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Abstract

This paper presents pilot work integrating ma-
chine labeling and active learning with human
annotation of data for the language documen-
tation task of creating interlinearized gloss
text (IGT) for the Mayan language Uspanteko.
The practical goal is to produce a totally an-
notated corpus that is as accurate as possible
given limited time for manual annotation. We
describe ongoing pilot studies which examine
the influence of three main factors on reduc-
ing the time spent to annotate IGT: sugges-
tions from a machine labeler, sample selection
methods, and annotator expertise.

1 Introduction

Languages are dying at the rate of two each month.
By the end of this century, half of the approxi-
mately 6000 extant spoken languages will cease to
be transmitted effectively from one generation of
speakers to the next (Crystal, 2000). Under this
immense time pressure, documentary linguists seek
to preserve a record of endangered languages while
there are still communities of speakers to work with.
Many language documentation projects target lan-
guages about which our general linguistic knowl-
edge is nonexistent or much less than for more
widely-spoken languages. The vast majority of these
are individual or small-group endeavors on small
budgets with little or no institutional guidance by
the greater documentary linguistic community. The
focus in such projects is often first on collection of
data (documentation), with a following stage of lin-
guistic analysis and description. A key part of the
analysis process, detailed linguistic annotation of the
recorded texts, is a time-consuming and tedious task

usually occurring late in the project, if it occurs at
all.

Text annotation typically involves producing in-
terlinearized glossed text (IGT), labeling for mor-
phology, parts-of-speech, etc., which greatly facil-
itates further exploration and analysis of the lan-
guage. The following is IGT for the phrase xelch
li from the Mayan language Uspanteko:1

(1) x-
COM-

el
salir

-ch
-DIR

li
DEM

Spanish: ‘Salio entonces.’ English:‘Then he left.’

The levels of analysis include morpheme segmenta-
tion, transliteration of stems, and labeling of stems
and morphemes with tags, some corresponding to
parts-of-speech and others to semantic distinctions.

There is no single standard format for IGT. The
IGT systems developed by documentation projects
tend to be idiosyncratic: they may be linguistically
well-motivated and intuitive, but they are unlikely to
be compatible or interchangeable with systems de-
veloped by other projects. They may lack internal
consistency as well. Nonetheless, IGT in a read-
ily accessible format is an important resource that
can be used fruitfully by linguists to examine hy-
potheses on novel data (e.g. Xia and Lewis (2007;
2008), Lewis and Xia (2008)). Furthermore, it can
be used by educators and language activists to create
curriculum material for mother language education
and promote the survival of the language.

Despite the urgent need for such resources, IGT
annotations are time consuming to create entirely by
hand, and both human and financial resources are
extremely limited in this domain. Thus, language

1KEY: COM=completive aspect, DEM=demonstrative,
DIR=directional

36



documentation presents an interesting test case and
an ideal context for use of machine labeling and ac-
tive learning. This paper describes a series of ex-
periments designed to assess this promise in a re-
alistic documentation context: creation of IGT for
the Mayan language Uspanteko. We systematically
compare varying degrees of machine involvement in
the development of IGT, from minimally involved
situations where examples for tagging are selected
sequentially to active learning situations where the
machine learner selects samples for human tagging
and suggests labels. We also discuss the challenges
faced by linguists in having to learn, transcribe, ana-
lyze, and annotate a language almost simultaneously
and discuss whether machine involvement reduces
or compounds those challenges.

In the experiments, two documentary linguists an-
notate IGT for Uspanteko texts using different lev-
els of support from a machine learned classifier. We
consider the interaction of three main conditions: (1)
sequential, random, or uncertainty sampling for re-
questing labels from an annotator, (2) suggestions or
no suggestions from a machine labeler, and (3) ex-
pert versus non-expert annotator. All annotator deci-
sions are timed, enabling the actual time cost of an-
notation to be measured within the context of each
condition. This paper describes the Uspanteko data
set we adapted for the experiments, expands on the
choices described above, and reports on preliminary
results from our ongoing annotation experiments.

2 Data: Uspanteko IGT

This section describes the Uspanteko corpus used
for the experiments, our clean-up of the corpus, and
the specific task—labeling part-of-speech and gloss
tags—addressed by the experiments.

2.1 OKMA Uspanteko corpus

Our primary dataset is a corpus of texts (Pixabaj et
al., 2007) in the Mayan language Uspanteko that
were collected, transcribed, translated (into Span-
ish) and annotated as part of the OKMA language
documentation project.2 Uspanteko, a member of
the K’ichee’ branch of the Mayan language family,
is spoken by approximately 1320 people in central
Guatemala (Richards, 2003).

2http://www.okma.org

The corpus contains 67 texts, 32 of them glossed.
Four textual genres are represented in the glossed
portion of the corpus: oral histories (five texts) usu-
ally have to do with the history of the village and the
community, personal experience texts (five texts) re-
count events from the lives of individual people in
the community, and stories (twenty texts) are pri-
marily folk stories and children’s stories. The corpus
also contains one recipe and one advice text in which
a speaker discusses what the community should be
doing to better preserve and protect the environment.

The transcriptions are based on spoken data, with
attendant dysfluencies, repetitions, false starts, and
incomplete sentences. Of the 284,455 words, 74,298
are segmented and glossed. This is a small dataset
by computational linguistics standards but rather
large for a documentation project.

2.2 Interlinearized Glossed Text
Once recordings have been made, the next tasks are
typically to produce translations and transcription of
the audio. Transcription is a complex and difficult
process, often involving the development of an or-
thography for the language in parallel. The product
of the transcription is raw text like the Uspanteko
sample shown below (text 068, clauses 283-287):

Non li in yolow rk’il kita’
tinch’ab’ex laj inyolj iin, si no ke
laj yolj jqaaj tinch’ab’ej i non qe li
xk’am rib’ chuwe, non qe li lajori
non li iin yolow rk’ilaq.3

Working with the transcription, the translation, and
any previously-attained knowledge about the lan-
guage, the linguist next makes decisions about the
division of words into morphemes and the contribu-
tions made by individual morphemes to the meaning
of the word or of the sentence. IGT efficiently brings
together and presents all of this information.

In the traditional four-line IGT format, mor-
phemes appear on one line and glosses for those
morphemes on the next. The gloss line includes both
labels for grammatical morphemes (e.g. PL or COM)
and translations of stems (e.g. salir or ropa). See
the following example from Uspanteko:4

3Spanish: Solo asi yo aprendi con él. No le hable en el
idioma mio. Si no que en el idioma su papá le hablo. Y solo asi
me fui acostumbrando. Solo asi ahora yo platico con ellos.

4KEY: E1S=singular first person ergative, INC=incompletive,
PART=particle, PREP=preposition, PRON=pronoun, NEG=negation,
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(2) Kita’ tinch’ab’ej laj inyolj iin

(3) kita’
NEG
PART

t-in-ch’abe-j
INC-E1S-hablar-SC
TAM-PERS-VT-SUF

laj
PREP
PREP

in-yolj
E1S-idioma
PERS-S

iin
yo
PRON

‘No le hablo en mi idioma.’
(‘I don’t speak to him in my language.’)

Most commonly, IGT is presented in a four-tier
format. The first tier (2) is the raw, unannotated
text. The second (first line of (3)) is the same text
with each word morphologically segmented. The
third tier (second line of (3)), the gloss line, is a
combination of Spanish translations of the Uspan-
teko stems and gloss tags representing the grammat-
ical information encoded by affixes and stand-alone
morphemes. The fourth tier (fourth line of (3)) is a
translation in the target language of documentation.

Some interlinear texts include other project-
defined tiers. OKMA uses a fifth tier (third line of
(3)), described as the word-class line. This line is
a mix of traditional POS tags, positional labels (e.g.
suffix, prefix), and broader linguistic categories like
TAM for tense-aspect-mood.

2.3 Cleaning up the OKMA annotations
The OKMA annotations were created using Shoe-
box,5 a standard tool used by documentary linguists
for lexicon management and IGT creation. To de-
velop a corpus suitable for these studies, it was nec-
essary to put considerable effort into normalizing
the original OKMA source annotations. Varied lev-
els of linguistic training of the original annotators
led to many inconsistencies in the original annota-
tions. Also, Shoebox (first developed in 1987) uses
a custom, pre-XML whitespace delimited data for-
mat, making normalization especially challenging.
Finally, not all of the texts are fully annotated. Al-
most half of the 67 texts are just transcriptions, sev-
eral texts are translated but not further analyzed, and
several others are only partially annotated at text
level, clause level, word level, or morpheme level. It
was thus necessary to identify complete texts for use
in our experiments. Some missing labels in nearly-
complete texts were filled in by the expert annotator.

A challenge for representing IGT in a machine-
readable format is maintaining the links between

S=sustantivo (noun), SC=category suffix, SUF=suffix,
TAM=tense/aspect/mood, VT=transitive verb

5http://www.sil.org/computing/shoebox/

the source text morphemes in the second tier and
the morpheme-by-morpheme glosses in the third
tier. The standard Shoebox output format, for ex-
ample, enforces these links through management of
the number of spaces between items in the output.
To address this, we converted the cleaned annota-
tions into IGT-XML (Palmer and Erk, 2007) with
help from the Shoebox/Toolbox interfaces provided
in the Natural Language Toolkit (Robinson et al.,
2007). Automating the transformation from Shoe-
box format to IGT-XML’s hierarchical format re-
quired cleaning up tier-to-tier alignment and check-
ing segmentation in some cases where morphemes
and glosses were misaligned, as in (5) below.6

(4) Non li in yolow rk’il

(5) Non
DEM
DEM

li
DEM
DEM

in
yo
PRON

yolow
platicar
VI

r-k’il
AP
SUF

E3s.-SR
PERS SREL

’Solo asi yo aprendi con él.’

Here, the number of elements in the morpheme tier
(first line of (5)) does not match the number of el-
ements in the gloss tier (second line of (5)). The
problem is a misanalysis of yolow: it should be
segmented yol-owwith the gloss platicar-AP.
Automating this transformation has the advantage of
identifying such inconsistencies and errors.

There also were many low-level issues that had
to be handled, such as checking and enforcing con-
sistency of tags. For example, the tag E3s. in the
gloss tier of (5) is a typo; the correct tag is E3S. The
annotation tool used in these studies does not allow
such inconsistencies to occur.

2.4 Target labels
There are two main tasks in producing IGT: word
segmentation (determination of stems and affixes)
and glossing each segment. Stems and affixes each
get a different type of gloss: the gloss of a stem is
typically its translation whereas the gloss of an affix
is a label indicating its grammatical role. The addi-
tional word-class line provides part-of-speech infor-
mation for the stems, such as VT for salir.

Complete prediction of segmentation, gloss trans-
lations and labels is our ultimate goal for aiding IGT

6KEY: AP=antipassive, DEM=demonstrative, E3S=singular third
person ergative, PERS=person marking, SR/SREL=relational noun,
VI=intransitive verb
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creation with automation. Here, we study the poten-
tial for improving annotation efficiency for the more
limited task of predicting the gloss label for each af-
fix and the part-of-speech label for each stem. Thus,
the experiments aim to produce a single label for
each morpheme. We assume that words have been
pre-segmented and we ignore the gloss translations.

The target representation in these studies is an ad-
ditional tier which combines gloss labels for affixes
and stand-alone morphemes with part-of-speech la-
bels for stems. Example (6) repeats the clause in (4),
adding this new combined tier. Stem labels are given
in bold text, and affix labels in plain text.

(6) Non li in yolow rk’il

(7) Non
DEM

li
DEM

in
PRON

yol-ow
VI-AP

r-k’il
E3S-SR

‘Solo asi yo aprendi con él.’

A simple procedure was used to create the new tier.
For each morpheme, if a gloss label (such as DEM
or E3S) appears on the gloss line (second line of
(3)), we select that label. If what appears is a stem
translation, we instead select the part-of-speech la-
bel from the next tier down (third line of (3)).

In the entire corpus, sixty-nine different labels
appear in this combined tier. The following table
shows the five most common part-of-speech labels
(left) and the five most common gloss labels (right).
The most common label, S, accounts for 11.3% of
the tokens in the corpus.

S noun 7167 E3S sg.3p. ergative 3433
ADV adverb 6646 INC incompletive 2835
VT trans. verb 5122 COM completive 2586
VI intrans. verb 3638 PL plural 1905
PART particle 3443 SREL relational noun 1881

3 Integrated annotation and automation

The experimental framework described in this sec-
tion is designed to model and evaluate real-time inte-
gration of human annotation, active learning strate-
gies, and output from machine-learned classifiers.
The task is annotation of morpheme-segmented texts
from a language documentation project (sec. 2).

3.1 Tools and resources

Integrating automated support and human annota-
tion in this context requires careful coordination of

three components: 1) presenting examples to the an-
notator and storing the annotations, 2) training and
evaluation of tagging models using data labeled by
the annotator, and 3) selecting new examples for an-
notation. The processes are managed and coordi-
nated using the OpenNLP IGT Editor.7 The anno-
tation component of the tool, and in particular the
user interface, is built on the Interlinear Text Editor
(Lowe et al., 2004).

For tagging we use a strong but simple standard
classifier. There certainly are many other modeling
strategies that could be used, for example a condi-
tional random field (as in Settles and Craven (2008)),
or a model that deals differently with POS labels and
morpheme gloss labels. Nonetheless, a documen-
tary linguistics project would be most likely to use a
straightforward, off-the-shelf labeler, and our focus
is on exploring different annotation approaches in a
realistic documentation setting rather than building
an optimal classifier. To that end, we use a standard
maximum entropy classifier which predicts the label
for a morpheme based on the morpheme itself plus
a window of two morphemes before and after. Stan-
dard features used in part-of-speech taggers are ex-
tracted from the morpheme to help with predicting
labels for previously unseen stems and morphemes.

3.2 Annotators and annotation procedures

A practical goal of these studies is to explore best
practices for using automated support to create fully-
annotated texts of the highest quality possible within
fixed resource limits. For producing IGT, one of the
most valuable resources is the time of a linguist with
language-specific expertise. Documentary projects
may also (or instead) have access to a trained lin-
guist without prior experience in the language. We
compare results from two annotators with different
levels of exposure to the language. Both are trained
linguists who specialize in language documentation
and have extensive field experience.8

The first, henceforth referred to as the expert
annotator, has worked extensively on Uspanteko,
including writing a grammar of the language and

7http://igt.sourceforge.net/
8It should be noted that these are pilot studies. With just

two annotators, the annotation comparisons are suggestive but
not conclusive. Even so, this scenario accurately reflects the
resource limitations encountered in documentation projects.
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contributing to the publication of an Uspanteko-
Spanish dictionary (Ángel Vicente Méndez, 2007).
She is a native speaker of K’ichee’, a closely-related
Mayan language. The second annotator, the non-
expert annotator, is a doctoral student in language
documentation with no prior experience with Us-
panteko and only limited previous knowledge of
Mayan languages. Throughout the annotation pro-
cess, the non-expert annotator relied heavily on the
Uspanteko-Spanish dictionary. Both annotators are
fluent speakers of Spanish, the target translation and
glossing language for the OKMA texts.

In many annotation projects, labeling of training
data is done with reference to a detailed annotation
manual. In the language documentation context, a
more usual situation is for the annotator(s) to work
from a set of agreed-upon conventions but without
strict annotation guidelines. This is not because doc-
umentary linguists lack motivation or discipline but
simply because many aspects of the language are un-
known and the analysis is constantly changing.

In the absence of explicit written annotation
guidelines, we use an annotation training process for
the annotators to learn the OKMA annotation con-
ventions. Two seed sets of ten clauses each were se-
lected to be used both for human annotation training
and for initial classifier training. The first ten clauses
of the first text in the training data were used to seed
model training for the sequential selection cases (see
3.4). The second set of ten were randomly selected
from the entire corpus and used to seed model train-
ing for both random and uncertainty sampling.

These twenty clauses were used to provide initial
guidance to the annotators. With the aid of a list of
possible labels and the grammatical categories they
correspond to, each annotator was asked to label the
seed clauses, and these labels were compared to the
gold standard labels. Annotators were told which
labels were correct and which were incorrect, and
the process was repeated until all morphemes were
correctly labeled. In some cases during this training
phase, the correct label for a morpheme was sup-
plied to the annotator after several incorrect guesses.

3.3 Suggesting labels
We consider two situations with respect to the con-
tribution of the classifier: a suggest condition in
which the labels predicted by the machine learner

are shown to the annotator as she begins labeling a
selected clause, and a no-suggest condition in which
the annotator does not see the predicted labels.

In the suggest cases, the annotator is shown the la-
bel assigned the greatest likelihood by the tagger as
well as a list of several highly-likely labels, ranked
according to likelihood. To be included on this list,
a label must be assigned a probability greater than
half that of the most-likely label. In the no-suggest
cases, the annotator has access to a list of the la-
bels previously seen in the training data for a given
morpheme, ranked in order of frequency of occur-
rence with the morpheme in question; this is similar
to the input an annotator gets while glossing texts in
Shoebox/Toolbox. Specifically, Shoebox/Toolbox
presents previously seen glosses and labels for a
given morpheme in alphabetic order.

3.4 Sample selection

We consider three methods of selecting examples
for annotation–sequential (seq), random (rand), and
uncertainty sampling (al)–and the performance of
each method in both the suggest and the no-suggest
setups. For uncertainty sampling, we measure un-
certainty of a clause as the average entropy per mor-
pheme (i.e., per labeling decision).

3.5 Measuring annotation cost

Not all examples take the same amount of effort to
annotate. Even so, the bulk of the literature on active
learning assumes some sort of unit cost to determine
the effectiveness of different sample selection strate-
gies. Examples of unit cost measurements include
the number of documents in text classification, the
number of sentences in part-of-speech tagging (Set-
tles and Craven, 2008), or the number of constituents
in parsing (Hwa, 2000). These measures are conve-
nient for performing active learning simulations, but
awareness has grown that they are not truly repre-
sentative measures of the actual cost of annotation
(Haertel et al., 2008a; Settles et al., 2008), with Ngai
and Yarowsky (2000) being an early exception to the
unit-cost approach. Also, Baldridge and Osborne
(2004) use discriminants in parse selection, which
are annotation decisions that they later showed cor-
relate with timing information (Baldridge and Os-
borne, 2008).

The cost of annotation ultimately comes down to
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money. Since annotator pay may be variable but will
(under standard assumptions) be constant for a given
annotator, the best approximation of likely cost sav-
ings is to measure the time taken to annotate under
different levels of automated support. This is es-
pecially important in sample selection and its inter-
action with automated suggestions: active learning
seeks to find more informative examples, and these
will most likely involve more difficult decisions, de-
creasing annotation quality and/or increasing anno-
tation time (Hachey et al., 2005). Thus, we measure
cost in terms of the time taken by each annotator on
each example. This allows us to measure the actual
time taken to produce a given labeled data set, and
thus compare the effectiveness of different levels of
automated support plus their interaction with anno-
tators of different levels of expertise.

Recent work shows that paying attention to pre-
dicted annotation cost in sample selection itself can
increase the effectiveness of active learning (Settles
et al., 2008; Haertel et al., 2008b). Though we have
not explored cost-sensitive selection here, the sce-
nario described here is an appropriate test ground for
it: in fact, the results of our experiments, reported in
the next section, provide strong evidence for a real
natural language annotation task that active learning
selection with cost-sensitivity is indeed sub-optimal.

4 Discussion

This section presents and discusses preliminary re-
sults from the ongoing annotation experiments. The
Uspanteko corpus was split into training, develop-
ment, and held-out test sets, roughly 50%, 25%,
and 25%. Specifically, the training set of 21 texts
contains 38802 words, the development set of 5
texts contains 16792 words, and the held-out test
set, 6 texts, contains 18704 words. These are small
datasets, but the size is realistic for computational
work on endangered languages.

When measuring the performance of annotators,
factors like fatigue, frustration, and especially the
annotator’s learning process must be considered.
Annotators improve as they see more examples (es-
pecially the non-expert annotator). To minimize the
impact of the annotator’s learning process on the re-
sults, annotation is done in rounds. Each round con-
sists of ten clauses from each of the six experimental
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Figure 1: Average annotation time (in seconds per mor-
pheme) over annotation rounds, averaged over all six con-
ditions for each annotator.

cases for each annotator. The newly-labeled clauses
are then added to the labeled training data, and a new
tagging model is trained on the updated training set
and evaluated on the development set. Both annota-
tors have completed fifty-one rounds of annotation
so far, labeling 510 clauses for each of the six ex-
perimental conditions. The average number of mor-
phemes labeled is 3059 per case. Because the anno-
tation experiments are ongoing, we discuss results in
terms of the trends seen thus far.

4.1 Annotator speed

The expert annotator showed a small increase in
speed after an initial familiarization period, and the
non-expert showed a dramatic increase. Figure 1
plots the number of seconds taken per morpheme
over the course of annotation, averaged over all six
conditions for each annotator. The slowest, fastest,
and mean rates, in seconds per morpheme, for the
expert annotator were 12.60, 1.89, and 4.14, respec-
tively. For the non-expert, they were 59.71, 1.90,
and 8.03.

4.2 Accuracy of model on held-out data

Table 1 provides several measures of the current
state of annotation in all 12 conditions after 51
rounds of annotation. The sixth column, labeled
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Anno Suggest Select Time (sec) #Morphs Model Accuracy Total Accuracy of Annotation
NonExp N Seq 23739.79 3314 63.28 63.92
NonExp N Rand 22721.11 2911 68.36 68.69
NonExp N AL 23755.71 2911 68.26 67.84
NonExp Y Seq 21514.05 2887 66.55 66.89
NonExp Y Rand 22189.68 3002 68.41 68.73
NonExp Y AL 25731.57 2750 67.63 67.30
Exp N Seq 11862.39 3354 61.15 61.88
Exp N Rand 11665.10 3043 64.60 64.91
Exp N AL 13894.14 3379 66.74 66.47
Exp Y Seq 11758.74 2892 61.12 61.48
Exp Y Rand 11426.85 2979 60.13 60.57
Exp Y AL 16253.40 3296 63.30 63.15

Table 1: After 51 rounds of annotation: ModelAcc=accuracy on development set, TotalAnnoAcc=accuracy of fully-labeled corpus

ModelAcc, shows the accuracy of models on the
development data. This represents a unit cost as-
sumption at the clause level: measured this way, the
results would suggest that the non-expert was best
served by random selection, with no effect from ma-
chine suggestions. For the expert, they suggest ac-
tive learning without suggestions is best, and that
suggestions actually hurt effectiveness.

4.3 Accuracy of fully-labeled corpus
We are particularly concerned with the question of
how to develop a fully-labeled corpus with the high-
est level of accuracy, given a finite set of resources.
Thus, we combine the portion of the training set la-
beled by the human annotator with the results of tag-
ging the remainder of the training set with the model
trained on those annotations. The rightmost column
of Table 1, labeled Total Accuracy of Annotation,
shows the accuracy of the fully labeled training set
(part human, part machine labels) after 51 rounds.
These accuracies parallel the model accuracies: ran-
dom selection is best for the non-expert annotator,
and uncertainty selection is best for the expert.

Since this tagging task involves labeling mor-
phemes, a clause cost assumption is not ideal—e.g.,
active learning tends to select longer clauses and
thereby obtains more labels. To reflect this, a sub-
clause cost can help: here we use the number of
morphemes annotated. The column labeled Tokens
in Table 2 shows the total accuracy achieved in each
condition when human annotation ceases at 2750
morphemes. The figure in parentheses is the cumu-
lative annotation time at the morpheme cut-off point.
Here, the non-expert does best: he took great care
with the annotations and was clearly not tempted to

Anno Suggest Select Time Tokens (time)
(11427 sec) (2750 morphs)

NonExp N Seq 55.01 59.80 (21678 secs)
NonExp N Rand 59.95 68.68 (22069 secs)
NonExp N AL 59.86 67.70 (22879 secs)
NonExp Y Seq 60.27 66.79 (21053 secs)
NonExp Y Rand 62.96 68.38 (21194 secs)
NonExp Y AL 59.18 67.30 (25732 secs)
Exp N Seq 61.21 59.18 (10110 secs)
Exp N Rand 64.92 64.42 (10683 secs)
Exp N AL 65.72 65.74 (11826 secs)
Exp Y Seq 61.47 61.47 (11436 secs)
Exp Y Rand 60.57 61.16 (10934 secs)
Exp Y AL 61.54 62.87 (13957 secs)

Table 2: For given cost, accuracy of fully-labeled corpus.

accept erroneous suggestions from the machine la-
beler. In contrast, the expert does seem to have ac-
cepted many bad machine suggestions.

Morpheme unit cost is more fine-grained than
clause-level cost, but it hides the fact that the ex-
pert annotator needed far less time to produce a cor-
pus of higher overall labeled quality than the non-
expert. This can be seen in the Time column of
Table 2, which gives the total annotation accuracy
when 11427 seconds are alloted for human label-
ing. The expert annotator achieved the highest accu-
racy for total labeling of the training set using active
learning without machine label suggestions. Active
learning helps the non-expert as well, but his best
condition is random selection with machine labels.

4.4 Annotator accuracy by round

Active learning clearly selects harder examples that
hurt the non-expert’s performance. To see this
clearly, we measured the accuracy of the annotators’
labels for each round of each experimental setup,
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Figure 2: Single round accuracy per round for each experiment type by: (a) non-expert annotator, (b) expert annotator

given in Fig. 2. It is not clear at this stage whether
the tag suggestions by the machine labeler are help-
ful to human annotation. It is useful to compare the
cases where the machine learner is not involved in
example selection (i.e. random and sequential) to
uncertainty sampling, which does involve the ma-
chine learner. One thing that is apparent is that when
active learning is used to select samples for annota-
tion, both the expert and non-expert annotator have
a harder time providing correct tags. A point of con-
trast between the expert and non-expert is that the
non-expert generally outperforms the expert on label
accuracy in the non-active learning scenarios. The
non-expert was very careful with his labeling deci-
sions, but also much slower than the expert. In the
end, speedier annotation rates allowed the expert an-
notator to achieve higher accuracies in less time.

5 Conclusion

We have described a set of ongoing pilot experi-
ments designed to test the utility of machine label-
ing and active learning in the context of documen-
tary linguistics. The production of IGT is a realistic
annotation scenario which desperately needs label-
ing efficiency improvements. Our preliminary re-
sults suggest that both machine labeling and active

learning can increase the effectiveness of annotators,
but they interact quite strongly with the expertise of
the annotators. In particular, though active learn-
ing works well with the expert annotator, for a non-
expert annotator it seems that random selection is
a better choice. However, we stress that our anno-
tation experiments are ongoing. Active learning is
often less effective early in the learning curve, es-
pecially when automated label suggestions are pro-
vided, because the model is not yet accurate enough
to select truly useful examples, nor to suggest labels
for them reliably (Baldridge and Osborne, 2004).
Thus, we expect automation via uncertainty sam-
pling and/or suggestion may gather momentum and
outpace random selection and/or no suggestions by
wider margins as annotation continues.
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