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Abstract

In this paper, we explore the application of inference rules for rec-
ognizing textual entailment (RTE). We start with an automatically
acquired collection and then propose methods to refine it and obtain
more rules using a hand-crafted lexical resource. Following this, we
derive a dependency-based representation from texts, which aims to
provide a proper base for the inference rule application. The evalu-
ation of our approach on the RTE data shows promising results on
precision and the error analysis suggests future improvements.

1 Introduction

Textual inference plays an important role in many natural language pro-
cessing (NLP) tasks, such as question answering [7]. In recent years, the
recognizing textual entailment (RTE) [4] challenge, which focuses on de-
tecting semantic inference, has attracted a lot of attention. Given a text T
(several sentences) and a hypothesis H (one sentence), the goal is to detect
if H can be inferred from T.

Studies such as [3] attest that lexical substitution (e.g. synonyms, anto-
nyms) or simple syntactic variation accounts for the entailment only in a
small number of pairs. Thus, one essential issue is to identify more complex
expressions which, in appropriate contexts, convey the same (or similar)
meaning. More generally, we are also interested in pairs of expressions in
which only a uni-directional inference relation holds1.

A typical example is the following RTE pair in which accelerate to in H
is used as an alternative formulation for reach speed of in T.

1We will use the term inference rule to stand for such concept; the two expressions can
be actual paraphrases if the relation is bi-directional
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T: The high-speed train, scheduled for a trial run on Tuesday, is able to reach
a maximum speed of up to 430 kilometers per hour, or 119 meters per second.

H: The train accelerates to 430 kilometers per hour.

One way to deal with textual inference is through rule representation,
such as X wrote Y ≈ X is author of Y. However, manually building col-
lections of inference rules is time-consuming and it is unlikely that humans
can exhaustively enumerate all the rules encoding the knowledge needed in
reasoning with natural languages. Instead, an alternative is to acquire these
rules automatically from large corpora. Furthermore, given such a rule col-
lection, how to successfully use it in NLP applications is the next step to be
focused on.

For the first aspect, we extend and refine an existing collection of infer-
ence rules acquired based on the Distributional Hypothesis (DH). One of the
main advantages of using DH is that the only input needed is a large corpus
of (parsed) text2. For this purpose, a hand-crafted lexical resource is used
for augmenting the original inference rule collection and excluding some of
the incorrect rules.

For the second aspect, we focus on applying these rules to the RTE task.
In particular, we use a structure representation derived from the dependency
parse trees of T and H, which aims to capture the essential information they
convey.

The rest of the paper is organized as follows: Section 2 introduces the
inference rule collection we use, based on the Discovery of Inference Rules
from Text (henceforth DIRT) algorithm; we also discuss previous work on
applying it to the RTE task. Section 3 presents our analyses on the RTE
data and discusses two issues: the lack of rules and the difficulty of finding
proper ways of applying them. Section 4 proposes methods to extend and
refine the rule collection aiming at the former issue. To address the latter
issue, Section 5 describes the structure representation we use to identify the
appropriate context for the rule application. The experiments will be pre-
sented in Section 6, followed by an error analysis and discussions in Section
7. Finally, Section 8 will conclude the paper and point out some future
work.

2Another line of work on acquiring paraphrases uses comparable corpora, for instance
[2], [12]

91



2 Background

A number of automatically acquired inference rule/paraphrase collections
are available, such as [14]. In our work we use the DIRT collection because
it is the largest one and it has a relatively good accuracy (in the 50% range,
[13]). In this section, we describe the DIRT algorithm for acquiring inference
rules. Following that, we will overview the RTE systems which take DIRT
as an external knowledge resource.

2.1 Discovery of Inference Rules from Text

The DIRT algorithm has been introduced by [10] and it is based on what
is called the Extended Distributional Hypothesis. The original DH states
that words occurring in similar contexts have similar meaning, whereas the
extended version hypothesizes that phrases occurring in similar contexts are
similar.

An inference rule in DIRT is a pair of binary relations 〈 pattern1(X,Y ),
pattern2(X, Y ) 〉 which stand in an inference relation. pattern1 and pattern2

are chains in Minipar [9] dependency trees while X and Y are placeholders for
nouns at the end of the chains. The two patterns will constitute a candidate
paraphrase if the sets of X and Y values exhibit relevant overlap. An example
is the pair (X

subj←−− prevent
obj−−→ Y, X

subj←−− provide
obj−−→ protection

mod−−→
against

pcomp−−−−→ Y).
Such rules can be defined [13] as directional relations between two text

patterns with variables. The left-hand-side pattern is assumed to entail
the right-hand-side pattern in certain contexts, under the same variable
instantiation. The definition relaxes the intuition of inference, as we only
require the entailment to hold in some but not all contexts, motivated by
the fact that such inferences occur often in natural text.

2.2 Related Work

Intuitively such inference rules should be effective for recognizing textual
entailment. However, only a small number of systems have used DIRT as
a resource in the RTE-3 challenge, and the experimental results have not
shown its great contribution.

In [3]’s approach, semantic parsing in clause representation is performed
and true entailment is decided only if every clause in the semantic repre-
sentation of T semantically matches some clause in H. The only variation
allowed consists of rewritings derived from WordNet and DIRT. Given the
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preliminary stage of this system, the overall results show very low improve-
ment over a random classification baseline.

[1] implement a proof system using rules for generic linguistic structures,
lexical-based rules, and lexical-syntactic rules (which were obtained with the
DIRT algorithm applied to the first CD of the Reuters RCV1 corpus). Given
a premise p and a hypothesis h, the lexical-syntactic component marks all
lexical noun alignments. For every pair of alignments, the paths between
the two nouns are extracted, and the DIRT algorithm is applied to obtain
a similarity score. If the score is above a threshold, the rule will be ap-
plied. However, these lexical-syntactic rules are only used in about 3% of
the attempted proofs and for most cases there is no lexical variation.

[8] use DIRT in a more relaxed manner. A DIRT rule is employed in the
system if at least one of the anchors match in T and H, i.e. they use them
as unary rules. However, the analysis of the system shows that the DIRT
component is the least relevant one (adding 0.4% to the precision).

In [11]’s system, a paraphrase substitution step is added on top of a sys-
tem based on a tree alignment algorithm. The basic paraphrase substitution
method follows several steps. Initially, the two patterns of a rule are matched
in T and H (instantiations of the anchors X, Y do not have to match). The
T tree is transformed by applying the paraphrase substitution. Following
that, the transformed T tree and H tree are aligned. The coverage (pro-
portion of aligned content words) is computed and if above some threshold,
the entailment holds. The paraphrase component adds 1.0% to the result
on the development set and only 0.5% to the test set, but a more detailed
analysis on the interaction of this component with other components of the
system is not given.

3 Inference Rules for RTE

In this section our goal is to investigate the causes for which a resource
such as DIRT fails to bring clear improvements to RTE. The issues we have
encountered can be divided into two categories. Firstly, given a collection
of correct inference rules, making full use of the knowledge encoded in it is
not a trivial task. Secondly, some of the needed rules still lack even in a
very large collection such as DIRT. Section 4 will tackle the latter issue first
while Section 5 will focus on the former one.
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3.1 DIRT Rules Found in the RTE Data

To Address this first issue, we begin with a straightforward experiment to
discover the number of pairs in the RTE data which contain rules present
in DIRT 3.

Following the definition of an entailment rule, we identify RTE pairs in
which pattern1(w1, w2) and pattern2(w1, w2) are matched, one in T and
the other one in H, and thus, 〈pattern1(X, Y ), pattern2(X, Y )〉 is an infer-
ence rule. The pair below is an example of this.

T: The sale was made to pay Yukos US$ 27.5 billion tax bill, Yuganskneftegaz
was originally sold for US$ 9.4 billion to a little known company Baikalfinans-
group which was later bought by the Russian state-owned oil company Rosneft.

H: Baikalfinansgroup was sold to Rosneft.

On average, only 2% of the pairs in the RTE data are subject to such
inference rules. Out of these, approximately 50% are lexical rules (one verb
entailing the other) and in the rest, around 50% are present in WordNet as
a synonym, hypernym or sister relation.

However, given the small number of inference rules identified this way,
we performed another analysis. This aims at determining an upper bound
of the number of pairs featuring entailment phrases present in a collection.
Given DIRT and the RTE data, we compute that in how many pairs two
patterns of a paraphrase can be matched irrespectively of their anchor val-
ues. An example is the following pair,

T: Libyas case against Britain and the US concerns the dispute over their
demand for extradition of Libyans charged with blowing up a Pan Am jet over
Lockerbie in 1988.

H: One case involved the extradition of Libyan suspects in the Pan Am Locker-
bie bombing.

This is a case in which the rule is correct and the entailment is positive.
In order to determine this, a system will have to know that Libya’s case
against Britain and the US in T entails one case in H. Similarly, in this
context, the dispute over their demand for extradition of Libyans charged
with blowing up a Pan Am jet over Lockerbie can be replaced with the
extradition of Libyan suspects in the Pan Am Lockerbie bombing. Altogether

3For all the experiments in this paper, we use the DIRT collection provided by [10],
derived from the DIRT algorithm applied on 1GB of newstext.

94



X, founded in Y → X, opened in Y
X launch Y → X produce Y
X represent Z → X work for Y
X faces menace from Y ↔ X endangered by Y
X, peace agreement for Y → X is formulated to end war in Y

Table 1: Example of inference rules needed in RTE

in around 25% of the pairs, patterns of a rule can be found in this way, and
many times more than one rule in a pair. However, in many of these pairs,
finding out the patterns of an inference rule does not imply that the rule is
truly present in that pair.

Making use of the knowledge encoded with such rules is therefore, not
a trivial task. If rules are used strictly in concordance with their definition,
their utility is limited to a very small number of pairs. For this reason, 1)
instead of forcing the anchor values to be identical as most previous works,
we allow flexible rule matching (similar to [11]) and 2) furthermore, we
control the rule application process using a structure representation derived
from the dependency tree (Section 5).

3.2 Missing Rules

Apart from the issues underlined in the previous section, looking at the
data, we find it quite clear that DIRT lacks rules that many entailment
pairs require.

Table 1 gives a selection of rules that are needed in some entailment pairs.
The first three rows contain rules which are not structurally complex. These,
however, are missing from both DIRT and also other hand-crafted resources
such as WordNet (i.e. there is no short path connecting them). This is
to be expected as they are rules which hold in some specific contexts, but
difficult to be captured by a sense distinction of the lexical items involved.
The more complex rules are even more difficult to be captured by a DIRT-
like algorithm. Some of these do not occur frequently enough even in large
amounts of text to permit the acquirement of them via DH.

4 Extending and Refining DIRT

In order to address the issue of missing rules, we investigate the effects of
combining DIRT with an exact hand-coded lexical resource in order to create
new rules.
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X face threat of Y X at risk of Y
face ≈ confront, front, look, face up risk ≈ danger, hazard, jeopardy
threat ≈ menace, terror, scourge

endangerment, peril

Table 2: Lexical variations creating new rules based on DIRT rule X face
threat of Y → X at risk of Y

For this we extended the DIRT rules by adding rules in which any of the
lexical items involved in the patterns can be replaced by WordNet synonyms.
The idea behind this is that a combination of various lexical resources is
needed in order to cover the vast variety of phrases which humans can judge
to be in an inference relation.

In the example above, we consider the DIRT rule X face threat of Y
→ X, at risk of Y (Table 2). Of course at this moment due to the lack
of sense disambiguation, our method introduces lots of rules that are not
correct. As one can see, expressions such as front scourge do not make any
sense, therefore any rules containing this will be incorrect. However some
of the new rules created in this example, such as X face threat of Y ≈ X,
at danger of Y are reasonable ones and the rules which are incorrect often
contain patterns that are very unlikely to occur in natural text.

The method just described allows us to identify the first three rules listed
in Table 1. We also acquire the rule X face menace of Y ≈ X endangered
by Y (via X face threat of Y ≈ X threatened by Y, menace ≈ threat,
threaten ≈ endanger). However the entailment pair requires a slightly
different version of the rule, involving the phrase face menace from.

Our extension is application-oriented therefore it is not intended to be
evaluated as an independent rule collection, but in an application scenario
such as RTE (Section 6).

Another issue that we address is the one of removing the most systematic
errors present in DIRT. DH algorithms have the main disadvantage that not
only phrases with the same meaning are extracted but also phrases with
opposite meaning.

In order to overcome this problem and since such errors are relatively
easy to detect, we applied a filter to the DIRT rules. This eliminates in-
ference rules which contain WordNet antonyms. To evaluate the precision
of our method, we randomly selected 200 examples of rules eliminated from
DIRT (irrespective of the textual entailment data) and a human evaluator
decided if they are indeed incorrect inference rules. Out of these 92% turned
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out to be incorrect rules, such as X right about Y ≈ X wrong about Y. How-
ever, there are also cases of correct rules being eliminated, such as X have
second thoughts about Y ≈ X lack confidence about Y.

5 Inference Rules on Tree Skeletons

In order to address the issues described in Section 3.1, we choose to apply
the rule collection on a dependency-based representation of T and H. We
will first introduce this representation and the algorithm to derive it, and
following that we will describe how we applied the inference rules on this
structure.

Tree Skeletons
The Tree Skeleton (TS) structure was proposed by [15], and can be

viewed as an extended version of the predicate-argument structure. Since it
contains not only the predicate and its arguments, but also the dependency
paths in-between, it captures the essential part of the sentence.

Following their algorithm, we first preprocess the data using the Minipar
dependency parser and then select overlapping topic words (i.e. nouns) in
T and H (we use fuzzy match at the substring level instead of full match).
Starting with these nouns, we traverse the dependency tree to identify the
lowest common ancestor node (named as root node). This sub-tree without
the inner yield is defined as a Tree Skeleton. Figure 1 shows the TS of T in
the pair:

T For their discovery of ulcer-causing bacteria, Australian doctors Robin War-
ren and Barry Marshall have received the 2005 Nobel Prize in Physiology or Medicine.

H Robin Warren was awarded a Nobel Prize.

Notice that, in order to match the inference rules with two anchors, the
number of the dependency paths from the nouns to the root node should
also be two. In practice, tree skeletons can be extracted from approximately
30% of the T-H pairs.

Applying DIRT on a TS
After extracting the TS, the next step is to find the inference rules which

match the two tree skeletons of a T-H pair. This is done in a rather straight-
forward manner. Given tree skeletons of T and H, we check if the two left
dependency paths, the two right ones or the two root nodes contain the
patterns of a rule.

In the example above, the rule X
obj←−− receive

subj−−−→ Y ≈X
obj2←−−− award

obj1−−−→
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Figure 1: Dependency structure of text. Tree skeleton in bold

Y satisfies this criterion, as it is matched at the root nodes. Notice that the
rule is correct only in restricted contexts, in which the object of receive is
something which is conferred on the basis of merit.

6 Experiments

Our experiments consist in predicting positive entailment in a very straight-
forward rule-based manner. For each collection we select the RTE pairs in
which we find a tree skeleton and match an inference rule. The first number
in our table entries represents how many of such pairs we have identified, out
of 1600 development and test pairs. For these pairs we simply predict pos-
itive entailment and the second entry represents what percentage of these
pairs are indeed true entailment. Our work does not focus on building a
complete RTE system but we also combine our method with a bag of words
baseline to see the effects on the entire data set.

In the first two columns (Table 3: DirtTS and Dirt+WNTS) we consider
DIRT in its original state and DIRT with rules generated with WordNet as
described in Section 4; all precisions are higher than 63%4. After adding
WordNet, tree skeletons and rules are matched in approximately twice as
many pairs, while the precision is not harmed. This may indicate that our
method of adding rules does not decrease precision of an RTE system.

In the third column we report the results of using a set of rules containing
only the trivial identity ones (IdTS). For our current system, this can be
seen as a precision upper bound for all the other collections, in concordance

4The RTE task is considered to be difficult. The average accuracy of the systems in
the RTE-3 challenge is around 61% [6]
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RTE Set DirtTS Dirt+WNTS IdTS Dirt+Id Dirt+Id
+WN∗

TS +WN∗
TS

RTE2 55/0.63 103/0.65 45/0.66 136/0.65 90/0.67
RTE3 48/0.66 79/0.65 29/0.79 101/0.69 74/0.71

Table 3: Results on tree skeletons with various rule collections

with the fact that identical rules are nothing but inference rules of highest
possible confidence. The fourth column (Dirt+Id+WNTS) contains what
can be considered our best setting. In this setting three times as many
pairs are covered using a collection containing DIRT and identity rules with
WordNet extension. Although the precision results with this setting are
encouraging (65% for RTE2 data and 69% for RTE3 data), the coverage is
still low, 8% for RTE2 and 6% for RTE3. This aspect together with an error
analysis we performed are the focus of Section 7.

Another experiment aimed at improving the precision of our predictions.
For this we further restrict our method: we have a true entailment only if
applying the inference rule to a TS leaves no unmatched lexical items in the
fragment of the dependency path where it has been identified. The more re-
stricted method (Dirt+Id+WN∗

TS) gives, as expected, better precision with
an approximately 30% loss in coverage.

At last, we also integrate our method with a bag of words baseline,
which calculates the ratio of overlapping words in T and H. For the pairs
that our method covers, we overrule the baseline’s decision. The results are
shown in Table 4. On the full data set, the improvement is still small due
to the low coverage of our method, however on the pairs that are covered by
our method, there is a significant improvement over the overlap baseline.

RTE Test(# pairs) BoW BoW&Main
RTE2 (89) 52.80% 60.67%
RTE2 (800) 56.87% 57.75%
RTE3 (71) 52.11% 59.15%
RTE3 (800) 61.12% 61.75%

Table 4: Results on RTE test data. Covered set and full set.
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Source of error # pairs % pairs
TS structure 7 23%
Incorrect rules 9 30%
Other 14 47%

Table 5: Error analysis

7 Discussion

In this section we take a closer look at the data in order to better understand
how does our method of combining tree skeletons and inference rules work.

For error analysis we consider the pairs incorrectly classified in the RTE3
data, consisting of a total of 30 pairs. We classify the errors into three main
categories: tree skeleton structure errors, inference rule errors, and other
errors (Table 5).

In the first category, seven T-H pairs are incorrect. In those cases the
tree skeleton fails to match the corresponding anchors of the inference rules.
For instance, if someone founded the Institute of Mathematics (Instituto di
Matematica) at the University of Milan, it does not follow that they founded
The University of Milan.

Approximately 30% of the errors are caused by incorrect inference rules.
Out of these, two are correct in some contexts but not in the entailment
pairs in which they are found. For example, the following rule X generate Y
≈ X earn Y is used incorrectly, however in the restricted context of money
or income, the two verbs have similar meaning. An example of an incorrect
rule is X issue Y ≈ X hit Y since it is difficult to find a context in which
this holds.

The last category contains all the other errors. In all these cases, the
additional information conveyed by the text or the hypothesis which cannot
be captured by our current approach, affects the entailment. For example
an imitation diamond is not a diamond, and more than 1,000 members of
the Russian and foreign media does not entail more than 1,000 members
from Russia; these are not trivial, since lexical semantics and fine-grained
analysis of the restrictors are needed.

In a second part of our analysis we discuss the coverage issue, based on
an analysis of uncovered pairs. A main factor in failing to detect pairs in
which entailment rules should be applied is the fact that the tree skeleton
does not find the corresponding lexical items of two rule patterns. In one of
the pairs 78% increase in X entails X rose by 78%. This rule is available,
however the tree skeletons capture reach and rise as key verbal nodes. In
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another example, information such as the fact that rains are creating flood-
ing and devastating are all necessary to conclude that floods are ravaging
Europe. However a structure like tree skeleton cannot capture all these el-
ements. Issues will occur even if the tree skeleton structure is modified to
align all the corresponding fragments together. Consider constructions with
embedding verbs such as manage, forget, attempt. Our method can detect
if the two embedded verbs convey a similar meaning, however not how the
embedding verbs affect the entailment. Independent of the shortcomings of
our tree skeleton structure, a second factor in failing to detect true entail-
ment still lies in lack of rules (e.g. the last two examples in Table 1 are
entailment pair fragments which can be formulated as inference rules, but
are not straightforward to acquire).

8 Conclusion

Throughout the paper we have identified important issues encountered in
using inference rules for recognizing textual entailment and proposed meth-
ods to solve them. We explored the possibility of combining a collection
obtained in a statistical, unsupervised manner, DIRT, with a hand-crafted
lexical resource in order to make inference rules have a larger contribution to
applications. We also investigated ways of effectively applying these rules.
The experiment results show that although coverage is still not satisfying,
the precision is promising. Therefore our method has the potential to be
successfully integrated into a larger entailment detection framework.

The error analysis points out several possible future directions. The tree
skeleton representation we used needs to be enhanced in order to capture
more accurately the relevant fragments of the text. A different issue remains
the fact that a lot of rules we could use for RTE are still lacking. A proper
study of the limitations of the DH as well as a classification of the knowl-
edge we want to encode as inference rules would be a step forward towards
solving this problem. Furthermore, although all the inference rules we used
aim at recognizing positive entailment cases, it is natural to use them for
detecting negative cases of entailment as well. In general, we can identify
pairs in which the patterns of an inference rule are present but the anchors
are missmatched, or they are not in the correct hypernym/hyponym rela-
tion. This can be the base of a principled method for detecting structural
contradictions [5].
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