
Proceedings of CLIAWS3, Third International Cross Lingual Information Access Workshop, pages 53–60,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

An Approach to Text Summarization

Sankar K Sobha L
AU-KBC Research Centre AU-KBC Research Centre

MIT Campus, Anna University MIT Campus, Anna University
Chennai- 44. Chennai- 44.

sankar@au-kbc.org sobha@au-kbc.org

Abstract

We propose an efficient text summarization
technique that involves two basic opera-
tions. The first operation involves finding
coherent chunks in the document and the
second operation involves ranking the text
in the individual coherent chunks and pick-
ing the sentences that rank above a given
threshold. The coherent chunks are formed
by exploiting the lexical relationship be-
tween adjacent sentences in the document.
Occurrence of words through repetition or
relatedness by sense relation plays a major
role in forming a cohesive tie. The pro-
posed text ranking approach is based on a
graph theoretic ranking model applied to
text summarization task.

1 Introduction

Automated summarization is an important area in
NLP research. A variety of automated summariza-
tion schemes have been proposed recently. NeATS
(Lin and Hovy, 2002) is a sentence position, term
frequency, topic signature and term clustering
based approach and MEAD (Radev et al., 2004) is
a centroid based approach. Iterative graph based
Ranking algorithms, such as Kleinberg’s HITS
algorithm (Kleinberg, 1999) and Google’s Page-
Rank (Brin and Page, 1998) have been traditionally
and successfully used in web-link analysis, social

networks and more recently in text processing ap-
plications (Mihalcea and Tarau, 2004), (Mihalcea
et al., 2004), (Erkan and Radev, 2004) and (Mihal-
cea, 2004). These iterative approaches have a high
time complexity and are practically slow in dy-
namic summarization. Proposals are also made for
coherence based automated summarization system
(Silber and McCoy, 2000).

We propose a novel text summarization tech-
nique that involves two basic operations, namely
finding coherent chunks in the document and rank-
ing the text in the individual coherent chunks
formed.
For finding coherent chunks in the document, we
propose a set of rules that identifies the connection
between adjacent sentences in the document. The
connected sentences that are picked based on the
rules form coherent chunks in the document. For
text ranking, we propose an automatic and unsu-
pervised graph based ranking algorithm that gives
improved results when compared to other ranking
algorithms. The formation of coherent chunks
greatly improves the amount of information of the
text picked for subsequent ranking and hence the
quality of text summarization.
The proposed text ranking technique employs a
hybrid approach involving two phases; the first
phase employs word frequency statistics and the
second phase involves a word position and string
pattern based weighing algorithm to find the
weight of the sentence. A fast running time is
achieved by using a compression hash on each sen-
tence.

53

This paper is organized as follows: section 2
discusses lexical cohesion, section 3 discusses the
text ranking algorithm and section 4 describes the
summarization by combining lexical cohesion and
summarization.

2 Lexical Cohesion

Coherence in linguistics makes the text semantical-
ly meaningful. It is achieved through semantic fea-
tures such as the use of deictic (a deictic is an
expression which shows the direction. ex: that,
this.), anaphoric (a referent which requires an ante-
cedent in front. ex: he, she, it.), cataphoric (a refe-
rent which requires an antecedent at the back.),
lexical relation and proper noun repeating elements
(Morris and Hirst, 1991). Robert De Beaugrande
and Wolfgang U. Dressler define coherence as a
“continuity of senses” and “the mutual access and
relevance within a configuration of concepts and
relations” (Beaugrande and Dressler, 1981). Thus a
text gives meaning as a result of union of meaning
or senses in the text.

The coherence cues present in a sentence are di-
rectly visible when we go through the flow of the
document. Our approach aims to achieve this ob-
jective with linguistic and heuristic information.
The identification of semantic neighborhood, oc-
currence of words through repetition or relatedness
by sense relation namely synonyms, hyponyms and
hypernym, plays a major role in forming a cohesive
tie (Miller et al., 1990).

2.1 Rules for finding Coherent chunks

When parsing through a document, the relationship
among adjacent sentences is determined by the
continuity that exists between them.

We define the following set of rules to find co-
herent chunks in the document.

Rule 1

The presence of connectives (such as accordingly,
again, also, besides) in present sentence indicates
the connectedness of the present sentence with the
previous sentence. When such connectives are
found, the adjacent sentences form coherent
chunks.

Rule 2

A 3rd person pronominal in a given sentence refers
to the antecedent in the previous sentence, in such
a way that the given sentence gives the complete
meaning with respect to the previous sentence.
When such adjacent sentences are found, they form
coherent chunks.

Rule 3

 The reappearance of NERs in adjacent sentences
is an indication of connectedness. When such adja-
cent sentences are found, they form coherent
chunks.

Rule 4

An ontology relationship between words across
sentences can be used to find semantically related
words across adjacent sentences that appear in the
document. The appearance of related words is an
indication of its coherence and hence forms cohe-
rent chunks.
All the above rules are applied incrementally to
achieve the complete set of coherent chunks.

2.1.1 Connecting Word

The ACE Corpus was used for studying the cohe-
rence patterns between adjacent sentences of the
document. From our analysis, we picked out a set
of keywords such that, the appearance of these
keywords at the beginning of the sentence provide
a strong lexical tie with the previous sentence.
The appearance of the keywords “accordingly,
again, also, besides, hence, henceforth, however,
incidentally, meanwhile, moreover, namely, never-
theless, otherwise, that is, then, therefore, thus,
and, but, or, yet, so, once, so that, than, that, till,
whenever, whereas and wherever”, at the begin-
ning of the present sentence was found to be highly
coherent with the previous sentence.

Linguistically a sentence cannot start with the
above words without any related introduction in
the previous sentence.

Furthermore, the appearance of the keywords
“consequently, finally, furthermore”, at the begin-
ning or middle of the present sentence was found
to be highly cohesive with the previous sentence.
Example 1

54

1. a The train was late.
1. b However I managed to reach the wedding

on time.

In Example 1, the connecting word however binds
with the situation of the train being late.
Example 2

1. a The cab driver was late.
1. b The bike tyre was punctured.
1. c The train was late.
1 .d Finally, I managed to arrive at the wed-
ding on time by calling a cab.

Example 3
1. a The cab driver was late.
1. b The bike tyre was punctured.
1. c The train was late.
1. d I could not wait any more; I finally ma-
naged to reach the wedding on time by calling a
cab.

In Example 2, the connecting word finally binds
with the situation of him being delayed. Similarly,
in Example 3, the connecting word finally, though
it comes in the middle of the sentence, it still binds
with the situation of him being delayed.

2.1.2 Pronominals

In this approach we have a set of pronominals
which establishes coherence in the text. From our
analysis, it was observed that if the pronominals
“he, she, it, they, her, his, hers, its, their, theirs”,
appear in the present sentence; its antecedent may
be in the same or previous sentence.

It is also found that if the pronominal is not pos-
sessive (i.e. the antecedent appears in the previous
sentence or previous clause), then the present sen-
tence and the previous sentences are connected.
However, if the pronominal is possessive then it
behaves like reflexives such as “himself”, “herself”
which has subject as its antecedent. Hence the pos-
sibility of connecting it with the previous sentence
is very unlikely. Though pronominal resolution
cannot be done at a window size of 2 alone, still
we are looking at window size 2 alone to pick
guaranteed connected sentences.

Example 4

1. a Ravi is a good boy.
1. b He always speaks the truth.

In Example 4, the pronominal he in the second sen-
tence refers to the antecedent Ravi in the first sen-
tence.

Example 5

1. a He is the one who got the first prize.

In example 5 the pronominal he is possessive and
it doesn’t need an antecedent to convey the mean-
ing.

2.1.3 NERs Reappearance

Two adjacent sentences are said to be coherent
when both the sentences contain one or more reap-
pearing nouns.

Example 6

1. a Ravi is a good boy.
1. b Ravi scored good marks in exams.

Example 7

1. a The car race starts at noon.
1. b Any car is allowed to participate.

Example 6 and Example 7 demonstrates the cohe-
rence between the two sentences through reappear-
ing nouns.

2.1.4 Thesaurus Relationships

WordNet covers most of the sense relationships.
To find the semantic neighborhood between adja-
cent sentences, most of the lexical relationships
such as synonyms, hyponyms, hypernyms, mero-
nyms, holonyms and gradation can be used (Fell-
baum 1998). Hence, semantically related terms are
captured through this process.

Example 8

1. a The bicycle has two wheels.
1. b The wheels provide speed and stability.

In Example 8, bicycle and wheels are related
through bicycle is the holonym of wheels.

2.2 Coherence Finding Algorithm

The algorithm is carried out in four phases. Initial-
ly, each of the 4 cohesion rules is individually ap-
plied over the given document to give coherent
chunks. Next, the coherent chunks obtained in each

55

phases are merged together to give the global cohe-
rent chunks in the document.

.

Figure 1: Flow of Coherence chunker

Figure 1, shows the flow and rule positions in the
coherence chunk identification module.

2.3 Evaluation

One way to evaluate the coherence finding algo-
rithm is to compare against human judgments
made by readers, evaluating against text pre
marked by authors and to see the improved result
in the computational task. In this paper we will see
the computational method to see the improved re-
sult.

3 Text Ranking

The proposed graph based text ranking algorithm
consists of three steps: (1) Word Frequency Analy-
sis; (2) A word positional and string pattern based
weight calculation algorithm; (3) Ranking the sen-
tences by normalizing the results of step (1) and
(2).

The algorithm is carried out in two phases. The
weight metric obtained at the end of each phase is

averaged to obtain the final weight metric. Sen-
tences are sorted in non ascending order of weight.

3.1 Graph

Let G (V, E) be a weighted undirected complete
graph, where V is set of vertices and E is set of
weighted edges.

S1

S2

S3

S6

S5

S4

Figure 2: A complete undirected graph

In figure 2, the vertices in graph G represent the set
of all sentences in the given document. Each sen-
tence in G is related to every other sentence
through the set of weighted edges in the complete
graph.

3.2 Phase 1

Let the set of all sentences in document S= {si | 1 ≤
i ≤ n}, where n is the number of sentences in S.
The sentence weight (SW) for each sentence is cal-
culated by average affinity weight of words in it.
For a sentence si= {wj | 1 ≤ j ≤ mi} where mi is the
number of words in sentence si, (1 ≤ i ≤ n) the af-
finity weight AW of a word wj is calculated as fol-
lows:

(,)

()
()

j k

k
j

IsEqual w w
w SAW w

WC S
∀ ∈=
∑

 (1)

where S is the set of all sentences in the given
document, wk is a word in S, WC (S) is the total
number of words in S and function IsEqual(x, y)
returns an integer count 1 if x and y are equal else
integer count 0 is returned by the function.

Input Text

Connecting Word

Possessive Pronoun

Noun Reappearance

Coherent Chunks

Thesaurus Relationships

56

Next, we find the sentence weight SW (si) of
each sentence si (1 ≤ i ≤ n) as follows:

1() ()i j

i j i

SW s AW w
m w s

=
∀ ∈
∑ (2)

At the end of phase 1, the graph vertices hold

the sentence weight as illustrated in figure 4.

Figure 2: Sample text taken for the ranking
process.

Figure 4: Sample graph of Sentence weight calcu-
lation in phase 1

3.3 Compression hash

A fast compression hash function over word w is
given as follows:

H (w) = (c1ak-1+c2ak-2 +c3ak-3+...+cka0) mod p (3)

where w= {c1, c2, c3 ... ck} is the ordered set of

ASCII equivalents of alphabets in w and k the total
number of alphabets in w. The choice of a=2 per-
mits the exponentiations and term wise multiplica-
tions in equation 3 to be binary shift operations on
a micro processor, thereby speeding up the hash
computation over the text. Any lexicographically
ordered bijective map from character to integer
may be used to generate set w. The recommenda-
tion to use ASCII equivalents is solely for imple-
mentation convenience. Set p = 26 (for English), to
cover the sample space of the set of alphabets un-
der consideration.

Compute H (w) for each word in sentence si to
obtain the hashed set

1 2() { (), ()... ()}ii mH s H w H w H w= (4)

Next, invert each element in the set H (si) back

to its ASCII equivalent to obtain the set

1 2ˆ ˆ ˆ ˆ ˆ() { (), ()... ()}ii mH s H c H c H c= (5)

 Then, concatenate the elements in set ˆ iH(s) to
obtain the string ˆis ; where ˆis is the compressed
representation of sentence si. The hash operations
are carried out to reduce the computational com-
plexity in phase 2, by compressing the sentences
and at the same time retaining their structural
properties, specifically word frequency, word posi-
tion and sentence patterns.

3.4 Levenshtein Distance

Levenshtein distance (LD) between two strings
string1 and string2 is a metric that is used to find
the number of operations required to convert
string1 to string2 or vice versa; where the set of
possible operations on the character is insertion,
deletion, or substitution.

The LD algorithm is illustrated by the following
example

LD (ROLL, ROLE) is 1
LD (SATURDAY, SUNDAY) is 3

[1]"The whole show is dreadful," she cried, com-
ing out of the menagerie of M. Martin.
[2]She had just been looking at that daring specu-
lator "working with his hyena" to speak in the
style of the program.
[3]"By what means," she continued, "can he have
tamed these animals to such a point as to be cer-
tain of their affection for."
[4]"What seems to you a problem," said I, inter-
rupting, "is really quite natural."
[5]"Oh!" she cried, letting an incredulous smile
wander over her lips.
[6]"You think that beasts are wholly without pas-
sions?" Quite the reverse; we can communicate to
them all the vices arising in our own state of civi-
lization.

57

3.5 Levenshtein Similarity Weight

Consider two strings, string1 and string2 where ls1
is the length of string1 and ls2 be the length of
string2. Compute MaxLen=maximum (ls1, ls2).
Then LSW between string1 and string2 is the dif-
ference between MaxLen and LD, divided by Max-
Len. Clearly, LSW lies in the interval 0 to 1. In case
of a perfect match between two words, its LSW is 1
and in case of a total mismatch, its LSW is 0. In all
other cases, 0 < LSW <1. The LSW metric is illu-
strated by the following example.

LSW (ABC, ABC) =1
LSW (ABC, XYZ) =0
LSW (ABCD, EFD) =0.25

Hence, to find the Levenshtein similarity
weight, first find the Levenshtein distance LD us-
ing which LSW is calculated by the equation

ˆ ˆ ˆ ˆ(,) (,)ˆ ˆ(,)

ˆ ˆ(,)
i j i j

i j
i j

MaxLen s s LD s sLSW s s
MaxLen s s

−= (6)

where, ˆis and ĵs are the concatenated string out-
puts of equation 5.

3.6 Phase 2

Let S = {si | 1 ≤ i ≤ n} be the set of all sentences in
the given document; where n is the number of sen-
tences in S. Further, si = {wj | 1 ≤ j ≤ m}, where m
is the number of words in sentence si.

Figure 5: Sample graph for Sentence weight calcu-
lation in phase 2

is S ∀ ∈ ,find 1 2ˆ ˆ ˆ ˆ ˆ() { (), ()... ()}ii mH s H c H c H c=

using equation 3 and 4. Then, concatenate the ele-
ments in set ˆ iH(s) to obtain the string ˆis ; where ˆis
is the compressed representation of sentence si.

Each string ˆis ; 1 ≤ i ≤ n is represented as the
vertex of the complete graph as in figure 5
and ˆ îS={s |1 i n}≤ ≤ . For the graph in figure 5,
find the Levenshtein similarity weight LSW be-
tween every vertex using equation 6. Find vertex
weight (VW) for each string îs ; 1 ≤ l ≤ n by

1ˆ ˆ ˆ() (,)
ˆˆ l̂

l l i

i

VW s LSW s s
n

s s S
=

∀ ≠ ∈
∑ (7)

4 Text Ranking

The rank of sentence si; 1 ≤ i ≤ n is computed as

ˆ() ()() ;1
2

i i
i

SW s VW sRank s i n+= ≤ ≤ (8)

where, ()iSW s is calculated by equation 2 of
phase 1 and ˆ()iVW s is found using equation 7 of
phase 2. Arrange the sentences si; 1 ≤ i ≤ n, in non
increasing order of their ranks.

()iSW s in phase 1 holds the sentence affinity in
terms of word frequency and is used to determine
the significance of the sentence in the overall rak-
ing scheme. ˆ()iVW s in phase 2 helps in the overall
ranking by determining largest common subse-
quences and other smaller subsequences then as-
signing weights to it using LSW. Further, since
named entities are represented as strings, repeated
occurrences are weighed efficiently by LSW, the-
reby giving it a relevant ranking position.

5 Summarization

Summarization is done by applying text ranking
over the global coherent chunks in the document.
The sentences whose weight is above the threshold
is picked and rearranged in the order in which the
sentences appeared in the original document.

58

6 Evaluation

The ROUGE evaluation toolkit is employed to
evaluate the proposed algorithm. ROUGE, an au-
tomated summarization evaluation package based
on Ngram statistics, is found to be highly corre-
lated with human evaluations (Lin and Hovy,
2003a).

The evaluations are reported in ROUGE-1 me-
trics, which seeks unigram matches between the
generated and the reference summaries. The
ROUGE-1 metric is found to have high correlation
with human judgments at a 95% confidence level
and hence used for evaluation. (Mihalcea and Ta-
rau, 2004) a graph based ranking model with
Rouge score 0.4904, (Mihalcea, 2004) Graph-
based Ranking Algorithms for Sentence Extrac-
tion, Applied to Text Summarization with Rouge
score 0.5023.

Table 1 shows the ROUGE Score of 567 news
articles provided during the Document Under-
standing Evaluations 2002(DUC, 2002) using the
proposed algorithm without the inclusion of cohe-
rence chunker module.

Table 2 shows the ROUGE Score of 567 news

articles provided during the Document Under-
standing Evaluations 2002(DUC, 2002) using the
proposed algorithm after the inclusion of cohe-
rence chunker module.

Comparatively Table 2, which is the the
ROUGE score for summary including the cohe-
rence chunker module gives better result.

7 Related Work

Text extraction is considered to be the important
and foremost process in summarization. Intuitive-
ly, a hash based approach to graph based ranking
algorithm for text ranking works well on the task
of extractive summarization. A notable study re-
port on usefulness and limitations of automatic
sentence extraction is reported in (Lin and Hovy,
2003b), which emphasizes the need for efficient
algorithms for sentence ranking and summariza-
tion.

8 Conclusions

In this paper, we propose a coherence chunker
module and a hash based approach to graph based
ranking algorithm for text ranking. In specific, we
propose a novel approach for graph based text
ranking, with improved results comparative to ex-
isting ranking algorithms. The architecture of the
algorithm helps the ranking process to be done in a
time efficient way. This approach succeeds in
grabbing the coherent sentences based on the lin-
guistic and heuristic rules; whereas other super-
vised ranking systems do this process by training
the summary collection. This makes the proposed
algorithm highly portable to other domains and
languages.

References
ACE Corpus. NIST 2008 Automatic Content Extraction

Evaluation(ACE08).
http://www.itl.nist.gov/iad/mig/tests/ace/2008/

Brin and L. Page. 1998. The anatomy of a large scale
hypertextualWeb search engine. Computer Networks
and ISDN Systems, 30 (1 – 7).

Erkan and D. Radev. 2004. Lexpagerank: Prestige in
multi document text summarization. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing, Barcelona, Spain, July.

Fellbaum, C., ed. WordNet: An electronic lexical data-
base. MIT Press, Cambridge (1998).

Kleinberg. 1999. Authoritative sources in a hyper-
linked environment. Journal of the ACM, 46(5):604-
632.

ROUGE-1
ROUGE-L

 0.5312
 0.4978

Score

ROUGE-1
ROUGE-L

 0.5103
 0.4863

Score

Table 1: ROUGE Score for the news article
summarization task without coherence
chunker, calculated across 567 articles.

Table 2: ROUGE Score for the news article
summarization task with coherence chunker,
calculated across 567 articles.

59

Lin and E.H. Hovy. From Single to Multi document
Summarization: A Prototype System and its Evalua-
tion. In Proceedings of ACL-2002.

Lin and E.H. Hovy. 2003a. Automatic evaluation of
summaries using n-gram co-occurrence statistics. In
Proceedings of Human Language Technology Confe-
rence (HLT-NAACL 2003), Edmonton, Canada, May.

Lin and E.H. Hovy. 2003b. The potential and limitations
of sentence extraction for summarization. In Pro-
ceedings of the HLT/NAACL Workshop on Automatic
Summarization, Edmonton, Canada, May.

Mihalcea. 2004. Graph-based ranking algorithms for
sentence extraction, applied to text summarization. In
Proceedings of the 42nd Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL 2004)
(companion volume), Barcelona, Spain.

Mihalcea and P. Tarau. 2004. TextRank - bringing order
into texts. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP 2004), Barcelona, Spain.

Mihalcea, P. Tarau, and E. Figa. 2004. PageRank on
semantic networks, with application to word sense
disambiguation. In Proceedings of the 20th Interna-
tional Conference on Computational Linguistics
(COLING 2004), Geneva, Switzerland.

Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D.,
Miller, K. J. Introduction to WordNet: An on-line
lexical database. Journal of Lexicography (1990).

Morris, J., Hirst, G. Lexical cohesion computed by the-
saural relations as an indicator of the structure of
text. Computational Linguistics (1991).

Radev, H. Y. Jing, M. Stys and D. Tam. Centroid-based
summarization of multiple documents. Information
Processing and Management, 40: 919-938, 2004.

Robert de Beaugrande and Wolfgang Dressler. Intro-
duction to Text Linguistics. Longman, 1981.

Silber, H. G., McCoy, K. F. Efficient text summariza-
tion using lexical chains. In Proceedings of Intelli-
gent User Interfaces. (2000).

60

