
Proceedings of the NAACL HLT 2010 Workshop on Active Learning for Natural Language Processing, pages 33–41,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Parallel Active Learning: Eliminating Wait Time with Minimal Staleness

Robbie Haertel, Paul Felt, Eric Ringger, Kevin Seppi
Department of Computer Science

Brigham Young University
Provo, Utah 84602, USA

rah67@cs.byu.edu, pablofelt@gmail.com,

ringger@cs.byu.edu, kseppi@cs.byu.edu

http://nlp.cs.byu.edu/

Abstract

A practical concern for Active Learning (AL)
is the amount of time human experts must wait
for the next instance to label. We propose a
method for eliminating this wait time inde-
pendent of specific learning and scoring al-
gorithms by making scores always available
for all instances, using old (stale) scores when
necessary. The time during which the ex-
pert is annotating is used to train models and
score instances–in parallel–to maximize the
recency of the scores. Our method can be seen
as a parameterless, dynamic batch AL algo-
rithm. We analyze the amount of staleness
introduced by various AL schemes and then
examine the effect of the staleness on perfor-
mance on a part-of-speech tagging task on the
Wall Street Journal. Empirically, the parallel
AL algorithm effectively has a batch size of
one and a large candidate set size but elimi-
nates the time an annotator would have to wait
for a similarly parameterized batch scheme to
select instances. The exact performance of our
method on other tasks will depend on the rel-
ative ratios of time spent annotating, training,
and scoring, but in general we expect our pa-
rameterless method to perform favorably com-
pared to batch when accounting for wait time.

1 Introduction

Recent emphasis has been placed on evaluating the
effectiveness of active learning (AL) based on re-
alistic cost estimates (Haertel et al., 2008; Settles
et al., 2008; Arora et al., 2009). However, to our
knowledge, no previous work has included in the

cost measure the amount of time that an expert an-
notator must wait for the active learner to provide in-
stances. In fact, according to the standard approach
to cost measurement, there is no reason not to use the
theoretically optimal (w.r.t. a model, training proce-
dure, and utility function) (but intractable) approach
(see Haertel et al., 2008).

In order to more fairly compare complex and
time-consuming (but presumably superior) selec-
tion algorithms with simpler (but presumably in-
ferior) algorithms, we describe “best-case” (mini-
mum, from the standpoint of the payer) and “worst-
case” (maximum) cost scenarios for each algorithm.
In the best-case cost scenario, annotators are paid
only for the time they spend actively annotating. The
worst-case cost scenario additionally assumes that
annotators are always on-the-clock, either annotat-
ing or waiting for the AL framework to provide them
with instances. In reality, human annotators work on
a schedule and are not always annotating or waiting,
but in general they expect to be paid for the time
they spend waiting for the next instance. In some
cases, the annotator is not paid directly for wait-
ing, but there are always opportunity costs associ-
ated with time-consuming algorithms, such as time
to complete a project. In reality, the true cost usually
lies between the two extremes.

However, simply analyzing only the best-case
cost, as is the current practice, can be misleading,
as illustrated in Figure 1. When excluding waiting
time for a particular selection algorithm1 (“AL An-
notation Cost Only”), the performance is much bet-

1We use the ROI-based scoring algorithm (Haertel et al.,
2008) and the zero-staleness technique, both described below.

33

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

A
c
c
u

ra
c
y

Time in Seconds

AL Annotation Cost Only
Random Total Cost

AL Total Cost

Figure 1: Accuracy as a function of cost (time).
Side-by-side comparison of best-case and worst-
case cost measurement scenarios reveals that not ac-
counting for the time required by AL to select in-
stances affects the evaluation of an AL algorithm.

ter than the cost of random selection (“Random Total
Cost”), but once waiting time is accounted for (“AL
Total cost”), the AL approach can be worse than ran-
dom. Given only the best-case cost, this algorithm
would appear to be very desirable. Yet, practition-
ers would be much less inclined to adopt this al-
gorithm knowing that the worst-case cost is poten-
tially no better than random. In a sense, waiting time
serves as a natural penalty for expensive selection
algorithms. Therefore, conclusions about the use-
fulness of AL selection algorithms should take both
best-case and worst-case costs into consideration.

Although it is current practice to measure only
best-case costs, Tomanek et al. (2007) mention as a
desideratum for practical AL algorithms the need for
what they call fast selection time cycles, i.e., algo-
rithms that minimize the amount of time annotators
wait for instances. They address this by employing
the batch selection technique of Engleson and Da-
gan (1996). In fact, most AL practitioners and re-
searchers implicitly acknowledge the importance of
wait time by employing batch selection.

However, batch selection is not a perfect solution.
First, using the tradtional implementation, a “good”
batch size must be specified beforehand. In research,
it is easy to try multiple batch sizes, but in practice
where there is only one chance with live annotators,
specifying a batch size is a much more difficult prob-
lem; ideally, the batch size would be set during the

process of AL. Second, traditional methods use the
same batch size throughout the entire learning pro-
cess. However, in the beginning stages of AL, mod-
els have access to very little training data and re-
training is often much less costly (in terms of time)
than in the latter stages of AL in which models are
trained on large amounts of data. Intuitively, small
batch sizes are acceptable in the beginning stages,
whereas large batch sizes are desirable in the latter
stages in order to mitigate the time cost of training.
In fact, Haertel et al. (2008) mention the use of an
increasing batch size to speed up their simulations,
but details are scant and the choice of parameters for
their approach is task- and dataset-dependent. Also,
the use of batch AL causes instances to be chosen
without the benefit of all of the most recently anno-
tated instances, a phenomenon we call staleness and
formally define in Section 2. Finally, in batch AL,
the computer is left idle while the annotator is work-
ing and vice-verse.

We present a parallel, parameterless solution that
can eliminate wait time irrespective of the scoring
alogrithm and training method. Our approach is
based on the observation that instances can always
be available for annotation if we are willing to serve
instances that may have been selected without the
benefit of the most recent annotations. By having
the computer learner do work while the annotator is
busy annotating, we are able to mitigate the effects
of using these older annotations.

The rest of this paper will proceed as follows:
Section 2 defines staleness and presents a progres-
sion of four AL algorithms that strike different bal-
ances between staleness and wait time, culminat-
ing in our parallelized algorithm. We explain our
methodology and experimental parameters in Sec-
tion 3 and then present experimental results and
compare the four AL algorithms in Section 4. Con-
clusions and future work are presented in Section 5.

2 From Zero Staleness to Zero Wait

We work within a pool- and score-based AL setting
in which the active learner selects the next instance
from an unlabeled pool of data U . A scoring func-
tion σ (aka scorer) assigns instances a score using
a model θ trained on the labeled data A; the scores
serve to rank the instances. Lastly, we assume that

34

Input: A seed set of annotated instances A, a set of
pairs of unannotated instances and their
initial scores S, scoring function σ, the
candidate set size N , and the batch size B

Result: A is updated with the instances chosen by
the AL process as annotated by the oracle

while S 6= ∅ do1
θ ← TrainModel(A)2
stamp← |A|3
C ← ChooseCandidates(S,N)4
K ← {(c[inst], σ(c[inst], θ)) | c ∈ C}5
S ← S − C ∪K6
T ← pairs from K with c[score] in the top B7
scores
for t ∈ T do8
S ← S − t9
staleness← |A| − stamp ; // unused10
A ← A∪ Annotate(t)11

end12
end13
Algorithm 1: Pool- and score-based active learner.

an unerring oracle provides the annotations. These
concepts are demonstrated in Algorithm 1.

In this section, we explore the trade-off between
staleness and wait time. In order to do so, it is bene-
ficial to quantitatively define staleness, which we do
in the context of Algorithm 1. After each model θ
is trained, a stamp is associated with that θ that indi-
cates the number of annotated instances used to train
it (see line 3). The staleness of an item is defined
to be the difference between the current number of
items in the annotated set and the stamp of the scorer
that assigned the instance a score. This concept can
be applied to any instance, but it is particularly in-
formative to speak of the staleness of instances at
the time they are actually annotated (we will simply
refer to this as staleness, disambiguating when nec-
essary; see line 10). Intuitively, an AL scheme that
chooses instances having less stale scores will tend
to produce a more accurate ranking of instances.

2.1 Zero Staleness

There is a natural trade-off between staleness and
the amount of time an annotator must wait for an
instance. Consider Algorithm 1 when B = 1 and
N = ∞ (we refer to this parameterization as ze-
rostale). In line 8, a single instance is selected for
annotation (|T | = B = 1); the staleness of this in-

stance is zero since no other annotations were pro-
vided between the time it was scored and the time it
was removed. Therefore, this algorithm will never
select stale instances and is the only way to guaran-
tee that no selected instances are stale.

However, the zero staleness property comes with
a price. Between every instance served to the an-
notator, a new model must be trained and every in-
stance scored using this model, inducing potentially
large waiting periods. Therefore, the following op-
tions exist for reducing the wait time:

1. Optimize the learner and scoring function (in-
cluding possible parallelization)

2. Use a different learner or scoring function

3. Parallelize the scoring process

4. Allow for staleness

The first two options are specific to the learning and
scoring algorithms, whereas we are interested in re-
ducing wait time independent of these in the general
AL framework. We describe option 3 in section 2.4;
however, it is important to note that when train-
ing time dominates scoring, the reduction in waiting
time will be minimal with this option. This is typi-
cally the case in the latter stages of AL when models
are trained on larger amounts of data.

We therefore turn our attention to option 4: in this
context, there are at least three ways to decrease the
wait time: (A) train less often, (B) score fewer items,
or (C) allow old scores to be used when newer ones
are unavailable. Strategies A and B are the batch se-
lection scheme of Engelson and Dagan (1996); an
algorithm that allows for these is presented as Al-
gorithm 1, which we refer to as “traditional” batch,
or simply batch. We address the traditional batch
strategy first and then address strategy C.

2.2 Traditional Batch
In order to train fewer models, Algorithm 1 can pro-
vide the annotator with several instances scored us-
ing the same scorer (controlled by parameter B);
consequently, staleness is introduced. The first item
annotated on line 11 has zero staleness, having been
scored using a scorer trained on all available anno-
tated instances. However, since a model is not re-
trained before the next item is sent to the annotator,

35

the next items have staleness 1, 2, · · · , B−1. By in-
troducing this staleness, the time the annotator must
wait is amortized across allB instances in the batch,
reducing the wait time by approximately a factor of
B. The exact effect of staleness on the quality of
instances selected is scorer- and data-dependent.

The parameter N , which we call the candidate set
size, specifies the number of instances to score. Typ-
ically, candidates are chosen in round-robin fash-
ion or with uniform probability (without replace-
ment) from U . If scoring is expensive (e.g., if it
involves parsing, translating, summarizing, or some
other time-consuming task), then reducing the can-
didate set size will reduce the amount of time spent
scoring by the same factor. Interestingly, this param-
eter does not affect staleness; instead, it affects the
probability of choosing the same B items to include
in the batch when compared to scoring all items.
Intuitively, it affects the probability of choosing B
“good” items. As N approaches B, this probabil-
ity approaches uniform random and performance ap-
proaches that of random selection.

2.3 Allowing Old Scores

One interesting property of Algorithm 1 is that line 7
guarantees that the only items included in a batch are
those that have been scored in line 5. However, if the
candidate set size is small (because scoring is expen-
sive), we could compensate by reusing scores from
previous iterations when choosing the best items.
Specifically, we change line 7 to instead be:

T ← pairs from S with c[score] in the top B scores

We call this allowold, and to our knowledge, it is a
novel approach. Because selected items may have
been scored many “batches” ago, the expected stale-
ness will never be less than in batch. However, if
scores do not change much from iteration to itera-
tion, then old scores will be good approximations
of the actual score and therefore not all items nec-
essarily need to be rescored every iteration. Con-
sequently, we would expect the quality of instances
selected to approach that of zerostale with less wait-
ing time. It is important to note that, unlike batch,
the candidate set size does directly affect staleness;
smaller N will increase the likelihood of selecting
an instance scored with an old model.

2.4 Eliminating Wait Time

There are portions of Algorithm 1 that are trivially
parallelizable. For instance, we could easily split the
candidate set into equal-sized portions across P pro-
cessors to be scored (see line 5). Furthermore, it is
not necessary to wait for the scorer to finish training
before selecting the candidates. And, as previously
mentioned, it is possible to use parallelized training
and/or scoring algorithms. Clearly, wait time will
decrease as the speed and number of processors in-
crease. However, we are interested in parallelization
that can guarantee zero wait time independent of the
training and scoring algorithms without precluding
these other forms of parallelization.

All other major operations of Algorithm 1 have
serial dependencies, namely, we cannot score until
we have trained the model and chosen the candi-
dates, we cannot select the instances for the batch
until the candidate set is scored, and we cannot start
annotating until the batch is prepared. These depen-
dencies ultimately lead to waiting.

The key to eliminating this wait time is to ensure
that all instances have scores at all times, as in al-
lowold. In this way, the instance that currently has
the highest score can be served to the annotator with-
out having to wait for any training or scoring. If
the scored instances are stored in a priority queue
with a constant time extract-max operation (e.g., a
sorted list), then the wait time will be negligible.
Even a heap (e.g., binary or Fibonacci) will often
provide negligible overhead. Of course, eliminating
wait time comes at the expense of added staleness as
explained in the context of allowold.

This additional staleness can be reduced by allow-
ing the computer to do work while the oracle is busy
annotating. If models can retrain and score most in-
stances in the amount of time it takes the oracle to
annotate an item, then there will be little staleness.2

Rather than waiting for training to complete be-
fore beginning to score instances, the old scorer can
be used until a new one is available. This allows
us to train models and score instances in parallel.
Fast training and scoring procedures result in more
instances having up-to-date scores. Hence, the stale-

2Since the annotator requests the next instance immediately
after annotating the current instance, the next instance is virtu-
ally guaranteed to have a staleness factor of at least 1.

36

ness (and therefore quality) of selected instances de-
pends on the relative time required to train and score
models, thereby encouraging efficient training and
scoring algorithms. In fact, the other forms of par-
allelization previously mentioned can be leveraged
to reduce staleness rather than attempting to directly
reduce wait time.

These principles lead to Algorithm 2, which we
call parallel (for clarity, we have omitted steps re-
lated to concurrency). AnnotateLoop represents
the tireless oracle who constantly requests instances.
The call to Annotate is a surrogate for the actual
annotation process and most importantly, the time
spent in this method is the time required to provide
annotations. Once an annotation is obtained, it is
placed on a shared buffer B where it becomes avail-
able for training. While the annotator is, in effect,
a producer of annotations, TrainLoop is the con-
sumer which simply retrains models as annotated in-
stances become available on the buffer. This buffer
is analagous to the batch used for training in Algo-
rithm 1. However, the size of the buffer changes
dynamically based on the relative amounts of time
spent annotating and training. Finally, ScoreLoop
endlessly scores instances, using new models as
soon as they are trained. The set of instances scored
with a given model is analagous to the candidate set
in Algorithm 1.

3 Experimental Design

Because the performance of the parallel algorithm
and the “worst-case” cost analysis depend on wait
time, we hold computing resources constant, run-
ning all experiments on a cluster of Dell PowerEdge
M610 servers equipped with two 2.8 GHz quad-core
Intel Nehalem processors and 24 GB of memory.

All experiments were on English part of speech
(POS) tagging on the POS-tagged Wall Street Jour-
nal text in the Penn Treebank (PTB) version 3 (Mar-
cus et al., 1994). We use sections 2-21 as initially
unannotated data and randomly select 100 sentences
to seed the models. We employ section 24 as the set
on which tag accuracy is computed, but do not count
evaluation as part of the wait time. We simulate an-
notation costs using the cost model from Ringger et
al. (2008): cost(s) = (3.80 · l + 5.39 · c+ 12.57),
where l is the number of tokens in the sentence, and

Input: A seed set of annotated instances A, a set of
pairs of unannotated instances and their
initial scores S, and a scoring function σ

Result: A is updated with the instances chosen by
the AL process as annotated by the oracle

B ← ∅, θ ← null
Start(AnnotateLoop)
Start(TrainLoop)
Start(ScoreLoop)

procedure AnnotateLoop()
while S 6= ∅ do

t← c from S having max c[score]
S ← S − t
B ← B ∪ Annotate(t)

end
end

procedure TrainLoop()
while S 6= ∅ do

θ ← TrainModel(A)
A ← A∪ B
B ← ∅

end
end

procedure ScoreLoop()
while S 6= ∅ do

c← ChooseCandidate(S)
S ←
S − {c} ∪ {(c[inst], σ(c[inst], θ))|c ∈ S}

end
end

Algorithm 2: parallel

c is the number of pre-annotated tags that need cor-
rection, which can be estimated using the current
model. We use the same model for pre-annotation
as for scoring.

We employ the return on investment (ROI) AL
framework introduced by Haertel et. al (2008).
This framework requires that one define both a cost
and benefit estimate and selects instances that max-
imize benefit(x)−cost(x)

cost(x) . For simplicity, we esti-
mate cost as the length of a sentence. Our bene-
fit model estimates the utility of each sentence as
follows: benefit(s) = − log (maxt p(t|s)) where
p(t|s) is the probability of a tagging given a sen-
tence. Thus, sentences having low average (in the
geometric mean sense) per-tag probability are fa-
vored. We use a maximum entropy Markov model
to estimate these probabilities, to pre-annotate in-
stances, and to evaluate accuracy.

37

Figure 2: Staleness of the allowold algorithm over
time for different candidate set sizes

4 Results

Two questions are pertinent regarding staleness:
how much staleness does an algorithm introduce?
and how detrimental is that staleness? For zerostale
and batch, the first question was answered analyti-
cally in a previous section. We proceed by address-
ing the answer empirically for allowold and parallel
after which we examine the second question.

Figure 2 shows the observed staleness of instances
selected for annotation over time and for varying
candidate set sizes for allowold. As expected, small
candidate sets induce more staleness, in this case in
very high amounts. Also, for any given candidate
set size, staleness decreases over time (after the be-
ginning stages), since the effective candidate set in-
cludes an increasingly larger percentage of the data.

Since parallel is based on the same allow-old-
scores principle, it too could potentially see highly
stale instances. However, we found the average per-
instance staleness of parallel to be very low: 1.10; it
was never greater than 4 in the range of data that we
were able to collect. This means that for our task and
hardware, the amount of time that the oracle takes to
annotate an instance is high enough to allow new
models to retrain quickly and score a high percent-
age of the data before the next instance is requested.

We now examine effect that staleness has on
AL performance, starting with batch. As we have
shown, higher batch sizes guarantee more staleness
so we compare the performance of several batch
sizes (with a candidate set size of the full data) to ze-
rostale and random. In order to tease out the effects
that the staleness has on performance from the ef-
fects that the batches have on wait time (an element
of performance), we purposely ignore wait time.

The results are shown in Figure 3. Not surprisingly,
zerostale is slightly superior to the batch methods,
and all are superior to random selection. Further-
more, batch is not affected much by the amount of
staleness introduced by reasonable batch sizes: for
B < 100 the increase in cost of attaining 95% accu-
racy compared to zerostale is 3% or less.

Recall that allowold introduces more staleness
than batch by maintaining old scores for each in-
stance. Figure 4 shows the effect of different
candidate set sizes on this approach while fixing
batch size at 1 (wait time is excluded as before).
Larger candidate set sizes have less staleness, so
not surprisingly performance approaches zerostale.
Smaller candidate set sizes, having more staleness,
perform similarly to random during the early stages
when the model is changing more drastically each
instance. In these circumstances, scores produced
from earlier models are not good approximations to
the actual scores so allowing old scores is detrimen-
tal. However, once models stabilize and old scores
become better approximations, performance begins
to approach that of zerostale.

Figure 6 compares the performance of allowold
for varying batch sizes for a fixed candidate set size
(5000; results are similiar for other settings). As
before, performance suffers primarily in the early
stages and for the same reasons. However, a batch
excerbates the problem since multiple instances with
poor scores are selected simultaneously. Neverthe-
less, the performance appears to mostly recover once
the scorers become more accurate. We note that
batch sizes of 5 and 10 increase the cost of acheiving
95% accuracy by 3% and 10%, respectively, com-
pared to zerostale. The implications for parallel
are that stalness may not be detrimental, especially
if batch sizes are small and candidate set sizes are
large in the beginning stages of AL.

Figure 5 compares the effect of staleness on all
four algorithms when excluding wait time (B = 20,
N = 5000 for the batch algorithms). After achiev-
ing around 85% accuracy, batch and parallel are
virtually indistinguishable from zerostale, implying
that the staleness in these algorithms is mostly ignor-
able. Interestingly, allowold costs around 5% more
than zerostale to acheive an accuracy of 95%. We
attribute this to increased levels of staleness which
parallel combats by avoiding idle time.

38

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

A
c
c
u

ra
c
y

Time in Seconds

Zero Staleness
Batch size 5

Batch size 50
Batch size 500

Batch size 5000
Random

Figure 3: Effect of staleness due to batch size for
batch, N =∞

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

A
c
c
u

ra
c
y

Time in Seconds

Zero Staleness
Candidate Set Size 5000
Candidate Set Size 500
Candidate Set Size 100

Candidate Set Size 50
Random

Figure 4: Effect of staleness due to candidate set size
for allowold, B = 1

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

A
c
c
u

ra
c
y

Time in Seconds

Zero Staleness
Parallel

Traditional Batch
Allow Old Scores

Random

Figure 5: Comparison of algorithms (not including
wait time)

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

A
c
c
u

ra
c
y

Time in Seconds

Zero Staleness
Batch Size 5

Batch Size 10
Batch Size 50

Batch Size 100
Batch Size 500

Random

Figure 6: Effect of staleness due to batch size for
allowold, N = 5000

 0

 50000

 100000

 150000

 200000

 250000

 0 2000 4000 6000 8000 10000 12000

In
s
ta

n
c
e

s
 S

c
o

re
d

Model Number

Figure 7: Effective candidate set size of parallel
over time

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

A
c
c
u

ra
c
y

Time in Seconds

Zero Staleness
Parallel

Traditional Batch
Allow Old Scores

Random

Figure 8: Comparison of algorithms (including wait
time)

39

Since the amount of data parallel uses to train
models and score instances depends on the amount
of time instances take to annotate, the “effective”
candidate set sizes and batch sizes over time is of in-
terest. We found that the models were always trained
after receiving exactly one instance, within the data
we were able to collect. Figure 7 shows the number
of instances scored by each successive scorer, which
appears to be very large on average: over 75% of the
time the scorer was able to score the entire dataset.
For this task, the human annotation time is much
greater than the amount of time it takes to train new
models (at least, for the first 13,000 instances). The
net effect is that under these conditions, parallel is
parameterized similar to batch with B = 1 and N
very high, i.e., approaching zerostale, and therefore
has very low staleness, yet does so without incurring
the waiting cost.

Finally, we compare the performance of the four
algorithms using the same settings as before, but in-
clude wait time as part of the cost. The results are
in Figure 8. Importantly, parallel readily outper-
forms zerostale, costing 40% less to reach 95% ac-
curacy. parallel also appears to have a slight edge
over batch, reducing the cost to acheive 95% accu-
racy by a modest 2%; however, had the simulation
continued, we we may have seen greater gains given
the increasing training time that occurs later on. It
is important to recognize in this comparison that the
purpose of parallel is not necessarily to significantly
outperform a well-tuned batch algorithm. Instead,
we aim to eliminate wait time without requiring pa-
rameters, while hopefully maintaining performance.
These results suggest that our approach successfully
meets these criteria.

Taken as a whole, our results appear to indicate
that the net effect of staleness is to make selection
more random. Models trained on little data tend to
produce scores that are not reflective of the actual
utility of instances and essentially produce a ran-
dom ranking of instances. As more data is collected,
scores become more accurate and performance be-
gins to improve relative to random selection. How-
ever, stale scores are by definition produced using
models trained with less data than is currently avail-
able, hence more staleness leads to more random-
like behavior. This explains why batch selection
tends to perform well in practice for “reasonable”

batch sizes: the amount of staleness introduced by
batch (B−1

2 on average for a batch of size B) intro-
duces relatively little randomness, yet cuts the wait
time by approximately a factor of B.

This also has implications for our parallel method
of AL. If a given learning algorithm and scoring
function outperform random selection when using
zerostale and excluding wait time, then any added
staleness should cause performance to more closely
resemble random selection. However, once wait-
ing time is accounted for, performance could ac-
tually degrade below that of random. In parallel,
more expensive training and scoring algorithms are
likely to introduce larger amounts of staleness, and
would cause performance to approach random selec-
tion. However, parallel has no wait time, and hence
our approach should always perform at least as well
as random in these circumstances. In contrast, poor
choices of parameters in batch could perform worse
than random selection.

5 Conclusions and Future Work

Minimizing the amount of time an annotator must
wait for the active learner to provide instances is an
important concern for practical AL. We presented a
method that can eliminate wait time by allowing in-
stances to be selected on the basis of the most re-
cently assigned score. We reduce the amount of
staleness this introduces by allowing training and
scoring to occur in parallel while the annotator is
busy annotating. We found that on PTB data us-
ing a MEMM and a ROI-based scorer that our pa-
rameterless method performed slightly better than a
hand-tuned traditional batch algorithm, without re-
quiring any parameters. Our approach’s parallel na-
ture, elimination of wait time, ability to dynamically
adapt the batch size, lack of parameters, and avoid-
ance of worse-than-random behavior, make it an at-
tractive alternative to batch for practical AL.

Since the performance of our approach depends
on the relative time spent annotating, training, and
scoring, we wish to apply our technique in future
work to more complex problems and models that
have differing ratios of time spent in these areas. Fu-
ture work could also draw on the continual compu-
tation framework (Horvitz, 2001) to utilize idle time
in other ways, e.g., to predict annotators’ responses.

40

References

S. Arora, E. Nyberg, and C. P. Rosé. 2009. Estimating
annotation cost for active learning in a multi-annotator
environment. In Proceedings of the NAACL HLT 2009
Workshop on Active Learning for Natural Language
Processing, pages 18–26.

S. P. Engelson and I. Dagan. 1996. Minimizing manual
annotation cost in supervised training from corpora. In
Proceedings of the 34th annual meeting on Associa-
tion for Computational Linguistics, pages 319–326.

R. A. Haertel, K. D. Seppi, E. K. Ringger, and J. L. Car-
roll. 2008. Return on investment for active learning.
In NIPS Workshop on Cost Sensitive Learning.

E. Horvitz. 2001. Principles and applications of con-
tinual computation. Artificial Intelligence Journal,
126:159–96.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz.
1994. Building a large annotated corpus of en-
glish: The penn treebank. Computational Linguistics,
19:313–330.

E. Ringger, M. Carmen, R. Haertel, K. Seppi, D. Lond-
sale, P. McClanahan, J. Carroll, and N. Ellison. 2008.
Assessing the costs of machine-assisted corpus anno-
tation through a user study. In Proc. of LREC.

B. Settles, M. Craven, and L. Friedland. 2008. Active
learning with real annotation costs. In Proceedings of
the NIPS Workshop on Cost-Sensitive Learning, pages
1069–1078.

K. Tomanek, J. Wermter, and U. Hahn. 2007. An ap-
proach to text corpus construction which cuts annota-
tion costs and maintains reusability of annotated data.
Proc. of EMNLP-CoNLL, pages 486–495.

41

