguments as a fu-
ture work. The viability of the method is anal-
ysed with BioInfer (Pyysalo et al., 2007) and the
BioNLP’09 Shared Task corpus, both of which
containing nested structures, through an IE task
essentially identical to the BioNLP’09 Shared
Task. It is concluded that the proposed method

Figure 2: The deprojection process.

can successfully augment the method of Björne
et al. (2010) and generalise it to arbitrary graphs
of nested biomolecular relationships without the
strict restrictions of the BioNLP’09 Shared Task
while retaining its performance level. Thus, the
method can improve IE systems that produce rela-
tionships on the one-per-token basis.

2 Method

The proposed approach to deproject semantic
graphs is outlined in Figure 2. In summary, the
first transformation (grouping) alters a projected
graph such that a minimal set of classes is suf-
ficient to describe the behaviour of the nodes
and the edges. Guided by predicted class labels,
the second transformation (deprojection) then pro-
duces a deprojected graph. In the presented
method, the classification problem is solved with
machine-learning (ML) methods. Finally, corpus-
specific constraints are enforced.

2.1 Definitions

The graph representation of semantic annotation
introduced by Heimonen et al. (2008) is adopted
with some additional definitions. Semantic knowl-
edge is represented as a directed acyclic graph
(DAG) as follows.

Nodes and edges correspond to semantic en-
tities (such as protein and processes) and rela-
tionship arguments, respectively. The equality of
nodes is determined by the equality of their types
and of their references to text. Similarly, the equal-
ity of edges arises from the equality of their types
and of their end nodes.

Shallow and deep relationships consist of a
node, its outgoing edges, and its direct successors.
The latter also recursively include the successor
relationships. Nodes are equal as shallow relation-
ships if they as well as their outgoing edges are
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equal. Node equality as a deep relationship im-
poses the further requirement that the successors
are equal as deep relationships.

A valid relationship is one which is valid in
the given corpus-specific annotation scheme. Es-
pecially, it has a valid combination of arguments.

A deprojected graph (see Figure 1A) is one
in which each node represents a valid, real rela-
tionship. Several equal nodes can exist provided
they have unique combinations of outgoing edges.
Note that there is one-to-one correspondence be-
tween nodes and real relationships but many-to-
one between nodes and syntactic tokens.

A projected graph (see Figure 1B) is one
generated by mapping each node and edge of a de-
projected graph to the representative of its equiv-
alence class. That is, each node represents a set
of equal nodes of the deprojected graph, and simi-
larly for edges. As a result, each token is referred
to by at most one node1 and there is a one-to-many
correspondence between nodes and valid, real re-
lationships. Also, the edges that are mapped to
from the outgoing edges of equal nodes of the de-
projected graph are the outgoing edges of a single
node of the projected graph.

The deprojection of a semantic graph is the
task of reproducing the original graph given a pro-
jected graph. This can also be seen as a task of
finding the sets of outgoing edges that represent
all the valid, real relationships.

2.2 Grouping

The objective of the first transformation is accom-
plished with a grouping algorithm: the direct suc-
cessors of each node are grouped by their syntac-
tic and semantic roles relative to the predecessor.
The groups are represented as additional nodes
in the graph. The rationale for this grouping is
that similar arguments tend to either be mutually
exclusive (and be associated with some other ar-
guments) or together form a single relationship.
This behaviour can easily be described with two
classes: distributive and collective. For example,
in the sentence “A and B regulate C”, the entities A
and B share both the argument type (agent) and the
syntactic role (subject) relative to the relationship
regulate. They form a group and are mutually ex-
clusive (distributive) while this group forms a sin-
gle relationship (collective) together with C. As a

1given that, in the deprojected graph, a token can be re-
ferred to by multiple nodes only if they are of the same type

result, A–C and B–C pairs of regulation are gener-
ated. This approach relates to the collectivity and
distributivity of plurals which have been studied,
among others, by Scha and Stallard (1988) and
Brisson (2003).

Technically, the grouping is a series of trans-
formations in each of which a set of successors
is replaced with a single, newly-created succes-
sor and the original successors become the succes-
sors of this node. The successors are first trivially
grouped by the corresponding edge type. Finally,
they are recursively grouped by syntactic similar-
ity until they form a single group or multiple sin-
gleton groups. As a result, nested groups are gen-
erated.

The groups by syntax are determined by first
mapping both the predecessor and the successors
into the referred tokens in the syntactic graph.
Then, the tokens referred to by the predecessor
are removed if they are not also referred to by
any of the successors. This removal step is recur-
sively applied to the predecessors of the removed
tokens. As a result, the syntactic graph is decom-
posed into several connected components, each of
which representing a group. Thus, two successors
are grouped if their referred tokens belong to the
same connected component.

2.3 Deprojection

The second transformation is guided by node class
labels (Figure 3). A collective node remains un-
changed: its successors are kept together. In con-
trast, a distributive node is duplicated for each out-
going edge and the edges are distributed, one edge
per duplicate. These node classes are enough to
solve most of the cases in the analysed data sets.
However, especially in BioInfer, this is not suf-
ficient since the duplicates of a distributive node
may themselves be either collective or distributive
under their predecessor.

To adequately describe the behaviour of the du-
plicates generated by a single distributive node,
the incoming edges of each distributive node are
classified as collective or distributive (Figure 4).
The duplication of a node also duplicates its in-
coming edges which are then processed by the as-
signed class labels as follows. In the case of a col-
lective edge, the generated duplicates of the edge
share the predecessor and are thus arguments in
a single relationship. In contrast, a distributive
edge induces the duplication of the predecessor re-
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Figure 3: The effect of assigning collective or dis-
tributive class labels (marked as <?>) to a node in
the deprojection process.

Figure 4: Correct node and edge class labels for
the projected graph of the phrase “Coexpression
and subsequent DNA-binding of X and Y pro-
teins” (A) and the resulting deprojected graph (B).

lationships such that, as a result, the generated du-
plicate edges do not share any predecessors.

In Figure 4A, the node proteins is distributive
because it represents two distinct nodes: one per-
taining to X, another to Y. These two nodes are
involved in the same coexpression relationship but
in different binding relationships. Hence the in-
coming edges of the node proteins are collective
and distributive, respectively.

Since the two transformation steps do not en-
force corpus-specific constraints, a trivial algo-
rithm is utilised to decompose relationships with
invalid argument combinations into multiple valid
relationships. In an ideal situation, this step makes
no transformations. This is also used as a part of
the baseline method (see Section 3.3).

2.4 Machine-learning and features
For node and edge classifications, the C4.5 deci-
sion tree (Quinlan, 1993), and its J48 implemen-
tation in the Weka package, was utilised because
its models can easily be examined. This facili-
tates the analysis of the problem and the further
development of the solution. The default parame-

ters were used since no improvement was gained
with alternative parameters in preliminary experi-
ments. The applied feature set emphasises higher-
level features obtained from the semantic and syn-
tactic graphs. It consists of three main groups: se-
mantic, syntactic, and morphological.

Semantic features contain information gath-
ered from the semantic graph as well as from the
type hierarchies. For nodes, these features consists
of the node type as well as the presence, count and
combination of outgoing edge types. The count of
successor groups and the distance to the first non-
group predecessor are also included. For edges,
the node features are generated for both the suc-
cessor and the predecessor in addition to the type
of the edge.

Syntactic features include the minimum syn-
tactic distance2 from the predecessor to the suc-
cessors as well as between the successors. Also,
in the case of the unit distance, the corresponding
dependency type is included.

Morphological features consist of the Porter
stems (Porter, 1980) and the part-of-speech tags of
the referred tokens as well as the presence and the
Porter stems of the tokens that are shared between
the successors.

All features are also generated from the first
non-group predecessor (which may be the node it-
self) to capture the original relationship node when
processing a group node. The majority of the fea-
tures are Boolean-valued in order to allow several
values of a single property. This is utilised in fea-
tures representing hierarchical knowledge (such as
node and dependency types) as well as stem fea-
tures. For example, a node receives true for the
node type feature of its actual type as well as of its
supertypes in the hierarchy.

3 Resources and experiments

An array of experiments was performed to anal-
yse the deprojection problem and the proposed
solution. Firstly, the same experiments were
performed on two corpora, BioInfer and the
BioNLP’09 Shared Task corpus in order to eval-
uate the effect of the annotation scheme to the
properties of the problem. Secondly, the deprojec-
tion algorithm was applied to both projected gold-
standard graphs and to predicted graphs in order to
study the effect of the accuracy of the input graph.
Thirdly, the effect of the quality of the parse was

2semantic nodes mapped into the referred tokens
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examined by employing various parses including
the BioInfer gold-standard annotation.

3.1 Data

BioInfer is a corpus of 1100 sentences selected
from 836 publication abstracts available through
PubMed. For this paper, the abstracts were ran-
domly sampled in the ratio 2:1:1 into the train-
ing, development, and test sets. In contrast, the
BioNLP’09 Shared Task corpus consists of the
training, development, and test sets of 800, 150,
and 260 abstracts, respectively. Since the anno-
tation of the test set is not publicly available and
the evaluation server does not provide the required
details for the analysis, the development set was
used as the test set and a random sample of 150
abstracts was cut from the training set to form the
development set.

In this study, the task 1 annotation with the pro-
tein equivalence relations removed was used as the
BioNLP’09 Shared Task data set. In this anno-
tation, relationships are positively asserted, have
only Theme and Cause arguments and are anno-
tated only for one of the equivalent proteins. Fur-
thermore, each node refers to at least one token
in the syntactic graph. The BioInfer semantic an-
notation was transformed into a similar form by
removing negation (NOT), equivalence (EQUAL),
and reference nodes (COREFER, REL-ENT). Fur-
thermore, to create a fully text-bound subset, fam-
ily memberships relations (MEMBER) were re-
solved into single edges and suitable references to
text were added for the remaining unbound nodes
when possible. In an extreme case, an unbound
relationship was discarded. As a result, the differ-
ences to the BioNLP’09 Shared Task data set were
minimised to additional node and edge types re-
flecting the wider selection of primary arguments.

All employed parses follow the SD scheme.
BioInfer contains uncollapsed gold-standard
parses while the BioNLP’09 Shared Task corpus
includes parses, in the collapsed representation,
generated by the parser of Charniak and Johnson
(2005) using the model of McClosky and Char-
niak (2008). For both corpora, additional parses
were produced with the improved version of the
aforementioned system created by McClosky
(2009). These parses were transformed into
both the collapsed and the conjunct dependency
propagated representations with the tools pro-
vided by de Marneffe et al. (2006). All parses

were further augmented by splitting tokens at
non-alphanumeric characters that border named
entities and connecting the newly-created tokens
with dependencies denoting the character.

3.1.1 Predicted graphs
The predicted semantic graphs were obtained as
a result of an extraction task adopted from the
BioNLP’09 Shared Task. In this task, named en-
tities are given as gold-standard annotation and
their relationships are to be extracted by identify-
ing text spans, determining types, and assigning
arguments.

The predicted graphs were produced with the
system developed for the BioNLP’09 Shared Task
by Björne et al. (2010). The system has two
machine-learning steps. First, relationship nodes
are predicted, one per token, based only on the
syntax and the given named entity nodes. Next,
outgoing edges are predicted for the relationship
nodes. As a result, a projected graph is obtained.
With the graph representation, the system can
transparently be trained for both the BioNLP’09
Shared Task corpus and BioInfer regardless of the
differences in their annotation schemes.

The two prediction steps utilise the
SVMmulticlass implementation of a multi-
class support vector machine (Crammer and
Singer, 2002; Tsochantaridis et al., 2004). In this
study, the steps were independently optimised
for model parameters and, in contrast to the
original training procedure, the recall boosting
optimisation was omitted due to limited resources
available. When training the edge prediction, the
gold-standard relationship nodes were used.

In the graph prediction, the conjunct depen-
dency propagated parses produced with the parser
of McClosky (2009) were systematically applied.

3.2 Experiments
Original gold-standard graphs were used in gen-
erating decision tree models as well as subjected
to projection. Predicted graphs and the projected
gold-standard graphs were deprojected with the
models. The evaluation of the deprojected graphs
was performed against the original graphs.

During the system development, the training
and development sets were available and the data
were thoroughly analysed. The progress was esti-
mated by training the system with the former and
testing against the latter. The final results were
obtained on the test sets by applying the system
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trained on the combined training–development set.
For analysis, also the baseline method and the
method of Björne et al. (2010) were evaluated on
the test sets.

3.3 Baselines
The baselines were designed to reflect an IE sys-
tem following the one-node-per-token principle
without an advanced postprocessing but still en-
forcing the annotation scheme constraints.

With the strict specifications of the BioNLP’09
Shared Task, a sound baseline is obtained sim-
ply by enforcing the constraints through a minimal
set of changes. Nodes with outgoing Cause and
Theme edges are duplicated into all Cause–Theme
pairs. Binding nodes remain unchanged since they
can have several Theme arguments while the oth-
ers are treated as distributive nodes with distribu-
tive incoming edges.

Although BioInfer is less restricted with respect
to valid argument combinations, a feasible base-
line can be obtained by adapting the BioNLP’09
Shared Task baseline algorithm. Cause–Theme is
replaced with agent–patient while Binding is ex-
tended to symmetric relationships (i.e. participant
arguments). In addition, relationships with sub
arguments are treated as collective which reflects
multiple components in a single complex. These
changes were also applied to the method of Björne
et al. (2010) when analysing BioInfer.

3.4 Evaluation
The standard precision–recall–F1 metrics was
used in the evaluation. True/false positive/negative
instances were determined by the equality of the
nodes as relationships: pairs of equal nodes were
true positives while unique nodes in the depro-
jected and the original graph were false positives
and false negatives, respectively.

The equality of references to text was deter-
mined after removing the tokens found in a non-
exhaustive list of common stop-words including
prepositions, articles, and non-alphanumeric char-
acters. This relaxes an unnecessary requirement of
the node prediction step to find also those tokens
in the BioInfer annotation that do not contribute to
the semantics of the nodes. For example, preposi-
tions should be associated with edges rather than
nodes.

The F1-scores were further analysed with the
Wilcoxon signed-rank test (Wilcoxon, 1945), as
implemented in Scipy v. 0.7.0, by considering

BioInfer

gold predicted

method total symm. total symm.

baseline 88.26 63.62 29.38 18.64
Björne et al. 89.15 72.35 29.14 20.37

proposed 92.42 78.79 30.79 24.47

BioNLP’09

gold predicted

method total symm. total symm.

baseline 92.52 64.15 43.70 21.05
Björne et al. 94.51 83.37 45.13 35.21

proposed 95.08 84.32 45.32 36.63

Table 1: The F1-scores on the test sets. Total
is cumulative over all nodes with outgoing edges
while symm. refers to the symmetric types. Gold
and predicted refer to the experiments with gold-
standard and predicted graphs, respectively.

each document as an experiment and using the
95% confidence level.

4 Results and discussion

The following discussion focuses on the deep re-
lationship equality as the evaluation criterion be-
cause it reflects the relationships of interest by re-
quiring the identification of the pertaining named
entities. Also, the discussion only considers the
experiments performed with the conjunct depen-
dency propagated parses obtained with the parser
of McClosky (2009) because switching parses did
not produce statistically significant differences in
performance. Note that the results are not compa-
rable to those of Björne et al. (2010) because the
graph prediction was not fully optimised.

With respect to the deprojection task, BioInfer
was found to be similar to the BioNLP’09 Shared
Task corpus: it contains symmetric relationships
(c.f. Binding), asymmetric relationships (c.f. Reg-
ulation), and single-argument relationships. Only
the symmetric relationships are a challenge in the
deprojection task because they can have an arbi-
trary number of arguments. In contrast, the base-
line F1-scores for the others are above 94% on the
gold-standard graphs.

Table 1 shows the F1-scores on the test sets
of BioInfer and the BioNLP’09 Shared Task cor-
pus for the overall performance as well as for
the symmetric relationships only. The proposed
method outperforms the two other methods in all
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experiments and the ∆F1 against the proposed
method are statistically significant with the ex-
ception of the method of Björne et al. (2010) on
the BioNLP’09 Shared Task corpus. Although
not conclusively better than the earlier, specialised
method in its own task, the proposed method
successfully achieves the intended generalisation
without an adverse effect.

The observed improvement over the method of
Björne et al. (2010) is likely due to two factors.
First, using machine-learning rather than a sim-
ple rule-based system allows for more accurate
modelling of the problem. Second, the proposed
method can handle a wider variety of cases due to
the classification of edges. For example, the graph
in Figure 4A can correctly be deprojected, which
is not possible for the earlier method. However,
the latter factor is only effective on BioInfer, the
more complex of the two corpora, which is con-
sistent with the observed statistical significances.

The proposed deprojection method is currently
limited to the phenomena encountered in the two
analysed corpora since the decision to use binary
classification was based on the experimental ob-
servation that neither class is appropriate only in
rare cases. More classes will be needed to further
generalise and improve the system. One such class
could be respective which denotes a selective pair-
ing of sibling nodes. For example, the sentence
“A and B binds C and D, respectively” currently
results in false positive pairs A–D and B–C. Sim-
ilarly, adding secondary arguments (e.g. location)
and relationship modifiers (e.g. negation) into con-
sideration is likely to necessitate new, more com-
plex transformations and their respective classes.
Also, to filter out incorrectly predicted edges will
require the introduction of additional classes. The
critical question is whether a reasonably small set
of classes with extensive enough a coverage can
be found.

Another limitation is that the approach expects
an annotation scheme in which relationship argu-
ments have the tendency of following syntactic
dependencies as observed for BioInfer by Björne
et al. (2008). This expectation may deteriorate the
performance on highly refined schemes which do
not consider syntax. On the other hand, since it
relies more on the syntactic than on the biolog-
ical properties of the relationships, the proposed
approach should be applicable beyond the domain

of biomolecular events (e.g. to gene–disease rela-
tionships or static relations).

The F1-scores in Table 1 indicate that the
BioNLP’09 Shared Task corpus is easier to ex-
tract than BioInfer. This is likely due to the nar-
rower scope and the stricter constraints of the
former. In absolute terms, the proposed method
yields the largest improvement over the baseline
on the gold-standard graphs which suggests that
it is negatively affected by the presence of false
nodes/edges or that the predicted graphs contain
relatively more relationships that are trivially de-
projected. On the other hand, in relative terms, the
largest improvements are observed for symmetric
relationships in the BioNLP’09 Shared Task cor-
pus but overall in BioInfer. This is likely due to the
differences in the relationship type distributions.

The system recently developed by Miwa et al.
(2010), based on the architecture of Björne et al.
(2010), utilises a ML-based deprojection which
enumerates all possible argument combinations
and classifies them as positive or negative. While
this approach may be prohibitively expensive in
more complex schemes in which the number of
arguments and their types is higher, it should out-
perform the proposed method on the BioNLP’09
Shared Task corpus. Since Miwa et al. do not
analyse the contribution of the deprojection to the
overall performance, a direct comparison of the
two methods is impossible. In any case, the sys-
tems of Björne et al. (2010) and Miwa et al. (2010)
demonstrate the success of the architecture using
deprojection and further motivate the investigation
of deprojection methods.

4.1 Future directions

In the future, the proposed method will be stud-
ied and further improved with two other corpora,
GENIA Event Annotation (Kim et al., 2008) and
Gene Regulation Event Corpus (Thompson et al.,
2009), which are similar in their purpose com-
pared to the already-analysed corpora. The former
corpus is interesting because of the co-operativity
of event participants which relaxes the restrictions
on asymmetric relationships while the latter con-
tains an extensive annotation for non-primary ar-
guments. The method could also be examined
with the static relation extraction task recently in-
troduced by Pyysalo et al. (2009).

In addition to improving the method and ex-
tending it to non-primary arguments, embedding
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the presented approach to a joint inference system,
such as Markov Logic Network (MLN), will be
studied. Deprojection is likely to greatly benefit
methods based on Markov Logic which is “not yet
able to deal with cases where the number and iden-
tity of entities is unknown, while relations/links
between known objects can be readily modelled”
(Riedel et al., 2009). The objective is to combine
the graph prediction and the deprojection steps
as well as to simultaneously enforce task-specific
constraints and adapt to the presence of false pos-
itive nodes and edges. This should be achiev-
able by extending the methods developed for the
BioNLP’09 Shared Task corpus by Riedel et al.
(2009) or by Poon and Vanderwende (2010), both
of which determine the correct argument combi-
nations outside of the Markov Logic framework.

Semantic role labelling (SRL) is a task simi-
lar to the graph-based relationship extraction ap-
plied in this paper although the former typically
only concerns shallow predicate–argument struc-
tures (Hacioglu, 2004; Surdeanu et al., 2008). The
similarities between the tasks suggest that explor-
ing them jointly may benefit the development of
information extraction methods.

In the long term, semantic schemes should be
developed such that, ideally, all syntactic tokens
are considered for their semantics and semantic
relationships readily follow from their dependen-
cies. Such schemes, closely following the syn-
tax, could improve both the graph prediction and
the deprojection. In this research direction, graph-
based knowledge representations such as concep-
tual graphs (Sowa, 1976; Chein and Mugnier,
2008) or graphical logical forms such as the one
proposed by Allen et al. (2008) could be adopted.

Given the frequency of coordinations in the
biomedical domain, deprojection may prove to
be useful in the development of deep semantic
parsing in the biomedical domain. For example,
with improved semantic schemes, it could provide
a means to generate complete, detailed semantic
graphs directly from deep dependency analyses in
a single-step by applying joint inference to achieve
simultaneous node/edge relabelling and graph de-
projection.

5 Conclusions

This study presents a method for reconstructing
the original semantic graphs from their projections
by determining the correct combinations of rela-

tionship arguments. It generalises the postprocess-
ing step of the system described by Björne et al.
(2010) and extends the extraction capability of this
system to arbitrary graphs of nested biomolecular
relationships. The evaluation of the method on
BioInfer and the BioNLP’09 Shared Task corpus
indicates that the approach is viable for primary
relationship arguments. For BioInfer, the outcome
is, to the best of our knowledge, the first reported
result of the task of extracting the nested relation-
ships in its original version.

The presented method facilitates an IE approach
in which the identification of semantic entities is
performed on the one-entity-per-token basis and
relationship arguments are identified in a mutu-
ally independent manner disregarding the seman-
tics of the argument combinations. The method
handles the selection of the correct argument com-
binations, which is non-trivial particularly when
coordinations are involved, and generates the final
output in which a single token can refer to several
entities. This approach improves the utilisation of
deep dependency analyses by simplifying the cor-
relation between them and semantic graphs. Due
to its independent nature, the method can be cou-
pled to any system identifying relationships on the
one-per-token basis.

The implemented system will be available upon
request.
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