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Abstract
We present preliminary experiments of a
binary-switch, static-grid typing interface
making use of varying language model contri-
butions. Our motivation is to quantify the de-
gree to which language models can make the
simplest scanning interfaces – such as show-
ing one symbol at a time rather than a scan-
ning a grid – competitive in terms of typing
speed. We present a grid scanning method
making use of optimal Huffman binary codes,
and demonstrate the impact of higher order
language models on its performance. We also
investigate the scanning methods of highlight-
ing just one cell in a grid at any given time
or showing one symbol at a time without a
grid, and show that they yield commensurate
performance when using higher order n-gram
models, mainly due to lower error rate and a
lower rate of missed targets.

1 Introduction
Augmentative and Alternative Communication
(AAC) is a well-defined subfield of assistive tech-
nology, focused on methods that assist individuals
for whom conventional spoken or written communi-
cation approaches are difficult or impossible. Those
who cannot make use of standard keyboards for text
entry have a number of alternative text entry meth-
ods that permit typing. One of the most common of
these alternative text entry methods is the use of a
binary switch – triggered by button-press, eye-blink
or even through event related potentials (ERP) such
as the P300 detected in EEG signals – that allows
the individual to make a selection based on some
method for scanning through alternatives (Lesher et
al., 1998). Typing speed is a challenge, yet critically
important for usability. One common approach is
row/column scanning on a matrix of characters,
symbols or images (a ‘spelling grid’), which allows
the user of a binary yes/no switch to select the row
and column of a target symbol, by simply indicating
‘yes’ (pressing a button or blinking an eye) when the

row or column of the target symbol is highlighted.
Figure 1 shows the 6×6 spelling grid used for the
P300 Speller (Farwell and Donchin, 1988).

For any given scanning method, the use of a bi-
nary switch to select from among a set of options
(letter, symbols, or images) amounts to the assign-
ment of binary codes to each symbol. For example,
the standard row/column scanning algorithm works
by scanning each row until a selection is made, then
scanning each column until a selection is made, and
returning the symbol at the selected row and column.
This can be formalized as follows:

1 for i = 1 to (# of rows) do
2 HIGHLIGHTROW(i)
3 if YESSWITCH
4 for j = 1 to (# of columns) do
5 HIGHLIGHTCOLUMN(j)
6 if YESSWITCH
7 return (i, j)
8 return (i, 0)
9 return (0, 0)

where the function YESSWITCH returns true if the
button is pressed (or whatever switch event counts as
a ‘yes’ response) within the parameterized latency.
If the function returns (0, 0) then nothing has been
selected, requiring rescanning. If the function re-
turns (i, 0) for i > 0, then row i has been selected,
but columns must be rescanned. Under this scanning
method, the binary code for the letter ‘J’ in the ma-
trix in Figure 1 is 010001; the letter ‘T’ is 000101.

The length of the binary code for a symbol is re-
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Figure 1: Spelling grid such as that used for the P300
speller (Farwell and Donchin, 1988). ‘ ’ denotes space.
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lated to the time required to type it. In the ma-
trix in Figure 1, the space character is in the bot-
tom right-hand corner, yielding the maximum binary
code length for that grid size (12), despite that, in
typical written English we would expect the space
character to be used about 20% of the time. A more
efficient strategy would be to place the space charac-
ter in the upper left-hand corner of the grid, leading
to the much shorter binary code ‘11’.

Ordering symbols in a fixed grid so that frequent
symbols are located in the upper left-hand corner is
one method for making use of a statistical model of
the language so that likely symbols receive the short-
est codes. Such a language model, however, does
not take into account what has already been typed,
but rather assigns its code identically in all contexts.
In this paper we examine alternative fixed-grid scan-
ning methods that do take into account context in the
language models used to establish codes, i.e., the
codes in these methods vary in different contexts,
so that high probability symbols receive the short-
est codes and hence require the fewest keystrokes.
We show that n-gram language models can provide
a large improvement in typing speed.

Before presenting our methods and experimental
results, we next provide further background on alter-
native text entry methods, language modeling, and
binary coding based on language models.

2 Preliminaries and background
2.1 Alternative text entry
Of the ways in which AAC typing interfaces differ,
perhaps most relevant to the current paper is whether
the symbol positions are fixed or can move dynam-
ically, because such dynamic layouts facilitate in-
tegration of richer language models. For example,
if we re-calculate character probabilities after each
typed character, then we could re-arrange the char-
acters in the grid so that the most likely are placed
in the upper left-hand corner for row/column scan-
ning. Conventional wisdom, however, is that the
cognitive overhead of processing a different grid ar-
rangement after every character would slow down
typing more than the speedup due to the improved
binary coding (Baletsa et al., 1976; Lesher et al.,
1998). The GazeTalk system (Hansen et al., 2003),
which presents the user with a 3×4 grid and captures
which cell the user’s gaze fixates upon, is an instance
of a dynamically changing grid. The cell layouts
are configurable, but typically one cell contains a set
of likely word completions; others are allocated to
space and backspace; and around half of the cells are

allocated to the most likely single character contin-
uation of the input string, based on language model
predictions. Hansen et al. (2003) report that users
produced more words per minute with a static key-
board than with the predictive grid interface, illus-
trating the impact of the cognitive overhead that goes
along with this sort of scanning.

The likely word completions in the GazeTalk sys-
tem illustrates another common way in which lan-
guage modeling is integrated into AAC typing sys-
tems. Much of the language modeling research
within the context of AAC has been for word com-
pletion/prediction for keystroke reduction (Darragh
et al., 1990; Li and Hirst, 2005; Trost et al., 2005;
Trnka et al., 2006; Trnka et al., 2007; Wandmacher
and Antoine, 2007). The typical scenario for this is
allocating a region of the interface to contain a set of
suggested words that complete what the user has be-
gun typing. The expectation is to derive a keystroke
savings when the user selects one of the alternatives
rather than typing the rest of the letters. The cogni-
tive load of monitoring a list of possible completions
has made the claim that this speeds typing contro-
versial (Anson et al., 2004); yet some results have
shown this to speed typing under certain conditions
(Trnka et al., 2007).

One innovative language-model-driven AAC typ-
ing interface is Dasher (Ward et al., 2002), which
uses language models and arithmetic coding to
present alternative letter targets on the screen with
size relative to their likelihood given the history.
Users can type by continuous motion, such as eye
gaze or mouse cursor movement, targeting their cur-
sor at the intended letter and moving the cursor
from left-to-right through the interface, while its
movements are tracked. This is an extremely effec-
tive typing interface alternative to keyboards, pro-
vided the user has sufficient motor control to per-
form the required systematic visual scanning. The
most severely impaired users, such as those with
locked-in syndrome (LIS), have lost the voluntary
motor control sufficient for such an interface.

Relying on extensive visual scanning, such as that
required in dynamically reconfiguring spelling grids
or Dasher, or requiring complex gestural feedback
from the user renders a typing interface difficult or
impossible to use for those with the most severe im-
pairments. Indeed, even spelling grids like the P300
speller can be taxing as an interface for users. Re-
cent attempts to use the P300 speller as a typing
interface for locked-in individuals with ALS found
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1 A← V � initialize A as symbol set V
2 k ← 1 � initialize bit position k to 1
3 while |A| > 1 do
4 P ← {a ∈ A : a[k] = 1}
5 Q← {a ∈ A : a[k] = 0}
6 Highlight symbols in P
7 if selected then A← P
8 else A← Q
9 k ← k + 1
10 return a ∈ A � Only 1 element in A

Figure 2: Algorithm for binary code symbol selection

that the number of items in the grid caused prob-
lems for these patients, because of difficulty orient-
ing attention to specific locations in the spelling grid
(Sellers et al., 2003). This is another illustration of
the need to reduce the cognitive overhead of such in-
terfaces. Yet the success of classification of ERP in
a simpler task for this population indicates that the
P300 is a binary response mechanism of utility for
this task (Sellers and Donchin, 2006).

Simpler interactions via brain-computer inter-
faces (BCI) hold much promise for effective text
communication. Yet these simple interfaces have yet
to take full advantage of language models to ease or
speed typing. In this paper we will make use of a
static grid, or a single letter linear scanning inter-
face, yet scan in a way that allows for the use of
contextual language model probabilities when con-
structing the binary code for each symbol.

2.2 Binary codes for typing interfaces
Row/column scanning, as outlined in the previous
section, is not the only means by which the spelling
grid in Figure 1 can be used as a binary response
typing interface. Rather than highlighting full rows
or full columns, arbitrary subsets of letters could be
highlighted, and letter selection again driven by a
binary response mechanism. An algorithm to do this
is as follows. Assign a unique binary code to each
symbol in the symbol set V (letters in this case). For
each symbol a ∈ V , there are |a| bits in the code
representing the letter. Let a[k] be the kth bit of the
code for symbol a. We will assume that no symbol’s
binary code is a prefix of another symbol’s binary
code. Given such an assignment of binary codes to
the symbol set V , the algorithm in Figure 2 can be
used to select the target symbol in a spelling grid.

One key question in this paper is how to produce
such a binary code, which is how language models
can be included in scanning. Figure 3 shows two
different binary trees, which yield different binary
codes for six letters in a simple, artificial example.
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Figure 3: Two binary trees for encoding letters based on
letter probabilities: (1) Huffman coding; and (2) Linear
coding via a right-branching tree (right-linear). Expected
bits are 2.55 for Huffman and 2.89 for linear coding.

Huffman coding (Huffman, 1952) builds a binary
tree that minimizes the expected number of bits ac-
cording to the provided distribution. There is a lin-
ear complexity algorithm for building this tree given
a list of items sorted by descending probability.

Another type of binary code, which we will call a
linear code, provides a lot of flexibility in the kind of
interface that it allows, relative to the other methods
mentioned above. In this binary code, each itera-
tion of the WHILE loop in the Figure 2 algorithm
would have a set P on line 4 with exactly one mem-
ber. With such a code, the spelling grid in Figure
1 would highlight exactly one letter at a time for
selection. Alternately, symbols could be presented
one at a time with no grid, which we call rapid serial
visual presentation (RSVP, see Fig.7). Linear cod-
ing builds a simple right-linear tree (seen in Figure
3) that preserves the sorted order of the set, putting
higher probability symbols closer to the root of the
tree, thus obtaining shorter binary codes. Linear
coding can never produce codes with fewer expected
bits than Huffman coding, though the linear code
may reach the minimum under certain conditions.

The simplicity of an interface that presents a sin-
gle letter at a time may reduce user fatigue, and even
make typing feasible for users that cannot maintain
focus on a spelling grid. Additionally, single symbol
auditory presentation would be possible, for visually
impaired individuals, something that is not straight-
forwardly feasible with the sets of symbols that must
be presented when using Huffman codes.

2.3 Language modeling for typing interfaces
The current task is very similar to word prediction
work discussed in Section 2.1, except that the pre-
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diction interface is the only means by which text
is input, rather than a separate window with com-
pletions being provided. In principle, the symbols
that are being predicted (hence typed) can be from
a vocabulary that includes multiple symbol strings
such as words. However, a key requirement in a
composition-based typing interface is an open vo-
cabulary – the user should be able to type any word,
whether or not it is in some fixed vocabulary. In-
cluded in such a mechanism is the ability to repair:
delete symbols and re-type new ones. In contrast,
a word prediction component must be accompanied
by some additional mechanism in place for typing
words not in the vocabulary. The current problem is
to use symbol prediction for that core typing inter-
face, and this paper will focus on predicting single
ASCII and control characters, rather than multiple
character strings. The task is actually very similar
to the well known Shannon game (Shannon, 1950),
where text is guessed one character at a time.

Character prediction is done in the Dasher and
GazeTalk interfaces, as discussed in an earlier sec-
tion. There is also a letter prediction component to
the Sibyl/Sibylle interfaces (Schadle, 2004; Wand-
macher et al., 2008), alongside a separate word pre-
diction component. Interestingly, the letter predic-
tion component of Sibylle (Sibyletter) involves a lin-
ear scan of the letters, one at a time in order of proba-
bility (as determined by a 5-gram character language
model), rather than a row/column scanning of the
P300 speller. This approach was based on user feed-
back that the row/column scanning was a much more
tiring interface than the linear scan interface (Wand-
macher et al., 2008), which is consistent with the
results previously discussed on the difficulty of ALS
individuals with the P300 speller interface.

Language modeling for a typing interface task of
this sort is very different from other common lan-
guage modeling tasks. This is because, at each sym-
bol in the string, the already typed prefix string is
given – there is no ambiguity in the prefix string,
modulo subsequent repairs. In contrast, in speech
recognition, machine translation, optical character
recognition or T9 style text input, the actual pre-
fix string is not known; rather, there is a distribu-
tion over possible prefix strings, and a global in-
ference procedure is required to find the best string
as a whole. For typing, once the symbol has been
produced and not repaired, the model predicting the
next symbol is given the true context. This has sev-
eral important ramifications for language modeling,

including the availability of supervised adaptation
data and the fact that the models trained with rel-
ative frequency estimation are both generative and
discriminative. See Roark (2009) for extensive dis-
cussion of these issues. Here we will consider n-
gram language models of various orders, estimated
via smoothed relative frequency estimation (see §
3.1). The principal novelty in the current approach
is the principled incorporation of error probabilities
into the binary coding approaches, and the experi-
mental demonstration of how linear coding for grids
or RSVP interfaces compare to Huffman coding and
row/column scanning for grids.

3 Methods
3.1 Character-based language models
For this paper, we use character n-gram models.
Carpenter (2005) has an extensive comparison of
large scale character-based language models, and
we adopt smoothing methods from that paper. It
presents a version of Witten-Bell smoothing (Wit-
ten and Bell, 1991) with an optimized hyperparam-
eter K, which is shown to be as effective as Kneser-
Ney smoothing (Kneser and Ney, 1995) for higher
order n-grams. We refer readers to that paper for de-
tails on this standard n-gram language modeling ap-
proach. For the experimental results presented here,
we trained unigram and 8-gram models from the NY
Times portion of the English Gigaword corpus.

We performed extensive normalization of this
corpus, detailed in Roark (2009). We de-cased
the resulting corpus and selected sentences that
only included characters that would appear in
our 6×6 spelling grid. Those characters are:
the 26 letters of the English alphabet, the space
character, a delete symbol, comma, period, double
and single quote, dash, dollar sign, colon and
semi-colon. We used a 42 million character subset
of this corpus for training the model. Finally, we
appended to this corpus approximately 112 thou-
sand words from the CMU Pronouncing Dictionary
(www.speech.cs.cmu.edu/cgi-bin/cmudict),
which also contained only the symbols from the
grid. For hyper-parameter settings, we used a 100k
character development set. Our best performing
hyper-parameter for the Witten-Bell smoothing was
K = 15, which is comparable to optimal settings
found by Carpenter (2005) for 12-grams.

3.2 Binary codes
Given what has been typed so far, we can use a char-
acter n-gram language model to assign probabilities
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Figure 4: Row/column scanning interface.

to all next symbols in the symbol set V . After sort-
ing the set in order of decreasing probability, we can
use these probabilities to build binary coding trees
for the set. Hence the binary code assigned to each
symbol in the symbol set differs depending on what
has been typed before. For Huffman coding, we
used the algorithm from Perelmouter and Birbaumer
(2000) that accounts for any probability of error in
following a branch of the tree, and builds the optimal
coding tree even when there is non-zero probability
of taking a branch in error. Either linear or Huffman
codes can be built from the language model proba-
bilities, and can then be used for a typing interface,
using the algorithm presented in Figure 2.

3.3 Scanning systems
For these experiments, we developed an interface
for controlled testing of typing performance under
a range of scanning methods. These include: (i)
row/column scanning, both auto scan (button press
selects) and step scan (lack of button press selects);
(ii) Scanning with a Huffman code, either derived
from a unigram language model, or from an 8-gram
language model; and (iii) Scanning with a linear
code, either on the 6×6 grid, or using RSVP, which
shows one symbol at a time. Each trial involved giv-
ing subjects a target phrase with instructions to type
the phrase exactly as displayed. All errors in typing
were required to be corrected by deleting (via←) the
incorrect symbol and re-typing the correct symbol.

Figure 4 shows our typing interface when config-
ured for row/column scanning. At the top of the
application window is the target string to be typed
by the subject (‘we run the risk of failure’). Below
that is the buffer displaying what has already been
typed (‘we run t’). Spaces between words must also
be typed – they are represented by the underscore
character in the upper left-hand corner of the grid.
Spaces are treated like any other symbol in our lan-
guage model – they must be typed, thus they are pre-

Figure 5: Error in row/column scanning interface.

dicted along with the other symbols. Figure 5 shows
how the display updates when an incorrect character
is typed. The errors are highlighted in red, followed
by the backarrow symbol to remind users to delete.

If a row has not been selected after a pass over all
rows, scanning begins again at the top. After row
selection, column scanning commences; if a column
is not selected after three passes from left-to-right
over the columns, then row scanning re-commences
at the following row. Hence, even if a wrong row is
selected, the correct symbol can still be typed.

Note that the spelling grid has been sorted in uni-
gram frequency order, so that the most frequent sym-
bols are in the upper left-hand corner. This same grid
is used in all grid scanning conditions, and provides
language modeling benefit to row/column scanning.

Figure 6 shows our typing interface when config-
ured for what we term Huffman scanning. In this
scanning mode, the highlighted subset is dictated by
the Huffman code, and is not necessarily contiguous.
Not requiring contiguity of highlighted symbols al-
lows the coding to vary with the context, thus allow-
ing use of an n-gram language model. As far as we
know, this is the first time that contiguity of high-
lighting is relaxed in a scanning interface to accom-
modate Huffman coding. Baljko and Tam (2006)
used Huffman coding for a grid scanning interface,
but using a unigram model and the grid layout was
selected to ensure that highlighted regions would al-
ways be contiguous, thus precluding n-gram models.

In our Huffman scanning approach, when the se-
lected set includes just one character, it is typed. As
with row/column scanning, when the wrong charac-
ter is typed, the backarrow symbol must be chosen
to delete it. If an error is made in selection that does
not result in a typed character – i.e., if the incorrectly
selected set has more than one member – then we
need some mechanism for allowing the target sym-
bol to still be selected, much as we have a mecha-

32



Figure 6: Huffman scanning interface.

nism in row/column scanning for recovering if the
wrong row is selected. Section 3.4 details our novel
method for recalculating the binary codes based on
an error rate parameter. At no point in typing is any
character ruled out from being selected.

The grids shown in Figures 4-6 can be straightfor-
wardly used with linear coding as well, by simply
highlighting one cell at a time in descending proba-
bility order. Additionally, linear coding can be used
with an RSVP interface, shown in Figure 7, which
displays one character at a time.

Each interface needs a scan rate, specifying how
long to wait for a button press before advancing. The
scan rate for each condition was set for each individ-
ual during a training/calibration session (see §4.1).

3.4 Errors in Huffman and Linear scanning
In this section we briefly detail how we account for
the probability of error in scanning with Huffman
and linear codes. The scanning interface takes a pa-
rameter p, which is the probability that, when a se-
lection is made, it is correct. Thus 1−p is the proba-
bility of an error. Recall that if a selection leads to a
single symbol, then that symbol is typed. Otherwise,
if a selection leads to a set with more than one sym-
bol, then all symbol probabilities (even those not in
the selected set) are updated based on the error prob-
ability and scanning continues. If a non-target (in-
correct) symbol is selected, the delete (backarrow)
symbol must be chosen to correct the error, after
which the typing interface returns to the previous
position. Three key questions must be answered in
such an approach: (1) how are symbol probabilities
updated after a keystroke, to reflect the probability
of error? (2) how is the probability of backarrow es-
timated? and (3) when the typing interface returns
to the previous position, where does it pick up the
scanning? Here we answer all three questions.

Consider the Huffman coding tree in Figure 3. If
the left-branch (‘1’) is selected by the user, the prob-
ability that it was intended is p versus an error with

Figure 7: RSVP scanning interface.

probability 1−p. If the original probability of a sym-
bol is q, then the updated probability of the symbol
is pq if it starts with a ‘1’ and (1−p)q if it starts with
a ‘0’. After updating the scores and re-normalizing
over the whole set, we can build a new binary cod-
ing tree. The user then selects a branch at the root
of the new tree. A symbol is finally selected when
the user selects a branch leading to a single symbol.
The same approach is used with a linear coding tree.

The probability of requiring the delete (backar-
row) character can be calculated directly from the
probability of keystroke error – in fact, the probabil-
ity of backarrow is exactly the probability of error
1−p. To understand why this is the case, consider
that a non-target (incorrect) symbol can be chosen
according to the approach in the previous paragraph
only with a final keystroke error. Any keystroke
error that does not select a single symbol does not
eliminate the target symbol, it merely re-adjusts the
target symbol’s probability along with all other sym-
bols. Hence, no matter how many keystrokes have
been made, the probability that a selected symbol
was not the target symbol is simply the probability
that the last keystroke was in error, i.e., 1−p.

Finally, if backarrow is selected, the previous po-
sition is revisited, and the probabilities are reset as
though no prior selection had been made.

4 Empirical results
4.1 Subjects and scan rate calibration
We recruited 10 native English speakers between the
ages of 24 and 48 years, who had not used our typ-
ing interface, are not users of scanning interfaces
for typing, and have typical motor function. Each
subject participated in two sessions, one for training
and calibration of scan rates; and another for testing.
We use the phrase set from MacKenzie and Souko-
reff (2003) to evaluate typing performance. Of the
500 phrases in that set, 20 were randomly set aside
for testing, the other 480 available during training
and calibration phases. Five of the 20 evaluation
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strings were used in this study. We used an Ablenet
Jellybean R© button as the binary switch. For these
trials, to estimate error rates in modeling, we fixed
p = 0.95, i.e., 5% error rate.

The scan rate for row/column scanning is typi-
cally different than for Huffman or linear scanning,
since row/column scanning methods allow for an-
ticipation: one can tell from the current highlight-
ing whether the desired row or column will be high-
lighted next. For the Huffman and linear scanning
approaches that we are investigating, that is not the
case: any cell can be highlighted (or symbol dis-
played) at any time, even multiple times in a row.
Hence the scan rate for these methods depends more
on reaction time than row/column scanning, where
anticipation allows for faster rates.

The scan rate also differs between the two
row/column scanning approaches (auto scan and
step scan), due to the differences in control needed
to advance scanning with a button press versus se-
lecting with a button press. We thus ran scan rate
calibration under three conditions: row/column step
scan; row/column auto scan; and Huffman scan-
ning, using a unigram language model. The Huff-
man scanning scan rate was then used for all of the
Huffman and linear scanning approaches.

Calibration involved two stages for each of the
three approaches, and the first stage of all three is
completed before running the second stage, thus fa-
miliarizing subjects with all interfaces prior to final
calibration. The first stage of calibration starts with
slow scan rate (1200 ms dwell time), then speeds up
the scan rate by reducing dwell time by 200 ms when
a target string is successfully typed. Success here
means that the string is correctly typed with less than
10% error rate. The subject gets three tries to type a
string successfully at a given scan rate, after which
they are judged to not be able to complete the task
at that rate. In the first stage, this stops the stage for
that method and the dwell time is recorded. In the
second stage, calibration starts at a dwell time 500
ms higher than where the subject failed in the first
stage, and the dwell time decreases by 100 ms in-
crements when target strings are successfully typed.
When subjects cannot complete the task at a dwell
time, the dwell time then increases at 50 ms incre-
ments until they can successfully type a target string.

Table 1 shows the mean (and std) scan rates (dwell
time) for each condition. Step scanning generally
had a slower scan rate than auto scanning, and Huff-
man scanning (unsurprisingly) was slowest.

4.2 Testing stage and results
In the testing stage of the protocol, there were
six conditions: (1) row/column step scan; (2)
row/column auto scan; (3) Huffman scanning with
codes derived from the unigram language model; (4)
Huffman scanning with codes derived from the 8-
gram language model; (5) Linear scanning on the
6×6 spelling grid with codes derived from the 8-
gram language model; and (6) RSVP single letter
presentation with codes derived from the 8-gram
language model. The ordering of the conditions for
each subject was randomized. In each condition, in-
structions were given (identical to instructions dur-
ing calibration phase), and the subjects typed prac-
tice phrases until they successfully reached error rate
criterion performance (10% error rate or lower), at
which point they were given the test phrases to type.

Recall that the task is to type the stimulus phrase
exactly as presented, hence the task is not com-
plete until the phrase has been correctly typed. To
avoid non-termination scenarios – e.g., the subject
does not recognize that an error has occurred, what
the error is, or simply cannot recover from cascad-
ing errors – the trial is stopped if the total errors
in typing the target phrase reach 20, and the sub-
ject is presented with the same target phrase to type
again from the beginning, i.e., the example is re-
set. Only 2 subjects in the experiment had a phrase
reset in this way (just one phrase each), both in
row/column scanning conditions. Of course, the
time and keystrokes spent typing prior to reset are
included in the statistics of the condition.

Table 1 shows the mean (and std) of several mea-
sures for the 10 subjects. Speed is reported in char-
acters per minute. Bits per character represents
the number of keypress and non-keypress (timeout)
events that were used to type the symbol. Note that
bits per character does not correlate perfectly with
speed, since a non-keypress bit due to a timeout
takes the full dwell time, while the time for a key-
press event may be less than that full time. For any
given symbol the bits may involve making an error,
followed by deleting the erroneous symbol and re-
typing the correct symbol. Alternately, the subject
may scan pass the target symbol, but still return to
type it correctly, resulting in extra keystrokes, i.e., a
longer binary code than optimal. In addition to the
mean and standard deviation of bits per character,
we present the optimal could be achieved with each
method. Finally we characterize the errors that are
made by subjects by the error rate, which is the num-
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Scan rate (ms) Speed (cpm) Bits per character Error rate Long code rate
Scanning condition mean (std) mean (std) mean (std) opt. mean (std) mean (std)
row/column step scan 425 (116) 20.7 (3.6) 8.5 (2.6) 4.5 6.3 (5.1) 29.9 (19.0)

auto scan 310 (70) 19.1 (2.2) 8.4 (1.2) 4.5 5.4 (2.8) 33.8 (11.5)
Huffman unigram 475 (68) 12.5 (2.3) 8.4 (1.9) 4.4 4.4 (2.2) 39.2 (13.5)

8-gram 475 (68) 23.4 (3.7) 4.3 (1.1) 2.6 4.1 (2.2) 19.3 (14.2)
Linear grid 8-gram 475 (68) 23.2 (2.1) 4.2 (0.7) 3.4 2.4 (1.5) 5.0 (4.1)
RSVP 8-gram 475 (68) 20.3 (5.1) 6.1 (2.6) 3.4 7.7 (5.4) 5.2 (4.0)

Table 1: Typing results for 10 users on 5 test strings (total 31 words, 145 characters) under six conditions.

ber of incorrect symbols typed divided by the total
symbols typed. The long code rate is the percent-
age of correctly typed symbols for which a longer
than optimal code was used to type the symbol, by
making an erroneous selection that does not result in
typing the wrong symbol.

We also included a short survey, using a Likert
scale for responses, and mean scores are shown in
Table 2 for four questions: 1) I was fatigued by the
end of the trial; 2) I was stressed by the end of the
trial; 3) I liked this trial; and 4) I was frustrated by
this trial. The responses showed a consistent prefer-
ence for Huffman and linear grid conditions with an
8-gram language model over the other conditions.

Survey Row/Column Huffman Linear
Question step auto 1-grm 8-grm grid RSVP
Fatigued 3.2 2.4 3.6 2.0 2.4 2.8
Stressed 2.7 2.4 2.7 1.5 1.8 2.6
Liked it 2.2 3.3 2.3 4.2 3.8 3.2
Frustrated 3.2 1.7 3.1 1.7 1.7 2.3

Table 2: Mean Likert scores to survey questions
(5 = strongly agree; 1 = strongly disagree)

4.3 Discussion of results
While this is a preliminary study of just 10 sub-
jects, several things stand out from the results. First,
comparing the three methods using just unigram fre-
quencies to inform scanning (row/column and Huff-
man unigram), we can see that Huffman unigram
scanning is significantly slower than the other two,
mainly due to a slower scan rate with no real im-
provement in bits per character (real or optimal). All
three methods have a high rate of longer than opti-
mal codes, leading to nearly double the bits per char-
acter that would optimally be required.

Next, with the use of the 8-gram language model
in Huffman scanning, both the optimal bits per char-
acter and the difference between real and optimal are
reduced, leading to nearly double the speed. Inter-
estingly, use of the linear code on the grid leads to
fewer bits per character than Huffman scanning, de-
spite nearly 1 bit increase in optimal bits per charac-

ter, due to a decrease in error rate and a very large
decrease in long code rate. We speculate that this is
because highlighting a single cell at a time draws the
eye to that cell, making visual scanning easier.

Finally, despite using the same model, RSVP is
found to be slightly slower than the Huffman 8-
gram or Linear grid conditions, though commensu-
rate with the row/column scanning, mainly due to an
increase in error rate. Monitoring a single cell, rec-
ognizing symbol identity and pressing the switch is
apparently somewhat harder than finding the symbol
on a grid and waiting for the cell to light up.

5 Summary and future directions
We have presented methods for including language
modeling in simple scanning interfaces for typing,
and evaluated performance of novice subjects with
typical motor control. We found that language mod-
eling can make a very large difference in the us-
ability of the Huffman scanning condition. We also
found that, despite losing bits to optimal Huffman
coding, linear coding leads to commensurate typ-
ing speed versus Huffman coding presumably due
to lower cognitive overhead of scanning and thus
fewer mistakes. Finally, we found that RSVP was
somewhat slower than grid scanning with the same
language model and code.

This research is part of a program to make the
simplest scanning approaches as efficient as possi-
ble, so as to facilitate the use of binary switches for
individuals with the most severe impairments, in-
cluding ERP for locked-in subjects. While our sub-
jects in this study have shown slightly better perfor-
mance using a grid versus RSVP, these individuals
have no problem with visual scanning or fixation
on relatively small cells in the grid. It is encourag-
ing that subjects can achieve nearly the same perfor-
mance with an interface that simply displays an op-
tion and requests a yes or a no. We intend to run this
study with subjects with impairment, and are incor-
porating the interfaces with an ERP detection system
for use as a brain-computer interface.
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