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Introduction

The last few years have shown a steady increase in applying graph-theoretic models to computational
linguistics. In many NLP applications, entities can be naturally represented as nodes in a graph and
relations between them can be represented as edges. There have been extensive research showing
that graph-based representations of linguistic units such as words, sentences and documents give rise
to novel and efficient solutions in a variety of NLP tasks, ranging from part-of-speech tagging, word
sense disambiguation and parsing, to information extraction, semantic role labeling, summarization, and
sentiment analysis.

More recently, complex network theory, a popular modeling paradigm in statistical mechanics
and physics of complex systems, was proven to be a promising tool in understanding the structure
and dynamics of languages. Complex network based models have been applied to areas as diverse as
language evolution, acquisition, historical linguistics, mining and analyzing the social networks of blogs
and emails, link analysis and information retrieval, information extraction, and representation of the
mental lexicon. In order to make this field of research more visible, this time the workshop incorporated
a special theme on Cognitive and Social Dynamics of Languages in the framework of Complex Networks.
Cognitive dynamics of languages include topics focused primarily on language acquisition, which can
be extended to language change (historical linguistics) and language evolution as well. Since the latter
phenomena are also governed by social factors, we can further classify them under social dynamics
of languages. In addition, social dynamics of languages also include topics such as mining the social
networks of blogs and emails. A collection of articles pertaining to this special theme will be compiled
in a special issue of the Computer Speech and Language journal.

This volume contains papers accepted for presentation at the TextGraphs-4 2009 Workshop on
Graph-Based Methods for Natural Language Processing. The event took place on August 7, 2009, in
Suntec, Singapore, immediately following ACL/IJCNLP 2009, the Joint conference of the 47th Annual
Meeting of the Association for Computational Linguistics and the 4th International Joint Conference on
Natural Language Processing of the Asian Federation of Natural Language Processing. Being the fourth
workshop on this topic, we were able to build on the success of the previous TextGraphs workshops,
held as part of HLT-NAACL 2006, HLT-NAACL 2007 and Coling 2008. It aimed at bringing together
researchers working on problems related to the use of graph-based algorithms for NLP and on pure
graph-theoretic methods, as well as those applying complex networks for explaining language dynamics.
Like last year, TextGraphs-4 has also been endorsed by SIGLEX.

We issued calls for both regular and short papers. Nine regular and three short papers were
accepted for presentation, based on the careful reviews of our program committee. Our sincere thanks to
all the program committee members for their thoughtful, high quality and elaborate reviews, especially
considering our extremely tight time frame for reviewing. The papers appearing in this volume have
surely benefited from their expert feedback. This year’s workshop attracted papers employing graphs in
a wide range of settings and we are therefore proud to present a very diverse program. We received quite
a few papers on discovering semantic similarity through random walks. Daniel Ramage et al. explore
random walk based methods to discover semantic similarity in texts, while Eric Yeh et al. attempt
to discover semantic relatedness through random walks on the Wikipedia. Ameç Herdağdelen et al.
describes a method for measuring semantic relatedness with vector space models and random walks.

Another set of papers were focused on popular graph-based machine learning techniques including
classification and clustering. Swapna Somasundaran et al. employ opinion graphs for the purpose
of polarity and discourse classification. Delip Rao and David Yarowsky propose a semi-supervised
classification method on large scale graphs using map reduce. Yoshimi Suzuki and Fumiyo Fukumoto
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classify Japanese polysemous verbs using fuzzy C-means clustering method. Linlin Li and Caroline
Sporleder discuss a cohesion graph based approach for unsupervised recognition of literal and nonliteral
use of multiword expressions. Zheng Chen and Heng Ji propose a graph-based method for event
coreference resolution. Scott Martens presents a quantitative analysis of treebanks using frequent
subtree mining methods.

In the special theme category, we could select three papers. Sitabhra Sinha et al. present a paper
pertaining to a topic that has recently been quite controversial. They show that a thorough network
analysis reveals a structure indicative of syntax in the corpus of undeciphered Indus civilization
inscriptions. Martijn Wieling and John Nerbonne discuss a bipartite spectral graph partitioning
method to co-cluster varieties and sound correspondences in dialectology. David Ellis discusses social
(distributed) language modeling, clustering and dialectometry.

Finally, we would like to thank Vittorio Loreto from University of Rome “La Sapienza” for his
invited speech on “Collective dynamics of social annotation.” The talk was highly interesting and very
pertinent to the special theme of the workshop. We are also grateful to Microsoft Research India for
sponsoring the travel and accommodations for the invited speaker.

Monojit Choudhury, Samer Hassan, Animesh Mukherjee and Smaranda Muresan
August 2009
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Invited Talk
Collective Dynamics of Social Annotation

Vittorio Loreto
Dipartimento di Fisica, “Sapienza” Università di Roma,

Piazzale Aldo Moro 5, 00185 Roma, Italy
and

Complex Networks Lagrange Laboratory,
Institute for Scientific Interchange (ISI), Torino, Italy

vittorio.loreto@roma1.infn.it

The enormous increase of popularity and use
of the WWW has led in the recent years to im-
portant changes in the ways people communicate.
An interesting example of this fact is provided by
the now very popular social annotation systems,
through which users annotate resources (such as
web pages or digital photographs) with text key-
words dubbed tags. Collaborative tagging has
been quickly gaining ground because of its abil-
ity to recruit the activity of web users into effec-
tively organizing and sharing vast amounts of in-
formation. Understanding the rich emerging struc-
tures resulting from the uncoordinated actions of
users calls for an interdisciplinary effort. In par-
ticular concepts borrowed from statistical physics,
such as random walks, and the complex networks
framework, can effectively contribute to the math-
ematical modeling of social annotation systems.
First I will introduce a stochastic model of user
behavior embodying two main aspects of collab-
orative tagging: (i) a frequency-bias mechanism
related to the idea that users are exposed to each

others tagging activity; (ii) a notion of memory, or
aging of resources, in the form of a heavy-tailed
access to the past state of the system. Remark-
ably, this simple modeling is able to account quan-
titatively for the observed experimental features
with a surprisingly high accuracy. This points
in the direction of a universal behavior of users
who, despite the complexity of their own cogni-
tive processes and the uncoordinated and selfish
nature of their tagging activity, appear to follow
simple activity patterns. Next I will show how
the process of social annotation can be seen as
a collective but uncoordinated exploration of an
underlying semantic space, pictured as a graph,
through a series of random walks. This modeling
framework reproduces several aspects, so far un-
explained, of social annotation, among which the
peculiar growth of the size of the vocabulary used
by the community and its complex network struc-
ture that represents an externalization of seman-
tic structures grounded in cognition and typically
hard to access.
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Social (distributed) language modeling, clustering and dialectometry

David Ellis
Facebook

Palo Alto, CA
dellis@facebook.com

Abstract

We present ongoing work in a scalable,
distributed implementation of over 200
million individual language models, each
capturing a single user’s dialect in a given
language (multilingual users have several
models). These have a variety of prac-
tical applications, ranging from spam de-
tection to speech recognition, and dialec-
tometrical methods on the social graph.
Users should be able to view any content
in their language (even if it is spoken by
a small population), and to browse our site
with appropriately translated interface (au-
tomatically generated, for locales with lit-
tle crowd-sourced community effort).

1 Introduction

We approach several key questions from a data-
driven (statistical) perspective, drawing on large,
dynamic annotated corpora:

1. What social factors affect language change
(and evolution)? How?

2. How do individuals adjust their speech or
writing depending on context and audience?
(e.g., register, formality, humor, reference)

3. What are the minimum requirements for a
language (or dialect)?
(e.g., number of speakers, corpus size)

4. Is a common language necessary for commu-
nication?
Can a pidgin be predicted from its speaker-population?

To this end, we describe a framework for lan-
guage modeling on the social graph, which incor-
porates similarity clustering and lays the ground-
work for personalized (and multimodal) machine
translation.

2 Related Work

Research on large scale language model-
ing (Brants et al., 2007) has addressed sharding,
smoothing and integration with a machine transla-
tion pipeline. Our work takes a similar approach,
using Hadoop (Borthakur, 2007) and Hive to
query and process distributed data. Social annota-
tions enhanced smoothing for language modeling
in the context of information retrieval (Xu et
al., 2007), and hierarchical Bayesian networks
were used (Zhou et al., 2008) to incorporate user
domain interest in such models. Language models
are often used to detect spam, including in social
bookmarking (Bogers and van den Bosch, 2008).

Proposed scoring models for social
search (Schenkel et al., 2008) use friendship
strengths and an extension of term frequency1.
These could benefit from a deeper integration with
friends’ language models, perhaps to approximate
a user-specific inverse document frequency, rather
than treat each tag by a user as equally relevant to
all his friends of a given (relationship) strength.
Strehl et al. (2000) found that similarity clustering
perform best using weighted graph partitioning.

3 Language Model

An individual’s language model is a mixture of
their locale (or another language they speak) and
token frequencies from the content they produce
(write) and consume (read). Since we have hun-
dreds of milliions of users, each of whose lan-
guage model can depend on a variety of data
sources, it is essential to distribute these counts
(and other figures derived from them) in a way that
optimizes the efficiency of our access patterns2.

We also tried clustering users, and represent-
ing the language of each as deviations from its
neighbors (or the norm of the cluster). However,

1Called “socially-enhanced tag frequency”.
2See Section 5 for discussion of a variety of use cases.
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there are significantly more edges than nodes in
our graph (more friendships than people), so this
alternative is less efficient.

An individual’s language use varies greatly de-
pending on his interlocutor or audience3. Mes-
sages I send (privately) to a friend differ in style
from comments I make on a public photo of my
nephew, which in turn differ from my writing style
as realized in an academic or industry paper or ar-
ticle.

An obvious optimization is to describe a min-
imum spanning tree (MST) on the graph, where
each edge is weighted according to the similarity
of dialects associated with the nodes (individuals,
groups or other entities) it connects. Then, lan-
guage models of nodes connected by the MST can
depend on each other’s counts. Singletons default
to the general language model from their locale.

3.1 Detecting Deviations
People who aren’t friends (and have no mutual
friends or other evident connection) may yet use
more similar language than siblings. This exam-
ple seems highly improbable or unnatural, and in
fact serves as a good heuristic for detecting com-
promised, spam-sending accounts (even if not or-
ganized in a botnet).

If a user sends a message with high perplexity:

1. Their account is compromised, and being
used to spam (or phish) their friends.

2. They are using a different language than
usual. Users are often bilingual (sometimes
multi)-, so we may not yet have realized they
are proficient in a given language.

3. There may be a problem with the language
model:

(a) large vocabulary (tends to inflate per-
plexity)

(b) genre mix (user interface v. user com-
munication)

3.2 Locale Induction
A regional cluster of personal language models
can be combined to create a new locale. A crowd-
sourced translation process (Ellis, 2009) can thus

3This is not novel in or of itself, but the scale of our data
and experiments should lead to finer-grained understanding,
both of issues peculiar to a single language or its family, and
of language universals (or.patterns; priors likely intuitively
encoded).

be bootstrapped by indirect community contribu-
tions.

4 Machine Translation

For an English-sepaking user, in order to opti-
mize the probability of the target (translated) sen-
tence given its source (Foreign), we follow Och
and Ney’s (2004) optimization of a set of feature
functions:

ê = arg max
e

M∑
m=1

λmhm(e,f)

It is thus easy for us to aggregate scores from
multiple language models (e.g., from individuals
comprising your network of friends or others you
interact with).

Our distributed, individual language models can
be a component of personalized machine transla-
tion, where the target language may be a penpal’s.
Either the decoder incorporates the counts from
user communications by supplementing the lan-
guage model used in its n-best candidate search,
or it uses the locale’s general language model and
factors in individual variance in a rescoring step.

We plan to offer inline statistical machine trans-
lation (SMT) of user-generated content, where the
translation model combines features from:

1. Our (interface) translations corpus for the
language pair

2. Related langauges or dialects4

3. Linguistic rules (Ellis, 2009), in some com-
bination of:

(a) Explicitly encoded
(b) Induced from training corpora
(c) Borrowed from related languages (esp.

for relatively minor or resource-poor)

4.1 Sparse Data
Data sparseness is clearly an issue for modeling
with this degree of specificity, so we explore a
range of possible smoothing techniques, as well
as methods for leveraging resources from related
languages (Genzel, 2005). If a user signed up for
Facebook last week, (s)he may not yet have con-
nected with many friends or shared much content
(which exacerbates the problem).

4e.g. Spanish (Argentina, Spain), Chinese (Mandarin,
Cantonese (Hong Kong, Taiwan)), or Finnish and its neigh-
bors: inc. Estonian, Sámi, Komi
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Domain adaptation is also important, since the
base corpus is for a user interface: usually more
formal, less varied than conversation. Ideally, we
would like to capture not only language change
(diversion, creolization) but an individual’s lin-
guistic evolution in a variety of contexts:

• She learns a language, practices its use, be-
comes increasingly accustomed to its twists
and turns (syntactic, lexical, morphological,
etc.)

• His mood shifts, he moves into a new apart-
ment or city, let alone grander (potentially
dynamic) features of context

• A startup company is suddently more visible
(e.g., resulting from press coverage, or a tech
blogger’s reference), and so an image (and
website design, copy) revamp is in order.

• Afflicted with post-traumatic stress, after
sensory deprivation, or in cases of neurologi-
cal disorders or brain damage.

5 Similarity

We use a pipeline to cluster strings (to suggest
translations) and users (based on language use):

1. Preprocessing

• normalization (lowercasing)
• {segment,{lemmat,token}iz}ation

2. Similarity (pick one)

• fuzzy (hash) similarity5

• string edit distance
• phonetic (or phonological) edit distance
• language model perplexity
• KL-divergence (btn. language models)

3. Clustering (modular: select-an-algo)

• hierarchical (agglomerative or divisive)
• K-means (partitioning)
• graph-theoretic methods (cover as op-

posed to cluster)

This is architected for ease of experimentation
and modification, testing and tuning, so any com-
bination of the above should be functional. Some
applications of similarity require high accuracy
but can be processed offline, whereas others need
to be computed in less than ten milliseconds in re-
sponse to a live query.

5i.e., Jaccard coefficient (Wikipedia, 2008)

Figure 1: Visualization of a user’s friends, where
the extent of each type of relationship or commu-
nication is indicated by saturation (shade of blue)
of the connection.

6 Evaluation

Although the components we use can be (and in
most cases, have been) thoroughly evaluated in
relative isolation, it is important to understand the
consequences of their use in concert. Improve-
ments to spam detection should be evident both in
tests on annotated6 data and in decreased reports
or complaints from users.

User-generated metadata, in some cases a sim-
ple report of offensive content or a friend’s com-
promised account, is a natural source of both la-
beled test data and training data. Our customer
service processes are thus tightly integrated with
machine learning efforts. See Figure 1 for commu-
nications in a small segment of the social graph.

7 Conclusion

Preliminary experiments with user-initiated ma-
chine translation of friend-generated content sug-
gest it will soon be valuable. It is crucial to design
this in a scalable way, such that it extends to arbi-
trarily many languages7, both draws on and sup-

6Either a binary classification (spam or non-spam) or a
gradient scale, possibly incorporating dimensions of phishi-
ness, spamminess, or other types of solicitousness.

7Including underrepresented ones like Oshindonga.
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ports our internationalization efforts, and should
be useful on mobile devices (including in the spo-
ken modality).

Our introductory questions (from Section 1) are
far from fully answered, but we hope this work
might help to address them.

1. The number and strength of connections,
speed and frequency of communication, and
diversity of languages individuals are ex-
posed to all have strong influences on lan-
guage change.

2. Stylistic variations in an individual’s lan-
guage are evident in that it can be more accu-
rately captured as a mixture of models, each
of which is suited to a specific situation, style,
or set of interlocutors.

3. Two speakers is sufficient for a language. A
small model can adequately describe a lan-
guage, if each data point is a deviation from
another language.

4. A common language is far from necessary for
communication8. A set of arbitrary individu-
als’ language models can be combined (and
pruned, evolved) to derive the pidgin they
might speak.

7.1 Future Work
Social natural language processing is (in a sense)
in its infancy. We hope to capture aspects of its
evolution, just as the field comes to better describe
and understand ongoing changes in human lan-
guages. We have not yet satisfactorily answered
our second question, but expect more fine-grained
analyses to follow, using our framework to com-
pare and contrast a variety of languages (from
Bantu to Balinese) and phenomena (inside jokes,
cross-linguistic usage of l33t and txt msg terms).

We hope to facilitate this by providing an API
to allow researchers access to anonymized9, ag-
gregated data.
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Abstract 

 

Archaeological excavations in the sites of the 
Indus Valley civilization (2500-1900 BCE) in 
Pakistan and northwestern India have un-
earthed a large number of artifacts with in-
scriptions made up of hundreds of distinct 
signs. To date, there is no generally accepted 
decipherment of these sign sequences, and 
there have been suggestions that the signs 
could be non-linguistic. Here we apply com-
plex network analysis techniques on the data-
base of available Indus inscriptions, with the 
aim of detecting patterns indicative of syntac-
tic structure in this sign system. Our results 
show the presence of regularities, e.g., in the 
segmentation trees of the sequences, that sug-
gest the existence of a grammar underlying the 
construction of the sequences. 

1 Introduction 

The recent interest in complex networks among 
physicists over the past few years has meant that 
the graph theoretic paradigm has been applied to 
many different areas, including networks defined 
in corpora of textual units (Mehler, 2008), and 
has often revealed hitherto unsuspected patterns. 
While graph-based representation of texts had 
been used for some time in natural language 
processing tasks, such as, text parsing, disam-

biguation and clustering (Radev and Mihalcea, 
2008), the approach based on the new physics of 
complex networks often asks questions from a 
different perspective that can shed new light on 
the organization of linguistic structure. For ex-
ample, networks constructed on the basis of co-
occurrence of words in sentences have been seen 
to exhibit the small-world effect, i.e., a small av-
erage distance between any pair of arbitrarily 
chosen words, and, a scale-free distribution of 
the number of words a given word is connected 
to (i.e., its degree) (Ferrer i Cancho and Sole, 
2001). These properties have been proposed to 
reflect the evolutionary history of lexicons and 
the origin of their flexibility and combinatorial 
nature. Note that, a recent study of a lexical net-
work of words that are phonological neighbors 
has found that the degree distribution might be 
better fit by an exponential rather than a power-
law function (Vitevitch, 2008). A theoretical 
model for such word co-occurrence network, 
which treats language as a self-organizing net-
work of interacting words, has led to the sugges-
tion that languages may have a core (the “kernel 
lexicon”) that does not vary as the language 
evolves (Dorogovtsev and Mendes, 2001). How-
ever, even though text and speech are sequential, 
the local correlation between immediately con-
secutive words may not describe natural lan-
guages well – due to the presence of non-local 
relations between words that occur apart from 
each other in a sentence. Therefore, network 
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analysis has been extended to syntactic depend-
ency networks, where two words are connected if 
they have been related syntactically in a number 
of sentences (Ferrer i Cancho et al, 2003). The 
theory of complex networks has also been used 
to investigate the structure of meaningful con-
cepts in the written texts of individual authors, 
which have been seen to have small-world as 
well as scale-free characteristics (Caldeira et al, 
2006). The conceptual network of a language has 
been explored by using the semantic relatedness 
of words as defined by a thesaurus, and this net-
work too is seen to have small-world nature with 
scale-free degree distribution (Motter et al, 
2002).  
 
 
In this article, we look at a corpus of inscriptions 
obtained through archaeological excavations car-
ried out in the ruins of the Indus valley civiliza-
tion. The sequences comprise signs, of which 
there are more than four hundred unique and dis-
tinct types. Since discovery in the early part of 
the 20th century, there have been attempts at de-
ciphering them. However, to date there is no 
generally accepted method of interpreting these 
inscriptions. We analyze a representative data-
base of these sequences using techniques in-
spired by complex network theory. Our aim is to 
see whether such methods can reveal the exis-
tence of patterns suggesting syntactic organiza-

tion in the sign sequences. In the next section, we 
briefly introduce the historical context of the In-
dus inscriptions, while in Section 3, we discuss 
the dataset on which analysis has been carried 
out. Our results are reported in Section 4, and we 
finally conclude with a discussion of unresolved 
questions and further work that needs to be car-
ried out. 

2 The Indus inscriptions 

The Indus civilization, also known as the Mature 
Harappan civilization (2500-1900 BCE), was 
geographically spread over what is now Pakistan 
and northwestern India, covering approximately 
a million square kilometers (Possehl, 2002). It 
was marked by urbanization centered around 
large planned cities, as evidenced in the ruins of 
Harappa and Mohenjo-daro. Craft specialization 
and long-distance trade with Mesopotamia and 
Central Asia have been well-demonstrated. This 
civilization came to an end early in the 2nd mil-
lennium BC. There were no historical records of 
its existence until archaeological excavations in 
the late 19th and early 20th century uncovered 
artifacts, and some of the ruined urban centers 
(Marshall, 1931).  
 
Among the artifacts uncovered during these dis-
coveries were a variety of objects (especially 
seals) that were inscribed with a variety of signs 
arranged in sequences (Fig. 1). Although found 
primarily on seals and their impressions (seal-
ings), inscriptions with similar signs have also 
been discovered on miniature tablets, pottery, 
copper tablets, bronze implements, etc. Unsur-
prisingly, given the high sophistication of the 
civilization and the level of social complexity it 
implies, with the concomitant requirements of 
coordination and communication, these inscrip-
tions have been interpreted as corresponding to 
writing. However, despite periodic claims about 
decipherment of this writing system, there has as 
yet been no generally accepted interpretation of 
the signs. The failure of decipherment is partly 
due to lack of knowledge about the language 
which the signs encode and the lack of any bilin-
gual texts such as the Rosetta stone which was 
crucial in deciphering Egyptian hieroglyphs. 
While there is disagreement on the exact number 
of unique and distinct signs that occur in the in-
scriptions, there is overall agreement that they lie 
in the range of a few hundred. This rules out the 
possibility of the signs belonging either to an 
alphabetic system, which contains on average 

 
Fig. 1: A typical example of Indus sign sequence 
(having 8 distinct signs) occurring at the top of a 
seal, with the picture of a “unicorn” in the fore-
ground (i.e., the field symbol), one of the com-
mon animal motifs observed in such artifacts.  

 
Fig. 1: A typical example of Indus sign sequence 
(having 8 distinct signs) occurring at the top of a 
seal, with the picture of a “unicorn” in the fore-
ground (i.e., the field symbol), one of the com-
mon animal motifs observed in such artifacts. 
Note that, on seals, the conventional order in 
which the signs are read (right to left) is reversed. 
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about 25 letters (such as English) or an ideo-
graphic (e.g., Chinese) writing system, compris-
ing more than 50,000 characters. The brevity of 
the inscriptions (the longest that occurs on a sin-
gle line has 14 signs) and the existence of a large 
number of signs that occur with very low fre-
quency have led to some alternative suggestions 
regarding the meaning of the sign sequences. 
These include the possibilities that, e.g., (i) the 
signs correspond to a label specifying an indi-
vidual and his belongings, in the manner of he-
raldic badges (Fairservis, 1971) and (ii) the signs 
are ritual or religious symbols which do not en-
code speech nor serve as mnemonic devices, 
much as the Vinca signs or emblems in Near 
Eastern artifacts (Farmer et al, 2004). The latter 
possibility implies the absence of any syntactic 
structure in the Indus inscriptions, a possibility 
that can be tested without making any a priori 
assumptions about the meaning of the signs. 
 

3 Description of dataset  

The database for Indus sign sequences that we 
have used is based on the electronic concordance 
constructed by Mahadevan (1977), referred here 
as M77. This is based on the study of a total of 
3573 sequences recorded from 2906 distinct arti-
facts and it identifies 417 unique signs. In the 
following we identify each sign in a sign se-
quence by its corresponding identification num-
ber (1, …, 417) in M77. Most of the inscriptions 
seem to have been written from right to left. 
However, according to the convention we use, 
the sequence of numbers representing each text 
is read from left to right (i.e., the leftmost num-
ber in the sequence is read as the first sign in the 
inscription). Yadav et al (2008) have constructed 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
an Extended Basic Unique Data Set (EBUDS) by 
removing from M77 all sequences that are in-
complete, because of the presence of signs that 
are damaged, lost, illegible or not unambiguously 
identified. Further, only sequences which are 
written on a single line are retained. This is to 
remove the ambiguity regarding the interpreta-
tion of sequences with multiple lines, namely, 
whether the different lines should be considered 
as independent sequences or whether they form 
one continuous sequence. Moreover, if the same 
sequence is found in multiple artifacts, it is rep-
resented only once in EBUDS. Following these 
operations, the original number of 3573 se-
quences in M77 is reduced to 1548 sequences in 
EBUDS. Moreover, 40 of the 417 unique signs in 
M77, which occur with relatively very low fre-
quency, do not have any representation in 
EBUDS – so that latter dataset comprises 377 
unique signs. However, it has been verified by 
Yadav et al (2008) that the frequency distribu-
tions of signs in the two datasets are qualitatively 
similar. 

4 Results 

In the following sections we report the results 
of applying network analysis techniques to the 
sign sequences in EBUDS. We should note at 
this point that, the distributions of the in- and 
out- strengths of all the nodes (i.e., the sum of 
the weights of the incoming and outgoing links, 

Fig. 2: The directed network of 377 distinct Indus 
signs in EBUDS, with arrows pointing from a 
preceding sign to a sign that follows it in the cor-
pus of empirically observed sign sequences. Links 
are weighted by the frequency of occurrence of 
that particular sign pair. 

 
Fig. 3: The subnetwork of connections between 
the 10 highest frequency signs in EBUDS. Differ-
ent colors are used to represent the two different 
orientations possible for arrows between a nodal 
pair (e.g., the pairs 342-162 and 162-342 are both 
possible and are indicated by a blue and a black 
arrow, respectively). Loops indicate successive 
occurrences of the same sign. 
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respectively) do not show a scale-free distribu-
tion.  

4.1 The directed network of signs 

To have a graphical view of the entire sign sys-
tem, we first construct the directed network of 
Indus signs (Fig. 2). This has 377 nodes corre-
sponding to the distinct, uniquely identified 
signs. Node i has a directed link to node j, if sign 
j immediately follows sign i in any of the inscrip-
tions included in EBUDS. The link between i 
and j is weighted by the frequency of occurrence 
of *ij* in the corpus (“*” is a wildcard character 
that may be substituted by any of the 377 signs 
or blank space). 
 
We note immediately that only 1.5% (=2178) of 
the 377×377 possible directed pairs are seen to 
occur in the actual inscriptions. Furthermore, 
most of the signs are connected to only one or 
two other signs. The connectance (probability of 
link between any given pair) is only around 0.01, 
implying that the network is extremely sparse. 
However, if we plot the sub-network of connec-
tions between nodes corresponding to the 10 mo-
st common signs in EBUDS (i.e., the ones occur-
ring with the highest frequency), we note that 
they are strongly inter-connected (Fig. 3). There-
fore the adjacency matrix of the sign network is 
far from homogeneous, with patches of dense 
connectivity in certain regions.  
 
As the above evidence indicates that there exists 
a core set of signs which occur very frequently as 
pairs, a natural question is whether the network  

 
 
generated from EBUDS has a core-periphery 
organization. This would imply the existence of a 
densely connected central core (central in terms 
of graph distance) and a larger class of sparsely 
connected peripheral nodes, like that seen in the 
case of geographically embedded transportation 
networks (Holme, 2005). To obtain such a de-
composition of the network we use a pruning 
algorithm that successively peels away layers of 
a given core-order of the network. The k-core of 
a network is defined as the subnetwork contain-
ing all nodes that have degree at least equal to k. 
Thus, to obtain it, we have to iteratively remove 
all nodes having degree less than k. In particular, 
the 2-core of a network is obtained by eliminat-
ing all nodes that do not form part of a loop (i.e., 
a closed path through a subset of the connected 
nodes). For a k-core, there exist at least k paths 
between any pair of nodes belonging to it. It is 
obvious that for any network, there exists an in-
nermost core of maximum order which cannot 
exceed the highest degree of the network.  
 
In a directed network, one can define a k-core 
either in terms of the in-degree (number of con-
nections arriving at the node) or the out-degree 
(number of connections sent from the node). For 
the EBUDS network, the innermost core turns 
out to have order 8, regardless of the type of 
network considered (Fig. 4). Fig. 5 shows the 
innermost core for the in-degree network. Even a 
casual inspection shows that many of the com-
mon sign pairs in the database belong to this 
subnetwork. Thus, a large part of the corpus can 

 
Fig. 4: Core-decomposition of the undirected 
and directed networks of Indus signs. For the 
latter, both the in-degree (circles) and out-
degree (squares) cores are shown, while the 
undirected cores are represented with dia-
monds. All three core decompositions show an 
innermost core of order 8. 

 
Fig. 5: The innermost (order 8) in-degree core of 
the Indus sign network with 26 signs. Grayscale 
color of each link corresponds to the frequency of 
occurrence of a particular pair (e.g., 391-99 and 
336-89 are the commonest pairs). 
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be generated by using members of these “kernel 
lexicons”. 
 

4.2 Modularity of the network  

Many networks that we see in nature are modu-
lar, i.e., they comprise several subnetworks (of-
ten called communities) whose members are 
more densely connected to each other than with 
the rest of the network. In several systems, such 
structural modules are often associated with 
functional modularity, with each community be-
ing identified as being responsible for certain 
specific functions (e.g., in the protein interaction 
network). In the EBUDS network, existence of 
modules will imply that certain sets of signs oc-
cur together far more often than would be ex-
pected had their frequencies of appearance in the 
corpus been statistically independent. 
 
The unambiguous identification of communities 
in a network is a problem that still has not been 
solved to complete satisfaction. However, sev-
eral near-optimal algorithms exist. The technique 
we use was proposed in Newman and Girvan 
(2004) and involves calculating the following 
measure of modularity of a network: 
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where, L is the total number of links in the net-
work, Ls is the number of links between nodes 
within a module s and ds is the sum of the de-
grees for nodes belonging to module s. By defi-

nition, this gives a large value when the network 
has an unambiguous partition into several com-
munities. Thus, the method for finding the mod-
ules involves carrying out many trial divisions of 
the network into modules and calculating the 
corresponding Q. The partition for which Q is 
maximum will correspond to the true modular 
partition of the system. Needless to say, a brute 
force method for finding the best partition is im-
possible for modest sized networks, and we use 
an extremal optimization technique for this pur-
pose. We obtain 8 communities whose sizes 
range from 6 to 87 nodes.  
 
Having identified the communities in the sign 
network, the obvious question is whether they 
correspond to sign groups that occur in a particu-
lar context, e.g., commercial or religious. With 
this aim in view we have examined the correla-
tion between the modules and (i) artifact types, 
(ii) nature of the field symbols and (iii) site of 
excavation. None of them show any significant 
correlation with the modules, implying that the 
signs are not simple attributes of either artifact or 
symbol portrayed in a seal, nor were the use of 
certain sign subsets confined exclusively to cer-
tain regions. The latter point underlines the sur-
prising homogeneity of sign usage over the vast 
area that the Indus civilization covered. Let us 
stress that we are looking at correlation between 
groups of signs (that have a strong probability of 
co-occurrence) and specific contexts, rather than 
the significant frequency of occurrence of an in-
dividual sign in a specific context, of which there 

 
Fig. 6: Rank-frequency distribution of Indus sign 
occurrences, shown on a double logarithmic scale. 
The two lines indicate power law fits to different 
regions of the distribution, with distinct expo-
nents. The latter are calculated using Maximum 
Likelihood Estimation (MLE). Neither equal 1, as 
would have been the case for a simple Zipf distri-
bution. 

 
 
Fig. 7: The probability of occurrence of the sign 
pair 267-99 in EBUDS compared against the cor-
responding distribution for the randomized corpus 
(obtained by considering a million realizations). 
The large deviation of the empirical value of the 
pair occurrence probability from the randomized 
corpus indicates that this is a statistically signifi-
cant sign pair.
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are several examples. By focusing on correlation 
patterns at the level of groups of signs, rather 
than individual signs, we aim to arrive at results 
that are robust with respect to fluctuations in in-
dividual sign frequencies occurring as a result of 
further archaeological excavations. 
 

4.3 Network of “significant” links 

So far we had placed all sign pairs that occur in 
EBUDS on an equal footing. However, certain 
pairs may occur with high probability simply 
because the individual signs that make up the 
pair occur with high frequency. Fig. 6 shows that 
the frequency distribution of sign occurrence in 
EBUDS has an approximately power law distri-
bution. This implies that the few commonest 
signs will occur over a very large number of 
cases (the most frequent sign appearing as many 
as 715 times, which is 10% of the total of 7000 
occurrences of the 377 signs in EBUDS). By us-
ing the information about the probability of oc-
currence for individual signs in EBUDS we can 
investigate significant sign relations, i.e., sign 
combinations that occur far more frequently than 
that expected from the individual probabilities of 
the component signs. 
 
Thus, if sign i occurs with a probability p(i) and j 
with p(j), then the pair ij is significant if p(ij) >> 
p(i)p(j). To measure by how much p(ij) has to be 
larger than the product of p(i) and p(j) in order to 
be “significant”, we need to compare the empiri-
cal joint occurrence probability against the corre-
sponding value for randomized surrogates. The 

randomized corpus is generated by shuffling the 
sign sequences in the dataset so that, while the 
individual sign frequencies are unchanged, all 
pair correlations in the original inscriptions are 
lost. The shuffling can be done over either (i) the 
entire corpus, or (ii) over each individual seal.  
 
Fig. 7 shows a comparison between the empirical 
probability of a certain significant sign pair, and 
the corresponding probability distribution ob-
tained upon corpus randomization. It is evident 
that the pair would never have been observed 
with the actual EBUDS frequency had the two 
signs been independent, i.e., had there been no 
dependency relation between them. This devia-
tion can be quantified by computing the z-score, 
which is the difference between the empirical 
sign pair probability and the mean of the ran-
domized cases, divided by the standard deviation 
for the randomizations. The distribution of z-
scores for all 377×377 possible pairs are shown 
in Fig. 8. We note that there are 284 sign pairs 
with z-score larger than 10, while 46 pairs have 
z-score more than 20. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As an example, using the individual seal shuffled 
randomization we obtain significant relations 
among 22 signs for a specified z-score threshold 
(Fig. 9). There are 6 isolated clusters in this sub-
network, with the longest cluster containing 8 
signs including sign 342 (the commonest sign in 
the corpus). Out of the 16 most frequently ap-
pearing signs in the database, 13 appear in this 
group, indicating that some of the common signs 
have significant relations with each other. While 
most pair relations are between such common 
signs, one exception is the cluster of signs no. 51 
(35th most common sign), no. 149 (50th most 

 
 
Fig. 8: Distribution of z-scores for all 377 × 377 
possible sign pairs. Note that many potential sign 
pairs are not observed in EBUDS at all, which are 
responsible for the negative z-score values. The 
randomization is over the entire corpus, and the 
mean and standard deviation are calculated over a 
million random realizations. 

 
Fig. 9: The network of significant sign pairs as 
obtained after comparison with the randomized 
corpus constructed by shuffling signs in each seal. 
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common sign) and no. 130 (59th most common 
sign). As the individual signs are themselves not 
very common, the observed sign relation is in-
deed quite intriguing and possibly has some 
functional significance in terms of interpreting 
the sign sequences.  
 

4.4 “Syntactic” tree generation 

We will finally attempt to reveal structure indica-
tive of syntactic trees by “parsing” the longest 
sign sequences. We do this by generating seg-
mentation trees of the sign sequences based on 
the relative frequency of sign combination occur-
rences. Given a inscription of length n, sign pairs 
are iteratively merged to form meta-signs, with 
the first merge being done for the sign pair with 
the highest z-score among all pairs in that se-
quence. This merged sign is then included as a 
meta-sign and assigned a new number. The re-
duced sequence of length n-1 is now again 
scanned for the pair of signs or meta-signs that is 
most “significant” and merged together. This 
process continues until the entire sign sequence 
reduces to a single meta-sign. In case of a tie be-
tween two or more pairs at any stage, one pair is 
randomly chosen. The resulting segmentation 
tree of the sign sequence is shown schematically 
in Fig. 10. The height of the tree is an indicator 
of the presence of significant recursive structure 

in the sign sequence. In particular, if the signs 
are all independent of each other, then the seg-
mentation tree has essentially the same height as 
the length of the sequence (Fig. 10, top). On the 
other hand, if for long sequences, there exists 
subsequences that also appear in the corpus as 
separate sequences in their own right, this is in-
dicative of recursion. The corresponding tree 
height is substantially reduced as compared to 
the sequence length (Fig. 10, bottom). 
 
We use this criterion to seek signature of recur-
sive, and hence syntactic, structure in the 
EBUDS network. For shorter length sequences, it 
becomes difficult to obtain subsequences that 
also appear as sequences in the database. We 
have thus confined our attention to inscriptions 
having 10 or more signs. Arranging the heights 
of the segmentation trees of these sequences in 
descending order (for seals of each specific 
length), we see that the average tree height is 
around 5 (Fig. 11). Such a characteristic length 
scale indicates that the longer sequences may 
actually be composed of multiple smaller se-
quences, each of which has a particular syntactic 
relation among its constituent signs. 
  

5 Discussion 

In this paper we have used complex network 
analysis techniques on the sign network con-
structed from a subset of the corpus of inscrip-
tions obtained in Indus civilization excavations. 
Our results suggest that though these sign se-
quences are yet to be deciphered, they have a 
highly structured arrangement which is sugges-
tive of the existence of syntax. The inference of a 
set of rules (i.e., the grammar) for arranging 
these signs in a particular order, so as to be able 

 
Fig. 10: Schematic segmentation trees for a sign 
sequence of length 8, representing two alternative 
possibilities. The top example is a relatively un-
structured sign sequence, with the tree height be-
ing almost identical to the sequence length. The 
bottom example shows significant recursive struc-
ture and a corresponding lower tree height. 

 
Fig. 11: Segmentation tree height for all se-
quences (of length 10 or more) in EBUDS ar-
ranged in descending order. 
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to create pseudotexts that are indistinguishable 
from the excavated ones is the eventual aim of 
the analysis described here. However, prior to 
this several open problems need to be addressed. 
One of the extensions of the present work has to 
do with looking beyond sign pairs to sign trip-
lets, quadruplets, etc. Preliminary analysis of 
networks of meta-signs by us indicates that, 
combinations beyond four signs may not have 
statistical significance. A detailed comparison 
between the sign network described here and the 
meta-sign network may provide clues about the 
possible hierarchical arrangement of subse-
quences in the longer sequences. Evidence of this 
is already seen from the construction of segmen-
tation trees of individual sequences based on 
relative pair frequencies.  
 
It is also possible that there are non-local correla-
tions between signs in a given inscription. To 
analyze this, we need to redefine the links in the 
network as being connections between all signs 
that occur in the same inscription. Again, pre-
liminary analysis seems to suggest that this does 
not provide substantially new results from those 
reported here. 
 
Based on the number of distinct signs (more than 
400) there have been several suggestions that, as 
the number is too high to be an alphabetic system 
but too small to be an ideographic system, the 
inscriptions could well be written in a logo-
syllabic system. Such a writing system combines 
both logograms (morphemic signs) and syllabic 
(or phonetic) signs without inherent meaning. In 
future work, we plan to investigate the differ-
ences that arise in the network structure of lan-
guages belonging to these very different systems, 
in order to make an inference on the nature of the 
writing system used in the Indus inscriptions. 
 
One of the most controversial aspects of Indus 
decipherment is the question of how many dis-
tinct signs are there. M77 identified 417 signs, 
but other researchers have come up with a wide 
range of different numbers. Therefore, an impor-
tant open issue that needs to be settled in the fu-
ture is the robustness of these results, with re-
spect to analysis based on another sign list, e.g., 
that created by B. K. Wells (Wells, 2006).  
 

Our analysis of correlations, or rather, the lack 
of it, between the modules of the network (i.e., 
groups of signs that have a high probability of 
co-occurrence) and contexts such as site of exca-

vation, artifact types and field symbols, indicates 
that the patterns seen in the sequence organiza-
tion are intrinsic to the sign usage system and not 
so much dependent on the context in which they 
arise. This supports the long-held belief that the 
signs encode writing, or, at least, proto-writing.  
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Abstract

In this study we used bipartite spectral
graph partitioning to simultaneously clus-
ter varieties and sound correspondences
in Dutch dialect data. While cluster-
ing geographical varieties with respect to
their pronunciation is not new, the simul-
taneous identification of the sound corre-
spondences giving rise to the geographi-
cal clustering presents a novel opportunity
in dialectometry. Earlier methods aggre-
gated sound differences and clustered on
the basis of aggregate differences. The de-
termination of the significant sound corre-
spondences which co-varied with cluster
membership was carried out on a post hoc
basis. Bipartite spectral graph clustering
simultaneously seeks groups of individual
sound correspondences which are associ-
ated, even while seeking groups of sites
which share sound correspondences. We
show that the application of this method
results in clear and sensible geographi-
cal groupings and discuss the concomitant
sound correspondences.

1 Introduction

Exact methods have been applied successfully to
the analysis of dialect variation for over three
decades (Séguy, 1973; Goebl, 1982; Nerbonne
et al., 1999), but they have invariably functioned
by first probing the linguistic differences between
each pair of a range of varieties (sites, such as
Whitby and Bristol in the UK) over a body of
carefully controlled material (say the pronuncia-
tion of the vowel in the word ‘put’). Second, the
techniques AGGREGATE over these linguistic dif-
ferences, in order, third, to seek the natural groups
in the data via clustering or multidimensional scal-
ing (MDS) (Nerbonne, 2009).

Naturally techniques have been developed to
determine which linguistic variables weigh most
heavily in determining affinity among varieties.
But all of the following studies separate the deter-
mination of varietal relatedness from the question
of its detailed linguistic basis. Kondrak (2002)
adapted a machine translation technique to deter-
mine which sound correspondences occur most
regularly. His focus was not on dialectology, but
rather on diachronic phonology, where the regular
sound correspondences are regarded as strong ev-
idence of historical relatedness. Heeringa (2004:
268–270) calculated which words correlated best
with the first, second and third dimensions of an
MDS analysis of aggregate pronunciation differ-
ences. Shackleton (2004) used a database of ab-
stract linguistic differences in trying to identify
the British sources of American patterns of speech
variation. He applied principal component analy-
sis to his database to identify the common com-
ponents among his variables. Nerbonne (2006)
examined the distance matrices induced by each
of two hundred vowel pronunciations automati-
cally extracted from a large American collection,
and subsequently applied factor analysis to the co-
variance matrices obtained from the collection of
vowel distance matrices. Prokić (2007) analyzed
Bulgarian pronunciation using an edit distance
algorithm and then collected commonly aligned
sounds. She developed an index to measure how
characteristic a given sound correspondence is for
a given site.

To study varietal relatedness and its linguistic
basis in parallel, we apply bipartite spectral graph
partitioning. Dhillon (2001) was the first to use
spectral graph partitioning on a bipartite graph
of documents and words, effectively clustering
groups of documents and words simultaneously.
Consequently, every document cluster has a direct
connection to a word cluster; the document clus-
tering implies a word clustering and vice versa. In
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his study, Dhillon (2001) also demonstrated that
his algorithm worked well on real world examples.

The usefulness of this approach is not only lim-
ited to clustering documents and words simulta-
neously. For example, Kluger et al. (2003) used
a somewhat adapted bipartite spectral graph parti-
tioning approach to successfully cluster microar-
ray data simultaneously in clusters of genes and
conditions.

In summary, the contribution of this paper is to
apply a graph-theoretic technique, bipartite spec-
tral graph partitioning, to a new sort of data,
namely dialect pronunciation data, in order to
solve an important problem, namely how to rec-
ognize groups of varieties in this sort of data while
simultaneously characterizing the linguistic basis
of the group. It is worth noting that, in isolat-
ing the linguistic basis of varietal affinities, we
thereby hope to contribute technically to the study
of how cognitive and social dynamics interact in
language variation. Although we shall not pursue
this explicitly in the present paper, our idea is very
simple. The geographic signal in the data is a re-
flection of the social dynamics, where geographic
distance is the rough operationalization of social
contact. In fact, dialectometry is already success-
ful in studying this. We apply techniques to extract
(social) associations among varieties and (linguis-
tic) associations among the speech habits which
the similar varieties share. The latter, linguistic
associations are candidates for cognitive explana-
tion. Although this paper cannot pursue the cogni-
tive explanation, it will provide the material which
a cognitive account might seek to explain.

The remainder of the paper is structured as fol-
lows. Section 2 presents the material we studied,
a large database of contemporary Dutch pronunci-
ations. Section 3 presents the methods, both the
alignment technique used to obtain sound corre-
spondences, as well as the bipartite spectral graph
partitioning we used to simultaneously seek affini-
ties in varieties as well as affinities in sound corre-
spondences. Section 4 presents our results, while
Section 5 concludes with a discussion and some
ideas on avenues for future research.

2 Material

In this study we use the most recent broad-
coverage Dutch dialect data source available: data
from the Goeman-Taeldeman-Van Reenen-project
(GTRP; Goeman and Taeldeman, 1996; Van den

Berg, 2003). The GTRP consists of digital tran-
scriptions for 613 dialect varieties in the Nether-
lands (424 varieties) and Belgium (189 varieties),
gathered during the period 1980–1995. For every
variety, a maximum of 1876 items was narrowly
transcribed according to the International Phonetic
Alphabet. The items consist of separate words and
phrases, including pronominals, adjectives and
nouns. A detailed overview of the data collection
is given in Taeldeman and Verleyen (1999).

Because the GTRP was compiled with a view
to documenting both phonological and morpho-
logical variation (De Schutter et al., 2005) and
our purpose here is the analysis of sound corre-
spondences, we ignore many items of the GTRP.
We use the same 562 item subset as introduced
and discussed in depth in Wieling et al. (2007).
In short, the 1876 item word list was filtered by
selecting only single word items, plural nouns
(the singular form was preceded by an article and
therefore not included), base forms of adjectives
instead of comparative forms and the first-person
plural verb instead of other forms. We omit words
whose variation is primarily morphological as we
wish to focus on sound correspondences. In all va-
rieties the same lexeme was used for a single item.

Because the GTRP transcriptions of Belgian
varieties are fundamentally different from tran-
scriptions of Netherlandic varieties (Wieling et al.,
2007), we will restrict our analysis to the 424
Netherlandic varieties. The geographic distribu-
tion of these varieties including province names
is shown in Figure 1. Furthermore, note that we
will not look at diacritics, but only at the 82 dis-
tinct phonetic symbols. The average length of ev-
ery item in the GTRP (without diacritics) is 4.7
tokens.

3 Methods

To obtain the clearest signal of varietal differ-
ences in sound correspondences, we ideally want
to compare the pronunciations of each variety with
a single reference point. We might have used the
pronunciations of a proto-language for this pur-
pose, but these are not available. There are also no
pronunciations in standard Dutch in the GTRP and
transcribing the standard Dutch pronunciations
ourselves would likely have introduced between-
transcriber inconsistencies. Heeringa (2004: 274–
276) identified pronunciations in the variety of
Haarlem as being the closest to standard Dutch.
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Figure 1: Distribution of GTRP localities includ-
ing province names

Because Haarlem was not included in the GTRP
varieties, we chose the transcriptions of Delft (also
close to standard Dutch) as our reference tran-
scriptions. See the discussion section for a con-
sideration of alternatives.

3.1 Obtaining sound correspondences
To obtain the sound correspondences for every site
in the GTRP with respect to the reference site
Delft, we used an adapted version of the regular
Levenshtein algorithm (Levenshtein, 1965).

The Levenshtein algorithm aligns two (pho-
netic) strings by minimizing the number of edit
operations (i.e. insertions, deletions and substitu-
tions) required to transform one string into the
other. For example, the Levenshtein distance be-
tween [lEIk@n] and [likh8n], two Dutch variants of
the word ‘seem’, is 4:

lEIk@n delete E 1
lIk@n subst. i/I 1
lik@n insert h 1
likh@n subst. 8/@ 1
likh8n

4

The corresponding alignment is:
l E I k @ n
l i k h 8 n

1 1 1 1

When all edit operations have the same cost,
multiple alignments yield a Levenshtein distance
of 4 (i.e. by aligning the [i] with the [E] and/or by
aligning the [@] with the [h]). To obtain only the
best alignments we used an adaptation of the Lev-
enshtein algorithm which uses automatically gen-
erated segment substitution costs. This procedure
was proposed and described in detail by Wieling
et al. (2009) and resulted in significantly better in-
dividual alignments than using the regular Leven-
shtein algorithm.

In brief, the approach consists of obtaining ini-
tial string alignments by using the Levenshtein al-
gorithm with a syllabicity constraint: vowels may
only align with (semi-)vowels, and consonants
only with consonants, except for syllabic conso-
nants which may also be aligned with vowels. Af-
ter the initial run, the substitution cost of every
segment pair (a segment can also be a gap, rep-
resenting insertion and deletion) is calculated ac-
cording to a pointwise mutual information proce-
dure assessing the statistical dependence between
the two segments. I.e. if two segments are aligned
more often than would be expected on the basis of
their frequency in the dataset, the cost of substi-
tuting the two symbols is set relatively low; oth-
erwise it is set relatively high. After the new seg-
ment substitution costs have been calculated, the
strings are aligned again based on the new seg-
ment substitution costs. The previous two steps
are then iterated until the string alignments remain
constant. Our alignments were stable after 12 iter-
ations.

After obtaining the final string alignments, we
use a matrix to store the presence or absence of
each segment substitution for every variety (with
respect to the reference place). We therefore ob-
tain an m × n matrix A of m varieties (in our
case 423; Delft was excluded as it was used as our
reference site) by n segment substitutions (in our
case 957; not all possible segment substitutions
occur). A value of 1 in A (i.e. Aij = 1) indicates
the presence of segment substitution j in variety i,
while a value of 0 indicates the absence. We ex-
perimented with frequency thresholds, but decided
against applying one in this paper as their applica-
tion seemed to lead to poorer results. We postpone
a consideration of frequency-sensitive alternatives
to the discussion section.
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3.2 Bipartite spectral graph partitioning

An undirected bipartite graph can be represented
by G = (R,S, E), where R and S are two sets
of vertices and E is the set of edges connecting
vertices from R to S. There are no edges between
vertices in a single set. In our case R is the set of
varieties, while S is the set of sound segment sub-
stitutions (i.e. sound correspondences). An edge
between ri and sj indicates that the sound segment
substitution sj occurs in variety ri. It is straight-
forward to see that matrix A is a representation of
an undirected bipartite graph.

Spectral graph theory is used to find the prin-
cipal properties and structure of a graph from its
graph spectrum (Chung, 1997). Dhillon (2001)
was the first to use spectral graph partitioning on
a bipartite graph of documents and words, effec-
tively clustering groups of documents and words
simultaneously. Consequently, every document
cluster has a direct connection to a word cluster. In
similar fashion, we would like to obtain a cluster-
ing of varieties and corresponding segment substi-
tutions. We therefore apply the multipartitioning
algorithm introduced by Dhillon (2001) to find k
clusters:

1. Given the m × n variety-by-segment-
substitution matrix A as discussed previ-
ously, form

An = D1
−1/2AD2

−1/2

with D1 and D2 diagonal matrices such that
D1(i, i) = ΣjAij and D2(j, j) = ΣiAij

2. Calculate the singular value decomposition
(SVD) of the normalized matrix An

SVD(An) = U ∗Λ ∗ V T

and take the l = dlog2ke singular vectors,
u2, . . . ,ul + 1 and v2, . . . ,vl + 1

3. Compute Z =
[
D1

−1/2 U [2,...,l+1]

D2
−1/2 V [2,...,l+1]

]
4. Run the k-means algorithm on Z to obtain

the k-way multipartitioning

To illustrate this procedure, we will co-cluster
the following variety-by-segment-substitution ma-
trix A in k = 2 groups.

[2]:[I] [d]:[w] [-]:[@]
Vaals (Limburg) 0 1 1
Sittard (Limburg) 0 1 1
Appelscha (Friesland) 1 0 1
Oudega (Friesland) 1 0 1

We first construct matrices D1 and D2. D1

contains the total number of edges from every va-
riety (in the same row) on the diagonal, while D2

contains the total number of edges from every seg-
ment substitution (in the same column) on the di-
agonal. Both matrices are show below.

D1 =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

 D2 =

2 0 0
0 2 0
0 0 4


We can now calculate An using the formula dis-
played in step 1 of the multipartitioning algorithm:

An =


0 .5 .35
0 .5 .35
.5 0 .35
.5 0 .35


Applying the SVD to An yields:

U =


−.5 .5 .71
−.5 .5 .71
−.5 −.5 0
−.5 −.5 0

 Λ =

1 0 0
0 .71 0
0 0 0



V =

 −.5 −.71 −.5
−.5 .71 −.5
−.71 0 .71


To cluster in two groups, we look at the second

singular vectors (i.e. columns) of U and V and
compute the 1-dimensional vector Z:

Z =
[
.35 .35 −.35 −.35 −.5 .5 0

]T
Note that the first four values correspond with the
places (Vaals, Sittard, Appelscha and Oudega) and
the final three values correspond to the segment
substitutions ([2]:[I], [d]:[w] and [-]:[@]).

After running the k-means algorithm on Z, the
items are assigned to one of two clusters as fol-
lows:

[
1 1 2 2 2 1 1

]T
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Figure 2: Visualizations of co-clustering varieties (y-axis) and segments substitutions (x-axis) in 2 (left),
3 (middle) and 4 (right) clusters

The clustering shows that Appelscha and
Oudega are clustered together and linked to the
clustered segment substitution of [2]:[I] (cluster
2). Similarly, Vaals and Sittard are clustered to-
gether and linked to the clustered segment substi-
tutions [d]:[w] and [-]:[@] (cluster 1). Note that the
segment substitution [-]:[@] (an insertion of [@]) is
actually not meaningful for the clustering of the
varieties (as can also be observed in A), because
the bottom value of the second column of V cor-
responding to this segment substitution is 0. It
could therefore just as likely be grouped in clus-
ter 2. Nevertheless, the k-means algorithm always
assigns every item to a single cluster.

In the following section we will report the re-
sults on clustering in two, three and four groups.1

4 Results

After running the multipartitioning algorithm2 we
obtained a two-way clustering in k clusters of va-
rieties and segment substitutions. Figure 2 tries
to visualize the simultaneous clustering in two
dimensions. A black dot is drawn if the vari-
ety (y-axis) contains the segment substitution (x-
axis). The varieties and segments are sorted in
such a way that the clusters are clearly visible (and
marked) on both axes.

To visualize the clustering of the varieties, we
created geographical maps in which we indicate

1We also experimented with clustering in more than four
groups, but the k-means clustering algorithm did not give sta-
ble results for these groupings. It is possible that the random
initialization of the k-means algorithm caused the instability
of the groupings, but since we are ignoring the majority of
information contained in the alignments it is more likely that
this causes a decrease in the number of clusters we can reli-
ably detect.

2The implementation of the multipartitioning algo-
rithm was obtained from http://adios.tau.ac.il/
SpectralCoClustering

the cluster of each variety by a distinct pattern.
The division in 2, 3 and 4 clusters is shown in Fig-
ure 3.

In the following subsections we will discuss
the most important geographical clusters together
with their simultaneously derived sound corre-
spondences. For brevity, we will only focus on
explaining a few derived sound correspondences
for the most important geographical groups. The
main point to note is that besides a sensible geo-
graphical clustering, we also obtain linguistically
sensible results.

Note that the connection between a cluster of
varieties and sound correspondences does not nec-
essarily imply that those sound correspondences
only occur in that particular cluster of varieties.
This can also be observed in Figure 2, where
sound correspondences in a particular cluster of
varieties also appear in other clusters (but less
dense).3

The Frisian area
The division into two clusters clearly separates the
Frisian language area (in the province of Fries-
land) from the Dutch language area. This is the
expected result as Heeringa (2004: 227–229) also
measured Frisian as the most distant of all the
language varieties spoken in the Netherlands and
Flanders. It is also expected in light of the fact that
Frisian even has the legal status of a different lan-
guage rather than a dialect of Dutch. Note that the
separate “islands” in the Frisian language area (see
Figure 3) correspond to the Frisian cities which
are generally found to deviate from the rest of the
Frisian language area (Heeringa, 2004: 235–241).

3In this study, we did not focus on identifying the most
important sound correspondences in each cluster. See the
Discussion section for a possible approach to rank the sound
correspondences.
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Figure 3: Clustering of varieties in 2 clusters (left), 3 clusters (middle) and 4 clusters (right)

A few interesting sound correspondences be-
tween the reference variety (Delft) and the Frisian
area are displayed in the following table and dis-
cussed below.

Reference [2] [2] [a] [o] [u] [x] [x] [r]
Frisian [I] [i] [i] [E] [E] [j] [z] [x]

In the table we can see that the Dutch /a/ or /2/
is pronounced [i] or [I] in the Frisian area. This
well known sound correspondence can be found
in words such as kamers ‘rooms’, Frisian [kIm@s]
(pronunciation from Anjum), or draden ‘threads’
and Frisian [trIdn] (Bakkeveen). In addition, the
Dutch (long) /o/ and /u/ both tend to be realized
as [E] in words such as bomen ‘trees’, Frisian
[bjEm@n] (Bakkeveen) or koeien ‘cows’, Frisian
[kEi] (Appelscha).

We also identify clustered correspondences of
[x]:[j] where Dutch /x/ has been lenited, e.g. in
geld (/xElt/) ‘money’, Frisian [jIlt] (Grouw), but
note that [x]:[g] as in [gElt] (Franeker) also oc-
curs, illustrating that sound correspondences from
another cluster (i.e. the rest of the Netherlands)
can indeed also occur in the Frisian area. An-
other sound correspondence co-clustered with the
Frisian area is the Dutch /x/ and Frisian [z] in
zeggen (/zEx@/) ‘say’ Frisian [siz@] (Appelscha).

Besides the previous results, we also note some
problems. First, the accusative first-person plu-
ral pronoun ons ‘us’ lacks the nasal in Frisian, but
the correspondence was not tallied in this case be-
cause the nasal consonant is also missing in Delft.

Second, some apparently frequent sound corre-
spondences result from historical accidents, e.g.
[r]:[x] corresponds regularly in the Dutch:Frisian
pair [dor]:[trux] ‘through’. Frisian has lost the fi-
nal [x], and Dutch has either lost a final [r] or
experienced metathesis. These two sorts of ex-
amples might be treated more satisfactorily if we
were to compare pronunciations not to a standard
language, but rather to a reconstruction of a proto-
language.

The Limburg area
The division into three clusters separates the
southern Limburg area from the rest of the Dutch
and Frisian language area. This result is also in
line with previous studies investigating Dutch di-
alectology; Heeringa (2004: 227–229) found the
Limburg dialects to deviate most strongly from
other different dialects within the Netherlands-
Flanders language area once Frisian was removed
from consideration.

Some important segment correspondences for
Limburg are displayed in the following table and
discussed below.

Reference [r] [r] [k] [n] [n] [w]
Limburg [ö] [K] [x] [ö] [K] [f]

Southern Limburg uses more uvular versions
of /r/, i.e. the trill [ö], but also the voiced uvular
fricative [K]. These occur in words such as over
‘over, about’, but also in breken ‘to break’, i.e.
both pre- and post-vocalically. The bipartite clus-
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tering likewise detected examples of the famous
“second sound shift”, in which Dutch /k/ is lenited
to /x/, e.g. in ook ‘also’ realized as [ox] in Epen
and elsewhere. Interestingly, when looking at
other words there is less evidence of lenition in the
words maken ‘to make’, gebruiken ‘to use’, koken
‘to cook’, and kraken ‘to crack’, where only two
Limburg varieties document a [x] pronunciation of
the expected stem-final [k], namely Kerkrade and
Vaals. The limited linguistic application does ap-
pear to be geographically consistent, but Kerkrade
pronounces /k/ as [x] where Vaals lenites further to
[s] in words such as ruiken ‘to smell’, breken ‘to
break’, and steken ‘to sting’. Further, there is no
evidence of lenition in words such as vloeken ‘to
curse’, spreken ‘to speak’, and zoeken ‘to seek’,
which are lenited in German (fluchen, sprechen,
suchen).

Some regular correspondences merely reflected
other, and sometimes more fundamental differ-
ences. For instance, we found correspondences
between [n] and [ö] or [K] for Limburg , but this
turned out to be a reflection of the older plurals
in -r. For example, in the word wijf ‘woman’,
plural wijven in Dutch, wijver in Limburg dialect.
Dutch /w/ is often realized as [f] in the word tarwe
‘wheat’, but this is due to the elision of the final
schwa, which results in a pronunciation such as
[taö@f], in which the standard final devoicing rule
of Dutch is applicable.

The Low Saxon area
Finally, the division in four clusters also separates
the varieties from Groningen and Drenthe from
the rest of the Netherlands. This result differs
somewhat from the standard scholarship on Dutch
dialectology (see Heeringa, 2004), according to
which the Low Saxon area should include not only
the provinces of Groningen and Drenthe, but also
the province of Overijssel and the northern part
of the province of Gelderland. It is nonetheless
the case that Groningen and Drenthe normally are
seen to form a separate northern subgroup within
Low Saxon (Heeringa, 2004: 227–229).

A few interesting sound correspondences are
displayed in the following table and discussed be-
low.

Reference [@] [@] [@] [-] [a]
Low Saxon [m] [N] [ð] [P] [e]

The best known characteristic of this area, the
so-called “final n” (slot n) is instantiated strongly

in words such as strepen, ‘stripes’, realized as
[strepm] in the northern Low Saxon area. It would
be pronounced [strep@] in standard Dutch, so the
differences shows up as an unexpected correspon-
dence of [@] with [m], [N] and [ð].

The pronunciation of this area is also distinctive
in normally pronouncing words with initial glottal
stops [P] rather than initial vowels, e.g. af ‘fin-
ished’ is realized as [POf] (Schoonebeek). Further-
more, the long /a/ is often pronounced [e] as in
kaas ‘cheese’, [kes] in Gasselte, Hooghalen and
Norg.

5 Discussion

In this study, we have applied a novel method
to dialectology in simultaneously determining
groups of varieties and their linguistic basis (i.e.
sound segment correspondences). We demon-
strated that the bipartite spectral graph partitioning
method introduced by Dhillon (2001) gave sensi-
ble clustering results in the geographical domain
as well as for the concomitant linguistic basis.

As mentioned above, we did not have transcrip-
tions of standard Dutch, but instead we used tran-
scriptions of a variety (Delft) close to the stan-
dard langueage. While the pronunciations of most
items in Delft were similar to standard Dutch,
there were also items which were pronounced dif-
ferently from the standard. While we do not be-
lieve that this will change our results significantly,
using standard Dutch transcriptions produced by
the transcribers of the GTRP corpus would make
the interpretation of sound correspondences more
straightforward.

We indicated in Section 4 that some sound cor-
respondences, e.g. [r]:[x], would probably not oc-
cur if we used a reconstructed proto-language as
a reference instead of the standard language. A
possible way to reconstruct such a proto-language
is by multiple aligning (see Prokić, 2009) all pro-
nunciations of a single word and use the most fre-
quent phonetic symbol at each position in the re-
constructed word. It would be interesting to see if
using such a reconstructed proto-language would
improve the results by removing sound correspon-
dences such as [r]:[x].

In this study we did not investigate methods
to identify the most important sound correspon-
dences. A possible option would be to create a
ranking procedure based on the uniqueness of the
sound correspondences in a cluster. I.e. the sound
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correspondence is given a high importance when
it only occurs in the designated cluster, while the
importance goes down when it also occurs in other
clusters).

While sound segment correspondences function
well as a linguistic basis, it might also be fruitful
to investigate morphological distinctions present
in the GTRP corpus. This would enable us to
compare the similarity of the geographic distribu-
tions of pronunciation variation on the one hand
and morphological variation on the other.

As this study was the first to investigate the ef-
fectiveness of a co-clustering approach in dialec-
tometry, we focused on the original bipartite spec-
tral graph partitioning algorithm (Dhillon, 2001).
Investigating other approaches such as bicluster-
ing algorithms for biology (Madeira and Oliveira,
2004) or an information-theoretic co-clustering
approach (Dhillon et al., 2003) would be highly
interesting.

It would likewise be interesting to attempt to
incorporate frequency, by weighting correspon-
dences that occur frequently more heavily than
those which occur only infrequently. While it
stands to reason that more frequently encoun-
tered variation would signal dialectal affinity more
strongly, it is also the case that inverse fre-
quency weightings have occasionally been applied
(Goebl, 1982), and have been shown to function
well. We have the sense that the last word on this
topic has yet to be spoken, and that empirical work
would be valuable.

Our paper has not addressed the interaction be-
tween cognitive and social dynamics directly, but
we feel it has improved our vantage point for un-
derstanding this interaction. In dialect geogra-
phy, social dynamics are operationalized as geog-
raphy, and bipartite spectral graph partitioning has
proven itself capable of detecting the effects of so-
cial contact, i.e. the latent geographic signal in the
data. Other dialectometric techniques have done
this as well.

Linguists have rightly complained, however,
that the linguistic factors have been neglected in
dialectometry (Schneider, 1988:176). The current
approach does not offer a theoretical framework to
explain cognitive effects such as phonemes corre-
sponding across many words, but does enumerate
them clearly. This paper has shown that bipartite
graph clustering can detect the linguistic basis of
dialectal affinity. If deeper cognitive constraints

are reflected in that basis, then we are now in an
improved position to detect them.
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Jelena Prokić. 2007. Identifying linguistic structure
in a quantitative analysis of dialect pronunciation.
In Proceedings of the ACL 2007 Student Research
Workshop, pages 61–66, Prague, June. Association
for Computational Linguistics.

Edgar Schneider. 1988. Qualitative vs. quantitative
methods of area delimitation in dialectology: A
comparison based on lexical data from georgia and
alabama. Journal of English Linguistics, 21:175–
212.
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Abstract

Many tasks in NLP stand to benefit from
robust measures of semantic similarity for
units above the level of individual words.
Rich semantic resources such as WordNet
provide local semantic information at the
lexical level. However, effectively com-
bining this information to compute scores
for phrases or sentences is an open prob-
lem. Our algorithm aggregates local re-
latedness information via a random walk
over a graph constructed from an underly-
ing lexical resource. The stationary dis-
tribution of the graph walk forms a “se-
mantic signature” that can be compared
to another such distribution to get a relat-
edness score for texts. On a paraphrase
recognition task, the algorithm achieves an
18.5% relative reduction in error rate over
a vector-space baseline. We also show that
the graph walk similarity between texts
has complementary value as a feature for
recognizing textual entailment, improving
on a competitive baseline system.

1 Introduction

Many natural language processing applications
must directly or indirectly assess the semantic sim-
ilarity of text passages. Modern approaches to
information retrieval, summarization, and textual
entailment, among others, require robust numeric
relevance judgments when a pair of texts is pro-
vided as input. Although each task demands its
own scoring criteria, a simple lexical overlap mea-
sure such as cosine similarity of document vectors
can often serve as a surprisingly powerful base-
line. We argue that there is room to improve these

general-purpose similarity measures, particularly
for short text passages.

Most approaches fall under one of two cate-
gories. One set of approaches attempts to explic-
itly account for fine-grained structure of the two
passages, e.g. by aligning trees or constructing
logical forms for theorem proving. While these
approaches have the potential for high precision
on many examples, errors in alignment judgments
or formula construction are often insurmountable.
More broadly, it’s not always clear that there is a
correct alignment or logical form that is most ap-
propriate for a particular sentence pair. The other
approach tends to ignore structure, as canonically
represented by the vector space model, where any
lexical item in common between the two passages
contributes to their similarity score. While these
approaches often fail to capture distinctions im-
posed by, e.g. negation, they do correctly capture
a broad notion of similarity or aboutness.

This paper presents a novel variant of the vec-
tor space model of text similarity based on a ran-
dom walk algorithm. Instead of comparing two
bags-of-words directly, we compare the distribu-
tion each text induces when used as the seed of
a random walk over a graph derived from Word-
Net and corpus statistics. The walk posits the ex-
istence of a distributional particle that roams the
graph, biased toward the neighborhood surround-
ing an input bag of words. Eventually, the walk
reaches a stationary distribution over all nodes in
the graph, smoothing the peaked input distribution
over a much larger semantic space. Two such sta-
tionary distributions can be compared using con-
ventional measures of vector similarity, producing
a final relatedness score.

This paper makes the following contributions.
We present a novel random graph walk algorithm
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Word Step 1 Step 2 Step 3 Conv.
eat 3 8 9 9
corrode 10 33 53 >100
pasta – 2 3 5
dish – 4 5 6
food – – 21 12
solid – – – 26

Table 1: Ranks of sample words in the distribu-
tion for I ate a salad and spaghetti after a given
number of steps and at convergence. Words in the
vector are ordered by probability at time step t; the
word with the highest probability in the vector has
rank 1. “–” indicates that node had not yet been
reached.

for semantic similarity of texts, demonstrating its
efficiency as compared to a much slower but math-
ematically equivalent model based on summed
similarity judgments of individual words. We
show that walks effectively aggregate information
over multiple types of links and multiple input
words on an unsupervised paraphrase recognition
task. Furthermore, when used as a feature, the
walk’s semantic similarity score can improve the
performance of an existing, competitive textual
entailment system. Finally, we provide empiri-
cal results demonstrating that indeed, each step of
the random walk contributes to its ability to assess
paraphrase judgments.

2 A random walk example

To provide some intuition about the behavior of
the random walk on text passages, consider the
following example sentence: I ate a salad and
spaghetti.

No measure based solely on lexical identity
would detect overlap between this sentence and
another input consisting of only the word food.
But if each text is provided as input to the random
walk, local relatedness links from one word to an-
other allow the distributional particle to explore
nearby parts of the semantic space. The number of
non-zero elements in both vectors increases, even-
tually converging to a stationary distribution for
which both vectors have many shared non-zero en-
tries.

Table 1 ranks elements of the sentence vector
based on their relative weights. Observe that at the
beginning of the walk, corrode has a high rank due
to its association with the WordNet sense of eat

corresponding to eating away at something. How-
ever, because this concept is not closely linked
with other words in the sentence, its relative rank
drops as the distribution converges and other word
senses more related to food are pushed up. The
random walk allows the meanings of words to re-
inforce one another. If the sentence above had
ended with drank wine rather than spaghetti, the
final weight on the food node would be smaller
since fewer input words would be as closely linked
to food. This matches the intuition that the first
sentence has more to do with food than does the
second, although both walks should and do give
some weight to this node.

3 Related work

Semantic relatedness for individual words has
been thoroughly investigated in previous work.
Budanitsky and Hirst (2006) provide an overview
of many of the knowledge-based measures derived
from WordNet, although other data sources have
been used as well. Hughes and Ramage (2007) is
one such measure based on random graph walks.

Prior work has considered random walks on var-
ious text graphs, with applications to query expan-
sion (Collins-Thompson and Callan, 2005), email
address resolution (Minkov and Cohen, 2007), and
word-sense disambiguation (Agirre and Soroa,
2009), among others.

Measures of similarity have also been proposed
for sentence or paragraph length text passages.
Mihalcea et al. (2006) present an algorithm for
the general problem of deciding the similarity of
meaning in two text passages, coining the name
“text semantic similarity” for the task. Corley
and Mihalcea (2005) apply this algorithm to para-
phrase recognition.

Previous work has shown that similarity mea-
sures can have some success as a measure of tex-
tual entailment. Glickman et al. (2005) showed
that many entailment problems can be answered
using only a bag-of-words representation and web
co-occurrence statistics. Many systems integrate
lexical relatedness and overlap measures with
deeper semantic and syntactic features to create
improved results upon relatedness alone, as in
Montejo-Ráez et al. (2007).

4 Random walks on lexical graphs

In this section, we describe the mechanics of
computing semantic relatedness for text passages
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based on the random graph walk framework. The
algorithm underlying these computations is related
to topic-sensitive PageRank (Haveliwala, 2002);
see Berkhin (2005) for a survey of related algo-
rithms.

To compute semantic relatedness for a pair of
passages, we compare the stationary distributions
of two Markov chains, each with a state space de-
fined over all lexical items in an underlying corpus
or database. Formally, we define the probability of
finding the particle at a node ni at time t as:

n
(t)
i =

∑
nj∈V

n
(t−1)
j P (ni | nj)

where P (ni | nj) is the probability of transition-
ing from nj to ni at any time step. If those transi-
tions bias the particle to the neighborhood around
the words in a text, the particle’s distribution can
be used as a lexical signature.

To compute relatedness for a pair of texts, we
first define the graph nodes and transition proba-
bilities for the random walk Markov chain from
an underlying lexical resource. Next, we deter-
mine an initial distribution over that state space for
a particular input passage of text. Then, we sim-
ulate a random walk in the state space, biased to-
ward the initial distribution, resulting in a passage-
specific distribution over the graph. Finally, we
compare the resulting stationary distributions from
two such walks using a measure of distributional
similarity. The remainder of this section discusses
each stage in more detail.

4.1 Graph construction

We construct a graph G = (V,E) with vertices V
and edges E extracted from WordNet 3.0. Word-
Net (Fellbaum, 1998) is an annotated graph of
synsets, each representing one concept, that are
populated by one or more words. The set of ver-
tices extracted from the graph is all synsets present
in WordNet (e.g. foot#n#1 meaning the part of
the human leg below the ankle), all part-of-speech
tagged words participating in those synsets (e.g.
foot#n linking to foot#n#1 and foot#n#2 etc.), and
all untagged words (e.g. foot linking to foot#n and
foot#v). The set of edges connecting synset nodes
is all inter-synset edges contained in WordNet,
such as hyponymy, synonomy, antonymy, etc., ex-
cept for regional and usage links. All WordNet
relational edges are given uniform weight. Edges
also connect each part-of-speech tagged word to

all synsets it takes part in, and from each word to
all its part-of-speech. These edge weights are de-
rived from corpus counts as in Hughes and Ram-
age (2007). We also included a low-weight self-
loop for each node.

Our graph has 420,253 nodes connected by
1,064,464 edges. Because synset nodes do not link
outward to part-of-speech tagged nodes or word
nodes in this graph, only the 117,659 synset nodes
have non-zero probability in every random walk—
i.e. the stationary distribution will always be non-
zero for these 117,659 nodes, but will be non-zero
for only a subset of the remainder.

4.2 Initial distribution construction

The next step is to seed the random walk with an
initial distribution over lexical nodes specific to
the given sentence. To do so, we first tag the in-
put sentence with parts-of-speech and lemmatize
each word based on the finite state transducer of
Minnen et al. (2001). We search over consecu-
tive words to match multi-word collocation nodes
found in the graph. If the word or its lemma is
part of a sequence that makes a complete colloca-
tion, that collocation is used. If not, the word or
its lemma with its part of speech tag is used if it
is present as a graph node. Finally, we fall back
to the surface word form or underlying lemma
form without part-of-speech information if neces-
sary. For example, the input sentence: The boy
went with his dog to the store, would result in mass
being assigned to underlying graph nodes boy#n,
go with, he, dog#n, store#n.

Term weights are set with tf.idf and then nor-
malized. Each term’s weight is proportional to the
number of occurrences in the sentence times the
log of the number of documents in some corpus
divided by the number of documents containing
that term. Our idf counts were derived from the
English Gigaword corpus 1994-1999.

4.3 Computing the stationary distribution

We use the power iteration method to compute the
stationary distribution for the Markov chain. Let
the distribution over the N states at time step t of
the random walk be denoted ~v(t) ∈ RN , where
~v(0) is the initial distribution as defined above. We
denote the column-normalized state-transition ma-
trix as M ∈ RN×N . We compute the stationary
distribution of the Markov chain with probability
β of returning to the initial distribution at each
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time step as the limit as t→∞ of:

~v(t) = β~v(0) + (1− β)M~v(t−1)

In practice, we test for convergence by examining
if

∑N
i=1 ‖v

(t)
i − v

(t−1)
i ‖ < 10−6, which in our ex-

periments was usually after about 50 iterations.
Note that the resulting stationary distribution

can be factored as the weighted sum of the sta-
tionary distributions of each word represented in
the initial distribution. Because the initial distri-
bution ~v(0) is a normalized weighted sum, it can
be re-written as ~v(0) =

∑
k γk · ~w

(0)
k for ~wk hav-

ing a point mass at some underlying node in the
graph and with γk positive such that

∑
k γk = 1.

A simple proof by induction shows that the sta-
tionary distribution ~v(∞) is itself the weighted sum
of the stationary distribution of each underlying
word, i.e. ~v∞ =

∑
k γk · ~w

(∞)
k .

In practice, the stationary distribution for a
passage of text can be computed from a single
specially-constructed Markov chain. The process
is equivalent to taking the weighted sum of every
word type in the passage computed independently.
Because the time needed to compute the station-
ary distribution is dominated by the sparsity pat-
tern of the walk’s transition matrix, the computa-
tion of the stationary distribution for the passage
takes a fraction of the time needed if the station-
ary distribution for each word were computed in-
dependently.

4.4 Comparing stationary distributions

In order to get a final relatedness score for a pair
of texts, we must compare the stationary distribu-
tion from the first walk with the distribution from
the second walk. There exist many measures for
computing a final similarity (or divergence) mea-
sure from a pair of distributions, including geo-
metric measures, information theoretic measures,
and probabilistic measures. See, for instance, the
overview of measures provided in Lee (2001).

In system development on training data, we
found that most measures were reasonably effec-
tive. For the rest of this paper, we report num-
bers using cosine similarity, a standard measure in
information retrieval; Jensen-Shannon divergence,
a commonly used symmetric measure based on
KL-divergence; and the dice measure extended to
weighted features (Curran, 2004). A summary of
these measures is shown in Table 2. Justification

Cosine ~x·~y
‖~x‖2‖~y‖2

Jensen-Shannon 1
2D(x‖x+y

2 ) + 1
2D(y‖x+y

2 )

Dice 2
P

i min(xi,yi)P
i xi+

P
i yi

Table 2: Three measures of distributional similar-
ity between vectors ~x and ~y used to compare the
stationary distributions from passage-specific ran-
dom walks. D(p‖q) is KL-divergence, defined as∑

i pi log pi

qi
.

for the choice of these three measures is discussed
in Section 6.

5 Evaluation

We evaluate the system on two tasks that might
benefit from semantic similarity judgments: para-
phrase recognition and recognizing textual entail-
ment. A complete solution to either task will cer-
tainly require tools more tuned to linguistic struc-
ture; the paraphrase detection evaluation argues
that the walk captures a useful notion of semantics
at the sentence level. The entailment system eval-
uation demonstrates that the walk score can im-
prove a larger system that does make use of more
fine-grained linguistic knowledge.

5.1 Paraphrase recognition
The Microsoft Research (MSR) paraphrase data
set (Dolan et al., 2004) is a collection of 5801
pairs of sentences automatically collected from
newswire over 18 months. Each pair was hand-
annotated by at least two judges with a binary
yes/no judgment as to whether one sentence was
a valid paraphrase of the other. Annotators were
asked to judge whether the meanings of each
sentence pair were reasonably equivalent. Inter-
annotator agreement was 83%. However, 67% of
the pairs were judged to be paraphrases, so the cor-
pus does not reflect the rarity of paraphrases in the
wild. The data set comes pre-split into 4076 train-
ing pairs and 1725 test pairs.

Because annotators were asked to judge if the
meanings of two sentences were equivalent, the
paraphrase corpus is a natural evaluation testbed
for measures of semantic similarity. Mihalcea et
al. (2006) defines a measure of text semantic sim-
ilarity and evaluates it in an unsupervised para-
phrase detector on this data set. We present their
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algorithm here as a strong reference point for se-
mantic similarity between text passages, based on
similar underlying lexical resources.

The Mihalcea et al. (2006) algorithm is a wrap-
per method that works with any underlying mea-
sure of lexical similarity. The similarity of a pair
of texts T1 and T2, denoted as simm(T1, T2), is
computed as:

simm(T1, T2) =
1

2
f(T1, T2) +

1

2
f(T2, T1)

f(Ta, Tb) =

P
w∈Ta

maxSim(w, Tb) · idf(w)P
w∈Ta

idf(w)

where the maxSim(w, T ) function is defined as
the maximum similarity of the word w within the
text T as determined by an underlying measure of
lexical semantic relatedness. Here, idf(w) is de-
fined as the number of documents in a background
corpus divided by the number of documents con-
taining the term. maxSim compares only within
the same WordNet part-of-speech labeling in or-
der to support evaluation with lexical relatedness
measures that cannot cross part-of-speech bound-
aries.

Mihalcea et al. (2006) presents results for sev-
eral underlying measures of lexical semantic re-
latedness. These are subdivided into corpus-based
measures (using Latent Semantic Analysis (Lan-
dauer et al., 1998) and a pointwise-mutual infor-
mation measure) and knowledge-based resources
driven by WordNet. The latter include the methods
of Jiang and Conrath (1997), Lesk (1986), Resnik
(1999), and others.

In this unsupervised experimental setting, we
consider using only a thresholded similarity value
from our system and from the Mihalcea algorithm
to determine the paraphrase or non-paraphrase
judgment. For consistency with previous work, we
threshold at 0.5. Note that this threshold could be
tuned on the training data in a supervised setting.
Informally, we observed that on the training data a
threshold of near 0.5 was often a good choice for
this task.

Table 3 shows the results of our system and
a representative subset of those reported in (Mi-
halcea et al., 2006). All the reported measures
from both systems do a reasonable job of para-
phrase detection – the majority of pairs in the cor-
pus are deemed paraphrases when the similarity
measure is thresholded at 0.5, and indeed this is
reasonable given the way in which the data were

System Acc. F1: c1 F1: c0 Macro F1

Random Graph Walk
Walk (Cosine) 0.687 0.787 0.413 0.617
Walk (Dice) 0.708 0.801 0.453 0.645
Walk (JS) 0.688 0.805 0.225 0.609
Mihalcea et. al., Corpus-based
PMI-IR 0.699 0.810 0.301 0.625
LSA 0.684 0.805 0.170 0.560
Mihalcea et. al., WordNet-based
J&C 0.693 0.790 0.433 0.629
Lesk 0.693 0.789 0.439 0.629
Resnik 0.690 0.804 0.254 0.618
Baselines
Vector-based 0.654 0.753 0.420 0.591
Random 0.513 0.578 0.425 0.518
Majority (c1) 0.665 0.799 — 0.399

Table 3: System performance on 1725 examples of
the MSR paraphrase detection test set. Accuracy
(micro-averaged F1), F1 for c1 “paraphrase” and
c0 “non-paraphrase” classes, and macro-averaged
F1 are reported.

collected. The first three rows are the perfor-
mance of the similarity judgments output by our
walk under three different distributional similar-
ity measures (cosine, dice, and Jensen-Shannon),
with the walk score using the dice measure outper-
forming all other systems on both accuracy and
macro-averaged F1. The output of the Mihalcea
system using a representative subset of underly-
ing lexical measures is reported in the second and
third segments. The fourth segment reports the re-
sults of baseline methods—the vector space simi-
larity measure is cosine similarity among vectors
using tf.idf weighting, and the random baseline
chooses uniformly at random, both as reported in
(Mihalcea et al., 2006). We add the additional
baseline of always guessing the majority class la-
bel because the data set is skewed toward “para-
phrase.”

In an unbalanced data setting, it is important to
consider more than just accuracy and F1 on the
majority class. We report accuracy, F1 for each
class label, and the macro-averaged F1 on all sys-
tems. F1: c0 and Macro-F1 are inferred for the sys-
tem variants reported in (Mihalcea et al., 2006).
Micro-averaged F1 in this context is equivalent to
accuracy (Manning et al., 2008).

Mihalcea also reports a combined classifier
which thresholds on the simple average of the in-
dividual classifiers, resulting in the highest num-
bers reported in that work, with accuracy of 0.703,
“paraphrase” class F1: c1 = 0.813, and inferred
Macro F1 = 0.648. We believe that the scores
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Data Set Cosine Dice Jensen-Shannon
RTE2 dev 55.00 51.75 55.50
RTE2 test 57.00 54.25 57.50
RTE3 dev 59.00 57.25 59.00
RTE3 test 55.75 55.75 56.75

Table 4: Accuracy of entailment detection when
thresholding the text similarity score output by the
random walk.

from the various walk measures might also im-
prove performance when in a combination clas-
sifier, but without access to the individual judg-
ments in that system we are unable to evaluate
the claim directly. However, we did create an up-
per bound reference by combining the walk scores
with easily computable simple surface statistics.
We trained a support vector classifier on the MSR
paraphrase training set with a feature space con-
sisting of the walk score under each distributional
similarity measure, the length of each text, the dif-
ference between those lengths, and the number of
unigram, bigram, trigram, and four-gram overlaps
between the two texts. The resulting classifier
achieved accuracy of 0.719 with F1: c1 = 0.807
and F1: c0 = 0.487 and Macro F1 = 0.661. This
is a substantial improvement, roughly on the same
order of magnitude as from switching to the best
performing distributional similarity function.

Note that the running time of the Mihalcea et
al. algorithm for comparing texts T1 and T2 re-
quires |T1| · |T2| individual similarity judgments.
By contrast, this work allows semantic profiles to
be constructed and evaluated for each text in a sin-
gle pass, independent of the number of terms in
the texts.

The performance of this unsupervised applica-
tion of walks to paraphrase recognition suggests
that the framework captures important intuitions
about similarity in text passages. In the next sec-
tion, we examine the performance of the measure
embedded in a larger system that seeks to make
fine-grained entailment judgments.

5.2 Textual entailment
The Recognizing Textual Entailment Challenge
(Dagan et al., 2005) is a task in which systems as-
sess whether a sentence is entailed by a short pas-
sage or sentence. Participants have used a variety
of strategies beyond lexical relatedness or overlap
for the task, but some have also used only rela-
tively simple similarity metrics. Many systems

Data Set Baseline Cosine Dice JS
RTE2 dev 66.00 66.75 65.75 66.25
RTE2 test 63.62 64.50 63.12 63.25
RTE3 dev 70.25 70.50 70.62 70.38
RTE3 test 65.44 65.82 65.44 65.44

Table 5: Accuracy when the random walk is
added as a feature of an existing RTE system
(left column) under various distance metrics (right
columns).

incorporate a number of these strategies, so we
experimented with using the random walk to im-
prove an existing RTE system. This addresses the
fact that using similarity alone to detect entailment
is impoverished: entailment is an asymmetric de-
cision while similarity is necessarily symmetric.
However, we also experiment with thresholding
random walk scores as a measure of entailment to
compare to other systems and provide a baseline
for whether the walk could be useful for entail-
ment detection.

We tested performance on the development and
test sets for the Second and Third PASCAL RTE
Challenges (Bar-Haim et al., 2006; Giampiccolo
et al., 2007). Each of these data sets contains 800
pairs of texts for which to determine entailment.
In some cases, no words from a passage appear
in WordNet, leading to an empty vector. In this
case, we use the Levenshtein string similarity mea-
sure between the two texts; this fallback is used in
fewer than five examples in any of our data sets
(Levenshtein, 1966).

Table 4 shows the results of using the simi-
larity measure alone to determine entailment; the
system’s ability to recognize entailment is above
chance on all data sets. Since the RTE data sets are
balanced, we used the median of the random walk
scores for each data set as the threshold rather than
using an absolute threshold. While the measure
does not outperform most RTE systems, it does
outperform some systems that used only lexical
overlap such as the Katrenko system from the sec-
ond challenge (Bar-Haim et al., 2006). These re-
sults show that the measure is somewhat sensitive
to the distance metric chosen, and that the best dis-
tance metric may vary by application.

To test the random walk’s value for improv-
ing an existing RTE system, we incorporated the
walk as a feature of the Stanford RTE system
(Chambers et al., 2007). This system computes
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a weighted sum of a variety of features to make
an entailment decision. We added the random
walk score as one of these features and scaled it
to have a magnitude comparable to the other fea-
tures; other than scaling, there was no system-
specific engineering to add this feature.

As shown in Table 5, adding the random walk
feature improves the original RTE system. Thus,
the random walk score provides meaningful ev-
idence for detecting entailment that is not sub-
sumed by other information, even in a system with
several years of feature engineering and competi-
tive performance. In particular, this RTE system
contains features representing the alignment score
between two passages; this score is composed of a
combination of lexical relatedness scores between
words in each text. The ability of the random walk
to add value to the system even given this score,
which contains many common lexical relatedness
measures, suggests we are able to extract text sim-
ilarity information that is distinct from other mea-
sures. To put the gain we achieve in perspective,
an increase in the Stanford RTE system’s score of
the same magnitude would have moved the sys-
tem’s two challenge entries from 7th and 25th
to 6th and 17th, respectively, in the second RTE
Challenge. It is likely the gain from this feature
could be increased by closer integration with the
system and optimizing the initial distribution cre-
ation for this task.

By using the score as a feature, the system is
able to take advantage of properties of the score
distribution. While Table 4 shows performance
when a threshold is picked a priori, experiment-
ing with that threshold increases performance by
over two percent. By lowering the threshold (clas-
sifying more passages as entailments), we increase
recall of entailed pairs without losing as much pre-
cision in non-entailed pairs since many have very
low scores. As a feature, this aspect of the score
distribution can be incorporated by the system, but
it cannot be used in a simple thresholding design.

6 Discussion

The random walk framework smoothes an initial
distribution of words into a much larger lexical
space. In one sense, this is similar to the technique
of query expansion used in information retrieval.
A traditional query expansion model extends a bag
of words (usually a query) with additional related
words. In the case of pseudo-relevance feedback,

Figure 1: Impact of number of walk steps on cor-
relation with MSR paraphrase judgments. The
left column shows absolute correlation across ten
resampled runs (y-axis) versus number of steps
taken (x-axis). The right column plots the mean
ratio of performance at step t (x-axis) versus per-
formance at convergence.
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these words come from the first documents re-
turned by the search engine, but other modes of se-
lecting additional words exist. In the random walk
framework, this expansion is analogous to taking
only a single step of the random walk. Indeed,
in the case of the translation model introduced in
(Berger and Lafferty, 1999), they are mathemati-
cally equivalent. However, we have argued that the
walk is an effective global aggregator of related-
ness information. We can formulate the question
as an empirical one—does simulating the walk un-
til convergence really improve our representation
of the text document?

To answer this question, we extracted a 200
items subset of the MSR training data and trun-
cated the walk at each time step up until our con-
vergence threshold was reached at around 50 it-
erations. We then evaluated the correlation of
the walk score with the correct label from the
MSR data for 10 random resamplings of 66 doc-
uments each. Figure 1 plots this result for dif-
ferent distributional similarity measures. We ob-
serve that as the number of steps increases, per-
formance under most of the distributional similar-
ity measures improves, with the exception of the
asymmetric skew-divergence measure introduced
in (Lee, 2001).

This plot also gives some insight into the qual-
itative nature of the stability of the various distri-
butional measures for the paraphrase task. For in-
stance, we observe that the Jensen-Shannon score
and dice score tend to be the most consistent be-
tween runs, but the dice score has a slightly higher
mean. This explains in part why the dice score was
the best performing measure for the task. In con-
trast, cosine similarity was observed to perform
poorly here, although it was found to be the best
measure when combined with our textual entail-
ment system. We believe this discrepancy is due
in part to the feature scaling issues described in
section 5.2.

7 Final remarks

Notions of similarity have many levels of gran-
ularity, from general metrics for lexical related-
ness to application-specific measures between text
passages. While lexical relatedness is well stud-
ied, it is not directly applicable to text passages
without some surrounding environment. Because
this work represents words and passages as in-
terchangeable mathematical objects (teleport vec-

tors), our approach holds promise as a general
framework for aggregating local relatedness infor-
mation between words into reliable measures be-
tween text passages.

The random walk framework can be used to
evaluate changes to lexical resources because it
covers the entire scope of a resource: the whole
graph is leveraged to construct the final distribu-
tion, so changes to any part of the graph are re-
flected in each walk. This means that the meaning-
fulness of changes in the graph can be evaluated
according to how they affect these text similarity
scores; this provides a more semantically relevant
evaluation of updates to a resource than, for ex-
ample, counting how many new words or links be-
tween words have been added. As shown in Jar-
masz and Szpakowicz (2003), an updated resource
may have many more links and concepts but still
have similar performance on applications as the
original. Evaluations of WordNet extensions, such
as those in Navigli and Velardi (2005) and Snow et
al. (2006), are easily conducted within the frame-
work of the random walk.

The presented framework for text semantic sim-
ilarity with random graph walks is more general
than the WordNet-based instantiation explored
here. Transition matrices from alternative linguis-
tic resources such as corpus co-occurrence statis-
tics or larger knowledge bases such as Wikipedia
may very well add value as a lexical resource un-
derlying the walk. One might also consider tailor-
ing the output of the walk with machine learning
techniques like those presented in (Minkov and
Cohen, 2007).
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Abstract

This paper presents a method for classify-
ing Japanese polysemous verbs using an
algorithm to identify overlapping nodes
with more than one cluster. The algo-
rithm is a graph-based unsupervised clus-
tering algorithm, which combines a gener-
alized modularity function, spectral map-
ping, and fuzzy clustering technique. The
modularity function for measuring cluster
structure is calculated based on the fre-
quency distributions over verb frames with
selectional preferences. Evaluations are
made on two sets of verbs including pol-
ysemies.

1 Introduction

There has been quite a lot of research concerned
with automatic clustering of semantically simi-
lar words or automatic retrieval of collocations
among them from corpora. Most of this work is
based on similarity measures derived from the dis-
tribution of words in corpora. However, the facts
that a single word does have more than one sense
and that the distribution of a word in a corpus is a
mixture of usages of different senses of the same
word often hamper such attempts. In general, re-
striction of the subject domain makes the problem
of polysemy less problematic. However, even in
texts from a restricted domain such as economics
or sports, one encounters quite a large number of
polysemous words. Therefore, semantic classifi-
cation of polysemies has been an interest since the
earliest days when a number of large scale corpora
have become available.

In this paper, we focus on Japanese polysemous
verbs, and present a method for polysemous verb
classification. We used a graph-based unsuper-
vised clustering algorithm (Zhang, 2007). The
algorithm combines the idea of modularity func-

tion Q, spectral relaxation and fuzzy c-means clus-
tering method to identify overlapping nodes with
more than one cluster. The modularity function
measures the quality of a cluster structure. Spec-
tral mapping performs a dimensionality reduction
which makes it possible to cluster in the very high
dimensional spaces. The fuzzy c-means allows for
the detection of nodes with more than one cluster.
We applied the algorithm to cluster polysemous
verbs. The modularity function for measuring the
quality of a cluster structure is calculated based
on the frequency distributions over verb frames
with selectional preferences. We collected seman-
tic classes from IPAL Japanese dictionary (IPAL,
1987), and used them as a gold standard data.
IPAL lists about 900 Japanese basic verbs, and cat-
egorizes each verb into multiple senses. Moreover,
the categorization is based on verbal syntax with
respect to the choice of its arguments. Therefore,
if the clustering algorithm induces a polysemous
verb classification on the basis of verbal syntax,
then the resulting classification should agree the
IPAL classes. We used a large Japanese newspaper
corpus and EDR (Electronic Dictionary Research)
dictionary (EDR, 1986) to obtain verbs and their
subcategorization frames with selectional prefer-
ences 1. The results obtained using two data sets
were better than the baseline, EM algorithm.

The rest of the paper is organized as follows.
The next section presents related work. After
describing Japanese verb with selectional pref-
erences, we present a distributional similarity in
Section 4, and a graph-based unsupervised clus-
tering algorithm in Section 5. Results using two
data sets are reported in Section 6. We give our
conclusion in Section 7.

1We did not use IPAL, but instead EDR sense dictionary.
Because IPAL did not have senses for the case filler which
were used to create selectional preferences.
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2 Related Work

Graph-based algorithms have been widely used
to classify semantically similar words (Jannink,
1999; Galley, 2003; Widdows, 2002; Muller,
2006). Sinha and Mihalcea proposed a graph-
based algorithm for unsupervised word sense
disambiguation which combines several seman-
tic similarity measures including Resnik’s metric
(Resnik, 1995), and algorithms for graph central-
ity (Sinha, 2007). They reported that the results
using the SENSEVAL-2 and SENSEVAL-3 En-
glish all-words data sets lead to relative error rate
reductions of 5 - 8% as compared to the previsous
work (Mihalcea, 2005). More recently, Matsuo
et al. (2006) presented a method of word clus-
tering based on Web counts using a search en-
gine. They applied Newman clustering (New-
man, 2004) for identifying word clusters. They
reported that the results obtained by the algorithm
were better than those obtained by average-link
agglomerative clustering using 90 Japanese noun
words. However, their method relied on hard-
clustering models, and thus have largely ignored
the issue of polysemy that word belongs to more
than one cluster.

In contrast to hard-clustering algorithms, soft
clustering allows that words to belong to more
than one cluster. Much of the previous work on
word classification with soft clustering is based
on the EM algorithm (Pereira, 1993). Torisawa
et al., (2002) presented a method to detect asso-
ciative relationships between verb phrases. They
used the EM algorithm to calculate the likelihood
of co-occurrences, and reported that the EM is ef-
fective to produce associative relationships with
a certain accuracy. More recent work in this di-
rection is that of Schulte et al., (2008). They
proposed a method for semantic verb classifica-
tion based on verb frames with selectional prefer-
ences. They combined the EM training with the
MDL principle. The MDL principle is used to
induce WordNet-based selectional preferences for
arguments within subcategorization frames. The
results showed the effectiveness of the method.
Our work is similar to their method in the use of
verb frames with selectional preferences. Korho-
nen et al. (2003) used verb–frame pairs to clus-
ter verbs into Levin-style semantic classes (Ko-
rhonen, 2003). They used the Information Bottle-
neck, and classified 110 test verbs into Levin-style
classes. They had a focus on the interpretation of

verbal polysemy as represented by the soft clus-
ters: they interpreted polysemy as multiple-hard
assignments.

In the context of Japanese taxonomy of verbs
and their classes, Utsuro et al. (1995) proposed a
class-based method for sense classification of ver-
bal polysemy in case frame acquisition from paral-
lel corpora (Utsuro, 1995). A measure of bilingual
class/class association is introduced and used for
discovering sense clusters in the sense distribution
of English predicates and Japanese case element
nouns. They used the test data consisting of 10 En-
glish and Japanese verbs taken from Roget’s The-
saurus and BGH (Bunrui Goi Hyo) (BGH, 1989).
They reported 92.8% of the discovered clusters
were correct. Tokunaga et al. (1997) presented
a method for extending an existing thesaurus by
classifying new words in terms of that thesaurus.
New words are classified on the basis of relative
probabilities of a word belonging to a given word
class, with the probabilities calculated using noun-
verb co-occurrence pairs. Experiments using the
Japanese BGH thesaurus showed that new words
can be classified correctly with a maximum accu-
racy of more than 80%, while they did not report
in detail whether the clusters captured polysemies.

3 Selectional Preferences

A major approach on word clustering task is to use
distribution of a word in a corpus, i.e., words are
classified into classes based on their distributional
similarity. Similarity measures based on distribu-
tional hypothesis compare a pair of weighted fea-
ture vectors that characterize two words (Hindle,
1990; Lin, 1998; Dagan, 1999).

Like previous work on verb classification, we
used subcategorization frame distributions with
selectional preferences to calculate similarity be-
tween verbs (Schulte, 2008). We used the EDR
dictionary of selectional preferences consisting of
5,269 basic Japanese verbs and the EDR concept
dictionary (EDR, 1986). For selectional prefer-
ences, the dictionary has each concept of a verb,
the group of possible co-occurrence surface-level
case particles, the types of concept relation label
that correspond to the surface-level case as well
as the range of possible concepts that may fill the
deep-level case. Figure 1 illustrates an example of
a verb “taberu (eat)”.
In Figure 1, “Sentence pattern” refers to the co-
occurrence pattern between a verb and a noun
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[Sentence pattern] <word1> ga <word2> wo taberu (eat)
[Sense relation] agent object
[Case particle] ga (nominative) wo (accusative)
[Sense identifier] 30f6b0 (human);30f6bf (animal) 30f6bf(animal);30f6ca(plants);

30f6e5(parts of plants);
3f9639(food and drink);
3f963a(feed)

Figure 1: An example of a verb “taberu (eat)”

with a case marker. “Sense relation” expresses the
deep-level case, while “Case particle” shows the
surface-level case. “Sense identifier” refers to the
range of possible concepts for the case filler. The
subcategorization frame pattern of a sentence (1),
for example consists of two arguments with selec-
tional preferences and is given below:

(1) Nana ga apple wo taberu.
‘Nana eats an apple.’

taberu 30f6b0 ga 3f9639 wo
eat human nom entity acc

In the above frame pattern, x of the argument
“x y” refers to sense identifier and y denotes case
particle.

4 Distributional Similarity

Various similarity measures have been proposed
and used for NLP tasks (Korhonen, 2002). In
this paper, we concentrate on three distance-based,
and entropy-based similarity measures. In the fol-
lowing formulae, x and y refer to the verb vec-
tors, their subscripts to the verb subcategorization
frame values.

1. The Cosine measure (Cos): The cosine
measures the similarity of the two vectors x
and y by calculating the cosine of the an-
gle between vectors, where each dimension
of the vector corresponds to each frame with
selectional preferences patterns of verbs and
each value of the dimension is the frequency
of each pattern.

2. The Cosine measure based on probability
of relative frequencies (rfCos): The differ-
ences between the cosine and the value based
on relative frequencies of verb frames with
selectional preferences are the values of each
dimension, i.e., the former are frequencies of
each pattern and the latter are the fraction of
the total number of verb frame patterns be-
longing to the verb.

3. L1 Norm (L1): The L1 Norm is a mem-
ber of a family of measures known as the
Minkowski Distance, for measuring the dis-
tance between two points in space. The L1

distance between two verbs can be written as:

L1(x, y) =

n∑

i=1

| xi − yi | .

4. Kullback-Leibler (KL): Kullback-Leibler is
a measure from information theory that deter-
mines the inefficiency of assuming a model
probability distribution given the true distri-
bution.

KL(x, y) =

n∑

i=1

P (xi) ∗ log
P (xi)

P (yi)
.

where P (xi) = xi
|x| . KL is not defined in

case yi = 0. So, the probability distribu-
tions must be smoothed (Korhonen, 2002).
We used two smoothing methods, i.e., Add-
one smoothing and Witten and Bell smooth-
ing (Witten, 1991).2 Moreover, two variants
of KL, α-skew divergence and the Jensen-
Shannon, were used to perform smoothing.

5. α-skew divergence (α div.): The α-skew di-
vergence measure is a variant of KL, and is
defined as:

αdiv(x, y) = KL(y, α · x + (1 − α) · y).

Lee (1999) reported the best results with α =
0.9. We used the same value.

6. The Jensen-Shannon (JS): The Jensen-
Shannon is a measure that relies on the as-
sumption that if x and y are similar, they are
close to their average. It is defined as:

2We report Add-one smoothing results in the evaluation,
as it was better than Witten and Bell smoothing.
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JS(x, y) =
1

2
[KL(x,

x + y

2
) + KL(y,

x + y

2
)].

All measures except Cos and rfCos showed that
smaller values indicate a closer relation between
two verbs. Thus, we used inverse of each value.

5 Clustering Method

The clustering algorithm used in this study was a
graph-based unsupervised clustering reported by
(Zhang, 2007). This algorithm detects overlap-
ping nodes by the combination of a modularity
function based on Newman Girvan’s Q function
(Newman, 2004), spectral mapping that maps in-
put nodes into Euclidean space, and fuzzy c-means
clustering which allows node to belong to more
than one cluster. They evaluated their method by
applying several data including the American col-
lege football team network, and found that the al-
gorithm successfully detected overlapping nodes.
We thus used the algorithm to cluster verbs.

Here are the key steps of the algorithm: Given
a set of input verbs V = {v1, v2, · · · vn}, an up-
per bound K of the number of clusters, the adja-
cent matrix A = (aij)n×n of an input verbs and a
threshold λ that can convert a soft assignment into
final clustering, i.e., the value of λ decreases, each
verb is distributed into larger number of clusters.
We calculated the adjacent matrix A by using one
of the similarity measures mentioned in Section 4,
i.e., the value of the edge between vi and vj . aij

refers to the similarity value between them.

1. Form a diagonal matrix D = (dii), where dii

=
∑

k aik.

2. Form the eigenvector matrix EK =
[e1, e2, · · · , eK ] by calculating the top K
eigenvectors of the generalized eigensystem
Ax = tDx.

3. For each value of k, 2 ≤ k ≤ K:

(a) Form the matrix Ek = [e2, · · · , ek] where
ek refers to the top k-th eigenvector.

(b) Normalize the rows of Ek to unit length
using Euclidean distance norm.

(c) Cluster the row vectors of Ek using
fuzzy c-means to obtain a soft assign-
ment matrix Uk. Fuzzy c-means is

carried out through an iterative opti-
mization (minimization) of the objective
function Jm with the update of member-
ship degree uij and the cluster centers
cj . Jm is defined as:

Jm =

n∑

i=1

k∑

j=1

um
ij || vi − cj ||2,

where uij is the membership degree of
vi in the cluster j, and

∑
j uij = 1. m ∈

[1,∞] is a weight exponent controlling
the degree of fuzzification. cj is the d-
dimensional center of the cluster j.
|| vi − cj || is defined as:

|| vi − cj ||2 = (vi − cj)E(vi − cj)
T .

where E denotes an unit matrix. The
procedure converges to a saddle point of
Jm.

4. Pick the k and the corresponding n × k
soft assignment matrix Uk that maximizes
the modularity function Q̃(Uk). Here Uk =
[u1, · · ·uk] with 0 ≤ uic ≤ 1 for each c = 1,
· · ·, k, and

∑k
1 uic = 1 for each i = 1, · · ·, n.

A modularity function of a soft assignment
matrix is defined as:

Q̃(Uk) =

k∑

c=1

[
A(Ṽc, Ṽc)

A(V, V )
− (

A(Ṽc, V )

A(V, V )
)2],

where

A(Ṽc, Ṽc) =
∑

i∈Ṽc,j∈Ṽc

{ (uic + ujc)

2
}aij ,

A(Ṽc, V ) = A(Ṽc, Ṽc) +
∑

i∈Ṽc,j∈V \Ṽc

{ (uic + (1 − ujc))

2
}aij ,

A(V, V ) =
∑

i∈V,j∈V

aij .

Q̃(Uk) shows comparison of the actual val-
ues of internal or external edges with its re-
spective expectation value under the assump-
tion of equally probable links and given data
sizes.
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6 Experiments

6.1 Experimental setup

We created test verbs using two sets of Japanese
Mainichi newspaper corpus. One is a set con-
sisting one year (2007) newspapers (We call it a
set from 2007), and another is a set of 17 years
(from 1991 to 2007) Japanese Mainichi newspa-
pers (We call it a set from 1991 2007). For each
set, all Japanese documents were parsed using the
syntactic analyzer Cabocha (Kudo, 2003). We
selected verbs, each frequency f(v) is, 500 ≤
f(v) ≤ 10,000. As a result, we obtained 279
verbs for a set from 2007 and 1,692 verbs for
a set from 1991 2007. From these verbs, we
chose verbs which appeared in the machine read-
able dictionary, IPAL. This selection resulted in
a total of 81 verbs for a set from 2007, and 170
verbs, for a set from 1991 2007. We obtained
Japanese verb frames with selectional preferences
using these two sets. We extracted sentence pat-
terns with their frequencies. Noun words within
each sentence were tagged sense identifier by us-
ing the EDR Japanese sense dictionary. As a re-
sult, we obtained 56,400 verb frame patterns for a
set from 2007, and 300,993 patterns for a set from
1991 2007.

We created the gold standard data, verb classes,
using IPAL. IPAL lists about 900 Japanese verbs
and categorizes each verb into multiple senses,
based on verbal syntax and semantics. It also
listed synonym verbs. Table 1 shows a fragment of
the entry associated with the Japanese verb taberu.
The verb “taberu” has two senses, “eat” and
“live”. “pattern” refers to the case frame(s) associ-
ated with each verb sense. According to the IPAL,
we obtained verb classes, each class corresponds
to a sense of each verb. There are 87 classes for
a set from 2007, and 152 classes for a set from
1991 2007. The examples of the test verbs and
their senses are shown in Table 2.

For evaluation of verb classification, we used
the precision, recall, and F-score, which were de-
fined by (Schulte, 2000), especially to capture
how many verbs does the algorithm actually de-
tect more than just the predominant sense.

For comparison against polysemies, we utilized
the EM algorithm which is widely used as a soft
clustering technique (Schulte, 2008). We followed
the method presented in (Rooth, 1999). We used
a probability distribution over verb frames with
selectional preferences. The initial probabilities

Table 3: Results for a set from 2007
Method m λ C Prec Rec F
FCM 2.0 0.09 74 .815 .483 .606
FCM(none) 1.5 0.07 74 .700 .477 .567
EM – – 87 .308 .903 .463

Table 4: Results against each measure
Measure m λ C Prec Rec F
cos 3.0 0.02 74 .660 .517 .580
rfcos 2.0 0.04 74 .701 .488 .576
L1 2.0 0.04 74 .680 .500 .576
KL 2.0 0.09 74 .815 .483 .606
α div. 2.0 0.04 74 .841 .471 .604
JS 1.5 0.03 74 .804 .483 .603
EM – – 87 .308 .903 .463

were often determined randomly. We set the ini-
tial probabilities by using the result of the standard
k-means. For k-means, we used 50 random repli-
cations of the initialization, each time initializing
the cluster center with k randomly chosen. We
used up to 20 iterations to learn the model prob-
abilities.

6.2 Basic results

The results using a set from 2007 are shown in
Table 3. We used KL as a similarity measure in
FCM. “FCM(none)” shows the result not applying
a spectral mapping, i.e., we applied fuzzy c-means
to each vector of verb, where each dimension of
the vector corresponds to each frame with selec-
tional preferences. “m” and “λ” refer to the pa-
rameters used by Fuzzy C-means. “C” refers to
the number of clusters obtained by each method.
“m”, “λ” and “C” in Table 3 denote the value that
maximized the F-score. “C” in the EM is fixed
in advance. The result of EM shows the best re-
sult among 20 iterations. As can be seen clearly
from Table 3, the result obtained by fuzzy c-means
was better to the result by EM algorithm. Table
3 also shows that a dimensionality reduction, i.e.,
spectral mapping improved overall performance,
especially we have obtained better precision. The
result suggests that a dimensionality reduction is
effective for clustering. Table 4 shows the results
obtained by using each similarity measure. As we
can see from Table 4, the overall results obtained
by information theory based measures, KL, α div.,
and JS were slightly better to the results obtained
by other distance based measures.

We note that the fuzzy c-means has two param-
eters λ and m, where λ is a threshold of the as-
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Table 1: A fragment of the entry associated with the Japanese verb “taberu”
Sense id Pattern Synonyms
1 kare(he) ga(nominative) soba(noodles) wo(accusative) kuu (eat)
2 kare (he) ga(nominative) fukugyo(a part-time job) de(accusative) kurasu (live)

Table 2: Examples of test verbs and their polysemic gold standard senses
Id Sense Verb Classes Id Sense Verb Classes
1 treat {ashirau, atsukau} 11 tell {oshieru, shimesu, shiraseru}
2 prey {negau, inoru} 12 persuade {oshieru, satosu}
3 wish {negau, nozomu} 13 congratulate {iwau, syukufukusuru}
4 ask {negau, tanomu} 14 accept {uketoru, ukeru, morau, osameru}
5 leave {saru, hanareru} 15 take {uketoru, toru, kaisyakusuru, miru}
6 move {saru, utsuru} 16 lose {ushinau, nakusu}
7 pass {saru, kieru, sugiru} 17 miss {ushinau, torinogasu, itusuru}
8 go {saru, sugiru, iku} 18 survive, lose {ushinau, nakusu, shinareru}
9 remove {saru, hanareru, toozakeru 19 give {kubaru, watasu, wakeru}

torinozoku}
10 lead {oshieru, michibiku, tugeru} 20 arrange {kubaru, haichisuru}

Figure 2: F-score against λ

signment in the fuzzy c-means, and m is a weight
controlling the degree of fuzzification. To exam-
ine how these parameters affect the overall per-
formance of the algorithm, we performed exper-
iments by varying these parameters. Figure 2 il-
lustrates F-score of polysemies against the value
of λ. We used KL as a similarity measure, m = 2,
and C = 74.

As shown in Figure 2, the best result was ob-
tained when the value of λ was 0.09. When λ
value was larger than 0.09, the overall perfor-
mance decreased, and when it exceeded 1.2, no
verbs were assigned to multiple sense. Figure 3
illustrates F-score against the value of m. As il-
lustrated in Figure 3, we could not find effects on
accuracy against the value of m. It is necessary to
investigate on the influence of the parameter m by
performing further quantitative evaluation.

Figure 3: F-score against m

6.3 Error analysis against polysemy

We examined whether 46 polysemous verbs in
a set from 2007 were correctly classified into
classes. We manually analyzed clustering results
obtained by running fuzzy c-means with KL as a
similarity measure. They were classified into three
types of error.

1. Partially correct: Some senses of a poly-
semous verb were correctly identified, but
others were not. The first example of this
pattern is that “nigiru” has at least two
senses, “motsu (have)” and “musubu (dou-
ble)”. However, only one sense was identi-
fied correctly. The second example is that one
of the senses of the verb “watasu” was clas-
sified correctly into the class “ataeru (give)”,
while it was classified incorrectly into the
class “uru (sell)”. This was the most frequent
error type.
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{nigiru, motsu (have)}
φ

{watasu, ataeru (give)}
{watasu, uru (sell)}

2. Polysemous verbs classified into only one
cluster: “hakobu” has two senses “carry”,
and “progress”. However, it was classified
into one cluster including verbs “motuteiku
(carry)”, and “susumu (progress)”. Because
it often takes the same nominative subjects
such as “human” and accusative object such
as “abstract”.

{hakobu (carry, progress),
motuteiku (carry), susumu (progress)}

3. Polysemous verb incorrectly classified into
clusters: The polysemous verb “hataraku”
has two senses, “work”, and “operate”. How-
ever, it was classified incorrectly into “ochiru
(fall)” and “tsukuru (make)”.

{hataraku (work, operate), ochiru (fall),
tsukuru (make)}

Apart from the above error analysis, we found
that we should improve the definition and demar-
cation of semantic classes by using other exist-
ing thesaurus, e.g., EDR or BGH (Bunrui Goi
Hyo) (BGH, 1989). We recall that we created
the gold standard data by using synonymous infor-
mation. However, the algorithm classified some
antonymous words such as “uketoru” (receive) and
“watasu” (give) into one cluster. Similarly, transi-
tive and intransitive verbs are classified into the
same cluster. For example, intransitive verb of the
verb “ochiru” (drop) is “otosu”. They were clas-
sified into one cluster. It would provide further
potential, i.e., not only to improve the accuracy
of classification, but also to reveal the relationship
between semantic verb classes and their syntactic
behaviors.

An investigation of the resulting clusters re-
vealed another interesting direction of the method.
We found that some senses of a polysemous verb

Table 5: Results for a set from 1991 2007
Method m λ C Prec Rec F
FCM 2.0 0.24 152 .792 .477 .595
FCM(none) 2.0 0.07 147 .687 .459 .550
EM – – 152 .284 .722 .408

which is not listed in the IPAL are correctly identi-
fied by the algorithm. For example, “ukeireru” and
“yurusu” (forgive) were correctly classified into
one cluster. Figure 4 illustrates a sample of verb
frames with selectional preferences extracted by
our method.
“ukeireru” and “yurusu” in Table 4 have the same
frame pattern, and the sense identifiers of the case
filler “wo”, for example, are “a human being”
(0f0157) and “human” (30f6b0). However, these
verbs are not classified into one class in the IPAL:
“ukeireru” is not listed in the IPAL as a synonym
verb of “yurusu”. The example illustrates that
these verbs within a cluster are semantically re-
lated, and that they share obvious verb frames with
intuitively plausible selectional preferences. This
indicates that we can extend the algorithm to solve
this resource scarcity problem: semantic classifi-
cation of words which do not appear in the re-
source, but appear in corpora.

6.4 Results for a set of verbs from 1991 2007
corpus

One goal of this work was to develop a cluster-
ing methodology with respect to the automatic
recognition of Japanese verbal polysemies cover-
ing large-scale corpora. For this task, we tested a
set of 170 verbs including 82 polysemies. The re-
sults are shown in Table 5. We used KL as a simi-
larity measure in FCM. Each value of the parame-
ter shows the value that maximized the F-score.
As shown in Table 5, the result obtained by fuzzy
c-means was as good as for the smaller set, a set
of 78 verbs. Moreover, we can see that the fuzzy
c-means is better than the EM algorithm and the
method not applying a spectral mapping, as an in-
crease in the F-score of 18.7% compared with the
EM, and 4.5% compared with a method without
spectral mapping. This shows that our method is
effective for a size of the input test data consisting
178 verbs.

One thing should be noted is that when the al-
gorithm is applied to large data, it is computation-
ally expensive. There are at least two ways to ad-
dress the problem. One is to use several methods
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[Sentence pattern] <word1> ga <word2> wo ukeireru / yurusu (forgive)
[Concept relation] agent object
[Case particle] ga (nominative) wo (accusative)
[Sense identifier] 0ee0de; 0f58b4; 0f98ee 0f0157; 30f6b0

0ee0de: the part of a something written that makes reference to a particular matter
0f58b4: a generally-held opinion
0f98ee: the people who citizens of a nation
0f0157: a human being
30f6b0: human

Figure 4: Extracted Verb frames of “ukeireru” and “yurusu” (forgive)

of fuzzy c-means acceleration. Kelen et al. (2002)
presented an efficient implementation of the fuzzy
c-means algorithm, and showed that the algorithm
had the worse-case complexity of O(nK2), where
n is the number of nodes, and K is the number of
eigenvectors. Another approach is to parallelize
the algorithm by using the Message Passing Inter-
face (MPI) to estimate the optimal number of k (2
≤ k ≤K). This is definitely worth trying with our
method.

7 Conclusion

We have developed an approach for classifying
Japanese polysemous verbs using fuzzy c-means
clustering. The results were comparable to other
unsupervised techniques. Future work will assess
by a comparison against other existing soft clus-
tering algorithms such as the Clique Percolation
method (Palla, 2005). Moreover, it is necessary
to apply the method to other verbs for quantitative
evaluation. New words including polysemies are
generated daily. We believe that classifying these
words into semantic classes potentially enhances
many semantic-oriented NLP applications. It is
necessary to apply the method to other verbs, espe-
cially low frequency of verbs to verify that claim.
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G. Palla and I. Derényi and I. Farkas and T. Vic-
sek. 2005. Uncovering the Overlapping Commu-
nity Structure of Complex Networks in Nature and
Society, Nature. 435(7043), 814–8.

F. Pereira and N. Tishby and L. Lee. 1993. Distribu-
tional Clustering of English Words. In Proc. of the
31st Annual Meeting of the Association for Compu-
tational Linguistics, pages 183–190.

P. Resnik. 1995. Using Information Content to Eval-
uate Semantic Similarity in a Taxonomy. In Proc.
of 14th International Joint Conference on Artificial
Intelligence, pages 448–453.

M. Rooth et al. 1999. Inducing a Semantically Anno-
tated Lexicon via EM-Based Clustering, In Proc. of
37th ACL, pages 104–111.

R. Sinha and R. Mihalcea. 2007. Unsupervised Graph-
based Word Sense Disambiguation Using Measures
of Word Semantic Similarity. In Proc. of the IEEE
International Conference on Semantic Computing,
pages 46–54.

S. Schulte im Walde. 2000. Clustering Verbs Seman-
tically according to their Alternation Behaviour. In
Proc. of the 18th COLING, pages 747–753.

S. Schulte im Walde et al. 2008. Combining EM
Training and the MDL Principle for an Automatic
Verb Classification Incorporating Selectional Pref-
erences. In Proc. of the 46th ACL, pages 496–504.

T. Tokunaga and A. Fujii and M. Iwayama and N. Saku-
rai and H. Tanaka. 1997. Extending a thesaurus
by classifying words. In Proc. of the ACL-EACL
Workshop on Automatic Information Extraction and
Building of Lexical Semantic Resources, pages 16–
21.

K. Torisawa. 2002. An Unsupervised Learning
Method for Associative Relationships between Verb

Phrases, In Proc. of 19th International Confer-
ence on Computational Linguistics (COLING2002),
pages 1009–1015.

T. Utsuro. 1995. Class-based sense classification of
verbal polysemy in case frame acquisition from par-
allel corpora. In Proc. of the 3rd Natural Language
Processing Pacific Rim Symposium, pages 671–677.

D. Widdows and B. Dorow. 2002. A Graph Model for
Unsupervised Lexical Acquisition. In Proc. of 19th
International conference on Computational Linguis-
tics (COLING2002), pages 1093–1099.

I. H. Witten and T. C. Bell. 1991. The Zero-
Frequency Problem: Estimating the Probabilities of
Novel Events in Adaptive Text Compression. IEEE
Transactions on Information Theory, 37(4), pages
1085–1094.

S. Zhang et al. 2007. Identification of Overlapping
Community Structure in Complex Networks using
Fuzzy C-means Clustering. PHYSICA A, 374, pages
483–490.

40



Proceedings of the 2009 Workshop on Graph-based Methods for Natural Language Processing, ACL-IJCNLP 2009, pages 41–49,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

WikiWalk: Random walks on Wikipedia for Semantic Relatedness

Eric Yeh, Daniel Ramage,
Christopher D. Manning

Computer Science Department,
Stanford University
Stanford, CA, USA

{yeh1,dramage,manning}@cs.stanford.edu

Eneko Agirre, Aitor Soroa
Ixa Taldea

University of the Basque Country
Donostia, Basque Country
{e.agirre,a.soroa}@ehu.es

Abstract

Computing semantic relatedness of natural
language texts is a key component of tasks
such as information retrieval and sum-
marization, and often depends on knowl-
edge of a broad range of real-world con-
cepts and relationships. We address this
knowledge integration issue by comput-
ing semantic relatedness using person-
alized PageRank (random walks) on a
graph derived from Wikipedia. This pa-
per evaluates methods for building the
graph, including link selection strategies,
and two methods for representing input
texts as distributions over the graph nodes:
one based on a dictionary lookup, the
other based on Explicit Semantic Analy-
sis. We evaluate our techniques on stan-
dard word relatedness and text similarity
datasets, finding that they capture similar-
ity information complementary to existing
Wikipedia-based relatedness measures, re-
sulting in small improvements on a state-
of-the-art measure.

1 Introduction

Many problems in NLP call for numerical mea-
sures of semantic relatedness, including document
summarization, information retrieval, and textual
entailment. Often, measuring the relatedness of
words or text passages requires world knowledge
about entities and concepts that are beyond the
scope of any single word in the document. Con-
sider, for instance, the following pair:

1. Emancipation Proclamation
2. Gettysburg Address

To correctly assess that these examples are re-
lated requires knowledge of the United States Civil
War found neither in the examples themselves nor
in traditional lexical resources such as WordNet

(Fellbaum, 1998). Fortunately, a massive collabo-
ratively constructed knowledge resource is avail-
able that has specific articles dedicated to both.
Wikipedia is an online encyclopedia containing
around one million articles on a wide variety of
topics maintained by over one hundred thousand
volunteer editors with quality comparable to that
of traditional encyclopedias.

Recent work has shown that Wikipedia can be
used as the basis of successful measures of se-
mantic relatedness between words or text pas-
sages (Strube and Ponzetto, 2006; Gabrilovich and
Markovitch, 2007; Milne and Witten, 2008). The
most successful measure, Explicit Semantic Anal-
ysis (ESA) (Gabrilovich and Markovitch, 2007),
treats each article as its own dimension in a vec-
tor space. Texts are compared by first projecting
them into the space of Wikipedia articles and then
comparing the resulting vectors.

In addition to article text, Wikipedia stores a
great deal of information about the relationships
between the articles in the form of hyperlinks, info
boxes, and category pages. Despite a long his-
tory of research demonstrating the effectiveness
of incorporating link information into relatedness
measures based on the WordNet graph (Budanit-
sky and Hirst, 2006), previous work on Wikipedia
has made limited use of this relationship infor-
mation, using only category links (Bunescu and
Pasca, 2006) or just the actual links in a page
(Gabrilovich and Markovitch, 2007; Milne and
Witten, 2008).

In this work, we combine previous approaches
by converting Wikipedia into a graph, mapping in-
put texts into the graph, and performing random
walks based on Personalized PageRank (Haveli-
wala, 2002) to obtain stationary distributions that
characterize each text. Semantic relatedness be-
tween two texts is computed by comparing their
distributions. In contrast to previous work, we
explore the use of all these link types when con-
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structing the Wikipedia graph, the intuition being
these links, or some combination of them, con-
tain additional information that would allow a gain
over methods that use only just the article text. We
also discuss two methods for performing the initial
mapping of input texts to the graph, using tech-
niques from previous studies that utilized Word-
Net graphs and Wikipedia article text.

We find that performance is signficantly af-
fected by the strategy used to initialize the graph
walk, as well as the links selected when con-
structing the Wikipedia graph. Our best system
combines an ESA-initialized vector with random
walks, improving on state-of-the-art results over
the (Lee et al., 2005) dataset. An analysis of
the output demonstrates that, while the gains are
small, the random walk adds complementary re-
latedness information not present in the page text.

2 Preliminaries

A wide range of different methods, from corpus-
based distributional similarity methods, such as
Latent Semantic Analysis (Landauer et al., 1998),
to knowledge-based ones that employ structured
sources such as WordNet,1 have been developed
to score semantic relatedness and similarity. We
now review two leading techniques which we use
as starting points for our approach: those that per-
form random walks over WordNet’s graph struc-
ture, and those that utilize Wikipedia as an under-
lying data source.

2.1 Random Graph Walks for Semantic
Relatedness

Some of the best performing WordNet-based al-
gorithms for computing semantic relatedness are
based on the popular Personalized PageRank al-
gorithm (Hughes and Ramage, 2007; Agirre and
Soroa, 2009). These approaches start by taking
WordNet as a graph of concepts G = (V,E) with
a set of vertices V derived from WordNet synsets
and a set of edges E representing relations be-
tween synsets. Both algorithms can be viewed
as random walk processes that postulate the ex-
istence of a particle that randomly traverses the
graph, but at any time may jump, or teleport, to
a new vertex with a given teleport probability. In
standard PageRank (Brin and Page, 1998), this tar-
get is chosen uniformly, whereas for Personalized

1See (Budanitsky and Hirst, 2006) for a survey.

PageRank it is chosen from a nonuniform distribu-
tion of nodes, specified by a teleport vector.

The final weight of node i represents the propor-
tion of time the random particle spends visiting it
after a sufficiently long time, and corresponds to
that node’s structural importance in the graph. Be-
cause the resulting vector is the stationary distri-
bution of a Markov chain, it is unique for a par-
ticular walk formulation. As the teleport vector
is nonuniform, the stationary distribution will be
biased towards specific parts of the graph. In the
case of (Hughes and Ramage, 2007) and (Agirre
and Soroa, 2009), the teleport vector is used to re-
flect the input texts to be compared, by biasing the
stationary distribution towards the neighborhood
of each word’s mapping.

The computation of relatedness for a word pair
can be summarized in three steps: First, each input
word is mapped with to its respective synsets in
the graph, creating its teleport vector. In the case
words with multiple synsets (senses), the synsets
are weighted uniformly. Personalized PageRank is
then executed to compute the stationary distribu-
tion for each word, using their respective teleport
vectors. Finally, the stationary distributions for
each word pair are scored with a measure of vector
similarity, such as cosine similarity. The method
to compute relatedness for text pairs is analogous,
with the only difference being in the first step all
words are considered, and thus the stationary dis-
tribution is biased towards all synsets of the words
in the text.

2.2 Wikipedia as a Semantic Resource

Recent Wikipedia-based lexical semantic related-
ness approaches have been found to outperform
measures based on the WordNet graph. Two such
methods stand out: Wikipedia Link-based Mea-
sure (WLM) (Milne and Witten, 2008), and Ex-
plicit Semantic Analysis (ESA) (Gabrilovich and
Markovitch, 2007).

WLM uses the anchors found in the body of
Wikipedia articles, treating them as links to other
articles. Each article is represented by a list of
its incoming and outgoing links. For word relat-
edness, the set of articles are first identified by
matching the word to the text in the anchors, and
the score is derived using several weighting strate-
gies applied to the overlap score of the articles’
links. WLM does not make further use of the link
graph, nor does it attempt to differentiate the links.
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In contrast to WLM, Explicit Semantic Analy-
sis (ESA) is a vector space comparison algorithm
that does not use the link structure, relying solely
on the Wikipedia article text. Unlike Latent Se-
mantic Analysis (LSA), the underlying concept
space is not computationally derived, but is instead
based on Wikipedia articles. For a candidate text,
each dimension in its ESA vector corresponds to
a Wikipedia article, with the score being the sim-
ilarity of the text with the article text, subject to
TF-IDF weighting. The relatedness of two texts
is computed as the cosine similarity of their ESA
vectors.

Although ESA reports the best results to date
on both the WordSim-353 dataset as well as the
Lee sentence similarity dataset, it does not utilize
the link structure, which motivated a combined ap-
proach as follows.

2.3 A Combined Approach

In this work, we base our random walk algorithms
after the ones described in (Hughes and Ramage,
2007) and (Agirre et al., 2009), but use Wikipedia-
based methods to construct the graph. As in previ-
ous studies, we obtain a relatedness score between
a pair of texts by performing random walks over
a graph to compute a stationary distribution for
each text. For our evaluations, the score is simply
the cosine similarity between the distributions. In
the following sections, we describe how we built
graphs from Wikipedia, and how input texts are
initially mapped into these structures.

3 Building a Wikipedia Graph

In order to obtain the graph structure of Wikipedia,
we simply treat the articles as vertices, and
the links between articles as the edges. There
are several sources of pre-processed Wikipedia
dumps which could be used to extract the arti-
cles and links between articles, including DBpe-
dia (Auer et al., 2008), which provides a rela-
tional database representation of Wikipedia, and
Wikipedia-Miner 2, which produces similar infor-
mation from Wikipedia dumps directly. In this
work we used a combination of Wikipedia-Miner
and custom processing scripts. The dump used in
this work is from mid 2008.

As in (Milne and Witten, 2008), anchors in
Wikipedia articles are used to define links between

2http://wikipedia-miner.sourceforge.net

articles. Because of different distributional proper-
ties, we explicitly distinguish three types of links,
in order to explore their impact on the graph walk.

Infobox links are anchors found in the infobox
section of Wikipedia articles. Article in-
foboxes, when present, often enumerate
defining attributes and characteristics for that
article’s topic.

Categorical links reference articles whose titles
belong in the Wiki namespace “Category,”
as well as those with titles beginning with
“List of.” These pages are often just lists of
anchors to other articles, which may be use-
ful for capturing categorical information that
roughly contains a mixture of hyponymy and
meronymy relations between articles.

Content links are those that are not already clas-
sified as infobox nor categorical, and are in-
tended to represent the set of miscellaneous
anchors found solely in the article body.
These may include links already found in the
categorical and infobox categories.

Links can be further factored out according to
generality, a concept introduced in (Gabrilovich
and Markovitch, 2009). We say that one article
is more general than another when the number of
inlinks is larger. Although only a rough heuris-
tic, the intuition is that articles on general top-
ics will receive many links, whereas specific ar-
ticles will receive fewer. We will use +k notation
for links which point to more general articles, i.e.,
where the difference in generality between source
s and target t is #inlink(t)/#inlink(s) ≥ k.
We will use −k for links to less general articles,
i.e., #inlink(s)/#inlink(t) ≥ k. Finally we
use =k when the generality is in the same order
of magnitude, i.e., when the link is neither +k
nor −k. The original notion of generality from
(Gabrilovich and Markovitch, 2009) restricts con-
sideration to only more general articles by one or-
der of magnitude (+10), without reference to the
link types introduced above.

Given the size of the Wikipedia graph, we ex-
plored further methods inspired by (Gabrilovich
and Markovitch, 2009) to make the graph smaller.
We discarded articles with fewer than 2,000 non-
stop words and articles with fewer than 5 outgoing
and incoming links. We will refer to the complete

43



graph as full and to this reduced graph as reduced.3

4 Initializing a Wikipedia Graph Walk

In order to apply Personalized PageRank to a
given passage of text or word, we need to con-
struct a custom teleport vector, representing the
initial distribution of mass over the article nodes.
In this section we introduce two such methods,
one based on constructing a direct mapping from
individual words to Wikipedia articles (which we
call dictionary-based initialization), and the other
based directly on the results of ESA. We will see
each technique in turn.

4.1 Dictionary based initialization

Given a target word, we would like to define
its teleport vector using the set of articles in
Wikipedia to which the word refers. This is analo-
gous to a dictionary, where an entry lists the set of
meanings pertaining to the entry.

We explored several methods for building such
a dictionary. The first method constructed the dic-
tionary using the article title directly, while also
including redirection pages and disambiguation
pages for additional ways to refer to the article. In
addition, we can use the anchor text to refer to arti-
cles, and we turned to Wikipedia-Miner to extract
this information. Anchors are indeed a rich source
of information, as they help to relate similar words
to Wikipedia articles. For instance, links to page
Monk are created by using textual anchors such as
lama, brothers, monastery, etc. As a result, the
dictionary entries for those words will have a link
to the Monk page. This information turned out to
be very valuable, so all experiments have been car-
ried out using anchors.

An additional difficulty was that any of these
methods yielded dictionaries where the entries
could refer to tens, even hundreds of articles. In
most of the cases we could see that relevant arti-
cles were followed by a long tail of loosely related
articles. We tried two methods to prune the dic-
tionary. The first, coarse, method was to eliminate
all articles whose title contains a space. The mo-
tivation was that our lexical semantic relatedness
datasets (cf. Section 5) do not contain multiword
entries (e.g., United States). In the second method,
we pruned articles from the dictionary which ac-

3In order to keep category and infobox links, the 2,000
non-stop word filter was not applied to categories and lists of
pages.

Graphs
Graph # Vertices # Edges
Full 2,483,041 49,602,752
Reduced 1,002,411 30,939,288

Dictionaries
Dictionary # Entries Avg. Articles
all 6,660,315 1.31
1% 6,660,306 1.12
1% noent 1,058,471 1.04

Table 1: Graph and dictionary sizes. Avg. Articles
column details the average number of articles per
entry.

counted for less than 1% or 10% of the occur-
rences of that anchor word, as suggested by (Milne
and Witten, 2008).

In short, for this method of initialization, we ex-
plored the use of the following variants: all, all ar-
ticles are introduced in the dictionary; noent, arti-
cles with space characters are omitted; 1% (10%),
anchors that account for less than 1% (10%) of the
total number of anchors for that entry are omitted.
We did not use stemming. If a target word has no
matching Wikipedia article in the dictionary, then
it is ignored.

Table 1 shows the numbers for some graph and
dictionary versions. Although the average number
of articles per entry in the dictionary might seem
low, it is actually quite high for the words in the
datasets: for MC it’s 5.92, and for wordsim353 it’s
42.14. If we keep the articles accounting for 10%
of all occurrences, the numbers drops drastically
to 1.85 and 1.64 respectively.

As we will see in the results section, smaller
graphs and dictionaries are able to attain higher
results, but at the cost of losing information for
some words. That is, we observed that some fac-
tored, smaller graphs contained less noise, but that
meant that some articles and words are isolated in
the graph, and therefore we are not able to com-
pute relatedness for them. As a solution, we de-
vised an alternative way to initialize the random
walk. Instead of initializing it according to the ar-
ticles in the dictionary, we initialized it with the
vector weights returned by ESA, as explained in
the next section.
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4.2 Initialization with ESA
In addition to the dictionary based approach, we
also explored the use of ESA to construct the tele-
port vector. In contrast to dictionary initialization,
ESA uses the text of the article body instead of an-
chor text or the article titles. Because ESA maps
query text to a weighted vector of Wikipedia arti-
cles, it can be naturally adapted as a teleport vector
for a random walk with a simple L1 normaliza-
tion. We used Apache Lucene4 to implement both
ESA’s repository of Wikipedia articles, and to re-
turn vectors for queries. Each article is indexed as
its own document, with page text preprocessed to
strip out Wiki markup.

Although we followed the steps outlined in
(Gabrilovich and Markovitch, 2007), we had to
add an extension to the algorithm: for a return
vector from ESA, we order the articles by score,
and retain only the scores for the top-n articles,
setting the scores of the remaining articles to 0.
Without this modification, our performance results
were will below the reported numbers, but with a
cutoff at 625 (determined by a basic grid search),
we obtained a correlation of 0.76 on the Lee sen-
tence similarity dataset, over the previously pub-
lished score of 0.72.

4.3 Teleport Probability
For this work, we used a value of 0.15 as the prob-
ability of returning to the teleport distribution at
any given step. The walk terminates when the vec-
tor converges with an L1 error of 0.0001 (circa 30
iterations). Some preliminary experiments on a re-
lated Word Sense Disambiguation task indicated
that in this context, our algorithm is quite robust to
these values, and we did not optimize them. How-
ever, we will discuss using different return param-
eters in Section 6.1.

5 Experiments

In this section, we compare the two methods of
initialization as well as several types of edges. For
a set of pairs, system performance is evaluated by
how well the generated scores correlate with the
gold scores. Gold scores for each pair are the av-
erage of human judgments for that pair. In order to
compare against previous results obtained on the
datasets, we use the Spearman correlation coeffi-
cient on the Miller Charles (MC) and WordSim-
353 word-pair datasets, and the Pearson correla-

4http://lucene.apache.org

Dictionary Graph MC
all full 0.369
1% full 0.610
1%, noent full 0.565 (0.824)
1% reduced 0.563
1% reduced +2 0.530
1% reduced +4 0.601
1% reduced +8 0.512
1% reduced +10 0.491 (0.522)
10% full 0.604 (0.750)
10% reduced 0.605 (0.751)
10% reduced +2 0.491 (0.540)
10% reduced +4 0.476 (0.519)
10% reduced +8 0.474 (0.506)
10% reduced +10 0.430 (0.484)
WordNet 0.90 / 0.89
WLM 0.70
ESA 0.72

Table 2: Spearman correlation on the MC dataset
with dictionary-based initialization. Refer to Sec-
tion 3 for explanation of dictionary and graph
building methods. Between parenthesis, results
excluding pairs which had a word with an empty
dictionary entry.

tion coefficient on the (Lee et al., 2005) document-
pair dataset.

5.1 Dictionary-based Initialization

Given the smaller size of the MC dataset, we
explored the effect of the different variants to
build the graph and dictionary on this dataset.
Some selected results are shown in Table 2, along-
side those of related work, where we used Word-
Net for (Hughes and Ramage, 2007) and (Agirre
et al., 2009) (separated by “/” in the results),
WLM for (Milne and Witten, 2008) and ESA for
(Gabrilovich and Markovitch, 2007).

We can observe that using the full graph and
dictionaries yields very low results. Reducing the
dictionary (removing articles with less than 1% or
10% of the total occurrences) produces higher re-
sults, but reducing the graph does not provide any
improvement. On a closer look, we realized that
pruning the dictionary to 10% or removing multi-
words (noent) caused some words to not get any
link to articles (e.g., magician). If we evaluate
only over pairs where both words get a Personal-
ized PageRank vector, the results raise up to 0.751
and 0.824, respectively, placing our method close

45



Dictionary Graph WordSim-353
1% full 0.449
1%, noent full 0.440 (0.634)
1% reduced 0.485
WordNet 0.55 / 0.66
WLM 0.69
ESA 0.75
WikiRelate 0.50

Table 3: Spearman correlation on the WordSim-
353 dataset with dictionary-based initialization.
Refer to Section 3 for explanation of dictionary
and graph building methods. Between parenthe-
sis, results excluding pairs which had a word with
an empty dictionary entry.

Dictionary Graph (Lee et al., 2005)
1%, noent Full 0.308
1% Reduced +4 0.269
ESA 0.72

Table 4: Pearson correlation on (Lee et al., 2005)
with dictionary-based initialization. Refer to Sec-
tion 3 for explanation of dictionary and graph
building methods.

to the best results on the MC dataset. This came
at the cost of not being able to judge the related-
ness of 3 and 5 pairs, respectively. We think that
removing multiwords (noent) is probably too dras-
tic, but the positive effect is congruent with (Milne
and Witten, 2008), who suggested that the cover-
age of certain words in Wikipedia is not adequate.

The results in Table 3 show the Spearman cor-
relation for some selected runs over the WordSim-
353 dataset. Again we see that a restrictive dic-
tionary allows for better results on the pairs which
do get a dictionary entry, up to 0.63. WikiRelate
refers to the results in (Strube and Ponzetto, 2006).

We only tested a few combinations over (Lee et
al., 2005), with results given in Table 4. These are
well below state-of-the-art, and show that initial-
izing the random walk with all words in the doc-
ument does not characterize the documents well,
resulting in low correlation.

5.2 ESA-based initialization

While the results using a dictionary based ap-
proach were encouraging, they did not come close
to the state-of-the-art results achieved by ESA.
Here, we explore combining ESA and random

Method Text Sim
ESA@625 0.766
ESA@625+Walk All 0.556
ESA@625+Walk Categories 0.410
ESA@625+Walk Content 0.536
ESA@625+Walk Infobox 0.710

Table 5: Pearson correlation on the (Lee et al.,
2005) dataset when walking on various types of
links. Note that walking tends to hurt performance
overall, with Infobox links by far the least harm-
ful.

walks, by using ESA to initialize the teleport vec-
tor. Following section 4.2, we used a top-n cutoff
of 625.

Table 5 displays the results of our ESA im-
plementation followed by a walk from that ESA
distribution. Walking on any link type actually
depresses performance below the baseline ESA
value, although the Infobox links seem the least
harmful.

However, as mentioned in Section 3, links be-
tween articles represent many different types of
relationships beyond the few well-defined links
present in lexical resources like WordNet. This
also extends to where the link is found, and the ar-
ticle it is pointing to. As such, not all links are cre-
ated equal, and we expect that some types of links
at different levels of generality will perform bet-
ter or worse than others. Table 6 presents a sam-
ple grid search across the category links choosing
more general, less general, or similar generality at
several factors of k, showing that there is a consis-
tent pattern across multiple link types. Note that
the best value indeed improves upon the score of
the ESA distribution, albeit modestly.

We performed a similar analysis across all link
types and found that the best link types were Cat-
egory links at +6 and Infobox links at =2. Intu-
itively, these link types make sense: for seman-
tic relatedness, it seem reasonable to expect more
general pages within the same category to help.
And for Infobox links, much rarer and much more
common pages can both introduce their own kind
of noise. While the improvement from each type
of edge walk is small, they are additive—the best
results on the sentence similarity dataset was from
walking across both link types. Our final Pearson
correlation coefficient of .772 is to our knowledge
the highest number reported in the literature, al-
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Generality of Category links
+k -k =k

k = 2 0.760 0.685 0.462
k = 4 0.766 0.699 0.356
k = 6 0.771 0.729 0.334
k = 8 0.768 0.729 0.352
k = 10 0.768 0.720 0.352

Table 6: Pearson correlation on the (Lee et al.,
2005) with random walks over only a subset of
the edges in the Category link information (scores
.410 when taking all edges). Note that factoring
the graph by link generality can be very helpful to
the walk.

Method Text Sim
ESA@625 0.766
ESA@625+Walk Cat@+6 0.770
ESA@625+Walk Cat@+6 Inf@=2 0.772
Bag of words (Lee et al., 2005) 0.5
LDA (Lee et al., 2005) 0.60
ESA* 0.72

Table 7: Pearson correlation on the (Lee et al.,
2005) dataset for our best sytems compared to pre-
viously reported numbers. ESA* is the score for
raw ESA as reported number in (Gabrilovich and
Markovitch, 2007).

beit only a small improvement over our ESA@625
score.

Despite the results obtained for text similarity,
the best settings found for the Lee dataset did not
translate to consistent improvements over the ESA
baseline for Spearman rank correlation on the lex-
ical similarity datasets. While our scores on the
MC dataset of 30 word pairs did improve with the
walk in roughly the same way as in Lee, no such
improvements were found on the larger WordSim-
353 data. On WordSim-353, our implementa-
tion of ESA scored 0.709 (versus Gabrilovich’s
reported ESA score of 0.75), and our walk on
Cat@+6 showing no gain or loss. In contrast to
the text similarity dataset, Infobox links were no
longer helpful, bringing the correlation down to
.699. We believe this is because Infobox links
helped the most with entities, which are very rare
in the WordSim-353 data, but are more common
in the Lee dataset.

6 Discussion

Our results suggest that even with a simple
dictionary-based approach, the graph of Wikipedia
links can act as an effective resource for comput-
ing semantic relatedness. However, the dictio-
nary approach alone was unable to reach the re-
sults of state-of-the-art models using Wikipedia
(Gabrilovich and Markovitch, 2007; Milne and
Witten, 2008) or using the same technique on
WordNet (Hughes and Ramage, 2007; Agirre
et al., 2009). Thus, it seems that the text of
Wikipedia provides a stronger signal than the link
structure. However, a pruned dictionary can im-
prove the results of the dictionary based initial-
ization, which indicates that some links are in-
formative for semantic relatedness while others
are not. The careful pruning, disambiguation and
weighting functions presented in (Milne and Wit-
ten, 2008) are directions for future work.

The use of WordNet as a graph provided ex-
cellent results (Hughes and Ramage, 2007), close
to those of ESA. In contrast with our dictionary-
based initialization on Wikipedia, no pruning of
dictionary or graph seem necessary to obtain high
results with WordNet. One straightforward expla-
nation is that Wikipedia is a noisy source of link
information. In fact, both ESA and (Milne and
Witten, 2008) use ad-hoc pruning strategies in or-
der to obtain good results.

6.1 ESA and Walk Comparison

By using ESA to generate the teleport distribu-
tion, we were able to introduce small gains us-
ing the random walk. Because these gains were
small, it is plausible that the walk introduces only
modest changes from the initial ESA teleport dis-
tributions. To evaluate this, we examined the dif-
ferences between the vector returned by ESA and
distribution over the equivalent nodes in the graph
after performing a random walk starting with that
ESA vector.

For this analysis, we took all of the text entries
used in this study, and generated two distributions
over the Wikipedia graph, one using ESA@625,
the other the result of performing a random walk
starting at ESA@625. We generated a list of the
concept nodes for both distributions, sorted in de-
creasing order by their associated scores. Start-
ing from the beginning of both lists, we then
counted the number of matched nodes until they
disagreed on ordering, giving a simple view of
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Walk Type Avg Std Max
MC Cat@+6 12.1 7.73 35

Cat@+6 Inf@=2 5.39 5.81 20
WordSim Cat@+6 12.0 10.6 70

Cat@+6 Inf@=2 5.74 7.78 54
Lee Cat@+6 28.3 89.7 625

Cat@+6 Inf@=2 4.24 14.8 103

Table 8: Statistics for first concept match length,
by run and walk type.

how the walk perturbed the strongest factors in the
graphs. We performed this for both the best per-
forming walk models (ESA@625+Walk Cat@+6
and ESA@625+Walk Cat@+6 Inf@=2) against
ESA@625. Results are given in Table 8.

As expected, adding edges to the random walk
increases the amount of change from the graph,
as initialized by ESA. A cursory examination of
the distributions also revealed a number of outliers
with extremely high match lengths: these were
likely due to the fact that the selected edge types
were already extremely specialized. Thus for a
number of concept nodes, it is likely they did not
have any outbound edges at all.

Having established that the random walk does
indeed have an impact on the ESA vectors, the
next question is if changes via graph walk are
consistently helpful. To answer this, we com-
pared the performance of the walk on the (Lee et
al., 2005) dataset for probabilities at selected val-
ues, using the best link pruned Wikipedia graph
(ESA@625+Walk Cat@+6 Inf@=2), and using all
of the available edges in the graph for compari-
son. Here, a lower probability means the distribu-
tion spreads out further into the graph, compared
to higher values, where the distribution varies only
slightly from the ESA vector. Results are given in
Table 9. Performance for the pruned graph im-
proves as the return probability decreases, with
larger changes introduced by the graph walk re-
sulting in better scores, whereas using all available
links decreases performance. This reinforces the
notion that Wikipedia links are indeed noisy, but
that within a selected edge subset, making use of
all information via the random walk indeed results
in gains.

7 Conclusion

This paper has demonstrated that performing ran-
dom walks with Personalized PageRank over the

Prob Corr (Pruned) Corr (All)
0.01 0.772 0.246
0.10 0.773 0.500
0.15 0.772 0.556
0.30 0.771 0.682
0.45 0.769 0.737
0.60 0.767 0.758
0.90 0.766 0.766
0.99 0.766 0.766

Table 9: Return probability vs. correlation, on tex-
tual similarity data (Lee et al., 2005).

Wikipedia graph is a feasible and potentially fruit-
ful means of computing semantic relatedness for
words and texts. We have explored two methods of
initializing the teleport vector: a dictionary-based
method and a method based on ESA, the cur-
rent state-of-the-art technique. Our results show
the importance of pruning the dictionary, and for
Wikipedia link structure, the importance of both
categorizing by anchor type and comparative gen-
erality. We report small improvements over the
state-of-the-art on (Lee et al., 2005) using ESA as
a teleport vector and a limited set of links from
Wikipedia category pages and infoboxes.

In future work, we plan to explore new ways
to construct nodes, edges, and dictionary entries
when constructing the Wikipedia graph and dic-
tionary. We believe that finer grained methods of
graph construction promise to improve the value
of the Wikipedia link structure. We also plan to
further investigate the differences between Word-
Net and Wikipedia and how these may be com-
bined, from the perspective of graph and random
walk techniques. A public distribution of software
used for these experiments will also be made avail-
able.5
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Abstract

Both vector space models and graph ran-
dom walk models can be used to determine
similarity between concepts. Noting that
vectors can be regarded as local views of
a graph, we directly compare vector space
models and graph random walk models on
standard tasks of predicting human simi-
larity ratings, concept categorization, and
semantic priming, varying the size of the
dataset from which vector space and graph
are extracted.

1 Introduction

Vector space models, representing word mean-
ings as points in high-dimensional space, have
been used in a variety of semantic relatedness
tasks (Sahlgren, 2006; Padó and Lapata, 2007).
Graphs are another way of representing relations
between linguistic entities, and they have been
used to capture semantic relatedness by using both
corpus-based evidence and the graph structure of
WordNet and Wikipedia (Pedersen et al., 2004;
Widdows and Dorow, 2002; Minkov and Cohen,
2008). We study the relationship between vec-
tor space models and graph random walk mod-
els by embedding vector space models in graphs.
The flexibility offered by graph random walk mod-
els allows us to compare the vector space-based
similarity measures to extended notions of relat-
edness and similarity. In particular, a random
walk model can be viewed as smoothing direct
similarity between two vectors using second-order
and even higher-order vectors. This view leads
to the second focal point of this paper: We in-
vestigate whether random walk models can sim-
ulate the smoothing effects obtained by methods
like Singular Value Decomposition (SVD). To an-

swer this question, we compute models on reduced
(downsampled) versions of our dataset and evalu-
ate the robustness of random walk models, a clas-
sic vector-based model, and SVD-based models
against data sparseness.

2 Model definition and implementation

We use directed graphs with weighted edges, G =
(V,E, w) where V is a set of nodes, E = V × V
is a set of edges and w : E → R is the weight-
ing function on edges. For simplicity, we assume
that G is fully connected, edges with zero weights
can be considered as non-existing in the graph. On
these graphs, we perform random walks with an
initial probability distribution q over the nodes (a
1 × |V | vector). We then follow edges with prob-
ability proportional to their weights, so that the
probability of walking from node v1 to node v2

is w(v1, v2)/
∑

v w(v1, v). A fixed length random
walk ends after a predetermined number of steps.
In flexible walks, there is a constant probability γ
of stopping at each step. Thus, walk length fol-
lows a geometric distribution with parameter γ,
the probability of a walk of length k is γ(1−γ)k−1

and the expected walk length is 1/γ. For example,
a flexible walk with γ = 1/2 will produce 1-step,
2-step, and higher-step walks while the expected
average length is 2.
Relating vectors and graphs. Corpus co-
occurrence (e1, e2, a12) of two entities e1 and e2

that co-occur with (potentially transformed) count
a12 can be represented in either a vector or a graph.
In a vector, it corresponds to a dimension value of
a12 for the dimension e2 of entity e1. In a graph,
it corresponds to two nodes labeled e1 and e2 con-
nected by an edge with weight a12.
Similarity measures. Let R(q) = p denote a
specific random walk process which transforms an
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initial probability distribution q to a final prob-
ability distribution p over the nodes. We write
q(m) for the probability assigned to the node m
under q. If the initial distribution q concentrates
all probability on a single node n, i.e., q(n) = 1
and q(x) = 0 for all nodes x 6= n, we write
pr(n → m) for the probability p(m) of ending
up at node m.

The simplest way of measuring relatedness
through random walks is to consider the probabil-
ity p(m) of a single node m as an endpoint for a
walk starting with start probability distribution q,
that is, p = R(q). We call this a direct, one-
direction measure of relatedness between q and
m. Direct, one-direction measures are typically
asymmetric. In case all start probability is con-
centrated on a single node n, we can also consider
direct, two-direction measures, which will be a
combination of pr(m → n) and pr(n → m). The
point of using two-direction measures is that these
can be made symmetric, which is an advantage
when we are modeling undirected semantic sim-
ilarity. In the experiments below we focus on the
average of the two probabilities.

In addition to direct measures, we will use in-
direct measures, in which we compute the relat-
edness of endpoint probability distributions p1 =
R(q1) and p2 = R(q2). As endpoint distribu-
tions can be viewed both as probability distribu-
tions and as vectors, we used three indirect mea-
sures: 1) Jensen/Shannon divergence, a symmet-
ric variant of the Kullback/Leibler divergence be-
tween probability distributions. 2) cosine similar-
ity, and 3) dot product. Dot product is a natural
choice in a graph setting because we can view it as
the probability of a pair of walks, one starting at a
node determined by q1 and the other starting at a
node governed by q2, ending at the same node.

Discussion. Direct and indirect relatedness mea-
sures together with variation in walk length give us
a simple, powerful and flexible way to capture dif-
ferent kinds of similarity (with traditional vector-
based approach as a special case). Longer walks
or flexible walks will capture higher order effects
that may help coping with data sparseness, similar
to the use of second-order vectors. Dimensionality
reduction techniques like Singular Value Decom-
position (SVD) also capture these higher-order ef-
fects, and it has been argued that that makes them
more resistant against sparseness (Schütze, 1997).
To our knowledge, no systematic comparison of

SVD and classical vector-based methods has been
done on different corpus sizes. In our experiments,
we will compare the performance of SVD and
flexible-walk smoothing at different corpus sizes
and for a variety of tasks.
Implementation: We extract tuples from the 2-
billion word ukWaC corpus,1 dependency-parsed
with MINIPAR.2 Following Padó and Lapata
(2007), we only consider co-occurrences where
two target words are connected by certain de-
pendency paths, namely: the top 30 most fre-
quent preposition-mediated noun-to-noun paths
(soldier+with+gun), the top 50 transitive-verb-
mediated noun-to-noun paths (soldier+use+gun),
the top 30 direct or preposition-mediated verb-
noun paths (kill+obj+victim, kill+in+school), and
the modifying and predicative adjective-to-noun
paths. Pairs (w1, w2) that account for 0.01%
or less of the marginal frequency of w1 were
trimmed. The resulting tuple list, with raw counts
converted to mutual information scores, contains
about 25 million tuples.

To test how well graph-based and alternative
methods “scale down” to smaller corpora, we sam-
pled random subsets of tuples corresponding to
0.1%, 1%, 10%, and 100% of the full list. To put
things into perspective, the full list was extracted
from a corpus of about 2 billion words; so, the
10% list is on the order of magnitude of the BNC,
and the 0.1% list is on the order of magnitude of
the Brown corpus. From each of the 4 resulting
datasets, we built one graph and two vector space
models: one space with full dimensionality, and
one space reduced to 300 dimensions using singu-
lar value decomposition.

3 Experiments

First, we report the results for all tasks obtained on
the full data-set and then proceed with the compar-
ison of different models on differing graph sizes
to see the robustness of the models against data
sparseness.
Human similarity ratings: We use the dataset
of Rubenstein and Goodenough (1965), consist-
ing of averages of subject similarity ratings for
65 noun pairs. We use the Pearson’s coefficient
between estimates and human judgments as our
performance measure. The results obtained for

1http://wacky.sslmit.unibo.it
2http://www.cs.ualberta.ca/∼lindek/

minipar.htm
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Direct (average) Vector (cosine) Indirect (dot product) Previous
0.5 1 2 svd vector 0.5 1 2

RG 0.409 0.326 0.571 0.798 0.689 0.634 0.673 0.400 BL: 0.70
CLW: 0.849

AAMP Purity 0.480 0.418 0.669 0.701 0.704 0.664 0.667 0.612 AP: 0.709
RS: 0.791

Hodgson
synonym 2, 563 1.289 5, 408∗∗ 10.015∗∗ 6, 623∗∗ 5, 462∗∗ 5, 954∗∗ 5, 537∗∗

coord 4, 275∗∗ 3, 969∗∗ 6, 319∗∗ 11.157∗∗ 7, 593∗∗ 8, 466∗∗ 8, 477∗∗ 4, 854∗∗

antonym 2, 853∗ 2, 237 5, 319∗∗ 7, 724∗∗ 5, 455∗∗ 4, 589∗∗ 4, 859∗∗ 6, 810∗∗

conass 9, 209∗∗ 10.016∗∗ 5, 889∗∗ 9, 299∗∗ 6, 950∗∗ 5, 993∗∗ 5, 455∗∗ 4, 994∗∗

supersub 4, 038∗∗ 4, 113∗∗ 6, 773∗∗ 10.422∗∗ 7, 901∗∗ 6, 792∗∗ 7, 165∗∗ 4, 828∗∗

phrasacc 4, 577∗∗ 4, 718∗∗ 2, 911∗ 3, 532∗ 3, 023∗ 3, 506∗ 3, 612∗ 1.038

Table 1: All datasets. * (**) indicates significance level p < 0.01 (p < 0.001). BL: (Baroni and Lenci,
2009), CLW: (Chen et al., 2006), AP: (Almuhareb, 2006), RS: (Rothenhäusler and Schütze, 2009)

0.1% 1% 10%
cos svd cos vector dot 2 cos svd cos vector dot 2 cos svd cos vector dot 2

RG 0.219 0.244 0.669 0.676 0.700 1.159 0.911 0.829 1.068
AAMP 0.379 0.339 0.366 0.723 0.622 0.634 0.923 0.886 0.948

Synonym 0.369 0.464 0.610 0.493 0.590 0.833 0.857 0.770 1.081
Antonym 0.449 0.493 0.231 0.768 0.585 0.730 1.044 0.849 0.977

Conass 0.187 0.260 0.261 0.451 0.498 0.942 0.857 0.704 1.062
Coord 0.282 0.362 0.456 0.527 0.570 1.050 0.927 0.810 1.187

Phrasacc 0.268 0.132 0.761 0.849 0.610 1.215 0.920 0.868 1.049
Supersub 0.313 0.353 0.285 0.645 0.601 1.029 0.936 0.752 1.060

Table 2: Each cell contains the ratio of the performance of the corresponding model for the corresponding
downsampling ratio to the performance of the same model on the full graph. The higher ratio means the
less deterioration due to data sparseness.

the full graph are in Table 1, line 1. The SVD
model clearly outperforms the pure-vector based
approach and the graph-based approaches. Its per-
formance is above that of previous models trained
on the same corpus (Baroni and Lenci, 2009). The
best model that we report is based on web search
engine results (Chen et al., 2006). Among the
graph-based random walk models, flexible walk
with parameter 0.5 and fixed 1-step walk with in-
direct relatedness measures using dot product sim-
ilarity achieve the highest performance.
Concept categorization: Almuhareb (2006) pro-
posed a set of 402 nouns to be categorized into
21 classes of both concrete (animals, fruit. . . ) and
abstract (feelings, times. . . ) concepts. Our results
on this clustering task are given in Table 1 (line
2). The difference between SVD and pure-vector
models is negligible and they both obtain the best
performance in terms of both cluster entropy (not
shown in the table) and purity. Both models’ per-
formances are comparable with the previously re-
ported studies, and above that of random walks.
Semantic priming: The next dataset comes
from Hodgson (1991) and it is of interest since
it requires capturing different forms of seman-
tic relatedness between prime-target pairs: syn-

onyms (synonym), coordinates (coord), antonyms
(antonym), free association pairs (conass), super-
and subordinate pairs (supersub) and phrasal as-
sociates (phrasacc). Following previous simula-
tions of this data-set (Padó and Lapata, 2007), we
measure the similarity of each related target-prime
pair, and we compare it to the average similar-
ity of the target to all the other primes instanti-
ating the same relation, treating the latter quan-
tity as our surrogate of an unrelated target-prime
pair. We report results in terms of differences be-
tween unrelated and related pairs, normalized to
t-scores, marking significance according to two-
tailed paired t-tests for the relevant degrees of free-
dom. Even though the SVD-based and pure-vector
models are among the top achievers in general, we
see that in different tasks different random walk
models achieve comparable or even better perfor-
mances. In particular, for phrasal associates and
conceptual associates, the best results are obtained
by random walks based on direct measures.

3.1 Robustness against data sparseness

So far, we reported only the results obtained on
the full graph. However, in order to see the re-
sponse of the models to using smaller corpora
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we ran another set of experiments on artificially
down-sampled graphs as explained above. In this
case, we are not interested in the absolute perfor-
mance of the models per se but the relative per-
formance. Thus, for ease of comparison we fixed
each model’s performance on the full graph to 1
for each task and linearly scaled its performance
on smaller graphs. For example saying that the
SVD-based model achieves a score of 0.911 on
10% graph for the Rubenstein and Goodenough
dataset means that the ratio of the performance
of SVD-based model on 10% graph to the per-
formance of the same model on the full graph is
0.911. The results are given in Table 2, where the
only random walk model we report is dot 2, i.e., a
2-step random walk coupled with the dot product-
based indirect measure. This is by far the random
walk model most robust to downsampling. In the
10% graph, we see that on all tasks but one, dot 2
is the model least affected by the data reduction.
On the contrary, down-sampling has a positive ef-
fect on this model because on 6 tasks, it actually
performs better than it does on the full graph! The
same behavior is also observed on the 1% graph
- as an example, for phrasal associates relations,
dot 2 performance increases by a factor of around
1.2 when we use one hundredth of the graph in-
stead of the full one. For the smallest graph we
used, 0.1%, still dot 2 provides the highest relative
performance in 5 out of the 8 tasks.

4 Conclusion

We compared graph-based random walk models
and vector models. For this purpose, we showed
how corpus co-occurrences could be represented
both as a graph and a vector, and we identified
two different ways to calculate relatedness based
on the outcomes of random walks, by direct and
indirect measures. The experiments carried out
on 8 different tasks by using the full graph re-
vealed that SVD-based model performs very well
across all types of semantic relatedness. How-
ever, there is also evidence that -depending on
the particular relation- some random walk models
can achieve results as good as or even better than
those of SVD-based models. Our second ques-
tion was whether the random walk models would
be able to simulate the smoothing effects obtained
by SVD. While answering this question, we also
carried out a systematic comparison of plain and
SVD-based models on different tasks with differ-

ent sizes of data. One interesting result is that an
SVD-based model is not necessarily more robust
to data sparseness than the plain vector model.
The more interesting result is that a 2-step ran-
dom walk model, based on indirect measures with
dot product, consistently outperforms both SVD-
based and plain vector models in terms of relative
performance, thus it is able to achieve compara-
ble results on very small datasets. Actually, the
improvement on absolute performance measures
of this random walk by making the dataset even
smaller calls for future research.
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Abstract

In this paper, we address the problem of event 
coreference resolution as specified in the Au-
tomatic Content Extraction (ACE1

1 Introduction

) program.
In contrast to entity coreference resolution, 
event coreference resolution has not received 
great attention from researchers. In this paper, 
we first demonstrate the diverse scenarios of 
event coreference by an example. We then 
model event coreference resolution as a spec-
tral graph clustering problem and evaluate the
clustering algorithm on ground truth event 
mentions using ECM F-Measure. We obtain 
the ECM-F scores of 0.8363 and 0.8312 re-
spectively by using  two methods for compu-
ting coreference matrices.

Typically, an ACE Event Detection and Recog-
nition (VDR) system consists of two steps: first, 
it detects all mentions of events with certain spe-
cified types occurring in the raw text (event men-
tion detection) and second, it unifies the event 
mentions into equivalence classes so that all the 
mentions in a given class refer to an event (event 
coreference resolution). ACE defines the follow-
ing terminologies related with VDR:

Event: a specific occurrence involving partic-
ipants. An ACE event has six attributes (type, 
subtype, modality, polarity, genericity and 
tense), zero or more event arguments, and a 
cluster of event mentions.
Event trigger: the word that most clearly ex-
presses an event’s occurrence.
Event argument:  an entity, or a temporal ex-
pression or a value that has a certain role (e.g., 
Time-Within, Place) in an event. 
Event mention: a sentence (or a text span
extent) that mentions an event, including a 
distinguished trigger and involving arguments.

1 http://www.nist.gov/speech/tests/ace/

In contrast to entity coreference, the scenarios 
in event coreference are more complicated, 
mainly because entity coreference is word (or 
phrase)-level coreference whereas event corefe-
rence is sentence-level coreference and therefore
the coreferring event mentions may have more 
flexible linguistic structures than entity mentions.
We provide an example to demonstrate this di-
versity. 

EM1An {explosion} in a cafe at one of the capital's 
busiest intersections killed one woman and injured 
another Tuesday
EM2Police were investigating the cause of the {ex-
plosion} in 

, police said.

the restroom of the multistory Crocodile 
Cafe in the commercial district of Kizilay dur-
ing the morning rush hour. EM3The {blast} shattered 
walls and windows in the building
EM4Ankara police chief Ercument Yilmaz vi-
sited 

.

the site of the morning blast but refused to say 
if a bomb
EM5The {explosion} comes a month after EM6

had caused the {explosion}.
a bomb

{exploded} at a McDonald's restaurant in Istanbul

EM7

,
causing damage but no injuries.

Radical leftist, Kurdish and Islamic groups are 
active in the country and have carried out {bomb-
ings} in the past.

Table 1. Source text and event mentions

Table 1 shows the source text of a news story. 
As an example, we only tag the event mentions 
which have the event type and subtype of (Con-
flict:Attack). In each event mention, the trigger is 
surrounded by curly brackets, and arguments are 
underlined. 

Table 2 shows the tabular representation of 
those event mentions.

Table 3 shows that the five event mentions in 
event EV1 corefer with each other. We summar-
ize EV1 as follows: a bomb (E4-1) exploded in 
the restroom (E2-1) of a café (E1-1 or E1-2) dur-
ing Tuesday morning’s rush hour (combination 
of T1-1, T2-1 and T3-1). EV2 is a different at-
tack event because the target (E6-1) in EV2 dif-
fers from the one (E1-3) in EV1. EV3 tells that 
the bombing attacks have occurred generically 
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(thus the event attribute “genericity” is “General” 
whereas it is “Specific” in EV1 and EV2).

EM1 Trigger: explosion
Arguments (ID: ROLE):
(E1-1: Place) a cafe at one of the capital's 
busiest intersections
(T1-1: Time-Within) Tuesday

EM2 Trigger: explosion
Arguments:
(E2-1: Place) the restroom of the multistory 
Crocodile Cafe
(E3-1: Place) the commercial district of 
Kizilay
(T2-1: Time-Within) the morning rush hour

EM3 Trigger: blast
Arguments: 
(E1-2: Place) the building

EM4 Trigger: explosion
Arguments: 
(E4-1: Instrument) a bomb
(E1-3: Target) the site of the morning blast
(T3-1: Time-Within) morning

EM5 Trigger: explosion
Arguments: None

EM6 Trigger: exploded
Arguments: 
(E5-1: Instrument) a bomb
(E6-1: Target) a McDonald's restaurant
(E7-1: Place) Istanbul

EM7 Trigger: bombings
(E8-1: Attacker) Radical leftist, Kurdish 
and Islamic groups
(E9-1: Place) the country
(T4-1: Time-Within) the past

Table 2. Tabular representation of event mentions

Event Included event mentions 
EV1 {EM1,EM2,EM3,EM4,EM5}
EV2 {EM6}
EV3 {EM7}

Table 3. Event coreference results

2 Event Coreference Resolution as 
Spectral Graph Clustering

We view the event coreference space as an undi-
rected weighted graph in which the nodes 
represent all the event mentions in a document 
and the edge weights indicate the coreference 
confidence between two event mentions. In real 
implementation,  we initially construct different 
graphs for separate event types 2

2 We view the 33 ACE event subtypes as event types

, such that, in 
each graph, all the event mentions have the same 
event type. Similar to (Nicolae and Nicolae, 
2006), we formally define a framework for event 
coreference resolution.

Let = { : 1 } be event men-
tions in the document and = { : 1 }
be  events. Let : be the function 
mapping from an event mention to an 
event . Let : × [0,1] be 
the function that computes the coreference confi-
dence between two event mentions ,

. Let = { : 1 } be event types. 
Thus for each event type , we have a graph ( , ) , where = { | ( ). = ,} and = ( , , ( , )) , .

We then model event coreference resolution as
a spectral graph clustering problem that optimiz-
es the normalized-cut criterion (Shi and Malik, 
2000). Such optimization can be achieved by 
computing the second generalized eigenvector, 
thus the name “spectral”. In this paper, we do not 
try to propose a new spectral clustering algo-
rithm  or improve the existing algorithm. Instead, 
we focus on how to compute the coreference ma-
trix (equivalently, the affinity matrix in Shi and 
Malik’s algorithm) because a better estimation of 
coreference matrix can reduce the burden on 
clustering algorithm.

3 Coreference Matrix 

3.1 Method 1: Computing a Coreference Formula
Obviously, the trigger pair and the argument sets 
owned by two event mentions carry much infor-
mation about whether one event mention corefers 
with the other. Based on a corpus, we compute 
the statistics about event mention pairs (with the 
same event type)  listed in Table 4.

Let . be the trigger in ,( . ) be the stem of the trigger in 
, ( . , . ) be the 

semantic similarity between the two triggers in 
and as computed in (Seco et al., 2004),  . be the argument (ID and ROLE) set in 
. Let 1 be the conjunction operator on ar-

gument pairs whose ID 3

=   1+ where

and ROLE match, 2
be the conjunction operator on argument pairs 
whose ID matches but ROLE does not match, 3
be the conjunction operator on argument pairs 
whose ROLE matches but ID does not match, 4
be the conjunction operator on argument pairs 
whose ID and ROLE do not match. We then pro-
pose the following formula to measure the core-
ference value between and .

3 We view two argument IDs “E1-1” and “E1-2” as a match 
if they mention the same entity which is “E1”
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The strength of this formula is that it allows to 
give credit to different cases of trigger matching 
and argument pair matching between two event 
mentions.

T11 in those coreferring event mention pairs, how 
many pairs use exactly the same triggers

T12 in those non-coreferring event mention pairs, how 
many pairs use exactly the same triggers

T21 in those coreferring event mention pairs, how 
many pairs do not have the same triggers, but 
have the same stems of triggers

T22 non-coreferring version of T21
T31 in those coreferring event mention pairs, how 

many pairs do not have the same triggers nor the 
same stems, but the semantic similarity between 
two triggers is higher than 0 in WordNet.

T32 non-coreferring version of T31
T41 in those non-coreferring event mention pairs, how 

many pairs are not in T11 or T21 or T31
T42 non- coreferring version that is not T12 or T22 or 

T32
A11 in those coreferring event mention pairs, how 

many argument pairs whose ID and ROLE match
A12 non-coreferring version of A11
A21 in those coreferring event mention pairs, how 

many argument pairs whose ID matches but 
ROLE does not match

A22 non-coreferring version of A21
A31 in those coreferring event mention pairs, how 

many argument pairs whose ROLE matches but 
ID does not match

A32 non-coreferring version of A31
A41 in those non-coreferring event mention pairs, how 

many argument pairs whose ID and ROLE do not 
match

A42 non-coreferring version of A41
Table 4. Statistics of event mention pairs

3.2 Method 2: Applying a Maximum En-
tropy Model

We train a maximum entropy model to produce 
the confidence values for . Each confidence 
value tells the probability that there exists corefe-
rence between event mention and .

, = ( ( , , ))( , )
where ( ,  , ) is a feature and is its 
weight; , is the normalizing factor.

The feature sets applied in the model are listed 
in Table 5 by categories.

4 Experiments and Results

4.1 Data and Evaluation Metrics
We developed and tested the spectral clustering
algorithm for event coreference resolution using 
the ACE 2005 English corpus which contains 
560 documents. We used the ground truth event 
mentions and evaluated our algorithm based on 
ECM F-Measure (Luo, 2005). We reserved 60 
documents for testing purpose and used the left 
500 documents for training/developing purpose 
and for computing the statistics discussed above.
We applied 10-fold cross-validation in the expe-
riment of comparing two methods for computing 
coreference matrix.

4.2 Statistics of Event Mention Pairs
The results of the statistics discussed in Section 
3.1 are presented in Table 6.

T11=1042,T12=1297, T21=240,T22=840,
T31=257, T32=2637, T41=784,T42=5628
A11=888, A12= 1485, A21=31, A22=146,
A31=542, A32=6849, A41=323, A42=3000

Table 6. Results of statistics in 500 documents

From Table 6, we observe that if two event 
mentions use the same trigger or if they have 
arguments whose ID and ROLE match, it is more 
probable for them to corefer with each other than 
other cases.

4.3 Comparison of the Two Methods for 
Computing Coreference Matrix

Figure 1. ECM-F scores for both methods
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Category Features Remarks (EM1: the first event mention, EM2: the second event 
mention)

Lexicon type_subtype pair of event type and subtype in EM1
trigger_pair trigger pair of EM1 and EM2
pos_pair part-of-speech pair of triggers of EM1 and EM2
nominal 1 if the trigger of EM2 is nominal
exact_match 1 if the spellings of triggers in EM1 and EM2 exactly match
stem_match 1 if the stems of triggers in EM1 and EM2 match
trigger_sim quantized semantic similarity score (0-5) using WordNet resource 

Distance token_dist how many tokens between triggers of EM1 and EM2 (quantized)
sentence_dist how many sentences EM1 and EM2 are apart (quantized)
event_dist how many event mentions in between EM1 and EM2 (quantized)

Arguments overlap_num,overlap_roles overlap number of arguments and their roles (role and id exactly 
match) between EM1 and EM2

prior_num, prior_roles the number and the roles of arguments that only appear in EM1
act_num, act_roles the number and the roles of arguments that only appear in EM2
coref_num the number of arguments that corefer each other but have different 

roles between EM1 and EM2
Table 5. EM(Event Mention)-pair features for the maximum entropy model

Figure 1 shows the ECM-F scores for both me-
thods by varying the cut threshold in the cluster-
ing algorithm. Both methods obtain the highest 
ECM-F score at threshold 0.85 and method 1
performs slightly better than method 2 (0.8449 vs. 
0.8418, significant at 85% confidence level,
p<=0.1447). We obtained the ECM-F scores of  
0.8363 and 0.8312 on the test set for method 1
and method 2 respectively. We also obtained
two baseline ECM-F scores, one is 0.535 if we 
consider all the event mentions with the same 
event type as a cluster, the other is 0.7635 if we 
consider each event mention as a cluster.

5 Related Work 

Earlier work on event coreference (e.g. Humph-
reys et al., 1997; Bagga and Baldwin, 1999) in 
MUC was limited to several scenarios, e.g., ter-
rorist attacks, management succession, resigna-
tion. The ACE program takes a further step to-
wards processing more fine-grained events. To 
the best of our knowledge, this paper is the first 
effort to apply graph-based algorithm to the 
problem of event coreference resolution.

Nicolae and Nicolae (2006) proposed a similar 
graph-based framework for entity coreference 
resolution. However, in our task, the event men-
tion has much richer structure than the entity 
mention, thus, it is possible for us to harness the  
useful information from both the triggers and the 
attached arguments in the event mentions.

6 Conclusions and Future Work

In this paper, we addressed the problem of event 
coreference resolution in a graph-based frame-

work, and presented two methods for computing 
the coreference matrix. A practical event corefe-
rence resolver also depends on high-performance 
event extractor. We will further study the impact 
of system generated event mentions on the per-
formance of our coreference resolver. 
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Abstract

Label Propagation, a standard algorithm
for semi-supervised classification, suffers
from scalability issues involving memory
and computation when used with large-
scale graphs from real-world datasets. In
this paper we approach Label Propagation
as solution to a system of linear equations
which can be implemented as a scalable
parallel algorithm using the map-reduce
framework. In addition to semi-supervised
classification, this approach to Label Prop-
agation allows us to adapt the algorithm to
make it usable for ranking on graphs and
derive the theoretical connection between
Label Propagation and PageRank. We pro-
vide empirical evidence to that effect using
two natural language tasks – lexical relat-
edness and polarity induction. The version
of the Label Propagation algorithm pre-
sented here scales linearly in the size of
the data with a constant main memory re-
quirement, in contrast to the quadratic cost
of both in traditional approaches.

1 Introduction

Natural language data often lend themselves to a
graph-based representation. Words can be linked
by explicit relations as in WordNet (Fellbaum,
1989), and documents can be linked to one an-
other via hyperlinks. Even in the absence of such a
straightforward representation it is possible to de-
rive meaningful graphs such as the nearest neigh-
bor graphs, as done in certain manifold learning
methods, e.g. Roweis and Saul (2000); Belkin and
Niyogi (2001). Typically, these graphs share the
following properties:

• They are edge-weighted.

• The edge weight encodes some notion of re-
latedness between the vertices.

• The relation represented by edges is at least
weakly transitive. Examples of such rela-
tions include, “is similar to”, “is more gen-
eral than”, and so on. It is important that the
relations selected are transitive for the graph-
based learning methods using random walks.

Such graphs present several possibilities for
solving natural language problems involving rank-
ing, classification, and clustering. Graphs have
been successfully employed in machine learning
in a variety of supervised, unsupervised, and semi-
supervised tasks. Graph based algorithms perform
better than their counterparts as they capture the
latent structure of the problem. Further, their ele-
gant mathematical framework allows simpler anal-
ysis to gain a deeper understanding of the prob-
lem. Despite these advantages, implementations
of most graph-based learning algorithms do not
scale well on large datasets from real world prob-
lems in natural language processing. With large
amounts of unlabeled data available, the graphs
can easily grow to millions of nodes and most ex-
isting non-parallel methods either fail to work due
to resource constraints or find the computation in-
tractable.

In this paper we describe a scalable implemen-
tation of Label Propagation, a popular random
walk based semi-supervised classification method.
We show that our framework can also be used for
ranking on graphs. Our parallel formulation shows
a theoretical connection between Label Propaga-
tion and PageRank. We also confirm this em-
pirically using the lexical relatedness task. The
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proposed Parallel Label Propagation scales up lin-
early in the data and the number of processing ele-
ments available. Also, the main memory required
by the method does not grow with the size of the
graph.

The outline of this paper is as follows: Section 2
introduces the manifold assumption and explains
why graph-based learning algorithms perform bet-
ter than their counterparts. Section 3 motivates
the random walk based approach for learning on
graphs. Section 4 introduces the Label Propaga-
tion method by Zhu et al. (2003). In Section 5 we
describe a method to scale up Label Propagation
using Map-Reduce. Section 6 shows how Label
Propagation could be used for ranking on graphs
and derives the relation between Label Propaga-
tion and PageRank. Parallel Label Propagation is
evaluated on ranking and semi-supervised classifi-
cation problems in natural language processing in
Section 8. We study scalability of this algorithm in
Section 9 and describe related work in the area of
parallel algorithms and machine learning in Sec-
tion 10.

2 Manifold Assumption

The training data D can be considered as a collec-
tion of tuples D = (X ,Y) where Y are the labels
and X are the features, and the learned modelM
is a surrogate for an underlying physical process
which generates the data D. The data D can be
considered as a sampling from a smooth surface or
a manifold which represents the physical process.
This is known as the manifold assumption (Belkin
et al., 2005). Observe that even in the simple case
of Euclidean data (X = {x : x ∈ Rd}) as shown
in Figure 1, points that lie close in the Euclidean
space might actually be far off on the manifold.
A graph, as shown in Figure 1c, approximates the
structure of the manifold which was lost in vector-
ized algorithms operating in the Euclidean space.
This explains the better performance of graph al-
gorithms for learning as seen in the literature.

3 Distance measures on graphs

Most learning tasks on graphs require some notion
of distance or similarity to be defined between the
vertices of a graph. The most obvious measure of
distance in a graph is the shortest path between the
vertices, which is defined as the minimum number
of intervening edges between two vertices. This is
also known as the geodesic distance. To convert

this distance measure to a similarity measure, we
take the reciprocal of the shortest-path length. We
refer to this as the geodesic similarity.

Figure 2: Shortest path distances on graphs ignore
the connectivity structure of the graph.

While shortest-path distances are useful in
many applications, it fails to capture the following
observation. Consider the subgraph of WordNet
shown in Figure 2. The term moon is con-
nected to the terms religious leader
and satellite.1 Observe that both
religious leader and satellite are
at the same shortest path distance from moon.
However, the connectivity structure of the graph
would suggest satellite to be more similar
than religious leader as there are multiple
senses, and hence multiple paths, connecting
satellite and moon.

Thus it is desirable to have a measure that cap-
tures not only path lengths but also the connectiv-
ity structure of the graph. This notion is elegantly
captured using random walks on graphs.

4 Label Propagation: Random Walk on
Manifold Graphs

An efficient way to combine labeled and unla-
beled data involves construction of a graph from
the data and performing a Markov random walk
on the graph. This has been utilized in Szummer
and Jaakkola (2001), Zhu et. al. (2003), and Azran
(2007). The general idea of Label Propagation in-
volves defining a probability distribution F over
the labels for each node in the graph. For labeled
nodes, this distribution reflects the true labels and
the aim is to recover this distribution for the unla-
beled nodes in the graph.

Consider a graph G(V,E,W ) with vertices V ,
edges E, and an n × n edge weight matrix W =

1The religious leader sense of moon is due to Sun
Myung Moon, a US religious leader.
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(a) (b) (c)

Figure 1: Manifold Assumption [Belkin et al., 2005]: Data lies on a manifold (a) and points along the
manifold are locally similar (b).

[wij ], where n = |V |. The Label Propagation al-
gorithm minimizes a quadratic energy function

E =
1
2

∑
(i, j) ∈ E

wij(Fi − Fj)2 (1)

The general recipe for using random walks
for classification involves constructing the graph
Laplacian and using the pseudo-inverse of the
Laplacian as a kernel (Xiao and Gutman, 2003).
Given a weighted undirected graph, G(V,E,W ),
the Laplacian is defined as follows:

Lij =


di if i = j

−wij if i is adjacent to j
0 otherwise

(2)

where di =
∑
j

wij .

It has been shown that the pseudo-inverse of the
Laplacian L is a kernel (Xiao and Gutman, 2003),
i.e., it satisfies the Mercer conditions. However,
there is a practical limitation to this approach. For
very large graphs, even if the graph Laplacians are
sparse, their pseudo-inverses are dense matrices
requiring O(n2) space. This can be prohibitive in
most computing environments.

5 Parallel Label Propagation

In developing a parallel algorithm for Label
Propagation we instead take an alternate approach
and completely avoid the use of inverse Lapla-
cians for the reasons stated above. Our approach
follows from the observation made from Zhu et
al.’s (2003) Label Propagation algorithm:

Observation: In a weighted graph G(V,E,W )
with n = |V | vertices, minimization of Equation
(1) is equivalent to solving the following system
of linear equations.

∑
(i, j) ∈ E

wijFi =
∑

(i, j) ∈ E
wijFj (3)

∑
c ∈ classes(i)

Fi(c) = 1 ∀i, j ∈ V.

We use this observation to derive an iterative
Label Propagation algorithm that we will later par-
allelize. Consider a weighted undirected graph
G(V,E,W ) with the vertex set partitioned into VL
and VU (i.e., V = VL∪VU ) such that all vertices in
VL are labeled and all vertices in VU are unlabeled.
Typically only a small set of vertices are labeled,
i.e., |VU | � |VL|. Let Fu denote the probability
distribution over the labels associated with vertex
u ∈ V . For v ∈ VL, Fv is known, and we also
add a “dummy vertex” v′ to the graph G such that
wvv′ = 1 and Fv′ = Fv. This is equivalent to the
“clamping” done in (Zhu et al., 2003). Let VD be
the set of dummy vertices.

Algorithm 1: Iterative Label Propogation

repeat
forall v ∈ (V ∪ VD) do

Fv =
∑

(v,u)∈E

wuvFv

Row normalize Fv.
end

until convergence or maxIterations

Observe that every iteration of Algorithm 1 per-
forms certain operations on each vertex of the
graph. Further, these operations only rely on
local information (from neighboring vertices of
the graph). This leads to the parallel algorithm
(Algorithm 2) implemented using the map-reduce
model. Map-Reduce (Dean and Ghemawat, 2004)
is a paradigm for implementing distributed algo-
rithms with two user supplied functions “map” and
“reduce”. The map function processes the input
key/value pairs with the key being a unique iden-
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tifier for a node in the graph and the value corre-
sponds to the data associated with the node. The
mappers run on different machines operating on
different parts of the data and the reduce function
aggregates results from various mappers.

Algorithm 2: Parallel Label Propagation
map(key, value):
begin

d = 0
neighbors = getNeighbors(value);
foreach n ∈ neighbors do

w = n.weight();
d += w ∗ n.getDistribution();

end
normalize(d);
value.setDistribution(d);
Emit(key, value);

end

reduce(key, values): Identity Reducer

Algorithm 2 represents one iteration of Algo-
rithm 1. This is run repeatedly until convergence
or for a specified number of iterations. The al-
gorithm is considered to have converged if the la-
bel distributions associated with each node do not
change significantly, i.e.,

∣∣∣∣F(i+1) − F(i)

∣∣∣∣
2
< ε

for a fixed ε > 0.

6 Label Propagation for Ranking

Graph ranking is applicable in a variety of prob-
lems in natural language processing and informa-
tion retrieval. Given a graph, we would like to
rank the vertices of a graph with respect to a node,
called the pivot node or query node. Label Prop-
agation and its variants (Szummer and Jaakkola,
2001; Zhu et al., 2003; Azran, 2007) have been
traditionally used for semi-supervised classifica-
tion. Our view of Label Propagation (via Algo-
rithm 1) suggests a way to perform ranking on
graphs.

Ranking on graphs can be performed in the Par-
allel Label Propagation framework by associating
a single point distribution with all vertices. The
pivot node has a mass fixed to the value 1 at all it-
erations. In addition, the normalization step in Al-
gorithm 2 is omitted. At the end of the algorithm,
the mass associated with each node determines its
rank.

6.1 Connection to PageRank
It is interesting to note that Algorithm 1 brings
out a connection between Label Propagation and

PageRank (Page et al., 1998). PageRank is a ran-
dom walk model that allows the random walk to
“jump” to its initial state with a nonzero proba-
bility (α). Given the probability transition matrix
P = [Prs], where Prs is the probability of jumping
from node r to node s, the weight update for any
vertex (say v) is derived as follows

vt+1 = αvtP + (1− α)v0 (4)

Notice that when α = 0.5, PageRank is reduced
to Algorithm 1, by a constant factor, with the ad-
ditional (1− α)v0 term corresponding to the con-
tribution from the “dummy vertices” VD in Algo-
rithm 1.

We can in fact show that Algorithm 1 reduces to
PageRank as follows:

vt+1 = αvtP + (1− α)v0

∝ vtP +
(1− α)
α

v0

= vtP + βv0

(5)

where β = (1−α)
α . Thus by setting the edge

weights to the dummy vertices to β, i.e., ∀(z, z′) ∈
E and z′ ∈ VD, wzz′ = β, Algorithm 1, and hence
Algorithm 2, reduces to PageRank. Observe that
when β = 1 we get the original Algorithm 1.
We’ll refer to this as the “β-correction”.

7 Graph Representation

Since Parallel Label Propagation algorithm uses
only local information, we use the adjacency list
representation (which is same as the sparse adja-
cency matrix representation) for the graph. This
representation is important for the algorithm to
have a constant main memory requirement as no
further lookups need to be done while comput-
ing the label distribution at a node. The interface
definition for the graph is listed in Appendix A.
Often graph data is available in an edge format,
as <source, destination, weight> triples. We use
another map-reduce step (Algorithm 3) to convert
that data to the form shown in Appendix A.

8 Evaluation

We evaluate the Parallel Label Propagation algo-
rithm for both ranking and semi-supervised clas-
sification. In ranking our goal is to rank the ver-
tices of a graph with respect to a given node called
the pivot/query node. In semi-supervised classi-
fication, we are given a graph with some vertices
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Algorithm 3: Graph Construction
map(key, value):
begin

edgeEntry = value;
Node n(edgeEntry);
Emit(n.id, n);

end

reduce(key, values):
begin

Emit(key, serialize(values));
end

labeled and would like to predict labels for the re-
maining vertices.

8.1 Ranking

To evaluate ranking, we consider the problem
of deriving lexical relatedness between terms.
This has been a topic of interest with applica-
tions in word sense disambiguation (Patwardhan
et al., 2005), paraphrasing (Kauchak and Barzilay,
2006), question answering (Prager et al., 2001),
and machine translation (Blatz et al., 2004), to
name a few. Following the tradition in pre-
vious literature we evaluate on the Miller and
Charles (1991) dataset. We compare our rankings
with the human judegments using the Spearman
rank correlation coefficient. The graph for this
task is derived from WordNet, an electronic lex-
ical database. We compare Algorithm 2 with re-
sults from using geodesic similarity as a baseline.

As observed in Table 1, the parallel implemen-
tation in Algorithm 2 performs better than rank-
ing using geodesic similarity derived from short-
est path lengths. This reinforces the motivation of
using random walks as described in Section 3.

Method Spearman
Correlation

Geodesic (baseline) 0.28
Parallel Label 0.36
Propagation

Table 1: Lexical-relatedness results: Comparison
with geodesic similarity.

We now empirically verify the equivalence of
the β-corrected Parallel Label Propagation and
PageRank established in Equation 4. To do this,
we use α = 0.1 in the PageRank algorithm and
set β = (1−α)

α = 9 in the β-corrected Parallel La-

bel Propagation algorithm. The results are seen in
Table 2.

Method Spearman
Correlation

PageRank (α = 0.1) 0.39
Parallel Label 0.39
Propagation (β = 9)

Table 2: Lexical-relatedness results: Comparision
of PageRank and β-corrected Parallel Label Prop-
agation

8.2 Semi-supervised Classification

Label Propagation was originally developed as a
semi-supervised classification method. Hence Al-
gorithm 2 can be applied without modification.
After execution of Algorithm 2, every node v in
the graph will have a distribution over the labels
Fv. The predicted label is set to arg max

c∈classes(v)
Fv(c).

To evaluate semi-supervised classification we
consider the problem of learning sentiment polar-
ity lexicons. We consider the polarity of a word to
be either positive or negative. For example, words
such as good, beautiful , and wonderful are consid-
ered as positive sentiment words; whereas words
such as bad, ugly, and sad are considered negative
sentiment words. Learning such lexicons has ap-
plications in sentiment detection and opinion min-
ing. We treat sentiment polarity detection as a
semi-supervised Label Propagation problem in a
graph. In the graph, each node represents a word
whose polarity is to be determined. Each weighted
edge encodes a relation that exists between two
words. Each node (word) can have two labels:
positive or negative. It is important to note that La-
bel Propagation, and hence Algorithms 1&2, sup-
port multi-class classification but for the purpose
of this task we have two labels. The graph for the
task is derived from WordNet. We use the Gen-
eral Inquirer (GI)2 data for evaluation. General
Inquirer is lexicon of English words hand-labeled
with categorical information along several dimen-
sions. One such dimension is called valence, with
1915 words labeled “Positiv” (sic) and 2291 words
labeled “Negativ” for words with positive and neg-
ative sentiments respectively. We used a random
20% of the data as our seed labels and the rest
as our unlabeled data. We compare our results

2http://www.wjh.harvard.edu/∼inquirer/
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(a) (b)

Figure 3: Scalability results: (a) Scaleup (b) Speedup

(F-scores) with another scalable previous work by
Kim and Hovy (Kim and Hovy, 2006) in Table 2
for the same seed set. Their approach starts with a
few seeds of positive and negative terms and boot-
straps the list by considering all synonyms of pos-
itive word as positive and antonyms of positive
words as negative. This procedure is repeated mu-
tatis mutandis for negative words in the seed list
until there are no more words to add.

Method Nouns Verbs Adjectives
Kim & Hovy 34.80 53.36 47.28
Parallel Label 58.53 83.40 72.95
Propagation

Table 3: Polarity induction results (F-scores)

The performance gains seen in Table 3 should
be attributed to the Label Propagation in general
as the previous work (Kim and Hovy, 2006) did
not utilize a graph based method.

9 Scalability experiments

We present some experiments to study the scala-
bility of the algorithm presented. All our experi-
ments were performed on an experimental cluster
of four machines to test the concept. The machines
were Intel Xeon 2.4 GHz with 1Gb main memory.
All performance measures were averaged over 20
runs.

Figure 3a shows scaleup of the algorithm which
measures how well the algorithm handles increas-
ing data sizes. For this experiment, we used all
nodes in the cluster. As observed, the increase in
time is at most linear in the size of the data. Fig-
ure 3b shows speedup of the algorithm. Speedup
shows how well the algorithm performs with in-
crease in resources for a fixed input size. In

this case, we progressively increase the number of
nodes in the cluster. Again, the speedup achieved
is linear in the number of processing elements
(CPUs). An appealing factor of Algorithm 2 is that
the memory used by each mapper process is fixed
regardless of the size of the graph. This makes the
algorithm feasible for use with large-scale graphs.

10 Related Work

Historically, there is an abundance of work in par-
allel and distributed algorithms for graphs. See
Grama et al. (2003) for survey chapters on the
topic. In addition, the emergence of open-source
implementations of Google’s map-reduce (Dean
and Ghemawat, 2004) such as Hadoop3 has made
parallel implementations more accessible.

Recent literature shows tremendous interest in
application of distributed computing to scale up
machine learning algorithms. Chu et al. (2006)
describe a family of learning algorithms that fit
the Statistical Query Model (Kearns, 1993). These
algorithms can be written in a special summation
form that is amenable to parallel speed-up. Exam-
ples of such algorithms include Naive Bayes, Lo-
gistic Regression, backpropagation in Neural Net-
works, Expectation Maximization (EM), Princi-
pal Component Analysis, and Support Vector Ma-
chines to name a few. The summation form can be
easily decomposed so that the mapper can com-
pute the partial sums that are then aggregated by a
reducer. Wolfe et al. (2008) describe an approach
to estimate parameters via the EM algorithm in a
setup aimed to minimize communication latency.

The k-means clustering algorithm has been an
archetype of the map-reduce framework with sev-
eral implementations available on the web. In

3http://hadoop.apache.org/core
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addition, the Netflix Million Dollar Challenge4

generated sufficient interest in large scale cluster-
ing algorithms. (McCallum et al., 2000), describe
algorithmic improvements to the k-means algo-
rithm, called canopy clustering, to enable efficient
parallel clustering of data.

While there is earlier work on scalable map-
reduce implementations of PageRank (E.g., Gle-
ich and Zhukov (2005)) there is no existing liter-
ature on parallel algorithms for graph-based semi-
supervised learning or the relationship between
PageRank and Label Propagation.

11 Conclusion

In this paper, we have described a parallel algo-
rithm for graph ranking and semi-supervised clas-
sification. We derived this by first observing that
the Label Propagation algorithm can be expressed
as a solution to a set of linear equations. This is
easily expressed as an iterative algorithm that can
be cast into the map-reduce framework. This al-
gorithm uses fixed main memory regardless of the
size of the graph. Further, our scalability study re-
veals that the algorithm scales linearly in the size
of the data and the number of processing elements
in the cluster. We also showed how Label Prop-
agation can be used for ranking on graphs and
the conditions under which it reduces to PageR-
ank. We evaluated our implementation on two
learning tasks – ranking and semi-supervised clas-
sification – using examples from natural language
processing including lexical-relatedness and senti-
ment polarity lexicon induction with a substantial
gain in performance.

A Appendix A: Interface definition for
Undirected Graphs

In order to guarantee the constant main memory
requirement of Algorithm 2, the graph represen-
tation should encode for each node, the complete
information about it’s neighbors. We represent
our undirected graphs in the Google’s Protocol
Buffer format.5 Protocol Buffers allow a compact,
portable on-disk representation that is easily ex-
tensible. This definition can be compiled into effi-
cient Java/C++ classes.

The interface definition for undirected graphs is
listed below:

4http://www.netflixprize.com
5Implementation available at

http://code.google.com/p/protobuf/

package graph;

message NodeNeighbor {
required string id = 1;
required double edgeWeight = 2;
repeated double labelDistribution = 3;

}

message UndirectedGraphNode {
required string id = 1;
repeated NodeNeighbor neighbors = 2;
repeated double labelDistribution = 3;

}

message UndirectedGraph {
repeated UndirectedGraphNode nodes = 1;

}

References
Arik Azran. 2007. The rendezvous algorithm: Multi-

class semi-supervised learning with markov random
walks. In Proceedings of the International Confer-
ence on Machine Learning (ICML).

Micheal. Belkin, Partha Niyogi, and Vikas Sindhwani.
2005. On manifold regularization. In Proceedings
of AISTATS.

John Blatz, Erin Fitzgerald, George Foster, Simona
Gandrabur, Cyril Goutte, Alex Kulesza, Alberto
Sanchis, and Nicola Ueffing. 2004. Confidence es-
timation for machine translation. In Proceeding of
COLING.

Cheng T. Chu, Sang K. Kim, Yi A. Lin, Yuanyuan Yu,
Gary R. Bradski, Andrew Y. Ng, and Kunle Oluko-
tun. 2006. Map-reduce for machine learning on
multicore. In Proceedings of Neural Information
Processing Systems.

Jeffrey Dean and Sanjay Ghemawat. 2004. Map-
reduce: Simplified data processing on large clusters.
In Proceedings of the symposium on Operating sys-
tems design and implementation (OSDI).

Christaine Fellbaum, editor. 1989. WordNet: An Elec-
tronic Lexical Database. The MIT Press.

D. Gleich and L. Zhukov. 2005. Scalable comput-
ing for power law graphs: Experience with parallel
pagerank. In Proceedings of SuperComputing.

Ananth Grama, George Karypis, Vipin Kumar, and An-
shul Gupta. 2003. Introduction to Parallel Comput-
ing (2nd Edition). Addison-Wesley, January.

David Kauchak and Regina Barzilay. 2006. Para-
phrasing for automatic evaluation. In Proceedings
of HLT-NAACL.

Michael Kearns. 1993. Efficient noise-tolerant learn-
ing from statistical queries. In Proceedings of the
Twenty-Fifth Annual ACM Symposium on Theory of
Computing (STOC).

64



Soo-Min Kim and Eduard H. Hovy. 2006. Identifying
and analyzing judgment opinions. In Proceedings of
HLT-NAACL.

Andrew McCallum, Kamal Nigam, and Lyle H. Un-
gar. 2000. Efficient clustering of high-dimensional
data sets with application to reference matching.
In Knowledge Discovery and Data Mining (KDD),
pages 169–178.

G. Miller and W. Charles. 1991. Contextual correlates
of semantic similarity. In Language and Cognitive
Process.

Larry Page, Sergey Brin, Rajeev Motwani, and Terry
Winograd. 1998. The pagerank citation ranking:
Bringing order to the web. Technical report, Stan-
ford University, Stanford, CA.

Siddharth Patwardhan, Satanjeev Banerjee, and Ted
Pedersen. 2005. Senserelate::targetword - A gen-
eralized framework for word sense disambiguation.
In Proceedings of ACL.

John M. Prager, Jennifer Chu-Carroll, and Krzysztof
Czuba. 2001. Use of wordnet hypernyms for an-
swering what-is questions. In Proceedings of the
Text REtrieval Conference.

M. Szummer and T. Jaakkola. 2001. Clustering and
efficient use of unlabeled examples. In Proceedings
of Neural Information Processing Systems (NIPS).

Jason Wolfe, Aria Haghighi, and Dan Klein. 2008.
Fully distributed EM for very large datasets. In Pro-
ceedings of the International Conference in Machine
Learning.

W. Xiao and I. Gutman. 2003. Resistance distance and
laplacian spectrum. Theoretical Chemistry Associa-
tion, 110:284–289.

Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty.
2003. Semi-supervised learning using Gaussian
fields and harmonic functions. In Proceedings of
the International Conference on Machine Learning
(ICML).

65



Proceedings of the 2009 Workshop on Graph-based Methods for Natural Language Processing, ACL-IJCNLP 2009, pages 66–74,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Opinion Graphs for Polarity and Discourse Classification ∗

Swapna Somasundaran
Univ. of Pittsburgh

Pittsburgh, PA 15260

swapna@cs.pitt.edu

Galileo Namata
Univ. of Maryland

College Park, MD 20742

namatag@cs.umd.edu

Lise Getoor
Univ. of Maryland

College Park, MD 20742

getoor@cs.umd.edu

Janyce Wiebe
Univ. of Pittsburgh

Pittsburgh, PA 15260

wiebe@cs.pitt.edu

Abstract

This work shows how to construct
discourse-level opinion graphs to perform
a joint interpretation of opinions and dis-
course relations. Specifically, our opinion
graphs enable us to factor in discourse in-
formation for polarity classification, and
polarity information for discourse-link
classification. This inter-dependent frame-
work can be used to augment and im-
prove the performance of local polarity
and discourse-link classifiers.

1 Introduction

Much research in opinion analysis has focused on
information from words, phrases and semantic ori-
entation lexicons to perform sentiment classifica-
tion. While these are vital for opinion analysis,
they do not capture discourse-level associations
that arise from relations between opinions. To cap-
ture this information, we propose discourse-level
opinion graphs for classifying opinion polarity.

In order to build our computational model, we
combine a linguistic scheme opinion frames (So-
masundaran et al., 2008) with a collective classifi-
cation framework (Bilgic et al., 2007). According
to this scheme, two opinions are related in the dis-
course when their targets (what they are about) are
related. Further, these pair-wise discourse-level
relations between opinions are either reinforcing
or non-reinforcing frames. Reinforcing frames
capture reinforcing discourse scenarios where the
individual opinions reinforce one another, con-
tributing to the same opinion polarity or stance.
Non-reinforcing frames, on the other hand, cap-
ture discourse scenarios where the individual opin-
ions do not support the same stance. The indi-
vidual opinion polarities and the type of relation

∗This research was supported in part by the Department
of Homeland Security under grant N000140710152.

between their targets determine whether the dis-
course frame is reinforcing or non-reinforcing.

Our polarity classifier begins with information
from opinion lexicons to perform polarity classifi-
cation locally at each node. It then uses discourse-
level links, provided by the opinion frames, to
transmit the polarity information between nodes.
Thus the opinion classification of a node is not
just dependent on its local features, but also on the
class labels of related opinions and the nature of
these links. We design two discourse-level link
classifiers: the target-link classifier, which deter-
mines if a given node pair has unrelated targets (no
link), or if their targets have a same or alternative
relation, and the frame-link classifier, which deter-
mines if a given node pair has no link, reinforcing
or non-reinforcing link relation. Both these classi-
fiers too first start with local classifiers that use lo-
cal information. The opinion graph then provides
a means to factor in the related opinion informa-
tion into the link classifiers. Our approach enables
using the information in the nodes (and links) to
establish or remove links in the graph. Thus in-
formation flows to and fro between all the opinion
nodes and discourse-level links to achieve a joint
inference.

The paper is organized as follows: We first de-
scribe opinion graphs, a structure that can capture
discourse-level opinion relationships in Section 2,
and then describe our joint interpretation approach
to opinion analysis in Section 3. Next, we describe
our algorithm for joint interpretation in Section 4.
Our experimental results are reported in Section 5.
We discuss related work in Section 6 and conclude
in Section 7.

2 Discourse-Level Opinion Graphs

The pairwise relationships that compose opinion
frames can be used to construct a graph over opin-
ion expressions in a discourse, which we refer
to as the discourse-level opinion graph (DLOG).
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Figure 1 Opinion Frame Annotations.

In this section, we describe these graphs and il-
lustrate their applicability to goal-oriented multi-
party conversations.

The nodes in the DLOG represent opinions, and
there are two kinds of links: target links and frame
links. Each opinion node has a polarity (positive,
negative or neutral) and type (sentiment or argu-
ing). Sentiment opinions are evaluations, feelings
or judgments about the target. Arguing opinions
argue for or against something. Target links are
labeled as either same or alternatives. Same links
hold between targets that refer to the same en-
tity or proposition, while alternative links hold be-
tween targets that are related by virtue of being op-
posing (mutually exclusive) options in the context
of the discourse. The frame links correspond to
the opinion frame relation between opinions.

We illustrate the construction of the opinion
graph with an example (Example 1, from Soma-
sundaran et al. (2008)) from a multi-party meet-
ing corpus where participants discuss and design a
new TV remote control. The opinion expressions
are in bold and their targets are in italics. Notice
here that speaker D has a positive sentiment to-
wards the rubbery material for the TV remote.
(1) D:: ... this kind of rubbery material, it’s a bit more

bouncy, like you said they get chucked around a lot.
A bit more durable and that can also be ergonomic
and it kind of feels a bit different from all the other
remote controls.

All the individual opinions in this example are
essentially regarding the same thing – the rub-
bery material. The speaker’s positive sentiment is
apparent from the text spans bit more bouncy,
bit more durable, ergonomic and a bit different
from all the other remote controls. The explicit
targets of these opinions (it’s, that, and it) and the
implicit target of “a bit more durable” are thus all
linked with same relations.

Figure 1 illustrates the individual opinion anno-
tations, target annotations (shown in italics) and

the relations between the targets (shown in dotted
lines). Note that the target of a bit more durable
is a zero span ellipsis that refers back to the rub-
bery material. The opinion frames resulting from
the individual annotations make pairwise connec-
tions between opinion instances, as shown in bold
lines in the figure. For example, the two opinions
bit more bouncy and ergonomic, and the same
link between their targets (it’s and that), make up
an opinion frame. An opinion frame type is de-
rived from the details (type and polarity) of the
opinions it relates and the target relation involved.
Even though the different combinations of opin-
ion type (sentiment and arguing), polarity (posi-
tive and negative) and target links (same and al-
ternative) result in many distinct frames types (32
in total), they can be grouped, according to their
discourse-level characteristics, into the two cat-
egories reinforcing and non-reinforcing. In this
work, we only make this category distinction for
opinion frames and the corresponding frame links.

The next example (Example 2, also from So-
masundaran et al. (2008)) illustrates an alterna-
tive target relation. In the domain of TV remote
controls, the set of all shapes are alternatives to
one another, since a remote control may have only
one shape at a time. In such scenarios, a positive
opinion regarding one choice may imply a nega-
tive opinion toward competing choices, and vice
versa. In this passage, speaker C’s positive stance
towards the curved shape is brought out even more
strongly with his negative opinions toward the al-
ternative, square-like, shapes.

(2) C:: . . . shapes should be curved, so round shapes.
Nothing square-like.
...
C:: . . . So we shouldn’t have too square corners
and that kind of thing.

The reinforcing frames characteristically show
a reinforcement of an opinion or stance in the dis-
course. Both the examples presented above depict
a reinforcing scenario. In the first example, the
opinion towards the rubbery material is reinforced
by repeated positive sentiments towards it, while
in the second example the positive stance towards
the curved shapes is further reinforced by nega-
tive opinions toward the alternative option. Ex-
amples of non-reinforcing scenarios are ambiva-
lence between alternative options (for e.g., “I like
the rubbery material but the plastic will be much
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cheaper”) or mixed opinions about the same tar-
get (for e.g., weighing pros and cons “The rubbery
material is good but it will be just so expensive”).

3 Interdependent Interpretation

Our interdependent interpretation in DLOGs is
motivated by the observation that, when two opin-
ions are related, a clear knowledge of the polarity
of one of them makes interpreting the other much
easier. For instance, suppose an opinion classi-
fier wants to find the polarity of all the opinion
expressions in Example 1. As a first step, it can
look up opinion lexicons to infer that words like
“bouncy”, “durable” and “ ergonomic” are pos-
itive. However, “a bit different ” cannot be re-
solved via this method, as its polarity can be dif-
ferent in different scenarios.

Suppose now we relate the targets of opinions.
There are clues in the passage that the targets are
related via the same relation; for instance they
are all third person pronouns occurring in adja-
cent clauses and sentences. Once we relate the
targets, the opinions of the passage are related via
target links in the discourse opinion graph. We
are also able to establish frames using the opinion
information and target link information wherever
they are available, i.e., a reinforcing link between
bit more bouncy and ergonomic. For the places
where all the information is not available (between
ergonomic and a bit different) there are multiple
possibilities. Depending on the polarity, either a
reinforcing frame (if a bit different has positive
polarity) or a non-reinforcing frame (if a bit dif-
ferent has negative polarity) can exist. There are
clues in the discourse that this passage represents
a reinforcing scenario. For instance there are rein-
forcing frames between the first few opinions, the
repeated use of “and” indicates a list, conjunction
or expansion relation between clauses (according
to the Penn Discourse TreeBank (PDTB) (Prasad
et al., 2008)), and there is a lack of contrastive
clues that would indicate a change in the opin-
ion. Thus the reinforcing frame link emerges as
being the most likely candidate. This in turn dis-
ambiguates the polarity of a bit different. Thus,
by establishing target links and frame links be-
tween the opinion instances, we are able to per-
form a joint interpretation of the opinions.

The interdependent framework of this example
is iterative and dynamic — the information in the
nodes can be used to change the structure (i.e.,

establish new links), and the structure provides a
framework to change node polarity. We build our
classification framework and feature sets with re-
spect to this general framework, where the node
labels as well as the structure of the graph are pre-
dicted in a joint manner.

Thus our interdependent interpretation frame-
work has three main units: an instance polarity
classifier (IPC), a target-link classifier (TLC), and
a frame-link classifier (FLC). IPC classifies each
node (instance), which may be a sentence, utter-
ance or an other text span, as positive, negative
or neutral. The TLC determines if a given node
pair has related targets and whether they are linked
by a same or alternative relation. The FLC deter-
mines if a given node pair is related via frames,
and whether it is a reinforcing or non-reinforcing
link. As we saw in the example, there are local
clues available for each unit to arrive at its classi-
fication. The discourse augments this information
to aid in further disambiguation.

4 Collective Classification Framework

For our collective classification framework, we
use a variant of the iterative classification al-
gorithm (ICA) proposed by Bilgic et al (2007).
It combines several common prediction tasks in
graphs: object classification (predicting the label
of an object) and link prediction (predicting the
existence and class of a link between objects).
For our tasks, object classification directly corre-
sponds to predicting opinion polarity and the link
prediction corresponds to predicting the existence
of a same or alternative target link or a reinforc-
ing or non-reinforcing frame link between opin-
ions. We note that given the nature of our problem
formulation and approach, we use the terms link
prediction and link classification interchangeably.

In the collective classification framework, there
are two sets of features to use. The first are local
features which can be generated for each object or
link, independent of the links in which they par-
ticipate, or the objects they connect. For example,
the opinion instance may contain words that oc-
cur in sentiment lexicons. The local features are
described in Section 4.2. The second set of fea-
tures, the relational features, reflect neighborhood
information in the graph. For frame link classifi-
cation, for example, there is a feature indicating
whether the connected nodes are predicted to have
the same polarity. The relational features are de-
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scribed in Section 4.3.

4.1 DLOG-ICA Algorithm
Our variant of the ICA algorithm begins by pre-
dicting the opinion polarity, and link type using
only the local features. We then randomly order
the set of all opinions and links and, in turn, pre-
dict the polarity or class using the local features
and the values of the currently predicted relational
features based on previous predictions. We repeat
this until some stopping criterion is met. For our
experiments, we use a fixed number of 30 itera-
tions which was sufficient, in most of our datasets,
for ICA to converge to a solution. The pseudocode
for the algorithm is shown in Algorithm 4.1.

Algorithm 1 DLOG-ICA Algorithm
for each opinion o do {bootstrapping}

Compute polarity for o using local attributes
end for
for each target link t do {bootstrapping}

Compute label for t using local attributes
end for
for each frame link f do {bootstrapping}

Compute label for f using local attributes
end for
repeat {iterative classification}

Generate ordering I over all nodes and links
for each i in I do

if i is an opinion instance then
Compute polarity for i using local and
relational attributes

else if i is a target link then
Compute class for i using local and re-
lational attributes

else if i is a frame link then
Compute class for i using local and re-
lational attributes

end if
end for

until Stopping criterion is met

The algorithm is one very simple way of making
classifications that are interdependent. Once the
local and relational features are defined, a variety
of classifiers can be used. For our experiments, we
use SVMs. Additional details are provided in the
experiments section.

4.2 Local Features
For the local polarity classifier, we employ opin-
ion lexicons, dialog information, and unigram fea-

Feature Task
Time difference between the node pair TLC, FLC
Number of intervening instances TLC, FLC
Content word overlap between the node pair TLC,FLC
Focus space overlap between the node pair TLC, FLC
Bigram overlap between the node pair * TLC, FLC
Are both nodes from same speaker * TLC, FLC
Bag of words for each node TLC, FLC
Anaphoric indicator in the second node TLC
Adjacency pair between the node pair FLC
Discourse relation between node pair * FLC

Table 1: Features and the classification task it is used for;
TLC = target-link classification, FLC = Frame-link classifi-
cation

tures. We use lexicons that have been success-
fully used in previous work (the polarity lexicon
from (Wilson et al., 2005) and the arguing lexi-
con (Somasundaran et al., 2007)). Previous work
used features based on parse trees, e.g., (Wilson et
al., 2005; Kanayama and Nasukawa, 2006), but
our data has very different characteristics from
monologic texts – the utterances and sentences are
much shorter, and there are frequent disfluencies,
restarts, hedging and repetitions. Because of this,
we cannot rely on parsing features. On the other
hand, in this data, we have dialog act information1

(Dialog Acts), which we can exploit. Note that the
IPC uses only the Dialog Act tags (instance level
tags like Inform, Suggest) and not the dialog struc-
ture information.

Opinion frame detection between sentences has
been previously attempted (Somasundaran et al.,
2008) by using features that capture discourse
and dialog continuity. Even though our link
classification tasks are not directly comparable
(the previous work performs binary classifica-
tion of frame-present/frame-absent between opin-
ion bearing sentences, while this work performs
three-way classification: no-link/reinforcing/non-
reinforcing between DA pairs), we adapt the fea-
tures for the link classification tasks addressed
here. These features depend on properties of the
nodes that the link connects. We also create some
new features that capture discourse relations and
lexical overlap.

Table 1 lists the link classification features.
New features are indicated with a ‘*’. Continu-
ous discourse indicators, like time difference be-
tween the node pair and number of intervening
instances are useful for determining if the two
nodes can be related. The content word over-

1Manual annotations for Dialog act tags and adjacency
pairs are available for the AMI corpus.
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lap, and focus space overlap features (the focus
space for an instance is a list of the most recently
used NP chunks; i.e., NP chunks in that instance
and a few previous instances) capture the overlap
in topicality within the node pair; while the bi-
gram overlap feature captures the alignment be-
tween instances in terms of function words as well
as content words. The entity-level relations are
captured by the anaphoric indicator feature that
checks for the presence of pronouns such as it and
that in the second node in the node pair. The adja-
cency pair and discourse relation are actually fea-
ture sets that indicate specific dialog-structure and
discourse-level relations. We group the list of dis-
course relations from the PDTB into the following
sets: expansion, contingency, alternative, tempo-
ral, comparison. Each discourse relation in PDTB
is associated with a list of discourse connective
words.2 Given a node pair, if the first word of the
later instance (or the last word first instance) is a
discourse connective word, then we assume that
this node is connecting back (or forward) in the
discourse and the feature set to which the connec-
tive belongs is set to true (e.g., if a latter instance
is “because we should ...”, it starts with the con-
nective “because”, and connects backwards via a
contingency relation). The adjacency pair feature
indicates the presence of a particular dialog struc-
ture (e.g., support, positive-assessment) between
the nodes.

4.3 Relational Features

In addition to the local features, we introduce re-
lational features (Table 2) that incorporate related
class information as well as transfer label informa-
tion between classifiers. As we saw in our example
in Figure 1, we need to know not only the polar-
ity of the related opinions, but also the type of the
relation between them. For example, if the frame
relation between ergonomic and a bit different is
non-reinforcing, then the polarity of a bit differ-
ent is likely to be negative. Thus link labels play
an important role in disambiguating the polarity.
Accordingly, our relational features transfer infor-
mation of class labels from other instances of the
same classifier as well as between different clas-
sifiers. Table 2 lists our relational features. Each
row represents a set of features. Features are gen-
erated for all combinations of x, y and z for each

2The PDTB provides a list of discourse connectives and
the list of discourse relations each connective signifies.

row. For example, one of the features in the first
row is Number of neighbors with polarity type pos-
itive, that are related via a reinforcing frame link.
Thus each feature for the polarity classifier iden-
tifies neighbors for a given node via a specific re-
lation (z or y) and factors in their polarity values.
Similarly, both link classifiers use polarity infor-
mation of the node pair, and other link relations
involving the nodes of the pair.

5 Evaluation

We experimentally test our hypothesis that
discourse-level information is useful and non-
redundant with local information. We also wanted
to test how the DLOG performs for varying
amounts of available annotations: from full neigh-
borhood information to absolutely no neighbor-
hood information.

Accordingly, for polarity classification, we im-
plemented three scenarios: ICA-LinkNeigh, ICA-
LinkOnly and ICA-noInfo. The ICA-LinkNeigh
scenario measures the performance of the DLOG
under ideal conditions (full neighborhood infor-
mation) — the structure of the graph (link infor-
mation) as well as the neighbors’ class are pro-
vided (by an oracle). Here we do not need the
TLC, or the FLC to predict links and the Instance
Polarity Classifier (IPC) is not dependent on its
predictions from the previous iteration. On the
other hand, the ICA-noInfo scenario is the other
extreme, and has absolutely no neighborhood in-
formation. Each node does not know which nodes
in the network it is connected to apriori, and also
has no information about the polarity of any other
node in the network. Here, the structure of the
graph, as well as the node classes, have to be in-
ferred via the collective classification framework
described in Sections 3 and 4. The ICA-LinkOnly
is an intermediate condition, and is representative
of scenarios where the discourse relationships be-
tween nodes is known. Here we start with the link
information (from an oracle) and the IPC uses the
collective classification framework to infer neigh-
bor polarity information.

Similarly, we vary the amounts of neighbor-
hood information for the TLC and FLC classifiers.
In the ICA-LinkNeigh condition, TLC and FLC
have full neighborhood information. In the ICA-
noInfo condition, TLC and FLC are fully depen-
dent on the classifications of the previous rounds.
In the ICA-Partial condition, the TLC classifier
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Feature
Opinion Polarity Classification
Number of neighbors with polarity type x linked via frame link z
Number of neighbors with polarity type x linked via target link y
Number of neighbors with polarity type x and same speaker linked via frame link z
Number of neighbors with polarity type x and same speaker linked via target link y
Target Link Classification
Polarity of the DA nodes
Number of other target links y involving the given DA nodes
Number of other target links y involving the given DA nodes and other same-speaker nodes
Presence of a frame link z between the nodes
Frame Link Classification
Polarity of the DA nodes
Number of other frame links z involving the given DA nodes
Number of other frame links z involving the given DA nodes and other same-speaker nodes
Presence of a target link y between the nodes

Table 2: Relational features: x ∈ {non-neutral (i.e., positive or negative), positive, negative}, y ∈ {same, alt}, z ∈
{reinforcing, non-reinforcing}

uses true frame-links and polarity information,
and previous-stage classifications for information
about neighborhood target links; the FLC classi-
fier uses true target-links and polarity information,
and previous-stage classifications for information
about neighborhood frame-links.

5.1 Data

For our experiments, we use the opinion frame
annotations from previous work (Somasundaran
et al., 2008). These annotations consist of the
opinion spans that reveal opinions, their targets,
the polarity information for opinions, the labeled
links between the targets and the frame links be-
tween the opinions. The annotated data consists
of 7 scenario-based, multi-party meetings from the
AMI meeting corpus (Carletta et al., 2005). The
manual Dialog Act (DA) annotations, provided by
AMI, segment the meeting transcription into sep-
arate dialog acts. We use these DAs as nodes or
instances in our opinion graph.

A DA is assigned the opinion orientation of the
words it contains (for example, if a DA contains a
positive opinion expression, then the DA assigned
the positive opinion category). We filter out very
small DAs (DAs with fewer than 3 tokens, punctu-
ation included) in order to alleviate data skewness
problem in the link classifiers. This gives us a to-
tal of 4606 DA instances, of which 1935 (42%)
have opinions. Out of these 1935, 61.7% are posi-
tive, 30% are negative and the rest are neutral. The
DAs that do not have opinions are considered neu-
tral, and have no links in the DLOG. We create
DA pairs by first ordering the DAs by their start
time, and then pairing a DA with five DAs before
it, and five DAs after it. The classes for target-

link classification are no-link, same, alt. The gold
standard target-link class is decided for a DA pair
based on the target link between the targets of the
opinions contained in that pair. Similarly, the la-
bels for the frame-link labeling task are no-link,
reinforcing, non-reinforcing. The gold standard
frame link class is decided for a DA pair based on
the frame between opinions contained by that pair.
In our data, of the 4606 DAs, 1118 (24.27%) par-
ticipate in target links with other DAs, and 1056
(22.9%) form frame links. The gold standard data
for links, which has pair-wise information, has a
total of 22,925 DA pairs, of which 1371 (6%) pairs
have target links and 1264 (5.5%) pairs have frame
links.

We perform 7-fold cross-validation experi-
ments, using the 7 meetings. In each fold, 6 meet-
ings are used for training and one meeting is used
for testing.

5.2 Classifiers

Our baseline (Base) classifies the test data based
on the distribution of the classes in the training
data. Note that due to the heavily skewed nature of
our link data, this classifier performs very poorly
for minority class prediction, even though it may
achieve good overall accuracy.

For our local classifiers, we used the classifiers
from the Weka toolkit (Witten and Frank, 2002).
For opinion polarity, we used the Weka’s SVM
implementation. For the target link and frame link
classes, the huge class skew caused SVM to learn a
trivial model and always predict the majority class.
To address this, we used a cost sensitive classifier
in Weka where we set the cost of misclassifying a
less frequent class, A, to a more frequent class, B,
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Base Local ICA
LinkNeigh LinkOnly noInfo

Acc 45.9 68.7 78.8 72.9 68.4
Class: neutral (majority class)

Prec 61.2 76.3 83.9 78.2 73.5
Rec 61.5 83.9 89.6 89.1 86.6
F1 61.1 79.6 86.6 83.2 79.3

Class: positive polarity
Prec 26.3 56.2 70.9 63.3 57.6
Rec 26.1 46.6 62.0 47.0 42.8
F1 25.8 50.4 65.9 53.5 48.5

Class: negative polarity
Prec 12.4 52.3 64.6 56.3 55.2
Rec 12.2 44.3 60.2 48.2 38.2
F1 12.2 46.0 61.9 51.2 43.9

Table 3: Performance of Polarity Classifiers

as |B|/|A| where |class| is the size of the class in
the training set. All other misclassification costs
are set to 1.

For our collective classification, we use the
above classifiers for local features (l) and use sim-
ilar, separate classifiers for relational features (r).
For example, we learned an SVM for predicting
opinion polarity using only the local features and
learned another SVM using only relational fea-
tures. For the ICA-noInfo condition, where we
use TLC and FLC classifiers, we combine the
predictions using a weighted combination where
P (class|l, r) = α ∗ P (class|l) + (1 − α) ∗
P (class|r). This allows us to vary the influence
each feature set has to the overall prediction. The
results for ICA-noInfo are reported on the best per-
forming α (0.7).

5.3 Results

Our polarity classification results are presented
in Table 3, specifically accuracy (Acc), precision
(Prec), recall (Rec) and F-measure (F1). As we
can see, the results are mixed. First, we no-
tice that the Local classifier shows substantial im-
provement over the baseline classifier. This shows
that the lexical and dialog features we use are in-
formative of opinion polarity in multi-party meet-
ings.

Next, notice that the ICA-LinkNeigh classifier
performs substantially better than the Local clas-
sifier for all metrics and all classes. The accuracy
improves by 10 percentage points, while the F-
measure improves by about 15 percentage points
for the minority (positive and negative) classes.
This result confirms that our discourse-level opin-
ion graphs are useful and discourse-level informa-
tion is non-redundant with lexical and dialog-act

Base Local ICA
LinkNeigh Partial noInfo
TLC

Acc 88.5 85.8 98.1 98.2 86.3
P-M 33.3 35.9 76.1 76.1 36.3
R-M 33.3 38.1 78.1 78.1 38.1
F1-M 33.1 36.0 74.6 74.6 36.5

FLC
Acc 89.3 86.2 98.9 98.9 87.6
P-M 33.3 36.9 81.3 82.8 38.0
R-M 33.4 41.2 82.2 84.4 41.7
F1-M 33.1 37.2 80.7 82.3 38.1

Table 4: Performance of Link Classifiers

information.
The results for ICA-LinkOnly follow the same

trend as for ICA-LinkNeigh, with a 3 to 5 percent-
age point improvement. These results show that
even when the neighbors’ classes are not known
a priori, joint inference using discourse-level rela-
tions helps reduce errors from local classification.

However, the performance of the ICA-noInfo
system, which is given absolutely no starting in-
formation, is comparable to the Local classifier for
the overall accuracy and F-measure metrics for the
neutral class. There is slight improvement in pre-
cision for both the positive and negative classes,
but there is a drop in their recall. The reason this
classifier does no better than the Local classifier is
because the link classifiers TLC and FLC predict
“none” predominantly due to the heavy class skew.

The performance of the link classifiers are re-
ported in Table 4, specifically the accuracy (Acc)
and macro averages over all classes for preci-
sion (P-M), recall (R-M) and F-measure (F1-M).
Due to the heavy skew in the data, accuracy
of all classifiers is high; however, the macro F-
measure, which depends on the F1 of the minor-
ity classes, is poor for the ICA-noInfo. Note,
however, that when we provide some (Partial) or
full (LinkNeigh) neighborhood information for the
Link classifiers, the performance of these classi-
fiers improve considerably. This overall observed
trend is similar to that observed with the polarity
classifiers.

6 Related Work

Previous work on polarity disambiguation has
used contextual clues and reversal words (Wil-
son et al., 2005; Kennedy and Inkpen, 2006;
Kanayama and Nasukawa, 2006; Devitt and Ah-
mad, 2007; Sadamitsu et al., 2008). However,
these do not capture discourse-level relations.
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Polanyi and Zaenen (2006) observe that a cen-
tral topic may be divided into subtopics in or-
der to perform evaluations. Similar to Somasun-
daran et al. (2008), Asher et al. (2008) advo-
cate a discourse-level analysis in order to get a
deeper understanding of contextual polarity and
the strength of opinions. However, these works do
not provide an implementation for their insights.
In this work we demonstrate a concrete way that
discourse-level interpretation can improve recog-
nition of individual opinions and their polarities.

Graph-based approaches for joint inference in
sentiment analysis have been explored previously
by many researchers. The biggest difference be-
tween this work and theirs is in what the links
represent linguistically. Some of these are not
related to discourse at all (e.g., lexical similari-
ties (Takamura et al., 2007), morphosyntactic sim-
ilarities (Popescu and Etzioni, 2005) and word
based measures like TF-IDF (Goldberg and Zhu,
2006)). Some of these work on sentence cohesion
(Pang and Lee, 2004) or agreement/disagreement
between speakers (Thomas et al., 2006; Bansal
et al., 2008). Our model is not based on sen-
tence cohesion or structural adjacency. The re-
lations due to the opinion frames are based on
relationships between targets and discourse-level
functions of opinions being mutually reinforcing
or non-reinforcing. Adjacent instances need not be
related via opinion frames, while long distant rela-
tions can be present if opinion targets are same or
alternatives. Also, previous efforts in graph-based
joint inference in opinion analysis has been text-
based, while our work is over multi-party conver-
sations.

McDonald et al. (2007) propose a joint model
for sentiment classification based on relations de-
fined by granularity (sentence and document).
Snyder and Barzilay (2007) combine an agree-
ment model based on contrastive RST relations
with a local aspect (topic) model. Their aspects
would be related as same and their high contrast
relations would correspond to (a subset of) the
non-reinforcing frames.

In the field of product review mining, senti-
ments and features (aspects or targets) have been
mined (for example, Yi et al. (2003), Popescu and
Etzioni (2005), and Hu and Liu (2006)). More re-
cently there has been work on creating joint mod-
els of topic and sentiments (Mei et al., 2007; Titov
and McDonald, 2008) to improve topic-sentiment

summaries. We do not model topics; instead we
directly model the relations between targets. The
focus of our work is to jointly model opinion po-
larities via target relations. The task of finding co-
referent opinion topics by (Stoyanov and Cardie,
2008) is similar to our target link classification
task, and we use somewhat similar features. Even
though their genre is different, we plan to experi-
ment with their full feature set for improving our
TLC system.

Turning to collective classification, there have
been various collective classification frameworks
proposed (for example, Neville and Jensen (2000),
Lu and Getoor (2003), Taskar et al. (2004),
Richardson and Domingos (2006)). In this pa-
per, we use an approach proposed by (Bilgic et
al., 2007) which iteratively predicts class and link
existence using local classifiers. Other joint mod-
els used in sentiment classification include the spin
model (Takamura et al., 2007), relaxation labeling
(Popescu and Etzioni, 2005), and label propaga-
tion (Goldberg and Zhu, 2006).

7 Conclusion

This work uses an opinion graph framework,
DLOG, to create an interdependent classifica-
tion of polarity and discourse relations. We em-
ployed this graph to augment lexicon-based meth-
ods to improve polarity classification. We found
that polarity classification in multi-party conver-
sations benefits from opinion lexicons, unigram
and dialog-act information. We found that the
DLOGs are valuable for further improving polar-
ity classification, even with partial neighborhood
information. Our experiments showed three to
five percentage points improvement in F-measure
with link information, and 15 percentage point
improvement with full neighborhood information.
These results show that lexical and discourse in-
formation are non-redundant for polarity classi-
fication, and our DLOG, that employs both, im-
proves performance.

We discovered that link classification is a dif-
ficult problem. Here again, we found that by us-
ing the DLOG framework, and using even partial
neighborhood information, improvements can be
achieved.
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Abstract

We present a graph-based model for rep-
resenting the lexical cohesion of a dis-
course. In the graph structure, vertices cor-
respond to the content words of a text and
edges connecting pairs of words encode
how closely the words are related semanti-
cally. We show that such a structure can be
used to distinguish literal and non-literal
usages of multi-word expressions.

1 Introduction

Multiword expressions (MWEs) are defined as
“idiosyncratic interpretations that cross word
boundaries or spaces” (Sag et al., 2001). Such
expressions are pervasive in natural language;
they are estimated to be equivalent in number
to simplex words in mental lexicon (Jackendoff,
1997). MWEs exhibit a number of lexical, syn-
tactic, semantic, pragmatic and statistical idiosyn-
crasies: syntactic peculiarities (e.g., by and large,
ad hoc), semantic non-compositionality (e.g., as
in kick the bucket (die) and red tape (bureau-
cracy)), pragmatic idiosyncrasies (the expression
is sometimes associated with a fixed pragmatic
point, e.g., good morning, good night), variation
in syntactic flexibility (e.g., I handed in my thesis
= I handed my thesis in vs. Kim kicked the bucket
6= *the bucket was kicked by Kim), variation in
productivity (there are various levels of productiv-
ity for different MWEs, e.g., kick/*beat/*hit the
bucket, call/ring/phone/*telephone up).

These idiosyncrasies pose challenges for NLP
systems, which have to recognize that an expres-
sion is an MWE to deal with it properly. Recogniz-
ing MWEs has been shown to be useful for a num-
ber of applications such as information retrieval
(Lewis and Croft, 1990; Rila Mandala and Tanaka,
2000; Wacholder and Song, 2003) and POS tag-
ging (Piao et al., 2003). It has also been shown

that MWEs account for 8% of parsing errors with
precision grammars (Baldwin et al., 2004). Fur-
thermore, MWE detection is used in information
extraction (Lin, 1998b) and an integral component
of symbolic MT systems (Gerber and Yang, 1997;
Bond and Shirai, 1997).

However, the special properties of MWEs can
also be exploited to recognize MWEs automati-
cally. There have been many studies on MWEs:
identification (determining whether multiple sim-
plex words form a MWE in a given token context,
e.g. put the sweater on vs. put the sweater on
the table), extraction (recognizing MWEs as word
units at the type level), detecting or measuring
compositionality of MWEs, semantic interpreta-
tion (interpreting the semantic association among
components in MWEs).

To extract MWEs, various methods have been
proposed that exploit the syntactic and lexical
fixedness exhibited by MWEs, or apply various
statistical measures across all co-occurrence vec-
tors between the whole expression and its com-
ponent parts (see Section 2). These methods can
be used to automatically identify potentially id-
iomatic expressions at a type level, but they do not
say anything about the idiomaticity of an expres-
sion in a particular context. While some idioms
(e.g., ad hoc) are always used idiomatically, there
are numerous others that can be used both idiomat-
ically (see Example 1) and non-idiomatically (see
Example 2).

(1) When the members of De la Guarda aren’t
hanging around, they’re yelling and
bouncing off the wall.

(2) Blinded by the sun, Erstad leaped at the
wall, but the ball bounced off the wall well
below his glove.

Our work aims to distinguish the literal and
non-literal usages of idiomatic expressions in a
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discourse context (so-called token based classifi-
cation). It is therefore different from type-based
approaches which aim to detect the general id-
iomaticity of an expression rather than its actual
usage in a particular context.

We utilize the cohesive structure of a discourse
(Halliday and Hasan, 1976) to distinguish literal or
non-literal usage of MWEs. The basic idea is that
the component words of an MWE contribute to the
cohesion of the discourse in the literal case, while
in the non-literal case they do not. For instance, in
the literal use of break the ice in Example 3, the
content word ice contributes to the overall seman-
tic connectivity of the whole sentence by the fact
that ice is semantically related to water. In con-
trast, in the non-literal example in 4, the word ice
does not contribute to the overall cohesion as it is
poorly connected to all the other (content) words
in this specific context (play, party, games).

(3) The water would break the ice into floes
with its accumulated energy.

(4) We played a couple of party games to
break the ice.

Our approach bears similarities to Hirst and St-
Onge’s (1998) method for detecting malapropisms
based on their non-participation in cohesive
chains. However, computing such chains requires
a pre-defined similarity threshold which governs
whether a word is placed in a particular chain. Set-
ting this threshold typically requires a manually la-
beled development set, which makes this method
weakly supervised. We propose an alternative,
parameter-free method in which we model the co-
hesive structure of a discourse as a graph structure
(called cohesion graph), where the vertices of the
graph correspond to the content words of the text
and the edges encode the semantic relatedness be-
tween pairs of words. To distinguish between lit-
eral and non-literal use of MWEs, we look at how
the average relatedness of the graph changes when
the component words of the MWE are excluded or
included in the graph (see Section 3).1

We first introduced the cohesion graph method
in Sporleder and Li (2009). In the present paper,

1By modeling lexical cohesion as a graph structure, we
follow earlier approaches in information retrieval, notably by
Salton and colleagues (Salton et al., 1994). The difference is
that these works aim at representing similarity between larger
text segments (e.g., paragraphs) in a so-called ’text’ or ’para-
graph relation map’, whose vertices correspond to a text seg-
ment and whose edges represent the similarity between the
segments (modeled as weighted term overlap).

we provide a formalization of the graph and ex-
periment with different vertex and edge weight-
ing schemes. We also report on experiments with
varying the size of the input context and also with
pruning the graph structure automatically.

2 Related Work

Type-based MWE classification aims to extract
multiword expression types in text from observa-
tions of the token distribution. It aims to pick
up on word combinations which occur with com-
paratively high frequencies when compared to the
frequencies of the individual words (Evert and
Krenn, 2001; Smadja, 19993). The lexical and
syntactic fixedness property can also be utilized to
automatically extract MWEs (Baldwin and Villav-
icencio, 2002).

The study of semantic compositionality of
MWEs focuses on the degree to which the seman-
tics of the parts of an MWE contribute towards the
meaning of the whole. The aim is a binary classi-
fication of the MWEs as idiosyncratically decom-
posable (e.g. spill the beans) or non-decomposable
(e.g. kick the bucket). Several approaches have
been proposed. Lin (1999) uses the substitution
test2 and mutual information (MI) to determine
the compositionality of the phrase. An obvious
change of the MI value of the phrase in the sub-
stitution test is taken as the evidence of the MWEs
being non-compositional. Bannard et al. (2003)
assume that compositional MWEs occur in sim-
ilar lexical context as their component parts. The
co-occurrence vector representations of verb parti-
cle construction (VPC) and the component words
are utilized to determine the compositionality of
the MWE.

There have also been a few token-based classi-
fication approaches, aimed at classifying individ-
ual instances of a potential idiom as literal or non-
literal. Katz and Giesbrecht (2006) make use of
latent semantic analysis (LSA) to explore the local
linguistic context that can serve to identify multi-
word expressions that have non-compositional
meaning. They measure the cosine vector similar-
ity between the vectors associated with an MWE
as a whole and the vectors associated with its con-
stituent parts and interpret it as the degree to which
the MWE is compositional. They report an av-

2The substitution test aims to replace part of the idiom’s
component words with semantically similar words, and test
how the co-occurrence frequency changes.
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erage accuracy of 72%, but the data set used in
their evaluation is small. Birke and Sarkar (2006)
use literal and non-literal seed sets acquired with-
out human supervision to perform bootstrapping
learning. The new instances of potential idioms
are always labeled according to the closest set.
While their approach is unsupervised clustering,
they do rely on some resources such as databases
of idioms. Cook et al. (2007) and Fazly et al.
(2009) rely crucially on the concept of canonical
form (CForm). It is assumed that for each idiom
there is a fixed form (or a small set of those) cor-
responding to the syntactic pattern(s) in which the
idiom normally occurs. The canonical form al-
lows for inflection variation of the heard verb but
not for other variations (such as nominal inflec-
tion, choice of determiner etc.). It has been ob-
served that if an expression is used idiomatically
it typically occurs in its canonical form (Riehe-
mann, 2001). Fazly and her colleagues exploit this
behavior and propose an unsupervised method for
token-based idiom classification in which an ex-
pression is classified as idiomatic if it occurs in
canonical form and literal otherwise. The canon-
ical forms are determined automatically using a
statistical, frequency-based measure. They also
developed statistical measures to measure the lex-
ical and syntactic fixedness of a given expression,
which is used to automatically recognize expres-
sion types, as well as their token identification in
context. They report an average accuracy of 72%
for their canonical form (CForm) classifier.

3 Cohesion Graph

In this section, we first give a formal definition of
the cohesion graph that is used for modeling dis-
course connectivity, then we define the discourse
connectivity. Finally, we introduced our graph-
based classifier for distinguishing literal and non-
literal use of MWEs.

3.1 Cohesion Graph Structure
A cohesion graph (CG) is an undirected complete
graph 3 G = (V,E), where

V : is a set of nodes {v1, v2, ..., vn}, where each
node vi = (ti, idi) represents a unique token in the
discourse. ti is the string form of the token, and idi

denotes the position of the token in the context.
3In the mathematical field of graph theory, a complete

graph is a simple graph in which every pair of distinct vertices
is connected by an edge. The complete graph on n vertices
has n(n− 1)/2 edges.

E: is a set of edges {e12, e13, ..., e(n)(n−1)},
such that each edge eij connects a pair of nodes
(vi, vj). n is the total number of tokens in the dis-
course that the graph models. The value of eij rep-
resents the semantic relatedness of the two tokens
ti, tj that eij connects:

eij = h(ti, tj) (5)

where h is a semantic relatedness assignment
function. The explicit form of h will be discussed
in the next section.

ei is the average semantic relatedness of the to-
ken ti in the discourse. It represents the average
relatedness score of a certain token to its surround-
ing context:

ei =
n∑

j=1,j 6=i

λij × eij (6)

where λij is the weight of the edge eij , with the

constraint,
n∑

j=1,j 6=i

λij = 1.

The edge weight function λij allows us to
weight the relatedness between two tokens, for ex-
ample based on their distance in the text. The mo-
tivation for this is that the closer two tokens occur
together, the more likely it is that their relatedness
is not accidental. For instance, the idiom break
the ice in Example 7 could be misclassified as lit-
eral due to there being a high relatedness score be-
tween ice and snow. The weight function is in-
troduced so that relatedness with tokens that are
closer to MWE component words counts more.

(7) The train was canceled because of the wind
and snow. All the people in the small village
train station felt upset. Suddenly, one guy
broke the ice and proposed to play a game.

The weight function λij is defined in terms of
the inverse of the distance δ between the two token
positions idi and idj :

λij =
δ(idi, idj)∑

j

δ(idi, idj)
(8)

As the semantic relatedness among the MWE
component words does not contain any informa-
tion of how these component words are seman-
tically involved in the context, we do not count
the edges between the MWE component words
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(as e45 in Figure 1). We set all the weights
for connecting MWE component words to be 0,
δ(idmwe′

i , idmwe
j ) = 0.

c(G): is defined as the discourse connectivity
of the cohesion graph. It represents the semantic
relatedness score of the discourse.

c(G) =
n∑

i=1

(βi × ei) (9)

where n is the total number of tokens in the
discourse, βi is the weight of the average seman-
tic relatedness of the token ti with the constraint∑

i

βi = 1. It represents the importance of the

relatedness contribution of a specific token ti in
the discourse. For instance, the word Monday in
Example 12 should be assigned less weight than
the word bilateral as it is not part of the central
theme(s) of the discourse. This is often the case
for time expressions. βi is defined as:

βi =
salience(ti)∑

j

salience(tj)
(10)

To model the salience of a token for the se-
mantic context of the text we use a tf.idf -based
weighting scheme. Since we represent word to-
kens rather than word types in the cohesion graph,
we do not need to model the term frequency tf
separately, instead we set salience to the log value
of the inverse document frequency idf :

salience(ti) = log
|D|

|{d : ti ∈ d}|
(11)

where D is the total number of documents in our
data set and |{d : ti ∈ d}| is the number of docu-
ments in which ti occurs. Terms which are related
to the sub-topics of a document will typically only
occur in a few texts in the collection, hence their
idf (and often also their tf ) is high and they will
thus be given more weight in the graph. Terms
which are not related to the central themes of a
text, such as temporal expressions, will be given
a lower weight. A complication arises for compo-
nent words of the MWE: these occur in all of our
examples and thus will receive a very low idf. This
is an artifact of the data and not what we want as
it means that the average connectivity of the graph
virtually always increases if the MWE is excluded,
causing the classifier to over-predict ’non-literal’.
To counteract this effect, we set |{d : ti ∈ d}| of
these words uniformly to 1.

(12) “Gujral will meet Sharif on Monday and
discuss bilateral relations,” the Press Trust
of India added. The minister said Sharif and
Gujral would be able to “break the ice” over
Kashmir.

3.2 Graph-based Classifier
The cohesion graph based classifier compares the
cohesion graph connectivity of the discourse in-
cluding the MWE component words with the con-
nectivity of the discourse excluding the MWE
component words to check how well the MWE
component words are semantically connected to
the context. If the cohesion graph connectivity
increases by including MWE component words,
the MWE is thought to be semantically well re-
lated to its discourse. It is classified as literal (oth-
erwise as non-literal). In other words, the cohe-
sion graph based algorithm detects the strength of
relatedness between the MWE component words
and their context by calculating the discourse con-
nectivity gain, and classifies instances as literal or
non-literal based on this gain. This process is de-
scribed as Formula 13 (if ∆c > 0, it is literal;
otherwise it is non-literal):

∆c = c(G)− c(G
′
) (13)

where, c(G) is the discourse connectivity of the
context with MWE component words (as shown
with the complete graph in Figure 1 ); c(G′) is
the discourse connectivity of the context without
MWE component words (as shown with the sub-
graph {v1, v2, v3} in Figure 1).

Figure 1: Cohesion Graph for identifying literal or
non-literal usage of MWEs
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4 Modeling Semantic Relatedness

In Section 3.1, we did not define how we model
the semantic relatedness between two tokens
(h(ti, tj)). Modeling semantic relatedness be-
tween two terms is currently an area of active re-
search. There are two main approaches. Methods
based on manually built lexical knowledge bases,
such as WordNet, compute the shortest path be-
tween two concepts in the knowledge base and/or
look at word overlap in the glosses (see Budan-
itsky and Hirst (2006) for an overview). Distri-
butional approaches, on the other hand, rely on
text corpora, and model relatedness by comparing
the contexts in which two words occur, assuming
that related words occur in similar context (e.g.,
Hindle (1990), Lin (1998a), Mohammad and Hirst
(2006)). More recently, there has also been re-
search on using Wikipedia and related resources
for modeling semantic relatedness (Ponzetto and
Strube, 2007; Zesch et al., 2008).

WordNet-based approaches are unsuitable for
our purposes as they only model so-called “classi-
cal relations” like hypernymy, antonymy etc. For
our task, we need to model a wide range of re-
lations, e.g., between ice and water. Hence we
opted for a distributional approach. We experi-
mented with two different approaches, one (DV )
based on syntactic co-occurrences in a large text
corpus and the other (NGD) based on search en-
gine page counts.

Dependency Vectors (DV) is a distributional
approach which does not look simply at word co-
occurrences in a fixed-size window but takes into
account syntactic (dependency) relations between
words (Padó and Lapata, 2007). Each target word
is represented by a co-occurrence vector where di-
mension represents a chosen term and the vector
contains the co-occurrence information between
that word and the chosen terms in a corpus (we
used the BNC in our experiments). A variety of
distance measures can be used to compute the sim-
ilarity of two vectors; here we use the cosine sim-
ilarity which is defined as:

simcos(
−→x ,−→y ) =

nX
i=1

xiyivuut nX
i=1

x2
i

vuut nX
i=1

y2
i

(14)

Normalized Google Distance (NGD) uses the
page counts returned by a search engine as prox-
ies for word co-occurrence and thereby quantifies
the strength of a relationship between two words
(see Cilibrasi and Vitanyi (2007)). The basic idea
is that the more often two terms occur together rel-
ative to their overall occurrence the more closely
they are related. NGD is defined as follows:

NGD(x, y) =
max{log f(x), log f(y)} − log f(x, y)

log M −min{log f(x), log f(y)}
(15)

where x and y are the two words whose associ-
ation strength is computed, f(x) is the page count
returned by the search engine for the term x (and
likewise for f(y) and y), f(x, y) is the page count
returned when querying for “x AND y” (i.e., the
number of pages that contain both, x and y), and
M is the number of web pages indexed by the
search engine. When querying for a term we query
for a disjunction of all its inflected forms.4 As it
is difficult to obtain a specific and reliable number
for the number of pages indexed by a search en-
gine, we approximated it by setting it to the num-
ber of hits obtained for the word the. The assump-
tion is that the word the occurs in all English lan-
guage web pages (Lapata and Keller, 2005).

Using web counts rather than bi-gram counts
from a corpus as the basis for computing semantic
relatedness has the advantage that the web is a sig-
nificantly larger database than any compiled cor-
pus, which makes it much more likely that we can
find information about the concepts we are look-
ing for (thus alleviating data sparseness). How-
ever, search engine counts are notoriously unre-
liable (Kilgariff, 2007; Matsuo et al., 2007) and
while previous studies have shown that web counts
can be used as reliable proxies for corpus-based
counts for some applications (Zhu and Rosenfeld,
2001; Lapata and Keller, 2005) it is not clear that
this also applies when modeling semantic related-
ness. We thus carried out a number of experiments
testing the reliability of page counts (Section 4.1)
and comparing the NGD measure to a standard
distributional approach (Section 4.2).

4The inflected forms were generated by apply-
ing the morph tools developed at the University of
Sussex (Minnen et al., 2001) which are available
at: http://www.informatics.susx.ac.uk/
research/groups/nlp/carroll/morph.html
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4.1 Search Engine Stability
We first carried out some experiments to test the
stability of the page counts returned by two of the
most widely-used search engines, Google and Ya-
hoo. For both search engines, we found a number
of problems.5

Total number of pages indexed The total num-
ber of the web pages indexed by a search engine
varies across time and the numbers provided are
somewhat unreliable. This is a potential problem
for NGD because we need to fix the value of M in
Formula 15. As an approximative solution, we set
it to the number of hits obtained for the word the,
assuming that it will occur in all English language
pages (Lapata and Keller, 2005).

Page count variation The number of page hits
for a given term also varies across time (see exam-
ple (4.1) for two queries for Jim at different times
t1 and t2). However, we found that the variance in
the number of pages tends to be relatively stable
over short time spans, hence we can address this
problem by carrying out all queries in one quick
session without much delay. However, this means
we cannot store page counts in a database and re-
use them at a later stage; for each new example
which we want to classify at a later stage, we have
to re-compute all relevant counts.

(16) Hits(Jim, t1) = 763,000,000
Hits(Jim, t2) = 757,000,000

Problems with conjunction and disjunction
The search engines’ AND and OR operators are
problematic and can return counter-intuitive re-
sults (see Table 1). This is a potential problem
for us because we have to query for conjunctions
of terms and disjunctions of inflected forms. For
the time being we ignored this problem as it is not
straightforward to solve.

OPT = AND OPT = OR
car 3,590,000,000
car OPT car 4,670,000,000 3,550,000,000
car OPT car OPT car 3,490,000,000 3,530,000,000

Table 1: Operator test for Yahoo

Problems with high-frequency terms We also
found that both the Google and Yahoo API seem
to have problems with high frequency words, with
the Google SOAP API throwing an exception and

5See also the discussions in Jean Véronis blog: http://
aixtal.blogspot.com and the comments in Kilgariff
(2007).

the Yahoo API returning the same 10-digit num-
ber for every high frequency word. This might be
a data overflow problem. We addressed this prob-
lem by excluding high frequency words.

When comparing Yahoo and Google we found
that Yahoo’s page counts tend to be more consis-
tent than Google’s. We therefore opted for Yahoo
in our further experiments.

4.2 NGD vs. Co-occurrence Vectors
In principle, we believe that the web-based ap-
proach for computing relatedness is more suitable
for our task since it gives us access to more data
and allows us to also model relations based on (up-
to-date) world knowledge. However, the question
arises whether the stability problems observed in
the previous section have a negative effect on the
performance of the NGD measure. To test this, we
conducted a small study in which we compared
the relatedness scores obtained by NGD and the
semantic vector space model to the human ratings
compiled by Finkelstein et al. (2002).6

We used Spearman’s correlation test (Spear-
man, 1904) to compare the ranked human ratings
to the ranked ratings obtained by NGD and the
vector space method. The (human) inter-annotator
agreement varies a lot for different pairs of annota-
tors (between 0.41 and 0.82 by Spearman’s corre-
lation test), suggesting that deciding on the seman-
tic relatedness between arbitrary pairs of words
is not an easy task even for humans. In gen-
eral, the NGD-human agreement is comparable to
the human-human agreement. The agreement be-
tween the NGD and average human agreement is
higher than some human-human agreements. Fur-
thermore, we found that NGD actually outper-
forms the dependency vector method on this data
set.7 Hence, we decided to use NGD in the fol-
lowing experiments.

5 Experiments

We tested our graph-based classifiers on a manu-
ally annotated data set, which we describe in Sec-

6The data sets are available at: http://www.cs.
technion.ac.il/˜gabr/resources/data/
wordsim353/

7There may be several reasons for this. Apart from the
fact that NGD has access to a larger data set, it may also be
that syntactic co-occurrence information is not ideal for mod-
eling this type of relatedness; co-occurrence information in a
fixed window might be more useful. Furthermore, we did not
spend much time on finding an optimal parameter setting for
the dependency vector method.
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tion 5.1. We report on our experiments and results
in Section 5.2.

5.1 Data
Throughout the experiments we used the data set
from Sporleder and Li (2009). The data consist of
17 potentially idiomatic expressions from the En-
glish Gigaword corpus, which were extracted with
five paragraphs of context and manually annotated
as ’literal’ or ’non-literal’ (see Table 2). The inter-
annotator agreement on a doubly annotated sam-
ple of the data was 97% and the kappa score 0.7
(Cohen, 1960).

expression literal non-lit. all
back the wrong horse 0 25 25
bite off more than one can chew 2 142 144
bite one’s tongue 16 150 166
blow one’s own trumpet 0 9 9
bounce off the wall* 39 7 46
break the ice 20 521 541
drop the ball* 688 215 903
get one’s feet wet 17 140 157
pass the buck 7 255 262
play with fire 34 532 566
pull the trigger* 11 4 15
rock the boat 8 470 478
set in stone 9 272 281
spill the beans 3 172 175
sweep under the carpet 0 9 9
swim against the tide 1 125 126
tear one’s hair out 7 54 61
all 862 3102 3964

Table 2: Idiom statistics (* indicates expressions
for which the literal usage is more common than
the non-literal one)

5.2 The Influence of Context Size and
Weighting Scheme

To gain some insights into the performance of the
graph-based classifier, we experimented with dif-
ferent context sizes and weighting schemes. In ad-
dition to the basic cohesion graph approach with
five paragraphs of context (CGA), we tested a
variant which only uses the current paragraph as
context (CGApara) to determine how sensitive the
classifier is to the context size. We also experi-
mented with three weighting schemes. The ba-
sic classifier (CGA) uses uniform edge and node
weights. CGAew uses edge weights based on the
inverse distance between the tokens. CGAnw uses
node weights based on idf . Finally, CGAew+nw

uses both edge and node weights.
We also carried out a pruning experiment in

which we removed nodes from the graph that are
only weakly connected to the context (called weak

cohesion nodes). We hypothesize that these do
not contribute much to the overall connectivity but
may add noise. Pruning can thus be seen as a
more gentle version of node weighting, in which
we only remove the top n outliers rather than re-
weight all nodes. For comparison we also imple-
mented a baseline (BASE), which always assigns
the majority class (’non-literal’).

Table 3 shows the results for the classifiers dis-
cussed above. In addition to accuracy, which is
not very informative as the class distribution in our
data set is quite skewed, we show the precision,
recall, and F-score for the minority class (literal).
All classifiers obtain a relatively high accuracy but
vary in the precision, recall and F-Score values.

Method LPrec. LRec. LFβ=1 Acc.

Base – – – 0.78
CGA 0.50 0.69 0.58 0.79
CGApara 0.42 0.67 0.51 0.71
CGAprun 0.49 0.72 0.58 0.78
CGAew 0.51 0.63 0.57 0.79
CGAnw 0.48 0.68 0.56 0.77
CGAew+nw 0.49 0.61 0.54 0.78

Table 3: Accuracy (Acc.), literal precision
(LPrec.), recall (LRec.), and F-Score (LFβ=1) for
the classifier

It can be seen that the basic cohesion graph
classifier (CGA) outperforms the baseline on ac-
curacy. Moreover, it is reasonably good at iden-
tifying literal usages among the majority of non-
literal occurrences, as witnessed by an F-score of
58%. To obtain a better idea of the behavior of
this classifier, we plotted the distribution of the
MWE instances in the classifier’s feature space,
where the first dimension represents the discourse
connectivity of the context with MWE component
words (c(G)) and the second represents the dis-
course connectivity of the context without MWE
component words (c(G

′
)). The graph-based clas-

sifier, which calculates the connectivity gain (see
Equation 13), is a simple linear classifier in which
the line y = x is chosen as the decision boundary.
Examples above that line are classified as ’literal’,
examples below as ’non-literal’. Figure 2 shows
the true distribution of literal and non-literal exam-
ples in our data set. It can be seen that most non-
literal examples are indeed below the line while
most literal ones are above it (though a certain
number of literal examples can also be found be-
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low the line). So, in general we would expect our
classifier to have a reasonable performance.

Figure 2: Decision boundaries of the cohesion
graph

Returning to the results in Table 3, we find
that a smaller context worsens the performance
of the classifier (CGApara). Pruning the 3 least
connected nodes (CGAprun) does not lead to a
significant change in performance. Edge weight-
ing (CGAew), node weighting (CGAnw) and their
combination (CGAew+nw), on the other hand,
seem to have a somewhat negative influence on
the literal recall and F-score. It seems that the
weighting scheme scales down the influence of
MWE component words. As a result, the prod-
uct of the weight and the relatedness value for the
idiom component words are lower than the aver-
age, which leads to the negative contribution of
the idiom words to the cohesion graph (over pre-
dicting non-literal usage). We need to investigate
more sophisticated weighting schemes to assign
better weights to idiom component words in the
future. The negative performance of the weight-
ing scheme may be also due to the fact that we
used a relatively small context of five paragraphs.8

Both the idf and the distance weighting should
probably be defined on larger contexts. For ex-
ample, the distance between two tokens within a
paragraph probably has not such a large effect on
whether their relatedness score is reliable or ac-
cidental. Hence it might be better to model the
edge weight as the distance in terms of paragraphs
rather than words. The idf scores, too, might be
more reliable if more context was used.

8Note that we used news texts which typically have very
short paragraphs.

6 Conclusion

In this paper, we described an approach for token-
based idiom classification. Our approach is based
on the observation that literally used expressions
typically exhibit strong cohesive ties with the sur-
rounding discourse, while idiomatic expressions
do not. Hence, idiomatic use of MWEs can be
detected by the absence of such ties.

We propose a graph-based method which ex-
ploits this behavior to classify MWEs as literal
or non-literal. The method compares how the
MWE component words contribute the overall se-
mantic connectivity of the graph. We provided a
formalization of the graph and experimented with
varying the context size and weighting scheme for
nodes and edges. We found that the method gener-
ally works better for larger contexts; the weighting
schemes proved somewhat unsuccessful, at least
for our current context size. In the future, we plan
to experiment with larger context sizes and more
sophisticated weighting schemes.
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S. Padó, M. Lapata. 2007. Dependency-based con-
struction of semantic space models. Computational
Linguistics, 33(2):161–199.

S. S. L. Piao, P. Rayson, D. Archer, A. Wilson,
T. McEnery. 2003. Extracting multiword expres-
sions with a semantic tagger. In Proc. of the ACL
2003 Workshop on Multiword Expressions, 49–56.

S. P. Ponzetto, M. Strube. 2007. Knowledge derived
from Wikipedia for computing semantic relatedness.
Journal of Artificial Intelligence Research, 30:181–
212.

S. Riehemann. 2001. A Constructional Approach to
Idioms and Word Formation. Ph.D. thesis, Stanford
University.

T. T. Rila Mandala, H. Tanaka. 2000. Query expansion
using heterogeneous thesauri. Inf. Process. Man-
age., 36(3).

I. A. Sag, T. Baldwin, F. Bond, A. Copestake,
D. Flickinger. 2001. Multiword expressions: a pain
in the neck for NLP. In Lecture Notes in Computer
Science.

G. Salton, J. Allan, C. Buckley, A. Singhal. 1994.
Automatic analysis, theme generation and sum-
marization of machine-readable texts. Science,
264(3):1421–1426.

F. Smadja. 19993. Retrieving collocations from text:
Xtract. Computational Linguistics, 19(1):143–177.

C. Spearman. 1904. The proof and measurement of
association between two things. Amer. J. Psychol,
72–101.

C. Sporleder, L. Li. 2009. Unsupervised recognition of
literal and non-literal use of idiomatic expressions.
In Proceedings of EACL-09.

N. Wacholder, P. Song. 2003. Toward a task-based
gold standard for evaluation of NP chunks and tech-
nical terms. In Proc HLT-NAACL.

T. Zesch, C. Müller, I. Gurevych. 2008. Using wik-
tionary for computing semantic relatedness. In Pro-
ceedings of AAAI-08, 861–867.

X. Zhu, R. Rosenfeld. 2001. Improving trigram lan-
guage modeling with the world wide web. In Pro-
ceedings of ICASSP-01.

83



Proceedings of the 2009 Workshop on Graph-based Methods for Natural Language Processing, ACL-IJCNLP 2009, pages 84–92,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Quantitative analysis of treebanks using frequent subtree mining methods

Scott Martens
Centrum voor Computerlinguı̈stiek, KU Leuven

Blijde-Inkomststraat 13, bus 3315
3000 Leuven Belgium

scott@ccl.kuleuven.be

Abstract

The first task of statistical computational
linguistics, or any other type of data-
driven processing of language, is the ex-
traction of counts and distributions of phe-
nomena. This is much more difficult for
the type of complex structured data found
in treebanks and in corpora with sophisti-
cated annotation than for tokenized texts.
Recent developments in data mining, par-
ticularly in the extraction of frequent sub-
trees from treebanks, offer some solutions.
We have applied a modified version of the
TreeMineralgorithm to a small treebank
and present some promising results.

1 Introduction

Statistical corpus linguistics and many natural lan-
guage processing applications rely on extracting
the frequencies and distributions of phenomena
from natural language data sources. This is rela-
tively simple when language data is treated as bags
of tokens or as n-grams, but much more compli-
cated for corpora annotated with complex feature
schemes and for treebanks where syntactic depen-
dencies are marked. A great deal of useful infor-
mation is encoded in these more complex struc-
tured corpora, but access to it is very limited using
the traditional algorithms and analytical tools of
computational linguistics. Many of the most pow-
erful techniques available to natural language pro-
cessing have been built on the basis ofn-gramand
bag of wordsmodels, but we already know that
these methods are inadequate to fully model the
information in texts or we would have little use
for treebanks or annotation schemes.

Suffix trees provide some improvement over
n-grams and bag-of-words schemes by identify-
ing all frequently occurring sequences regard-
less of length (Weiner, 1973; McCreight, 1976;

Ravichandran and Hovy, 2002). While this has
value in identifying some multi-word phenomena,
any algorithm that models languages on the basis
of frequent contiguous string discovery will have
trouble modeling a number of pervasive phenom-
ena in natural language. In particular:

• Long distance dependencies – i.e., dependen-
cies between words that are too far apart to be
accessible to n-gram models.

• Flexible word orders – languages usually
have contexts where word order can vary.

• Languages with very rich morphologies that
mustbe taken into account or where too much
important information is lost through lemma-
tization.

• Correlations between different levels of ab-
straction in annotation, such as between the
lemma of a verb and the semantic or syntac-
tic class of its arguments.

• Extra-syntactic correlations that may involve
any nearby word, such as semantic priming
effects.

In treebanks and other annotated corpora that
can be converted into rooted, directed graphs,
many of these phenomena are accessible asfre-
quently recurring subtrees. For example, consider
the Dutch idiom “naar huis gaan”, (to go home).
The components of this phrase can appear in a va-
riety of orders and with words inserted between
the constituents:

1. Ik zou naarhuis kunnen gaan. (I could go
home.)

2. We gaannaarhuis. (We’re going home.)

In a treebank, these two sentences would share
a common subtree that encompasses the phrase
“naar huis gaan”, as in Figure 1. Note that for this
purpose, two subtrees are treated as identical if the
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Figure 1: The two Dutch sentencesIk zou naar
huiskunnen gaanandWe gaannaar huis, parsed,
and with the frequent section highlighted. Note
that these two subtrees are identical except for the
order of the nodes. (N.B.: This tree does not take
the difference between the infinitive and conju-
gated forms into account.)

only difference between them is the order of the
children of some or all the nodes.

Most theories of syntax use trees to represent in-
terlexical dependencies, and generally theories of
morphology and phonology use either hierarchical
tree structures to represent their formalisms, or use
unstructured bags that can be trivially represented
as trees. Most types of linguistic feature systems
are at least in part hierarchical and representable in
tree form. Because so many linguistic phenomena
are manifest as frequent subtrees within hierarchi-
cal representations that are motivated by linguistic
theories, efficient methods for extracting frequent
subtrees from treebanks are therefore potentially
very valuable to corpus and computational linguis-
tics.

2 Previous and Related Work

Tree mining research is a subset of graph min-
ing focused specifically on rooted, directed acyclic
graphs. Although there is research into extracting
frequent subtrees from free (unrooted and undi-
rected) trees, free tree mining usually proceeds by
deciding which node in any particular tree will
be treated as a root, and then treating it as if it
was a rooted and directed tree (Chi et al., 2003).

(a)

(b) (c) (d)

Figure 2: Tree (a) and different types of subtree:
(b) abottom-upsubtree of (a), (c) aninducedsub-
tree of (a), and (d) anembeddedsubtree of (a).

Research on frequent subtree discovery generally
draws heavily on early work by Zaki (2002) and
Asai et al. (2002) who roughly simultaneously be-
gan applying theApriori algorithm to frequent tree
discovery (Agrawal et al., 1993). For a summary
of Apriori, which is widely used in data mining,
and a short review of its extensive literature, see
Kotsiantis and Kanellopoulos (2006). A broad
summary of algorithms for frequent subtree min-
ing can be found in Chi et al. (2004).

Research into frequent substructures in compu-
tational linguistics is quite limited. TheData Ori-
ented Processingmodel (Bod et al., 2003) along
with its extension into machine translation - the
Data Oriented Translationmodel (Poutsma, 2000;
Poutsma, 2003; Hearne and Way, 2003) - is the
most developed approach to using frequent sub-
tree statistics to do natural language processing.
There is also growing work, largely stemming out
of DOP research, into subtree alignment in bilin-
gual parsed treebanks as an aid in the development
of statistical and example-based machine transla-
tions systems (Hassan et al., 2006; Tinsley et al.,
2007; Zhechev and Way, 2008).

3 Key concepts

Among the key concepts in tree mining is the dif-
ference betweenbottom-up subtrees, induced sub-
treesandembedded subtrees. A bottom-upsubtree
T ′ of a treeT is a subtree where, for every node
in T ′, if its corresponding node inT has children,
then all those children are also inT ′. An induced
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Figure 3: “...between the European Commission and the government of the [German] Federal Repub-
lic...” This structure is a subtree of one of the sentences in the Alpino corpus of Dutch where a node has
two children with the same labels - two NPs. This often occurs with conjunctions and can prevent the
algorithm from discovering some frequent subtrees.

subtreeT ′ of T is a subtree where every node in
T ′ is either the root ofT ′ or its parent inT is also
its parent inT ′. An embeddedsubtreeT ′ of T is
a subtree where every node inT ′ is either the root
of T ′ or its parent inT ′ is one of its ancestors in
T . See Figure 2 for an example of these different
types of subtrees.

Linear time solutions exist for finding all fre-
quent bottom-upsubtrees in a treebank because
this problem can be transformed into finding all
frequent substrings in a string, a problem for
which fast solutions are well known (Luccio et al.,
2001; Luccio et al., 2004).

Solutions for inducedand embeddedsubtrees
draw heavily on Zaki (2002) (theTreeMiner al-
gorithm) and Asai et al. (2002) (theFREQT al-
gorithm), both of whom proposeApriori-style ap-
proaches. This type of solution has the general
property that runtime is proportionate to the size
of the output: the sum of the number of times
each frequent subtree appears in the treebank. This
is not readily predictable, because the number
and frequencies of subtrees is not formally de-
terminable from the size of the treebank and can
grow very rapidly.

3.1 Ordered and unordered trees

TreeMiner/FREQTapproaches require all trees to
beorderedso that the nodes of any frequent sub-
tree will always appear in the same order every
time it appears. The children of each non-leaf
node are sorted into a lexicographic order,but
this only guarantees that frequent subtrees will al-
ways appear with the same ordering if no node
has more than one non-leaf child node with the
same label. This is not uniformly true of natural
language parse trees, as shown in Figure 3. So-
lutions exist that remove this limitation - notably
Chi et al. (2003) - but they come at a significantly
increased processing cost.

3.2 Closed trees

Given that this type of approach to subtree discov-
ery has runtime bounds proportionate to the unpre-
dictable size of the output, one way to keep subtree
discovery within manageable bounds is to restrict
the output. Many of the frequent trees present in
treebanks areredundant, since they are identically
distributed with other, larger trees, as in Figure 4.

If a corpus has a sequence of tokensABCDE
that appearsf times, then that corpus also con-
tains at leastf instances of the sequencesA, B, C,
D, E, AB, BC, CD, DE, ABC, BCD, CDE,
ABCD, andBCDE. If any of these sequences
appearsonly in the context ofABCDE, then they
areredundant, because they have the same count
and distribution as the longer sequenceABCDE.

If a set of sequences isidentically distributed-
appearing in all the same places - then the longest
of those sequences is called aclosed sequence. In
more formal terms, a sequenceS that appearsf
times in a corpus is called closed if and only if
there is no prefix or suffixa such thataS or Sa
also appearsf times in the corpus. This definition
extends easily to trees: A subtreeT in a treebank
is closed if and only if there is no node that can be
added to it to produce a new subtreeT ′ such that
the frequency ofT ′ is equal to the frequency ofT .
All subtrees in a corpus are either closed subtrees
or are subtrees of closed subtrees that appear in
exactly the same places in the treebank. The set of
closed subtrees in a treebank is the smallest set of
subtrees that encompasses all the distributions of
subtrees in the treebank. Any subtree that is not in
the list of closed subtrees is either a subtree of one
of the closed subtrees that appears exactly as often
and in all the same places, or does not appear in
the treebank at all.

There are algorithms that extractonly
closed subtrees from treebanks - notably
Chi et al. (2005a) - and thereby increase
their speed dramatically without producing less
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(a) The common subtree
of the two parse trees in
Figure 1: “naar huis gaan”

(b) Redundant subtrees of tree (a). There
are many more such structures.

Figure 4: Closed and non-closed subtrees injust
the two sentences in Figure 1. In a larger treebank,
some of these might not be redundant.

information, since any non-closed subtree present
in the treebank is a subtree of a closed one and
shares its distribution.

4 Algorithm and data structures

The algorithm used in this research is an extension
of theTreeMineralgorithm (Zaki, 2002), modified
to extract only closed subtrees. It takes a minimum
frequency threshold as a parameter and extracts
only those subtrees which are closed and whose
frequency is at least equal to the threshold. This
algorithm suffers from the same shortcoming of
Zaki’s original algorithm in that it is only guar-
anteed to find all frequent subtrees amongordered
trees where no node has two non-leaf children with
the same label.

It has one novel property which it appears not
to share with any other subtree extraction scheme
to date: This algorithm outputs subtrees in order
from the most frequent to the least. Given the
difficulty of predicting in advance how large the
output will be, and the large size of many natural
language data sources, this can be a real boon. If
output size or memory usage grow too large, or too
much time has passed, the program can be stopped
while still guaranteeing that it has not missed any
more frequent subtree than the last one outputted.

This section can only very briefly describe the
algorithm.

4.1 Definitions

A treebank is any collection of trees where each
node bears a label and each node is uniquely ad-
dressable in such a way that the addressan of a
noden is always greater than the addressap of its
parentp. This is accomplished by representing all
trees asordered depth-first canonical strings. (See
Chi et al. (2005b).)

Each appearance of a subtree within a treebank
is characterized by the address of its root in the
treebank and the address of its rightmost node.
This data structure will be called aHit. The list
of all Hits corresponding to all the appearances
of some subtree in the treebank will be called a
HitList. So, for each subtree there is a correspond-
ing HitList and vice-versa. HitLists are always
constructed in sequential order, from first instance
in the treebank to last, and can never contain du-
plicates.

We will define the function queueKey on
HitLists to output an array of four numbers in a
specific order, given aHitList as input:

1. The number ofHits in theHitList.

2. The distance from the address of the root of
the firstHit to theendof the treebank.

3. The distance from the address of the right-
most node of the firstHit to the end of the
treebank.

4. The number of nodes in the subtree associ-
ated with thatHitList.

These keys are sortable and designed to ensure
thatHitLists from a single treebank can always be
sorted into a fixed order such that, for twoHitLists
A andB, if A > B then:

1. A has moreHits thanB.

2. If A has the same number ofHits asB, then
the root of the firstHit in A precedes the root
of the firstHit in B.

3. If A’s first root is identical toB’s, then the ad-
dress of the rightmost node of the firstHit in
A precedes the address of the rightmost node
of the firstHit in B.

4. If the firstHit in A is exactly the same the first
Hit in B, then the subtree associated withA
has more nodes than the subtree associated
with B.
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A self-sorting queueis any data structure that
stores key-data pairs and stores the keys in order
from greatest to least. The data structure used to
implement a self-sorting queue in this research is
an AVL tree(Adelson-Velskii and Landis, 1962),
however, other structures could equally well have
been used. The self-sorting queue will be used to
maintain a sorted list ofHitLists, sorted in the or-
der of theirqueueKeysas described above.

4.2 Initialization

Fix a minimum frequency thresholdt for the sub-
trees you wish to extract from the treebank. Start
processing by initializing oneHitList for each
unique label in the treebank with the set ofHits
that corresponds to each occurrence of that label.
We will treat each as aHitList with an associ-
ated subtree containing only one node. This set
is constructed in linear time by iterating over all
the nodes in the treebank.

Of the initialHitLists, throw away all those with
fewer than threshold frequencyt Hits in them.
The remainingHitLists are inserted into the self-
sorting queue.

4.3 Extracting induced subtrees without
checking for closure

Extractingall the subtrees above a fixed frequency
- not just the closed subtrees - in order from the
most frequent to the least, proceeds as follows:

1. Initialize as described in Section 4.2.
2. Pop the topHitList hl and its associated sub-

trees from the queue.
3. Extend hl:

(a) Visit each Hit in hl and find all the
nodes that can be added to the right side
of s to produce new induced subtrees.

(b) Generatenew HitLists for all subtrees
that extends by one node to the right.

(c) Test each newHitList to make sure it
appears more than threshold frequency
t times, and if it does, insert it into the
queue.

(d) Output s andhl.

4. Repeatuntil the queue is empty.

This is essentially identical to theTreeMiner
and FREQT algorithms already published by
Zaki (2002) and by Asai et al. (2002), except that
it outputs frequent subtrees in order from the most
frequent to the least.

4.4 Extracting only closed induced subtrees

By controlling the order in whichHitLists reach
the top of the queue, it is possible to efficiently
prevent any subtree which is not a closed sub-
tree or a prefix of a closed subtree from being
extended, and to prevent any subtree that is not
closed from being outputted.

Every subtree with a frequency off is either
a closed subtree, a prefix of a closed subtree that
also has a frequency off and can be constructed
by adding more nodes to the right, or is a redun-
dant non-closed subtree that need not be extended
or stored. Consider a redundant, non-closed sub-
treex and a closed subtree or prefix of a closed
subtreey which has the same frequency, and has
the same set of addresses for the rightmost node of
each of its appearances in the treebank. The sort
order of the self-sorting queue (see Section 4.1)
ensures that if a prefix of a closed subtreey is in
the queue and some subtree of itx is also in the
queue, theny is closer to the top of the queue than
x is. Furthermore, it can be proven that the pre-
fix of a closed subtree with the same distribution
as any non-closed, redundant subtree will be gen-
erated, inserted into the queue, and removed from
the top of the queue beforex can reach the top.

So, to preventx from being extended or stored,
all that is necessary is to check to see there is some
closed subtree or prefix of a closed subtreey such
that:

• y has already been at the top of the queue.
• y has the same frequency asx.
• The set of rightmost nodes of everyHit in

y’s HitList is identical to the set of rightmost
nodes of everyHit in x’s HitList.

• x is a subtree ofy

This can be checked by constructing a hash
value for eachHitList based on its frequency and
some subset of the set of rightmost nodes of ev-
ery Hit. In our experiments, we used only the first
node of each HitList. Ifx’s hash value matches
some previously processedy’s hash value, then
check if x is a subtree ofy and reject it if it is.
The result is to only instantiate closed subtrees and
their prefixes, and subtrees which are one node ex-
tensions of closed subtrees and their prefixes.

Like TreeMiner, worst case space and time
bounds are proportionate to the number of sub-
trees instantiated and the number of times each
appears in the corpus. This is smaller than the
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worst case bounds forTreeMinerbecause it does
not instantiate all frequent subtrees. There is addi-
tional approximately constant time processing for
each instantiated subtree to check for closure and
to store it in the self-sorting queue. At the lowest
frequency thresholds, this can take up the major-
ity of runtime, but is generally negligible at high
frequencies.

5 Results

We applied this algorithm to a parsed and hand-
corrected 7137 sentence subset of the Alpino Tree-
bank of Dutch.1 The average sentence length in
this small treebank is roughly 20 words, and the
corresponding trees have an average of approx-
imately 32 nodes for a total of 230,673 nodes.
With the minimum frequency set to 2, this algo-
rithm extracted 342,401 closed subtrees in about
2000 seconds on a conventional workstation run-
ning Linux2. The same implementation but with-
out testing for closure - which makes this algo-
rithm equivalent toTreeMiner- extracted some 4.2
million trees in roughly 11,000 seconds. Closed
tree extraction contrasts quite favorably to extrac-
tion without closure, even over a small dataset.

Min. Freq. Subtrees extracted Runtime
Threshold

2 342401 1952.33s
3 243484 1004.30s
4 176885 588.58s
5 134495 402.26s
8 72732 209.51s

10 53842 163.22s
15 30681 112.39s
20 20610 85.24s
30 11516 66.05s
40 7620 54.14s
50 5549 47.98s
60 4219 43.24s
70 3365 39.97s

Table 1: Runtime and closed trees extracted at dif-
ferent minimum frequency thresholds, using the
7137 sentence sample of the Alpino Treebank.

Runtime and the number of trees produced fall
very dramatically as thresholds rise - so much so

1http://www.let.rug.nl/vannoord/trees/
2A Dell Precision 490 workstation with an Intel Dual-

Core Xeon processor and 8GB of memory. The algorithm
was not implemented to use two processors.

Sentences Total Subtrees Runtime
nodes extracted

2500 94528 37607 61.08s
5000 189170 98538 260.91s

10000 379980 264616 1495.19s
15000 573629 477750 3829.29s
20000 763502 704018 7998.57s

Table 2: Runtime and closed trees extracted from
automatically parsed samples of theEuroparl
Dutch corpus, keeping the minimum frequency
threshold constant at 5 for all sizes of treebank.

that setting the minimum frequency to 3 instead of
2 halvedthe runtime. This pattern is characteristic
of a power law distribution like Zipf’s law. (See
Table 1 and Figure 5.) Given the pervasiveness
of power law distributions in word frequencies, it
should perhaps not be surprising to discover that
frequent closed subtrees in treebanks are similarly
distributed. This research may be the first effort
to empirically support such a conclusion, although
admittedly only very tentatively.

To test the impact of varying the size of the tree-
bank, but keeping the minimum frequency thresh-
old constant, we used a section of the Dutch por-
tion of theEuroparl corpus(Koehn, 2005) auto-
matically parsed using the Alpino Dutch parser
(van Noord, 2006) without any manual correction.
Random samples of 2500, 5000, 10000, 15000
and 20000 sentences were selected, and all sub-
trees of frequency 5 or higher were extracted from
each, as summarized in Table 2. As treebank size
grows, the number of subtrees extracted at the
same minimum frequency threshold, and the time
and memory used extracting them, grows expo-
nentially. This is in sharp contrast to algorithms
that extract frequently recurring strings, which in-
crease linearly in time and memory usage as the
data grows.

However, if the minimum frequency threshold
is kept constant as a proportion of the size of the
treebank, then the number of trees extracted re-
mains roughly constant and the time and memory
used to extract them grows roughly linearly with
the size of the treebank. Table 3 shows the result
for different sized random samples of the parsed
Europarlcorpus.

Lastly, since this algorithm has known difficul-
ties when presented with trees where more than
one non-leaf child of a node can have the same
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(a) Runtime by minimum fre-
quency threshold.

(b) Subtrees extracted by mini-
mum frequency threshold.

(c) Log-log plot of (b).

Figure 5: Runtime (a) and subtrees extracted (b) from the Alpino sample using different minimum fre-
quency thresholds. Figure (c) is a log-log plot of (b). Figure (c) looks close to a straight line, which is
characteristic of a power law distribution.

Sents Total Min. Subtrees Run
nodes Freq. extracted time

Thres.
2500 99323 5 42905 72.95s
5000 194736 10 42783 122.18s

10000 382022 20 41988 216.23s
15000 574632 30 43078 325.86s
20000 770240 40 44416 435.19s

Table 3: Runtime and closed trees extracted from
automatically parsed samples of theEuroparl
Dutch corpus, with minimum frequency thresh-
olds kept roughly constant as a proportion of the
sample size.

label (see sections 3.1 and 4), we attempted to
determine if this problem is marginal or perva-
sive. The 7137 sentence Alpino Treebank sample
contains 3833 nodes with more than one non-leaf
child node with identical labels or roughly 1.7% of
all nodes. Furthermore, these nodes are present in
2666 sentences - some 37% of all sentences! This
is a very large minority.

In order to estimate the effect this phenomenon
has on the extraction of closed trees, we looked
for outputted trees that are not closed by compar-
ing theHitLists of all outputted trees to all other
outputted trees with the same frequency. Table 4
shows the number of trees with identical distribu-
tions to other outputted trees - i.e. trees that ap-
peared to be closed to this algorithm, but in fact
are not. The number was surprisingly large, but
distributed overwhelmingly at the very lowest fre-
quencies.

Min. Freq. Non-closed as a % of
Threshold trees all trees extracted

2 2874 0.84%
3 693 0.28%
4 225 0.13%
5 101 0.08%
8 18 0.02%

10 11 0.02%
15 6 0.02%
20 3 0.01%
30 0 0.00%

Table 4: Non-closed trees from the 7137 sentence
sample of the Alpino Treebank, produced erro-
neously as closed trees because of repeated labels.
There were no non-closed trees extracted at fre-
quencies over 30.

6 Conclusions

The algorithm presented above opens up tree-
banks and annotated corpora to much more de-
tailed quantitative analysis, and extends the tools
available for data-driven natural language process-
ing. This makes a number of new applications
possible. We are developing treebank indexing for
fast retrieval by tree similarity, in order to make
full treebanks available for example-based parsing
and machine translation in real time. This algo-
rithm also has applications in constructing concor-
dances of syntactic, morphological and semantic
structures - types of information that are not tradi-
tionally amenable to indexing. Furthermore, sta-
tistical models of natural language data can take
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advantage of comprehensive subtree censuses to
become fully syntax-aware, instead of relying on
bag of wordsandn-grammodels.

However, there are a number of drawbacks and
caveats that must be highlighted.

Runtime, memory usage and output size are dif-
ficult to estimate in advance. This is mitigated in
part by the order in which subtrees are outputted,
making it possible to extract only the most fre-
quent subset of subtrees given fixed time and space
bounds. Empirically, it appears that resource re-
quirements and output size can also be estimated
by sampling, if minimum frequency thresholds
can be kept constant as a proportion of total tree-
bank size.

The formalisms used in most theories of syn-
tax allow nodes to have multiple non-leaf chil-
dren with the same labels. Although errors caused
by non-unique labels are overwhelmingly present
only among the lowest frequency subtrees, er-
rors appear often enough to pose a non-negligible
problem for this algorithm.

We are investigating the degree to which this
can be mitigated by making different choices of
linguistic formalism. Syntax trees that contain
only binary trees - for example, those constructed
usingChomsky Normal Formrules (Jurafsky and
Martin, 2009) - cannot have identically labelled
non-leaf children, but must suffer some loss of
generality in their frequent subtrees because if it.
Other theories can reduce the size of this source of
error, notably dependency syntax which often uses
fewer abstract labels (Tesnière, 1959; Mel’̌cuk,
1988; Sugayama and Hudson, 2006), but will most
likely be poor sources of highly general rules as a
consequence.

Furthermore, tree mining algorithms exist that
eliminate this problem, but at some cost. We are
investigating a hybrid solution to the non-unique
label problem that identifies only those subtrees
where more resource-intensive closure checking is
necessary. This will guarantee the correct extrac-
tion of closed subtrees in all cases while minimiz-
ing the additional processing burden.

Among the open problems suggested by this re-
search is the degree to which the empirical results
obtained above are dependent on the language of
the underlying data and the linguistic formalisms
used to produce treebanks. Different linguistic
theories use different abstractions and use their ab-
stract categories differently. This has an immedi-

ate effect on the number of nodes in a treebank
and on the topology of the trees. Some theories
produce more compact trees than others. Some
produce deep trees, others produce shallow trees.
It is likely that the formalisms used in treebanks
have a pervasive influence on the number and kind
of frequent subtrees extracted. By doing quantita-
tive research on the structures found in treebanks,
it may become possible to make reliable opera-
tional choices about the linguistic formalisms used
in treebanks on the basis of the kinds of structures
one hopes to get out of them.
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