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Abstract

Various techniques have been developed to au-
tomatically induce semantic dictionaries from
text corpora and from the Web. Our research
combines corpus-based semantic lexicon in-
duction with statistics acquired from the Web
to improve the accuracy of automatically ac-
quired domain-specific dictionaries. We use
a weakly supervised bootstrapping algorithm
to induce a semantic lexicon from a text cor-
pus, and then issue Web queries to generate
co-occurrence statistics between each lexicon
entry and semantically related terms. The Web
statistics provide a source of independent ev-
idence to confirm, or disconfirm, that a word
belongs to the intended semantic category. We
evaluate this approach on 7 semantic cate-
gories representing two domains. Our results
show that the Web statistics dramatically im-
prove the ranking of lexicon entries, and can
also be used to filter incorrect entries.

1 Introduction

Semantic resources are extremely valuable for many
natural language processing (NLP) tasks, as evi-
denced by the wide popularity of WordNet (Miller,
1990) and a multitude of efforts to create similar
“WordNets” for additional languages (e.g. (Atserias
et al., 1997; Vossen, 1998; Stamou et al., 2002)).
Semantic resources can take many forms, but one of
the most basic types is a dictionary that associates
a word (or word sense) with one or more semantic
categories (hypernyms). For example,truck might
be identified as aVEHICLE, anddogmight be identi-
fied as anANIMAL . Automated methods for generat-

ing such dictionaries have been developed under the
rubrics of lexical acquisition, hyponym learning, se-
mantic class induction, and Web-based information
extraction. These techniques can be used to rapidly
create semantic lexicons for new domains and lan-
guages, and to automatically increase the coverage
of existing resources.

Techniques for semantic lexicon induction can be
subdivided into two groups: corpus-based methods
and Web-based methods. Although the Web can be
viewed as a (gigantic) corpus, these two approaches
tend to have different goals. Corpus-based methods
are typically designed to induce domain-specific se-
mantic lexicons from a collection of domain-specific
texts. In contrast, Web-based methods are typically
designed to induce broad-coverage resources, simi-
lar to WordNet. Ideally, one would hope that broad-
coverage resources would be sufficient for any do-
main, but this is often not the case. Many domains
use specialized vocabularies and jargon that are not
adequately represented in broad-coverage resources
(e.g., medicine, genomics, etc.). Furthermore, even
relatively general text genres, such as news, con-
tain subdomains that require extensive knowledge
of specific semantic categories. For example, our
work uses a corpus of news articles about terror-
ism that includes many arcane weapon terms (e.g.,
M-79, AR-15, an-fo, andgelignite). Similarly, our
disease-related documents mention obscure diseases
(e.g.,psittacosis) and contain many informal terms,
abbreviations, and spelling variants that do not even
occur in most medical dictionaries. For example,yf
refers to yellow fever,tularaemia is an alternative
spelling fortularemia, andnv-cjd is frequently used
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to refer tonew variant Creutzfeldt Jacob Disease.
The Web is such a vast repository of knowledge

that specialized terminology for nearly any domain
probably exists in some niche or cranny, but find-
ing the appropriate corner of the Web to tap into is a
challenge. You have to know where to look to find
specialized knowledge. In contrast, corpus-based
methods can learn specialized terminology directly
from a domain-specific corpus, but accuracy can be
a problem because most corpora are relatively small.

In this paper, we seek to exploit the best of both
worlds by combining a weakly supervised corpus-
based method for semantic lexicon induction with
statistics obtained from the Web. First, we use
a bootstrapping algorithm, Basilisk (Thelen and
Riloff, 2002), to automatically induce a semantic
lexicon from a domain-specific corpus. This pro-
duces a set of words that are hypothesized to be-
long to the targeted semantic category. Second, we
use the Web as a source of corroborating evidence
to confirm, or disconfirm, whether each term truly
belongs to the semantic category. For each candi-
date word, we search the Web for pages that con-
tain both the word and a semantically related term.
We expect that true semantic category members will
co-occur with semantically similar words more of-
ten than non-members.

This paper is organized as follows. Section 2 dis-
cusses prior work on weakly supervised methods for
semantic lexicon induction. Section 3 overviews
our approach: we briefly describe the weakly su-
pervised bootstrapping algorithm that we use for
corpus-based semantic lexicon induction, and then
present our procedure for gathering corroborating
evidence from the Web. Section 4 presents exper-
imental results on seven semantic categories repre-
senting two domains: Latin American terrorism and
disease-related documents. Section 5 summarizes
our results and discusses future work.

2 Related Work

Our research focuses on semantic lexicon induc-
tion, where the goal is to create a list of words
that belong to a desired semantic class. A sub-
stantial amount of previous work has been done on
weakly supervised and unsupervised creation of se-
mantic lexicons. Weakly supervised corpus-based

methods have utilized noun co-occurrence statis-
tics (Riloff and Shepherd, 1997; Roark and Char-
niak, 1998), syntactic information (Widdows and
Dorow, 2002; Phillips and Riloff, 2002; Pantel and
Ravichandran, 2004; Tanev and Magnini, 2006),
and lexico-syntactic contextual patterns (e.g.,“re-
sides in<location>” or “moved to<location>” )
(Riloff and Jones, 1999; Thelen and Riloff, 2002).
Due to the need for POS tagging and/or parsing,
these types of methods have been evaluated only
on fixed corpora1, although (Pantel et al., 2004)
demonstrated how to scale up their algorithms for
the Web. The goal of our work is to improve upon
corpus-based bootstrapping algorithms by using co-
occurrence statistics obtained from the Web to re-
rank and filter the hypothesized category members.

Techniques for semantic class learning have also
been developed specifically for the Web. Sev-
eral Web-based semantic class learners build upon
Hearst’s early work (Hearst, 1992) with hyponym
patterns. Hearst exploited patterns that explicitly
identify a hyponym relation between a semantic
class and a word (e.g.,“such authors as<X>” ) to
automatically acquire new hyponyms. (Paşca, 2004)
applied hyponym patterns to the Web and learned se-
mantic class instances and groups by acquiring con-
texts around the patterns. Later, (Pasca, 2007) cre-
ated context vectors for a group of seed instances by
searching Web query logs, and used them to learn
similar instances. The KnowItAll system (Etzioni
et al., 2005) also uses hyponym patterns to extract
class instances from the Web and evaluates them fur-
ther by computing mutual information scores based
on Web queries. (Kozareva et al., 2008) proposed
the use of a doubly-anchored hyponym pattern and
a graph to represent the links between hyponym oc-
currences in these patterns.

Our work builds upon Turney’s work on seman-
tic orientation (Turney, 2002) and synonym learning
(Turney, 2001), in which he used a PMI-IR algo-
rithm to measure the similarity of words and phrases
based on Web queries. We use a similar PMI (point-
wise mutual information) metric for the purposes of
semantic class verification.

There has also been work on fully unsupervised

1Meta-bootstrapping (Riloff and Jones, 1999) was evaluated
on Web pages, but used a precompiled corpus of downloaded
Web pages.
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semantic clustering (e.g., (Lin, 1998; Lin and Pan-
tel, 2002; Davidov and Rappoport, 2006; Davidov et
al., 2007)), however clustering methods may or may
not produce the types and granularities of seman-
tic classes desired by a user. Another related line
of work is automated ontology construction, which
aims to create lexical hierarchies based on semantic
classes (e.g., (Caraballo, 1999; Cimiano and Volker,
2005; Mann, 2002)).

3 Semantic Lexicon Induction with
Web-based Corroboration

Our approach combines a weakly supervised learn-
ing algorithm for corpus-based semantic lexicon in-
duction with a follow-on procedure that gathers cor-
roborating statistical evidence from the Web. In
this section, we describe both of these components.
First, we give a brief overview of the Basilisk boot-
strapping algorithm that we use for corpus-based se-
mantic lexicon induction. Second, we present our
new strategies for acquiring and utilizing corrobo-
rating statistical evidence from the Web.

3.1 Corpus-based Semantic Lexicon Induction
via Bootstrapping

For corpus-based semantic lexicon induction, we
use a weakly supervised bootstrapping algorithm
called Basilisk (Thelen and Riloff, 2002). As in-
put, Basilisk requires a small set ofseed wordsfor
each semantic category, and a collection of (unanno-
tated) texts. Basilisk iteratively generates new words
that are hypothesized to belong to the same seman-
tic class as the seeds. Here we give an overview of
Basilisk’s algorithm and refer the reader to (Thelen
and Riloff, 2002) for more details.

The key idea behind Basilisk is to use pattern con-
texts around a word to identify its semantic class.
Basilisk’s bootstrapping process has two main steps:
Pattern Pool Creation and Candidate Word Selec-
tion. First, Basilisk applies the AutoSlog pattern
generator (Riloff, 1996) to create a set of lexico-
syntactic patterns that, collectively, can extract every
noun phrase in the corpus. Basilisk then ranks the
patterns according to how often they extract the seed
words, under the assumption that patterns which ex-
tract known category members are likely to extract
other category members as well. The highest-ranked

patterns are placed in apattern pool.
Second, Basilisk gathers every noun phrase that is

extracted by at least one pattern in the pattern pool,
and designates each head noun as acandidatefor the
semantic category. The candidates are then scored
and ranked. For each candidate, Basilisk collects all
of the patterns that extracted that word, computes the
logarithm of the number of seeds extracted by each
of those patterns, and finally computes the average
of these log values as the score for the candidate.
Intuitively, a candidate word receives a high score
if it was extracted by patterns that, on average, also
extract many known category members.

The N highest ranked candidates are automati-
cally added to the list ofseed words, taking a leap
of faith that they are true members of the semantic
category. The bootstrapping process then repeats,
using the larger set of seed words as known category
members in the next iteration.

Basilisk learns many good category members,
but its accuracy varies a lot across semantic cate-
gories (Thelen and Riloff, 2002). One problem with
Basilisk, and bootstrapping algorithms in general, is
that accuracy tends to deteriorate as bootstrapping
progresses. Basilisk generates candidates by iden-
tifying the contexts in which they occur and words
unrelated to the desired category can sometimes also
occur in those contexts. Some patterns consistently
extract members of several semantic classes; for ex-
ample,“attack on <NP>” will extract both people
(“attack on the president”) and buildings (“attack
on the U.S. embassy”). Idiomatic expressions and
parsing errors can also lead to undesirable words be-
ing learned. Incorrect words tend to accumulate as
bootstrapping progresses, which can lead to gradu-
ally deteriorating performance.

(Thelen and Riloff, 2002) tried to address this
problem by learning multiple semantic categories si-
multaneously. This helps to keep the bootstrapping
focused by flagging words that are potentially prob-
lematic because they are strongly associated with a
competing category. This improved Basilisk’s accu-
racy, but by a relatively small amount, and this ap-
proach depends on the often unrealistic assumption
that a word cannot belong to more than one seman-
tic category. In our work, we use the single-category
version of Basilisk that learns each semantic cate-
gory independently so that we do not need to make
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this assumption.

3.2 Web-based Semantic Class Corroboration

The novel aspect of our work is that we introduce a
new mechanism to independently verify each candi-
date word’s category membership using the Web as
an external knowledge source. We gather statistics
from the Web to provide evidence for (or against)
the semantic class of a word in a manner completely
independent of Basilisk’s criteria. Our approach
is based on thedistributional hypothesis(Harris,
1954), which says that words that occur in the same
contexts tend to have similar meanings. We seek to
corroborate a word’s semantic class through statis-
tics that measure how often the word co-occurs with
semantically related words.

For each candidate word produced by Basilisk, we
construct a Web query that pairs the word with a se-
mantically related word. Our goal is not just to find
Web pages that contain both terms, but to find Web
pages that contain both terms in close proximity to
one another. We consider two terms to be collo-
cated if they occur within ten words of each other
on the same Web page, which corresponds to the
functionality of the NEAR operator used by the Al-
taVista search engine2. Turney (Turney, 2001; Tur-
ney, 2002) reported that the NEAR operator outper-
formed simple page co-occurrence for his purposes;
our early experiments informally showed the same
for this work.

We want our technique to remain weakly super-
vised, so we do not want to require additional hu-
man input or effort beyond what is already required
for Basilisk. With this in mind, we investigated two
types of collocation relations as possible indicators
of semantic class membership:

Hypernym Collocation: We compute co-
occurrence statistics between the candidate word
and the name of the targeted semantic class (i.e.,
the word’s hypothesized hypernym). For example,
given the candidate wordjeep and the semantic
category VEHICLE, we would issue the Web query
“ jeep NEAR vehicle”. Our intuition is that such
queries would identify definition-type Web hits.
For example, the query “cowNEAR animal” might
retrieve snippets such as“A cow is an animal found

2http://www.altavista.com

on dairy farms” or “An animal such as a cow
has...”.

Seed Collocation: We compute co-occurrence
statistics between the candidate word and each seed
word that was given to Basilisk as input. For ex-
ample, given the candidate wordjeepand the seed
word truck, we would issue the Web query “jeep
NEAR truck”. Here the intuition is that members of
the same semantic category tend to occur near one
another - in lists, for example.

As a statistical measure of co-occurrence, we
compute a variation of Pointwise Mutual Informa-
tion (PMI), which is defined as:

PMI(x, y) = log( p(x,y)
p(x)∗p(y) )

wherep(x, y) is the probability thatx andy are col-
located (near each other) on a Web page,p(x) is the
probability thatx occurs on a Web page, andp(y) is
the probability thaty occurs on a Web page.

p(x) is calculated ascount(x)
N , wherecount(x) is

the number of hits returned by AltaVista, searching
for x by itself, andN is the total number of docu-
ments on the World Wide Web at the time the query
is made. Similarly, p(x, y) is count(x NEAR y)

N .
Given this, the PMI equation can be rewritten as:

log(N) + log( count(x NEAR y)
count(x)∗count(y) )

N is not known, but it is the same for every
query (assuming the queries were made at roughly
the same time). We will use these scores solely to
compare the relative goodness of candidates, so we
can omitN from the equation because it will not
change the relative ordering of the scores. Thus, our
PMI score3 for a candidate word and related term
(hypernym or seed) is:

log( count(x NEAR y)
count(x)∗count(y) )

Finally, we created three different scoring func-
tions that use PMI values in different ways to cap-
ture different types of co-occurrence information:

Hypernym Score: PMI based on collocation be-
tween the hypernym term and candidate word.

3In the rare cases when a term had a zero hit count, we as-
signed -99999 as the PMI score, which effectively ranks it atthe
bottom.
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Average of Seeds Score: The mean of the PMI
scores computed for the candidate and each
seed word:

1
|seeds|

|seeds|∑

i=1

PMI(candidate, seedi)

Max of Seeds Score: The maximum (highest) of
the PMI scores computed for the candidate and
each seed word.

The rationale for the Average of Seeds Score is
that the seeds are all members of the semantic cat-
egory, so we might expect other members to occur
near many of them. Averaging over all of the seeds
can diffuse unusually high or low collocation counts
that might result from an anomalous seed. The ra-
tionale for the Max of Seeds Score is that a word
may naturally co-occur with some category mem-
bers more often than others. For example, one would
expect dog to co-occur withcat much more fre-
quently than withfrog. A high Max of Seeds Score
indicates that there is at least one seed word that fre-
quently co-occurs with the candidate.

Since Web queries are relatively expensive, it is
worth taking stock of how many queries are nec-
essary. LetN be the number of candidate words
produced by Basilisk, andS be the number of
seed words given to Basilisk as input. To com-
pute the Hypernym Score for a candidate, we need
3 queries:count(hypernym), count(candidate),
and count(hypernym NEAR candidate). The
first query is the same for all candidates, so forN
candidate words we need2N + 1 queries in total.
To compute the Average or Max of Seeds Score for
a candidate, we needS queries forcount(seedi), S
queries forcount(seedi NEAR candidate), and 1
query for count(candidate). So for N candidate
words we needN ∗ (2S + 1) queries.S is typically
small for weakly supervised algorithms (S=10 in our
experiments), which means that this Web-based cor-
roboration process requiresO(N) queries to process
a semantic lexicon of sizeN .

4 Evaluation

4.1 Data Sets

We ran experiments on two corpora: 1700 MUC-4
terrorism articles (MUC-4 Proceedings, 1992) and
a combination of 6000 disease-related documents,

consisting of 2000 ProMed disease outbreak re-
ports (ProMed-mail, 2006) and 4000 disease-related
PubMed abstracts (PubMed, 2009). For the terror-
ism domain, we created lexicons for four semantic
categories: BUILDING , HUMAN , LOCATION, and
WEAPON. For the disease domain, we created lexi-
cons for three semantic categories: ANIMAL 4, DIS-
EASE, and SYMPTOM. For each category, we gave
Basilisk 10 seed words as input. The seeds were
chosen by applying a shallow parser to each corpus,
extracting the head nouns of all the NPs, and sort-
ing the nouns by frequency. A human then walked
down the sorted list and identified the 10 most fre-
quent nouns that belong to each semantic category5.
This strategy ensures that the bootstrapping process
is given seed words that occur in the corpus with
high frequency. The seed words are shown in Ta-
ble 1.

BUILDING : embassy office headquarters church
offices house home residence hospital airport

HUMAN : people guerrillas members troops
Cristiani rebels president terrorists soldiers leaders

LOCATION: country ElSalvador Salvador
United States area Colombia city countries
department Nicaragua

WEAPON: weapons bomb bombs explosives arms
missiles dynamite rifles materiel bullets

ANIMAL : bird mosquito cow horse pig chicken
sheep dog deer fish

DISEASE: SARS BSEanthrax influenzaWNV

FMD encephalitis malaria pneumonia flu
SYMPTOM: fever diarrhea vomiting rash paralysis

weakness necrosis chills headaches hemorrhage

Table 1: Seed Words

To evaluate our results, we used the gold standard
answer key that Thelen & Riloff created to evaluate
Basilisk on the MUC4 corpus (Thelen and Riloff,
2002); they manually labeled every head noun in the
corpus with its semantic class. For the ProMed /
PubMed disease corpus, we created our own answer
key. For all of the lexicon entries hypothesized by
Basilisk, a human annotator (not any of the authors)

4ANIMAL was chosen because many of the ProMed disease
outbreak stories concerned outbreaks among animal popula-
tions.

5The disease domain seed words were chosen from a larger
set of ProMed documents, which included the 2000 used for
lexicon induction.
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BUILDING HUMAN LOCATION WEAPON

N Ba Hy Av Mx Ba Hy Av Mx Ba Hy Av Mx Ba Hy Av Mx

25 .40 .56 .52 .56 .40 .72 .80 .84 .68 .88 .88 1.0 .56 .84 1.0 1.0
50 .44 .56 .46 .40 .56 .80 .88 .86 .80 .86 .84 .98 .52 .74 .76 .90
75 .44 .45 .41 .39 .65 .84 .85 .85 .80 .88 .80 .99 .52 .63 .65 .79

100 .42 .41 .38 .36 .69 .81 .80 .87 .81 .85 .78 .95 .55 .55 .56 .63

300 .22 .82 .75 .26

ANIMAL DISEASE SYMPTOM

N Ba Hy Av Mx Ba Hy Av Mx Ba Hy Av Mx

25 .48 .88 .92 .92 .64 .84 .80 .84 .64 .84 .92 .80
50 .58 .82 .84 .80 .72 .84 .60 .82 .62 .76 .90 .74
75 .55 .68 .67 .69 .69 .83 .59 .81 .61 .68 .79 .71

100 .45 .55 .54 .57 .69 .78 .58 .80 .59 .71 .77 .64

300 .20 .62 .38

Table 2: Ranking results for 7 semantic categories, showingaccuracies for the top-rankedN words.
(Ba=Basilisk,Hy=Hypernym Re-ranking,Av=Average of Seeds Re-ranking,Mx=Max of Seeds Re-ranking

labeled each word as either correct or incorrect for
the hypothesized semantic class. A word is consid-
ered to be correct if any sense of the word is seman-
tically correct.

4.2 Ranking Results

We ran Basilisk for 60 iterations, learning 5 new
words in each bootstrapping cycle, which produced
a lexicon of 300 words for each semantic category.
The columns labeledBa in Table 2 show the accu-
racy results for Basilisk.6 As we explained in Sec-
tion 3.1, accuracy tends to decrease as bootstrapping
progresses, so we computed accuracy scores for the
top-ranked 100 words, in increments of 25, and also
for the entire lexicon of 300 words.

Overall, we see that Basilisk learns many cor-
rect words for each semantic category, and the top-
ranked terms are generally more accurate than the
lower-ranked terms. For the top 100 words, accu-
racies are generally in the 50-70% range, except for
LOCATION which achieves about 80% accuracy. For
the HUMAN category, Basilisk obtained 82% accu-
racy over all 300 words, but the top-ranked words
actually produced lower accuracy.

Basilisk’s ranking is clearly not as good as it could
be because there are correct terms co-mingled with
incorrect terms throughout the ranked lists. This has

6These results are not comparable to the Basilisk results re-
ported by (Thelen and Riloff, 2002) because our implementa-
tion only does single-category learning while the results in that
paper are based on simultaneously learning multiple categories.

two ramifications. First, if we want a human to man-
ually review each lexicon before adding the words
to an external resource, then the rankings may not
be very helpful (i.e., the human will need to review
all of the words), and (2) incorrect terms generated
during the early stages of bootstrapping may be hin-
dering the learning process because they introduce
noise during bootstrapping. The HUMAN category
seems to have recovered from early mistakes, but
the lower accuracies for some other categories may
be the result of this problem. The purpose of our
Web-based corroboration process is to automatically
re-evaluate the lexicons produced by Basilisk, using
Web-based statistics to create more separation be-
tween the good entries and the bad ones.

Our first set of experiments uses the Web-based
co-occurrence statistics to re-rank the lexicon en-
tries. The Hy, Av, and Mx columns in Ta-
ble 2 show the re-ranking results using each of the
Hypernym, Average of Seeds, and Maximum of
Seeds scoring functions. In all cases, Web-based
re-ranking outperforms Basilisk’s original rank-
ings. Every semantic category except for BUILDING

yielded accuracies of 80-100% among the top can-
didates. For each row, the highest accuracy for each
semantic category is shown in boldface (as are any
tied for highest).

Overall, the Max of Seeds Scores were best, per-
forming better than or as well as the other scoring
functions on 5 of the 7 categories. It was only out-
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BUILDING HUMAN LOCATION WEAPON ANIMAL DISEASE SYMPTOM

consulate guerrilla SanSalvador shotguns bird-to-bird meningo-encephalitis nausea
pharmacies extremists Las Hojas carbines cervids bse).austria diarrhoea
aiport sympathizers Tejutepeque armaments goats inhalational myalgias
zacamil assassins Ayutuxtepeque revolvers ewes anthraxdisease chlorosis
airports patrols Copinol detonators ruminants otitis media myalgia
parishes militiamen Cuscatancingo pistols swine airport malaria salivation
Masariegos battalion Jiboa car bombs calf taeniorhynchus dysentery
chancery Ellacuria Chinameca calibers lambs hyopneumonia cramping
residences rebel Zacamil M-16 wolsington monkeypox dizziness
police station policemen Chalantenango grenades piglets kala-azar inappetance

Table 3: Top 10 words ranked by Max of Seeds Scores.

performed once by the Hypernym Scores (BUILD -
ING) and once by the Average of Seeds Scores
(SYMPTOM).

The strong performance of the Max of Seeds
scores suggests that one seed is often an especially
good collocation indicator for category membership
– though it may not be the same seed word for all of
the lexicon words. The relatively poor performance
of the Average of Seeds scores may be attributable
to the same principle; perhaps even if one seed is
especially strong, averaging over the less-effective
seeds’ scores dilutes the results. Averaging is also
susceptible to damage from words that receive the
special-case score of -99999 when a hit count is zero
(see Section 3.2).

Table 3 shows the 10 top-ranked candidates for
each semantic category based on the Max of Seeds
scores. The table illustrates that this scoring func-
tion does a good job of identifying semantically cor-
rect words, although of course there are some mis-
takes. Mistakes can happen due to parsing errors
(e.g.,bird-to-bird is an adjective and not a noun, as
in bird-to-bird transmission), and some are due to
issues associated with Web querying. For exam-
ple, the nonsense term“bse).austria” was ranked
highly because Altavista split this term into 2 sep-
arate words because of the punctuation, andbseby
itself is indeed a disease term (bovine spongiform
encephalitis).

4.3 Filtering Results

Table 2 revealed that the 300-word lexicons pro-
duced by Basilisk vary widely in the number of true
category words that they contain. The least dense
category is ANIMAL , with only 61 correct words,

and the most dense is HUMAN with 247 correct
words. Interestingly, the densest categories are not
always the easiest to rank. For example, the HU-
MAN category is the densest category but Basilisk’s
ranking of the human terms was poor.

θ Category Acc Cor/Tot

-22

WEAPON .88 46/52
LOCATION .98 59/60
HUMAN .80 8/10

BUILDING .83 5/6
ANIMAL .91 30/33
DISEASE .82 64/78

SYMPTOM .65 64/99

-23

WEAPON .79 59/75
LOCATION .96 82/85
HUMAN .85 23/27

BUILDING .71 12/17
ANIMAL .87 40/46
DISEASE .78 82/105

SYMPTOM .62 86/139

-24

WEAPON .63 63/100
LOCATION .93 111/120
HUMAN .87 54/62

BUILDING .45 17/38
ANIMAL .75 47/63
DISEASE .74 94/127

SYMPTOM .60 100/166

Table 4: Filtering results using the Max of Seeds Scores.

The ultimate goal behind a better ranking mech-
anism is to completely automate the process of se-
mantic lexicon induction. If we can produce high-
quality rankings, then we can discard the lower
ranked words and keep only the highest ranked
words for our semantic dictionary. However, this
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presupposes that we know where to draw the line be-
tween the good and bad entries, and Table 2 shows
that this boundary varies across categories. For HU-
MANS, the top 100 words are 87% accurate, and in
fact we get 82% accuracy over all 300 words. But
for ANIMALS we achieve 80% accuracy only for the
top 50 words. It is paramount for semantic dictio-
naries to have high integrity, so accuracy must be
high if we want to use the resulting lexicons without
manual review.

As an alternative to ranking, another way that we
could use the Web-based corroboration statistics is
to automatically filter words that do not receive a
high score. The key question is whether the values
of the scores are consistent enough across categories
to set a single threshold that will work well across
the different categories.

Table 4 shows the results of using the Max of
Seeds Scores as a filtering mechanism: given a
thresholdθ, all words that have a score< θ are dis-
carded. For each threshold valueθ and semantic cat-
egory, we computed the accuracy (Acc) of the lex-
icon after all words with a score< θ have been re-
moved. TheCor/Tot column shows the number of
correct category members and the number of total
words that passed the threshold.

We experimented with a variety of threshold val-
ues and found thatθ=-22 performed best. Table 4
shows that this threshold produces a relatively high-
precision filtering mechanism, with 6 of the 7 cat-
egories achieving lexicon accuracies≥ 80%. As
expected, theCor/Tot column shows that the num-
ber of words varies widely across categories. Au-
tomatic filtering represents a trade-off: a relatively
high-precision lexicon can be created, but some cor-
rect words will be lost. The threshold can be ad-
justed to increase the number of learned words, but
with a corresponding drop in precision. Depending
upon a user’s needs, a high threshold may be desir-
able to identify only the most confident lexicon en-
tries, or a lower threshold may be desirable to retain
most of the correct entries while reliably removing
some of the incorrect ones.

5 Conclusions

We have demonstrated that co-occurrence statis-
tics gathered from the Web can dramatically im-

prove the ranking of lexicon entries produced by
a weakly-supervised corpus-based bootstrapping al-
gorithm, without requiring any additional supervi-
sion. We found that computing Web-based co-
occurrence statistics across a set of seed words and
then using the highest score was the most success-
ful approach. Co-occurrence with a hypernym term
also performed well for some categories, and could
be easily combined with the Max of Seeds approach
by choosing the highest value among the seeds as
well as the hypernym.

In future work, we would like to incorporate this
Web-based re-ranking procedure into the bootstrap-
ping algorithm itself to dynamically “clean up” the
learned words before they are cycled back into the
bootstrapping process. Basilisk could consult the
Web-based statistics to select the best 5 words to
generate before the next bootstrapping cycle begins.
This integrated approach has the potential to sub-
stantially improve Basilisk’s performance because
it would improve the precision of the induced lex-
icon entries during the earliest stages of bootstrap-
ping when the learning process is most fragile.
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