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Abstract

We present a technique for reading sentences

and producing sets of hypothetical relations

that the sentence may be expressing. The

technique uses large amounts of instance-level

background knowledge about the relations in

order to gather statistics on the various ways

the relation may be expressed in language, and

was inspired by the observation that half of the

linguistic forms used to express relations oc-

cur very infrequently and are simply not con-

sidered by systems that use too few seed ex-

amples. Some very early experiments are pre-

sented that show promising results.

1 Introduction

We are building a system that learns to read in a new

domain by applying a novel combination of natural

language processing, machine learning, knowledge

representation and reasoning, information retrieval,

data mining, etc. techniques in an integrated way.

Central to our approach is the view that all parts of

the system should be able to interact during any level

of processing, rather than a pipeline view in which

certain parts of the system only take as input the re-

sults of other parts, and thus cannot influence those

results. In this paper we discuss a particular case

of that idea, using large knowledge bases hand in

hand with natural language processing to improve

the quality of relation detection. Ultimately we de-

fine reading as representing natural language text in
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a way that integrates background knowledge and in-

ference, and thus are doing the relation detection

to better integrate text with pre-existing knowledge,

however that should not (and does not) prevent us

from using what knowledge we have to influence

that integration along the way.

2 Background

The most obvious points of interaction between NLP

and KR systems are named entity tagging and other

forms of type instance extraction. The second ma-

jor point of interaction is relation extraction, and

while there are many kinds of relations that may

be detected (e.g. syntactic relations such as modi-

fiers and verb subject/object, equivalence relations

like coreference or nicknames, event frame relations

such as participants, etc.), the kind of relations that

reading systems need to extract to support domain-

specific reasoning tasks are relations that are known

to be expressed in supporting knowledge-bases. We

call these relations semantic relations in this paper.

Compared to entity and type detection, extraction

of semantic relations is significantly harder. In our

work on bridging the NLP-KR gap, we have ob-

served several aspects of what makes this task dif-

ficult, which we discuss below.

2.1 Keep reading

Humans do not read and understand text by first rec-

ognizing named entities, giving them types, and then

finding a small fixed set of relations between them.

Rather, humans start with the first sentence and build

up a representation of what they read that expands

and is refined during reading. Furthermore, humans
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do not “populate databases” by reading; knowledge

is not only a product of reading, it is an integral part

of it. We require knowledge during reading in order

to understand what we read.

One of the central tenets of our machine reading

system is the notion that reading is not performed on

sentences in isolation. Often, problems in NLP can

be resolved by simply waiting for the next sentence,

or remembering the results from the previous, and

incorporating background or domain specific knowl-

edge. This includes parse ambiguity, coreference,

typing of named entities, etc. We call this the Keep

Reading principle.

Keep reading applies to relation extraction as

well. Most relation extraction systems are imple-

mented such that a single interpretation is forced

on a sentence, based only on features of the sen-

tence itself. In fact, this has been a shortcoming

of many NLP systems in the past. However, when

you apply the Keep Reading principle, multiple hy-

potheses from different parts of the NLP pipeline are

maintained, and decisions are deferred until there is

enough evidence to make a high confidence choice

between competing hypotheses. Knowledge, such

as those entities already known to participate in a

relation and how that relation was expressed, can

and should be part of that evidence. We will present

many examples of the principle in subsequent sec-

tions.

2.2 Expressing relations in language

Due to the flexibility and expressive power of nat-

ural language, a specific type of semantic relation

can usually be expressed in language in a myriad

of ways. In addition, semantic relations are of-

ten implied by the expression of other relations.

For example, all of the following sentences more

or less express the same relation between an actor

and a movie: (1) “Elijah wood starred in Lord of

the Rings: The Fellowship of the Ring”, (2) “Lord

of the Rings: The Fellowship of the Ring’s Elijah

Wood, ...”, and(3) “Elijah Wood’s coming of age

was clearly his portrayal of the dedicated and noble

hobbit that led the eponymous fellowship from the

first episode of the Lord of the Rings trilogy.” No

human reader would have any trouble recognizing

the relation, but clearly this variability of expression

presents a major problem for machine reading sys-

tems.

To get an empirical sense of the variability of nat-

ural language used to express a relation, we stud-

ied a few semantic relations and found sentences

that expressed that relation, extracted simple pat-

terns to account for how the relation is expressed

between two arguments, mainly by removing the re-

lation arguments (e.g. “Elijah Wood” and “Lord of

the Rings: The Fellowship of the Ring” above) and

replacing them with variables. We then counted the

number of times each pattern was used to express

the relation, producing a recognizable very long tail

shown in Figure 1 for the top 50 patterns expressing

the acted-in-movie relation in 17k sentences. More

sophisticated pattern generalization (as discussed in

later sections) would significantly fatten the head,

bringing it closer to the traditional 50% of the area

under the curve, but no amount of generalization

will eliminate the tail. The patterns become increas-

ingly esoteric, such as “The movie Death Becomes

Her features a brief sequence in which Bruce Willis

and Goldie Hawn’s characters plan Meryl Streep’s

character’s death by sending her car off of a cliff

on Mulholland Drive,” or “The best known Hawk-

sian woman is probably Lauren Bacall, who iconi-

cally played the type opposite Humphrey Bogart in

To Have and Have Not and The Big Sleep.”

2.3 What relations matter

We do not consider relation extraction to be an end

in and of itself, but rather as a component in larger

systems that perform some task requiring interoper-

ation between language- and knowledge-based com-

ponents. Such larger tasks can include question

answering, medical diagnosis, intelligence analysis,

museum curation, etc. These tasks have evaluation

criteria that go beyond measuring relation extraction

results. The first step in applying relation detection

to these larger tasks is analysis to determine what

relations matter for the task and domain.

There are a number of manual and semi-automatic

ways to perform such analysis. Repeating the

theme of this paper, which is to use pre-existing

knowledge-bases as resources, we performed this

analysis using freebase and a set of 20k question-

answer pairs representing our task domain. For each

question, we formed tuples of each entity name in

the question (QNE) with the answer, and found all
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Figure 1: Pattern frequency for acted-in-movie relation for 17k sentences.
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Figure 2: Relative frequency for top 50 relations in 20K question-answer pairs.

the relations in the KB connecting the entities. We

kept a count for each relation of how often it con-

nected a QNE to an answer. Of course we don’t ac-

tually know for sure that the relation is the one being

asked, but the intuition is that if the amount of data

is big enough, you will have at least a ranked list of

which relations are the most frequent.

Figure 2 shows the ranking for the top 50 rela-

tions. Note that, even when restricted to the top 50

relations, the graph has no head, it is basically all

tail; The top 50 relations cover about 15% of the do-

main. In smaller, manual attempts to determine the

most frequent relations in our domain, we had a sim-

ilar result. What this means is that supporting even

the top 50 relations with perfect recall covers about

15% of the questions. It is possible, of course, to

narrow the domain and restrict the relations that can

be queried–this is what database systems do. For

reading, however, the results are the same. A read-

ing system requires the ability to recognize hundreds

of relations to have any significant impact on under-

standing.

2.4 Multi-relation learning on many seeds

The results shown in Figure 1 and Figure 2 con-

firmed much of the analysis and experiences we’d

had in the past trying to apply relation extraction in

the traditional way to natural language problems like
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question answering, building concept graphs from

intelligence reports, semantic search, etc. Either by

training machine learning algorithms on manually

annotated data or by manually crafting finite-state

transducers, relation detection is faced by this two-

fold problem: the per-relation extraction hits a wall

around 50% recall, and each relation itself occurs

infrequently in the data.

This apparent futility of relation extraction led us

to rethink our approach. First of all, the very long

tail for relation patterns led us to consider how to

pick up the tail. We concluded that to do so would

require many more examples of the relation, but

where can we get them? In the world of linked-data,

huge instance-centered knowledge-bases are rapidly

growing and spreading on the semantic web1. Re-

sources like DBPedia, Freebase, IMDB, Geonames,

the Gene Ontology, etc., are making available RDF-

based data about a number of domains. These

sources of structured knowledge can provide a large

number of seed tuples for many different relations.

This is discussed further below.

Furthermore, the all-tail nature of relation cover-

age led us to consider performing relation extraction

on multiple relations at once. Some promising re-

sults on multi-relation learning have already been re-

ported in (Carlson et al., 2009), and the data sources

mentioned above give us many more than just the

handful of seed instances used in those experiments.

The idea of learning multiple relations at once also

fits with our keep reading principle - multiple rela-

tion hypotheses may be annotated between the same

arguments, with further evidence helping to disam-

biguate them.

3 Approach

One common approach to relation extraction is to

start with seed tuples and find sentences that con-

tain mentions of both elements of the tuple. From

each such sentence a pattern is generated using at

minimum universal generalization (replace the tuple

elements with variables), though adding any form of

generalization here can significantly improve recall.

Finally, evaluate the patterns by applying them to

text and evaluating the precision and recall of the tu-

ples extracted by the patterns. Our approach, called

1http://linkeddata.org/

Large Scale Relation Detection (LSRD), differs in

three important ways:

1. We start with a knowledge-base containing a

large number (thousands to millions) of tuples

encoding relation instances of various types.

Our hypothesis is that only a large number of

examples can possibly account for the long tail.

2. We do not learn one relation at a time, but

rather, associate a pattern with a set of relations

whose tuples appear in that pattern. Thus, when

a pattern is matched to a sentence during read-

ing, each relation in its set of associated rela-

tions is posited as a hypothetical interpretation

of the sentence, to be supported or refuted by

further reading.

3. We use the knowledge-base as an oracle to de-

termine negative examples of a relation. As

a result the technique is semi-supervised; it

requires no human intervention but does re-

quire reliable knowledge-bases as input–these

knowledge-bases are readily available today.

Many relation extraction techniques depend on a

prior step of named entity recognition (NER) and

typing, in order to identify potential arguments.

However, this limits recall to the recall of the NER

step. In our approach patterns can match on any

noun phrase, and typing of these NPs is simply an-

other form of evidence.

All this means our approach is not relation extrac-

tion per se, it typically does not make conclusions

about a relation in a sentence, but extracts hypothe-

ses to be resolved by other parts of our reading sys-

tem.

In the following sections, we elaborate on the

technique and some details of the current implemen-

tation.

3.1 Basic pipeline

The two principle inputs are a corpus and a

knowledge-base (KB). For the experiments below,

we used the English Gigaword corpus2 extended

with Wikipedia and other news sources, and IMDB,

DBPedia, and Freebase KBs, as shown. The intent is

2http://www.ldc.upenn.edu/Catalog/

CatalogEntry.jsp?catalogId=LDC2003T05
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to run against a web-scale corpus and larger linked-

data sets.

Input documents are sentence delimited, tok-

enized and parsed. The technique can benefit dra-

matically from coreference resolution, however in

the experiments shown, this was not present. For

each pair of proper names in a sentence, the names

are looked up in the KB, and if they are related,

a pattern is extracted from the sentence. At min-

imum, pattern extraction should replace the names

with variables. Depending on how patterns are ex-

tracted, one pattern may be extracted per sentence,

or one pattern may be extracted per pair of proper

names in the sentence. Each pattern is associated

with all the relations known in the KB between the

two proper names. If the pattern has been extracted

before, the two are merged by incrementing the as-

sociated relation counts. This phase, called pattern

induction, is repeated for the entire corpus, resulting

in a large set of patterns, each pattern associated with

relations. For each ¡pattern, relation¿ pair, there is a

count of the number of times that pattern appeared

in the corpus with names that are in the relation ac-

cording to the KB.

The pattern induction phase results in positive

counts, i.e. the number of times a pattern appeared

in the corpus with named entities known to be re-

lated in the KB. However, the induction phase does

not exhaustively count the number of times each pat-

tern appears in the corpus, as a pattern may appear

with entities that are not known in the KB, or are not

known to be related. The second phase, called pat-

tern training, goes through the entire corpus again,

trying to match induced patterns to sentences, bind-

ing any noun phrase to the pattern variables. Some

attempt is made to resolve the noun phrase to some-

thing (most obviously, a name) that can be looked

up in the KB, and for each relation associated with

the pattern, if the two names are not in the relation

according to the KB, the negative count for that re-

lation in the matched pattern is incremented. The

result of the pattern training phase is an updated set

of ¡pattern, relation¿ pairs with negative counts.

The following example illustrates the basic pro-

cessing. During induction, this sentence is encoun-

tered:

Tom Cruise and co-star Nicole Kidman

appeared together at the premier.

The proper names “Tom Cruise” and “Nicole Kid-

man” are recognized and looked up in the KB. We

find instances in the KB with those names, and the

following relations: coStar(Tom Cruise,

Nicole Kidman); marriedTo(Tom

Cruise, Nicole Kidman). We extract a

pattern p1: ?x and co-star ?y appeared

together at the premier in which all the

names have been replace by variables, and the

associations <p1, costar, 1, 0> and <p1,

marriedTo, 1, 0> with positive counts and

zero negative counts. Over the entire corpus, we’d

expect the pattern to appear a few times and end

up with final positive counts like <p1, coStar,

14, 0> and <p1, marriedTo, 2, 0>, in-

dicating the pattern p1 appeared 14 times in the

corpus between names known to participate in the

coStar relation, and twice between names known

to participate in the marriedTo relation. During

training, the following sentence is encountered that

matches p1:

Tom Hanks and co-star Daryl Hannah ap-

peared together at the premier.

The names “Tom Hanks” and “Daryl Hannah”

are looked up in the KB and in this case only

the relation coStar is found between them, so the

marriedTo association is updated with a negative

count: <p1, marriedTo, 2, -1>. Over the

entire corpus, we’d expect the counts to be some-

thing like <p1, costar, 14, -6> and <p1,

marriedTo, 2, -18>.

This is a very simple example and it is difficult to

see the value of the pattern training phase, as it may

appear the negative counts could be collected during

the induction phase. There are several reasons why

this is not so. First of all, since the first phase only

induces patterns between proper names that appear

and are related within the KB, a sentence in the cor-

pus matching the pattern would be missed if it did

not meet that criteria but was encountered before the

pattern was induced. Secondly, for reasons that are

beyond the scope of this paper, having to do with

our Keep Reading principle, the second phase does

slightly more general matching: note that it matches

noun phrases instead of proper nouns.
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3.2 Candidate-instance matching

An obvious part of the process in both phases is

taking strings from text and matching them against

names or labels in the KB. We refer to the strings in

the sentences as candidate arguments or simply can-

didates, and refer to instances in the KB as entities

with associated attributes. For simplicity of discus-

sion we will assume all KBs are in RDF, and thus

all KB instances are nodes in a graph with unique

identifiers (URIs) and arcs connecting them to other

instances or primitive values (strings, numbers, etc.).

A set of specially designated arcs, called labels, con-

nect instances to strings that are understood to name

the instances. The reverse lookup of entity identi-

fiers via names referred to in the previous section

requires searching for the labels that match a string

found in a sentence and returning the instance iden-

tifier.

This step is so obvious it belies the difficultly of

the matching process and is often overlooked, how-

ever in our experiments we have found candidate-

instance matching to be a significant source of error.

Problems include having many instances with the

same or lexically similar names, slight variations in

spelling especially with non-English names, inflex-

ibility or inefficiency in string matching in KB im-

plementations, etc. In some of our sources, names

are also encoded as URLs. In the case of movie

and book titles-two of the domains we experimented

with-the titles seem almost as if they were designed

specifically to befuddle attempts to automatically

recognize them. Just about every English word is a

book or movie title, including “It”, “Them”, “And”,

etc., many years are titles, and just about every num-

ber under 1000. Longer titles are difficult as well,

since simple lexical variations can prevent matching

from succeeding, e.g. the Shakespeare play, A Mid-

summer Night’s Dream appears often as Midsummer

Night’s Dream, A Midsummer Night Dream, and oc-

casionally, in context, just Dream. When titles are

not distinguished or delimited somehow, they can

confuse parsing which may fail to recognize them as

noun phrases. We eventually had to build dictionar-

ies of multi-word titles to help parsing, but of course

that was imperfect as well.

The problems go beyond the analogous ones in

coreference resolution as the sources and technology

themselves are different. The problems are severe

enough that the candidate-instance matching prob-

lem contributes the most, of all components in this

pipeline, to precision and recall failures. We have

observed recall drops of as much as 15% and preci-

sion drops of 10% due to candidate-instance match-

ing.

This problem has been studied somewhat in the

literature, especially in the area of database record

matching and coreference resolution (Michelson and

Knoblock, 2007), but the experiments presented be-

low use rudimentary solutions and would benefit

significantly from improvements; it is important to

acknowledge that the problem exists and is not as

trivial as it appears at first glance.

3.3 Pattern representation

The basic approach accommodates any pattern rep-

resentation, and in fact we can accommodate non

pattern-based learning approaches, such as CRFs, as

the primary hypothesis is principally concerned with

the number of seed examples (scaling up initial set

of examples is important). Thus far we have only

experimented with two pattern representations: sim-

ple lexical patterns in which the known arguments

are replaced in the sentence by variables (as shown

in the example above), and patterns based on the

spanning tree between the two arguments in a de-

pendency parse, again with the known arguments re-

placed by variables. In our initial design we down-

played the importance of the pattern representation

and especially generalization, with the belief that

very large scale would remove the need to general-

ize. However, our initial experiments suggest that

good pattern generalization would have a signifi-

cant impact on recall, without negative impact on

precision, which agrees with findings in the litera-

ture (Pantel and Pennacchiotti, 2006). Thus, these

early results only employ rudimentary pattern gen-

eralization techniques, though this is an area we in-

tend to improve. We discuss some more details of

the lack of generalization below.

4 Experiment

In this section we present a set of very early proof of

concept experiments performed using drastic simpli-

fications of the LSRD design. We began, in fact, by
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Relation Prec Rec F1 Tuples Seeds

imdb:actedIn 46.3 45.8 0.46 9M 30K

frb:authorOf 23.4 27.5 0.25 2M 2M

imdb:directorOf 22.8 22.4 0.22 700K 700K

frb:parentOf 68.2 8.6 0.16 10K 10K

Table 1: Precision and recall vs. number of tuples used

for 4 freebase relations.

using single-relation experiments, despite the cen-

trality of multiple hypotheses to our reading system,

in order to facilitate evaluation and understanding of

the technique. Our main focus was to gather data

to support (or refute) the hypothesis that more re-

lation examples would matter during pattern induc-

tion, and that using the KB as an oracle for training

would work. Clearly, no KB is complete to begin

with, and candidate-instance matching errors drop

apparent coverage further, so we intended to explore

the degree to which the KB’s coverage of the relation

impacted performance. To accomplish this, we ex-

amined four relations with different coverage char-

acteristics in the KB.

4.1 Setup and results

The first relation we tried was the acted-in-show

relation from IMDB; for convenience we refer to

it as imdb:actedIn. An IMDB show is a movie,

TV episode, or series. This relation has over 9M

<actor, show> tuples, and its coverage was

complete as far as we were able to determine. How-

ever, the version we used did not have a lot of name

variations for actors. The second relation was the

author-of relation from Freebase (frb:authorOf ),

with roughly 2M <author, written-work>

tuples. The third relation was the director-of-

movie relation from IMDB (imdb:directorOf ), with

700k <director,movie> tuples. The fourth

relation was the parent-of relation from Free-

base (frb:parentOf ), with roughly 10K <parent,

child> tuples (mostly biblical and entertainment).

Results are shown in Table 1.

The imdb:actedIn experiment was performed on

the first version of the system that ran on 1 CPU and,

due to resource constraints, was not able to use more

than 30K seed tuples for the rule induction phase.

However, the full KB (9M relation instances) was

available for the training phase. With some man-

ual effort, we selected tuples (actor-movie pairs) of

popular actors and movies that we expected to ap-

pear most frequently in the corpus. In the other ex-

periments, the full tuple set was available for both

phases, but 2M tuples was the limit for the size of

the KB in the implementation. With these promising

preliminary results, we expect a full implementation

to accommodate up to 1B tuples or more.

The evaluation was performed in decreasing de-

grees of rigor. The imdb:actedIn experiment was run

against 20K sentences with roughly 1000 actor in

movie relations and checked by hand. For the other

three, the same sentences were used, but the ground

truth was generated in a semi-automatic way by re-

using the LSRD assumption that a sentence con-

taining tuples in the relation expresses the relation,

and then spot-checked manually. Thus the evalua-

tion for these three experiments favors the LSRD ap-

proach, though spot checking revealed it is the pre-

cision and not the recall that benefits most from this,

and all the recall problems in the ground truth (i.e.

sentences that did express the relation but were not

in the ground truth) were due to candidate-instance

matching problems. An additional idiosyncrasy in

the evaluation is that the sentences in the ground

truth were actually questions, in which one of the

arguments to the relation was the answer. Since

the patterns were induced and trained on statements,

there is a mismatch in style which also significantly

impacts recall. Thus the precision and recall num-

bers should not be taken as general performance, but

are useful only relative to each other.

4.2 Discussion

The results are promising, and we are continuing the

work with a scalable implementation. Overall, the

results seem to show a clear correlation between the

number of seed tuples and relation extraction recall.

However, the results do not as clearly support the

many examples hypothesis as it may seem. When

an actor and a film that actor starred in are men-

tioned in a sentence, it is very often the case that the

sentence expresses that relation. However, this was

less likely in the case of the parent-of relation, and

as we considered other relations, we found a wide

degree of variation. The borders relation between

two countries, for example, is on the other extreme

from actor-in-movie. Bordering nations often wage
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war, trade, suspend relations, deport refugees, sup-

port, oppose, etc. each other, so finding the two na-

tions in a sentence together is not highly indicative

of one relation or another. The director-of-movie re-

lation was closer to acted-in-movie in this regard,

and author-of a bit below that. The obvious next step

to gather more data on the many examples hypoth-

esis is to run the experiments with one relation, in-

creasing the number of tuples with each experiment

and observing the change in precision and recall.

The recall results do not seem particularly strik-

ing, though these experiments do not include pat-

tern generalization (other than what a dependency

parse provides) or coreference, use a small corpus,

and poor candidate-instance matching. Further, as

noted above there were other idiosyncrasies in the

evaluation that make them only useful for relative

comparison, not as general results.

Many of the patterns induced, especially for

the acted-in-movie relation, were highly lexical,

using e.g. parenthesis or other punctuation to

signal the relation. For example, a common

pattern was actor-name (movie-name), or

movie-name: actor-name, e.g. “Leonardo

DiCaprio (Titanic) was considering accepting the

role as Anakin Skywalker,” or “Titanic: Leonardo

DiCaprio and Kate Blanchett steam up the silver

screen against the backdrop of the infamous disas-

ter.” Clearly patterns like this rely heavily on the

context and typing to work. In general the pattern

?x (?y) is not reliable for the actor-in-movie re-

lation unless you know ?x is an actor and ?y is a

movie. However, some patterns, like ?x appears

in the screen epic ?y is highly indicative

of the relation without the types at all - in fact it is

so high precision it could be used to infer the types

of ?x and ?y if they were not known. This seems

to fit extremely well in our larger reading system,

in which the pattern itself provides one form of evi-

dence to be combined with others, but was not a part

of our evaluation.

One of the most important things to general-

ize in the patterns we observed was dates. If

patterns like, actor-name appears in the

1994 screen epic movie-name could have

been generalized to actor-name appears in

the date screen epic movie-name, re-

call would have been boosted significantly. As it

stood in these experiments, everything but the argu-

ments had to match. Similarly, many relations often

appear in lists, and our patterns were not able to gen-

eralize that away. For example the sentence, “Mark

Hamill appeared in Star Wars, Star Wars: The Em-

pire Strikes Back, and Star Wars: The Return of the

Jedi,” causes three patterns to be induced; in each,

one of the movies is replaced by a variable in the

pattern and the other two are required to be present.

Then of course all this needs to be combined, so that

the sentence, “Indiana Jones and the Last Crusade is

a 1989 adventure film directed by Steven Spielberg

and starring Harrison Ford, Sean Connery, Denholm

Elliott and Julian Glover,” would generate a pattern

that would get the right arguments out of “Titanic

is a 1997 epic film directed by James Cameron and

starring Leonardo DiCaprio, Kate Winslett, Kathy

Bates and Bill Paxon.” At the moment the former

sentence generates four patterns that require the di-

rector and dates to be exactly the same.

Some articles in the corpus were biographies

which were rich with relation content but also with

pervasive anaphora, name abbreviations, and other

coreference manifestations that severely hampered

induction and evaluation.

5 Related work

Early work in semi-supervised learning techniques

such as co-training and multi-view learning (Blum

and Mitchell, 1998) laid much of the ground work

for subsequent experiments in bootstrapped learn-

ing for various NLP tasks, including named entity

detection (Craven et al., 2000; Etzioni et al., 2005)

and document classification (Nigam et al., 2006).

This work’s pattern induction technique also repre-

sents a semi-supervised approach, here applied to

relation learning, and at face value is similar in mo-

tivation to many of the other reported experiments

in large scale relation learning (Banko and Etzioni,

2008; Yates and Etzioni, 2009; Carlson et al., 2009;

Carlson et al., 2010). However, previous techniques

generally rely on a small set of example relation in-

stances and/or patterns, whereas here we explicitly

require a larger source of relation instances for pat-

tern induction and training. This allows us to better

evaluate the precision of all learned patterns across

multiple relation types, as well as improve coverage
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of the pattern space for any given relation.

Another fundamental aspect of our approach lies

in the fact that we attempt to learn many relations

simultaneously. Previously, (Whitelaw et al., 2008)

found that such a joint learning approach was use-

ful for large-scale named entity detection, and we

expect to see this result carry over to the relation ex-

traction task. (Carlson et al., 2010) also describes

relation learning in a multi-task learning framework,

and attempts to optimize various constraints posited

across all relation classes.

Examples of the use of negative evidence

for learning the strength of associations between

learned patterns and relation classes as proposed

here has not been reported in prior work to our

knowledge. A number of multi-class learning tech-

niques require negative examples in order to prop-

erly learn discriminative features of positive class

instances. To address this requirement, a number of

approaches have been suggested in the literature for

selection or generation of negative class instances.

For example, sampling from the positive instances

of other classes, randomly perturbing known pos-

itive instances, or breaking known semantic con-

straints of the positive class (e.g. positing multiple

state capitols for the same state). With this work,

we treat our existing RDF store as an oracle, and as-

sume it is sufficiently comprehensive that it allows

estimation of negative evidence for all target relation

classes simultaneously.

The first (induction) phase of LSRD is very simi-

lar to PORE (Wang et al., 2007) (Dolby et al., 2009;

Gabrilovich and Markovitch, 2007) and (Nguyen

et al., 2007), in which positive examples were ex-

tracted from Wikipedia infoboxes. These also bear

striking similarity to (Agichtein and Gravano, 2000),

and all suffer from a significantly smaller number of

seed examples. Indeed, its not using a database of

specific tuples that distinguishes LSRD, but that it

uses so many; the scale of the induction in LSRD

is designed to capture far less frequent patterns by

using significantly more seeds

In (Ramakrishnan et al., 2006) the same intu-

ition is captured that knowledge of the structure of

a database should be employed when trying to inter-

pret text, though again the three basic hypotheses of

LSRD are not supported.

In (Huang et al., 2004), a similar phenomenon to

what we observed with the acted-in-movie relation

was reported in which the chances of a protein in-

teraction relation being expressed in a sentence are

already quite high if two proteins are mentioned in

that sentence.

6 Conclusion

We have presented an approach for Large Scale Re-

lation Detection (LSRD) that is intended to be used

within a machine reading system as a source of hy-

pothetical interpretations of input sentences in natu-

ral language. The interpretations produced are se-

mantic relations between named arguments in the

sentences, and they are produced by using a large

knowledge source to generate many possible pat-

terns for expressing the relations known by that

source.

We have specifically targeted the technique at the

problem that the frequency of patterns occurring in

text that express a particular relation has a very long

tail (see Figure 1), and without enough seed exam-

ples the extremely infrequent expressions of the re-

lation will never be found and learned. Further, we

do not commit to any learning strategy at this stage

of processing, rather we simply produce counts, for

each relation, of how often a particular pattern pro-

duces tuples that are in that relation, and how of-

ten it doesn’t. These counts are simply used as ev-

idence for different possible interpretations, which

can be supported or refuted by other components in

the reading system, such as type detection.

We presented some very early results which while

promising are not conclusive. There were many

idiosyncrasies in the evaluation that made the re-

sults meaningful only with respect to other experi-

ments that were evaluated the same way. In addi-

tion, the evaluation was done at a component level,

as if the technique were a traditional relation extrac-

tion component, which ignores one of its primary

differentiators–that it produces sets of hypothetical

interpretations. Instead, the evaluation was done

only on the top hypothesis independent of other evi-

dence.

Despite these problems, the intuitions behind

LSRD still seem to us valid, and we are investing in a

truly large scale implementation that will overcome

the problems discussed here and can provide more
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valid evidence to support or refute the hypotheses

LSRD is based on:

1. A large number of examples can account for the

long tail in relation expression;

2. Producing sets of hypothetical interpretations

of the sentence, to be supported or refuted by

further reading, works better than producing

one;

3. Using existing, large, linked-data knowledge-

bases as oracles can be effective in relation de-

tection.
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