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Introduction

The 2009 Conference on Computational Natural Language Learning is the thirteenth in the series of
annual meetings organized by SIGNLL, the ACL special interest group on natural language learning.
CoNLL-2009 will be held in Boulder, CO, 4–5 June 2009, in conjunction with NAACL HLT.

For our special focus this year in the main session of CoNLL, we invited papers on unsupervised,
minimally supervised and semi-supervised methods in natural language learning, as well as on
incremental learning methods. As with earlier CoNLLs, we encouraged papers that addressed these
issues from the perspective both of human language acquisition and of NLP systems.

We received 70 submissions to the main session on these and other relevant topics, of which 11 were
withdrawn. Of the remaining 59 papers, 15 were selected to appear in the conference program as oral
presentations, and 10 were chosen as posters. All accepted papers appear here in the proceedings.

Our invited speakers reflect the state-of-the-art in human and machine learning of natural language, and
we are grateful to Michael Frank and Andrew McCallum for agreeing to speak on their exciting new
work in these areas.

As in previous years, CoNLL-2009 has a shared task, Syntactic and Semantic Dependencies in Multiple
Languages. This is an extension of the CoNLL-2008 shared task to multiple languages (English plus
Catalan, Chinese, Czech, German, Japanese and Spanish). Among the new features are compatible
evaluation for several languages and their comparison, and learning curves for languages with large
datasets. We expect that this major comparative exercise will lead to very enlightening results and
discussion that will serve to move the field forward. The Shared Task papers are collected into an
accompanying volume of CoNLL-2009. We thank Jan Hajic and the rest of the organizers for their
great effort in running the Shared Task.

We would like to thank the members of the SIGNLL steering committee for useful discussion,
especially Lluı́s Màrquez and Joakim Nivre, who helped us greatly with advice around the conference
organization, and Erik Tjong Kim Sang, who acted as the information officer. We also appreciate the
help we received from NAACL HLT organizers, including Martha Palmer, Mark Hasegawa-Johnson,
Nizar Habash, Christy Doran, Eric Ringger, and Priscilla Rasmussen.

Finally, many thanks to Google for sponsoring the best paper award at CoNLL-2009.

We hope you find CoNLL-2009 a fruitful venue for discussion and interaction on the exciting topics
covered by our program.

Suzanne Stevenson and Xavier Carreras

2009 Conference Chairs
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Jan Hajič, Massimiliano Ciaramita, Richard Johansson, Daisuke Kawahara, Maria Antònia
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Joint Inference for Natural Language Processing

Andrew McCallum
Department of Computer Science

University of Massachusetts Amherst
Amherst, MA 01002

mccallum@cs.umass.edu

Abstract of the Invited Talk

In recent decades, researchers in natural language
processing have made great progress on well-
defined subproblems such as part-of-speech tagging,
phrase chunking, syntactic parsing, named-entity
recognition, coreference and semantic-role label-
ing. Better models, features, and learning algorithms
have allowed systems to perform many of these tasks
with 90% accuracy or better. However, success in in-
tegrated, end-to-end natural language understanding
remains elusive.

I contend that the chief reason for this failure
is that errors cascade and accumulate through a
pipeline of naively chained components. For exam-
ple, if we naively use the single most likely output
of a part-of-speech tagger as the input to a syntactic
parser, and those parse trees as the input to a coref-
erence system, and so on, errors in each step will
propagate to later ones: each components 90% ac-
curacy multiplied through six components becomes
only 53%.

Consider, for instance, the sentence “I know you
like your mother.” If a part-of-speech tagger de-
terministically labels “like” as a verb, then certain
later syntactic and semantic analysis will be blocked
from alternative interpretations, such as “I know you
like your mother (does).” The part-of-speech tag-
ger needs more syntactic and semantic information
to make this choice. Consider also the classic exam-
ple “The boy saw the man with the telescope.” No
single correct syntactic parse of this sentence is pos-
sible in isolation. Correct interpretation requires the
integration of these syntactic decisions with seman-
tics and context.

Humans manage and resolve ambiguity by uni-
fied, simultaneous consideration of morphology,
syntax, semantics, pragmatics and other contextual
information. In statistical modeling such unified

consideration is known as joint inference. The need
for joint inference appears not only in natural lan-
guage processing, but also in information integra-
tion, computer vision, robotics and elsewhere. All of
these applications require integrating evidence from
multiple sources, at multiple levels of abstraction. I
believe that joint inference is one of the most fun-
damentally central issues in all of artificial intelli-
gence.

In this talk I will describe work in probabilistic
models that perform joint inference across multiple
components of an information processing pipeline
in order to avoid the brittle accumulation of errors.
I will survey work in exact inference, variational
inference and Markov-chain Monte Carlo methods.
We will discuss various approaches that have been
applied to natural language processing, and hypoth-
esize about why joint inference has helped in some
cases, and not in others.

I will then focus on our recent work at Univer-
sity of Massachusetts in large-scale conditional ran-
dom fields with complex relational structure. In a
single factor graph we seamlessly integrate multiple
subproblems, using our new probabilistic program-
ming language to compactly express complex, muta-
ble variable-factor structure both in first-order logic
as well as in more expressive Turing-complete im-
perative procedures. We avoid unrolling this graph-
ical model by using Markov-chain Monte Carlo for
inference, and make inference more efficient with
learned proposal distributions. Parameter estimation
is performed by SampleRank, which avoids com-
plete inference as a subroutine by learning simply
to correctly rank successive states of the Markov-
chain.

Joint work with Aron Culotta, Michael Wick,
Rob Hall, Khashayar Rohanimanesh, Karl Schultz,
Sameer Singh, Charles Sutton and David Smith.
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Modeling word learning as communicative inference

Michael C. Frank
Department of Brain and Cognitive Sciences

Massachusetts Institute of Technology
Cambridge, MA 02139
mcfrank@mit.edu

Abstract

How do children learn their first words? I
describe a model that makes joint inferences
about what speakers are trying to talk about
and the meanings of the words they use. This
model provides a principled framework for in-
tegrating a wide variety of non-linguistic in-
formation sources into the process of word
learning.

Talk Précis

How do children learn their first words? Much
work in this field has focused on the social as-
pects of word learning: that children make use of
speakers’ intentions—as signaled by a wide range
of non-linguistic cues such as their eye-gaze, what
they are pointing at, or even what referents are new
to them—to infer the meanings of words (Bloom,
2002). However, recent evidence has suggested that
adults and children are able to learn words simply
from the consistent co-occurrence of words and their
referents, even across otherwise ambiguous situa-
tions and without explicit social cues as to which ref-
erent is being talked about (Yu & Smith 2007; Smith
& Yu, 2008).

In this talk I describe work aiming to combine
these two sets of evidence within a single probab-
listic framework (Frank, Goodman, & Tenenbaum,
2009). We propose a model in which learners at-
tempt to infer speakers’ moment-to-moment com-
municative intentions jointly with the meanings of
the words they have used to express these intentions.
This process of joint inference allows our model to

explain away two major sources of noise in sim-
pler statistical word learning proposals: the fact that
speakers do not talk about every referent and that not
all words that speakers utter are referential.

We find that our model outperforms associative
models in learning words accurately from natural
corpus data and is able to fit children’s behavior in
a number of experimental results from developmen-
tal psychology. In addition, we have used this basic
framework to begin investigating how learners use
the rich variety of non-linguistic information signal-
ing speakers’ intentions in service of word learning.
As an example of this work, I will describe an ex-
tension of the model to use discourse continuity as a
cue for speakers’ intentions.
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Abstract

Creating large amounts of manually annotated
training data for statistical parsers imposes
heavy cognitive load on the human annota-
tor and is thus costly and error prone. It
is hence of high importance to decrease the
human efforts involved in creating training
data without harming parser performance. For
constituency parsers, these efforts are tradi-
tionally evaluated using the total number of
constituents (TC) measure, assuming uniform
cost for each annotated item. In this paper, we
introduce novel measures that quantify aspects
of the cognitive efforts of the human annota-
tor that are not reflected by the TC measure,
and show that they are well established in the
psycholinguistic literature. We present a novel
parameter based sample selection approach
for creating good samples in terms of these
measures. We describe methods for global op-
timisation of lexical parameters of the sam-
ple based on a novel optimisation problem, the
constrained multiset multicover problem, and
for cluster-based sampling according to syn-
tactic parameters. Our methods outperform
previously suggested methods in terms of the
new measures, while maintaining similar TC
performance.

1 Introduction

State of the art statistical parsers require large
amounts of manually annotated data to achieve good
performance. Creating such data imposes heavy
cognitive load on the human annotator and is thus
costly and error prone. Statistical parsers are ma-
jor components in NLP applications such as QA
(Kwok et al., 2001), MT (Marcu et al., 2006) and

SRL (Toutanova et al., 2005). These often oper-
ate over the highly variable Web, which consists of
texts written in many languages and genres. Since
the performance of parsers markedly degrades when
training and test data come from different domains
(Lease and Charniak, 2005), large amounts of train-
ing data from each domain are required for using
them effectively. Thus, decreasing the human efforts
involved in creating training data for parsers without
harming their performance is of high importance.

In this paper we address this problem through
sample selection: given a parsing algorithm and a
large pool of unannotated sentencesS, select a sub-
setS1 ⊂ S for human annotation such that the hu-
man efforts in annotatingS1 are minimized while
the parser performance when trained with this sam-
ple is maximized.

Previous works addressing training sample size
vs. parser performance for constituency parsers
(Section 2) evaluated training sample size using the
total number of constituents (TC). Sentences differ
in length and therefore in annotation efforts, and it
has been argued (see, e.g, (Hwa, 2004)) thatTC re-
flects the number of decisions the human annotator
makes when syntactically annotating the sample, as-
suming uniform cost for each decision.

In this paper we posit that important aspects of
the efforts involved in annotating a sample are not
reflected by theTC measure. Since annotators ana-
lyze sentences rather than a bag of constituents, sen-
tence structure has a major impact on their cognitive
efforts. Sizeable psycholinguistic literature points
to the connection between nested structures in the
syntactic structure of a sentence and its annotation
efforts. This has motivated us to introduce (Sec-
tion 3) three sample size measures, the total and av-
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erage number of nested structures of degreek in the
sample, and the average number of constituents per
sentence in the sample.

Active learning algorithms for sample selection
focus on sentences that are difficult for the parsing
algorithm when trained with the available training
data (Section 2). In Section 5 we show that active
learning samples contain a high number of complex
structures, much higher than their number in a ran-
domly selected sample that achieves the same parser
performance level. To avoid that, we introduce (Sec-
tion 4) a novelparameter based sample selection
(PBS) approach which aims to select a sample that
enables good estimation of the model parameters,
without focusing on difficult sentences. In Section 5
we show that the methods derived from our approach
select substantially fewer complex structures than
active learning methods and the random baseline.

We propose two different methods. Incluster
based sampling (CBS), we aim to select a sample
in which the distribution of the model parameters is
similar to their distribution in the whole unlabelled
pool. To do that we build a vector representation for
each sentence in the unlabelled pool reflecting the
distribution of the model parameters in this sentence,
and use a clustering algorithm to divide these vectors
into clusters. In the second method we use the fact
that a sample containing many examples of a certain
parameter yields better estimation of this parameter.
If this parameter is crucial for model performance
and the selection process does not harm the distri-
bution of other parameters, then the selected sam-
ple is of high quality. To select such a sample we
introduce a reduction between this selection prob-
lem and a variant of the NP-hard multiset-multicover
problem (Hochbaum, 1997). We call this problem
theconstrained multiset multicover (CMM) problem,
and present an algorithm to approximate it.

We experiment (Section 5) with the WSJ Pen-
nTreebank (Marcus et al., 1994) and Collins’ gen-
erative parser (Collins, 1999), as in previous work.
We show that PBS algorithms achieve good results
in terms of both the traditionalTC measure (signifi-
cantly better than the random selection baseline and
similar to the results of the state of the art tree en-
tropy (TE) method of (Hwa, 2004)) and our novel
cognitively driven measures (where PBS algorithms
significantly outperform bothTE and the random

baseline). We thus argue that PBS provides a way to
select a sample that imposes reduced cognitive load
on the human annotator.

2 Related Work

Previous work on sample selection for statistical
parsers applied active learning (AL) (Cohn and Lad-
ner, 1994) to corpora of various languages and syn-
tactic annotation schemes and to parsers of different
performance levels. In order to be able to compare
our results to previous work targeting high parser
performance, we selected the corpus and parser
used by the method reporting the best results (Hwa,
2004), WSJ and Collins’ parser.

Hwa (2004) used uncertainty sampling with the
tree entropy (TE) selection function1 to select train-
ing samples for the Collins parser. In each it-
eration, each of the unlabelled pool sentences is
parsed by the parsing model, which outputs a list
of trees ranked by their probabilities. The scored
list is treated as a random variable and the sentences
whose variable has the highest entropy are selected
for human annotation. Sample size was measured
in TC and ranged from 100K to 700K WSJ con-
stituents. The initial size of the unlabelled pool was
800K constituents (the 40K sentences of sections 2-
21 of WSJ). A detailed comparison between the re-
sults ofTE and our methods is given in Section 5.

The following works addressed the task of sam-
ple selection for statistical parsers, but in signifi-
cantly different experimental setups. Becker and
Osborne (2005) addressed lower performance lev-
els of the Collins parser. Their uncertainty sam-
pling protocol combined bagging with theTE func-
tion, achieving a 32%TC reduction for reaching a
parser f-score level of 85.5%. The target sample size
set contained a much smaller number of sentences
(∼5K) than ours. Baldridge and Osborne (2004) ad-
dressed HPSG parse selection using a feature based
log-linear parser, the Redwoods corpus and commit-
tee based active learning, obtaining 80% reduction
in annotation cost. Their annotation cost measure
was related to the number of possible parses of the
sentence. Tang et al. (2002) addressed a shallow
parser trained on a semantically annotated corpus.

1Hwa explored several functions in the experimental setup
used in the present work, andTE gave the best results.
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They used an uncertainty sampling protocol, where
in each iteration the sentences of the unlabelled pool
are clustered using a distance measure defined on
parse trees to a predefined number of clusters. The
most uncertain sentences are selected from the clus-
ters, the training taking into account the densities of
the clusters. They reduced the number of training
sentences required for their parser to achieve its best
performance from 1300 to 400.

The importance of cognitively driven measures of
sentences’ syntactic complexity has been recognized
by Roark et al. (2007) who demonstrated their utility
for mild cognitive impairment diagnosis. Zhu et al.
(2008) used a clustering algorithm for sampling the
initial labeled set in an AL algorithm for word sense
disambiguation and text classification. In contrast to
our CBS method, they proceeded with iterative un-
certainty AL selection. Melville et al. (2005) used
parameter-based sample selection for a classifier in
a classic active learning setting, for a task very dif-
ferent from ours.

Sample selection has been applied to many NLP
applications. Examples include base noun phrase
chunking (Ngai, 2000), named entity recognition
(Tomanek et al., 2007) and multi–task annotation
(Reichart et al., 2008).

3 Cognitively Driven Evaluation Measures

While the resources, capabilities and constraints of
the human parser have been the subject of extensive
research, different theories predict different aspects
of its observed performance. We focus on struc-
tures that are widely agreed to impose a high cog-
nitive load on the human annotator and on theories
considering the cognitive resources required in pars-
ing a complete sentence. Based on these, we derive
measures for the cognitive load on the human parser
when syntactically annotating a set of sentences.

Nested structures. A nested structure is a parse
tree node representing a constituent created while
another constituent is still being processed (‘open’).
Thedegree K of a nested structure is the number of
such open constituents. In this paper, we enumer-
ate the constituents in a top-down left-right order,
and thus when a constituent is created, only its an-
cestors are processed2. A constituent is processed

2A good review on node enumeration of the human parser
in given in (Abney and Johnson, 1991).

S

NP1

JJ

Last

NN

week

NP2

NNP

IBM

VP

VBD

bought

NP3

NNP

Lotus

Figure 1: An example parse tree.

until the processing of its children is completed. For
example, in Figure 1, when the constituent NP3 is
created, it starts a nested structure of degree 2, since
two levels of its ancestors (VP, S) are still processed.
Its parent (VP) starts a nested structure of degree 1.

The difficulty of deeply nested structures for the
human parser is well established in the psycholin-
guistics literature. We review here some of the vari-
ous explanations of this phenomenon; for a compre-
hensive review see (Gibson, 1998).

According to the classical stack overflow theory
(Chomsky and Miller, 1963) and its extension, the
incomplete syntactic/thematic dependencies theory
(Gibson, 1991), the human parser should track the
open structures in its short term memory. When the
number of these structures is too large or when the
structures are nested too deeply, the short term mem-
ory fails to hold them and the sentence becomes un-
interpretable.

According to the perspective shifts theory
(MacWhinney, 1982), processing deeply nested
structures requires multiple shifts of the annotator
perspective and is thus more difficult than process-
ing shallow structures. The difficulty of deeply
nested structured has been demonstrated for many
languages (Gibson, 1998).

We thus propose the total number of nested struc-
tures of degreeK in a sample (TNSK) as a measure
of the cognitive efforts that its annotation requires.
The higherK is, the more demanding the structure.

Sentence level resources. In the psycholinguis-
tic literature of sentence processing there are many
theories describing the cognitive resources required
during a complete sentence processing. These re-
sources might be allocated during the processing of
a certain word and are needed long after its con-
stituent is closed. We briefly discuss two lines of
theory, focusing on their predictions that sentences
consisting of a large number of structures (e.g., con-
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stituents or nested structures) require more cognitive
resources for longer periods.

Levelt (2001) suggested a layered model of the
mental lexicon organization, arguing that when one
hears or reads a sentence s/he activates word forms
(lexemes) that in turn activate lemma information.
The lemma information contains information about
syntactic properties of the word (e.g., whether it is
a noun or a verb) and about the possible sentence
structures that can be generated given that word. The
process of reading words and retrieving their lemma
information is incremental and the lemma informa-
tion for a given word is used until its syntactic struc-
ture is completed. The information about a word in-
clude all syntactic predictions, obligatory (e.g., the
prediction of a noun following a determiner) and op-
tional (e.g., optional arguments of a verb, modifier
relationships). This information might be relevant
long after the constituents containing the word are
closed, sometimes till the end of the sentence.

Another line of research focuses on working
memory, emphasizing theactivation decay princi-
ple. It stresses that words and structures perceived
during sentence processing are forgotten over time.
As the distance between two related structures in a
sentence grows, it is more demanding to reactivate
one when seeing the other. Indeed, supported by
a variety of observations, many of the theories of
the human parser (see (Lewis et al., 2006) for a sur-
vey) predict that processing items towards the end of
longer sentences should be harder, since they most
often have to be integrated with items further back.
Thus, sentences with a large number of structures
impose a special cognitive load on the annotator.

We thus propose to use the number of structures
(constituents or nested structures) in a sentence as a
measure of its difficulty for human annotation. The
measures we use for a sample (a sentence set) are the
average number of constituents (AC) and theaver-
age number of nested structures of degree k (ANSK)
per sentence in the set. HigherAC or ANSK values
of a set imply higher annotation requirements3.

Pschycolinguistics research makes finer observa-

3The correlation between the number of constituents and
sentence length is very strong (e.g., correlation coefficient of
0.93 in WSJ section 0). We could use the number of words, but
we prefer the number of structures since the latter better reflects
the arguments made in the literature.

tions about the human parser than those described
here. A complete survey of that literature is beyond
the scope of this paper. We consider the proposed
measures a good approximation of some of the hu-
man parser characteristics.

4 Parameter Based Sampling (PBS)

Our approach is to sample the unannotated pool with
respect to the distribution of the model parameters
in its sentences. In this paper, in order to compare to
previous works, we apply our methods to the Collins
generative parser (Collins, 1999). For any sentence
s and parse treet it assigns a probabilityp(s, t),
and finds the tree for which this probability is maxi-
mized. To do that, it writesp(t, s) as a product of the
probabilities of the constituents int and decomposes
the latter using the chain rule. In simplified notation,
it uses:

p(t, s) =

∏
P (S1 → S2 . . . Sn) =

∏
P (S1)·. . .·P (Sn|φ(S1 . . . Sn))

(1)

We refer to the conditional probabilities as the model
parameters.

Cluster Based Sampling (CBS). We describe
here a method for sampling subsets that leads to a
parameter estimation that is similar to the parame-
ter estimation we would get if annotating the whole
unannotated set.

To do that, we randomly selectM sentences from
the unlabelled poolN , manually annotate them,
train the parser with these sentences and parse the
rest of the unlabelled pool (G = N − M ). Using
this annotation we build a syntactic vector repre-
sentation for each sentence inG. We then cluster
these sentences and sample the clusters with respect
to their weights to preserve the distribution of the
syntactic features. The selected sentences are man-
ually annotated and combined with the group ofM
sentences to train the final parser. The size of this
combined sample is measured when the annotation
efforts are evaluated.

Denote the left hand side nonterminal of a con-
stituent byP and the unlexicalized head of the con-
stituent byH. The domain ofP is the set of non-
terminals (excluding POS tags) and the domain of H
is the set of nonterminals and POS tags of WSJ. In
all the parameters of the Collins parserP andH are
conditioned upon. We thus use(P, H) pairs as the
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features in the vector representation of each sentence
in G. Thei-th coordinate is given by the equation:

∑

c∈t(s)

∑

i

Fi(Q(c) == i) · L(c) (2)

Wherec are the constituents of the sentence parse
t(s), Q is a function that returns the(P, H) pair
of the constituentc, Fi is a predicate that returns 1
iff it is given pair numberi as an argument and 0
otherwise, andL is the number of modifying non-
terminals in the constituent plus 1 (for the head),
counting the number of parameters that condition
on (P, H). Following equation (2), theith coordi-
nate of the vector representation of a sentence inG
contains the number of parameters that will be cal-
culated conditioned on theith (P, H) pair.

We use the k-means clustering algorithm, with the
L2 norm as a distance metric (MacKay, 2002), to di-
vide vectors into clusters. Clusters created by this
algorithm contain adjacent vectors in a Euclidean
space. Clusters represent sentences with similar fea-
tures values. To initialize k-means, we sample the
initial centers values from a uniform distribution
over the data points.

We do not decide on the number of clusters in ad-
vance but try to find inherent structure in the data.
Several methods for estimating the ‘correct’ num-
ber of clusters are known (Milligan and Cooper,
1985). We used a statistical heuristic called the
elbow test. We define the ‘within cluster disper-
sion’ Wk as follows. Suppose that the data is di-
vided intok clustersC1 . . . Ck with |Cj | points in
the jth cluster. LetDt =

∑
i,j∈Ct

di,j where
di,j is the squared Euclidean distance, thenWk :=∑k

t=1
1

2|Ct|Dt. Wk tends to decrease monotonically
ask increases. In many cases, from somek this de-
crease flattens markedly. The heuristic is that the
location of such an ‘elbow’ indicates the appropriate
number of clusters. In our experiments, an obvious
elbow occurred for 15 clusters.

ki sentences are randomly sampled from each
cluster, ki = D |Ci|∑

j
|Cj | , whereD is the number

of sentences to be sampled fromG. That way we
ensure that in the final sample each cluster is repre-
sented according to its size.

CMM Sampling. All of the parameters in the
Collins parser are conditioned on the constituent’s

head word. Since word statistics are sparse, sam-
pling from clusters created according to a lexical
vector representation of the sentences does not seem
promising4.

Another way to create a sample from which the
parser can extract robust head word statistics is to
select a sample containing many examples of each
word. More formally, we denote the words that oc-
cur in the unlabelled pool at leastt times byt-words,
wheret is a parameter of the algorithm. We want to
select a sample containing at leastt examples of as
many t-words as possible.

To select such a sample we introduce a novel op-
timisation problem. Our problem is a variant of the
multiset multicover (MM ) problem, which we call
the constrained multiset multicover (CMM) prob-
lem. The setting of theMM problem is as fol-
lows (Hochbaum, 1997): Given a setI of m ele-
ments to be covered eachbi times, a collection of
multisetsSj ⊂ I, j ∈ J = {1, . . . , n} (a multiset is
a set in which members’ multiplicity may be greater
than 1), and weightswj , find a subcollectionC of
multisets that covers eachi ∈ I at leastbi times, and
such that

∑
j∈C wj is minimized.

CMM differs from MM in that in CMM the sum
of the weights (representing the desired number of
sentences to annotate) is bounded, while the num-
ber of covered elements (representing the t-words)
should be maximized. In our case,I is the set of
words that occur at leastt times in the unlabelled
pool, bi = t,∀i ∈ I, the multisets are the sentences
in that pool andwj = 1,∀j ∈ J .

Multiset multicover is NP-hard. However, there is
a good greedy approximation algorithm for it. De-
fine a(sj , i) = min(R(sj , i), di), wheredi is the
difference betweenbi and the number of instances
of item i that are present in our current sample, and
R(sj , i) is the multiplicity of thei-th element in the
multisetsj . DefineA(sj) to be the multiset contain-
ing exactlya(sj , i) copies of any elementi if sj is
not already in the set cover and the empty set if it
is. The greedy algorithm repeatedly adds a set mini-
mizing wj

|A(sj)| . This algorithm provenly achieves an

approximation ratio betweenln(m) andln(m) + 1.
In our case all weights are 1, so the algorithm would

4We exploredCBSwith several lexical features schemes and
got only marginal improvement over random selection.
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simply add the sentence that maximizesA(sj) to the
set cover.

The problem in directly applying the algorithm to
our case is that it does not take into account the de-
sired sample size. We devised a variant of the algo-
rithm where we use a binary tree to ‘push’ upwards
the number of t-words in the whole batch of unan-
notated sentences that occurs at least t times in the
selected one. Below is a detailed description.D de-
notes the desired number of items to sample.

The algorithm has two steps. First, we iter-
atively sample (without replacement)D multisets
(sentences) from a uniform distribution over the
multisets. In each iteration we calculate for the se-
lected multiset its ‘contribution’ – the number of
items that cross the threshold oft occurrences with
this multiset minus the number of items that cross
thet threshold without this multiset (i.e. the contri-
bution of the first multiset is the number of t-words
occurring more thant times in it). For each multiset
we build a node with a key that holds its contribu-
tion, and insert these nodes in a binary tree. Inser-
tion is done such that all downward paths are sorted
in decreasing order of key values.

Second, we iteratively sample (from a uniform
distribution, without replacement) the rest of the
multisets pool. For each multiset we perform two
steps. First, we prepare a node with a key as de-
scribed above. We then randomly chooseZ leaves5

in the binary tree (if the number of leaves is smaller
thanZ all of the leaves are chosen). For each leaf we
find the place of the new node in the path from the
root to the leaf (paths are sorted in decreasing order
of key values). We insert the new node to the high-
est such place found (if the new key is not smaller
than the existing paths), add its multiset to the set of
selected multisets, and remove the multiset that cor-
responds to the leaf of this path from the batch and
the leaf itself from the binary tree. We finally choose
the multisets that correspond to the highestD nodes
in the tree.

An empirical demonstration of the quality of ap-
proximation that the algorithm provides is given in
Figure 2. We ran our algorithm with the threshold
parameter set tot ∈ [2, 14] and counted the num-

5We triedZ values from 10 to 100 in steps of 10 and ob-
served very similar results. We report results forZ = 100.
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Figure 2: Number of t-words for t = 5 in samples selected
by CMM runs with different values of the threshold pa-
rameter t and in a randomly selected sample.CMM with
t = 5 is significantly higher. All the lines except for the
line for t = 5 are unified. For clarity, we do not show all t
values: their curves are also similar to thet 6= 5 lines.

Method 86% 86.5% 87% 87.5% 88%
TE 16.9% 27.1% 26.9% 14.8% 15.8%

(152K) (183K) (258K) (414K) (563 K)
CBS 19.6% 16.8% 19% 21.1% 9%

(147K) (210K) (286K) (382K) (610K)
CMM 9% 10.4% 8.9% 10.3% 14%

(167K) (226K) (312K) (433K) (574K)

Table 1: Reduction in annotation cost inTC terms com-
pared to the random baseline for tree entropy (TE), syn-
tactic clustering (CBS) andCMM. The compared samples
are the smallest samples selected by each of the methods
that achieve certain f-score levels. Reduction is calcu-
lated by:100− 100× (TCmethod/TCrandom).

ber of words occurring at least 5 times in the se-
lected sample. We followed the same experimen-
tal protocol as in Section 5. The graph shows that
the number of words occurring at least 5 times in a
sample selected by our algorithm whent = 5 is sig-
nificantly higher (by about a 1000) than the number
of such words in a randomly selected sample and in
samples selected by our algorithm with othert pa-
rameter values. We got the same pattern of results
when counting words occurring at leastt times for
the other values of thet parameter – only the run of
the algorithm with the correspondingt value created
a sample with significantly higher number of words
not below threshold. The other runs and random se-
lection resulted in samples containing significantly
lower number of words not below threshold.

In Section 5 we show that the parser performance
when it is trained with a sample selected byCMM

is significantly better than when it is trained with a
randomly selected sample. Improvement is similar
across thet parameter values.
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86% 87% 88%
Method TNSK TNSK ANSK ANSK TNSK TNSK ANSK ANSK TNSK TNSK ANSK ANSK

(1-6) (7-22) (1-6) (7-22) (1-6) (7-22) (1-6) (7-22) (1-6) (7-22) (1-6) (7-22)
TE 34.9% 3.6% - 8.9% - 61.3% 42.2% 14.4% - 9.9% - 62.7% 25% 8.1% - 6.3% - 30%
CBS 21.3% 18.6% - 0.5% - 3.5% 19.6% 24.2% - 0.3% - 1.8% 8.9% 8.6 % 0% - 0.3%
CMM 10.18% 8.87% -0.82% -3.39% 11% 16.22% -0.34% -1.8% 14.65% 14.11% -0.02% - 0.08%

Table 2: Annotation cost reduction inTNSK andANSK compared to the random baseline for tree entropy (TE), syntactic
clustering (CBS) andCMM. The compared samples are the smallest selected by each of the methods that achieve certain
f-score levels. Each column represents the reduction in total or average number of structures of degree 1–6 or 7–22.
Reduction for each measure is calculated by:100− 100× (measuremethod/measurerandom). Negative reduction
is an addition. Samples with a higher reduction in a certain measure are better in terms of that measure.
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Figure 3: Left to right: First: The difference between the number of nested structures of degreeK of CMM andTE and
of CBS andTE. The curves are unified. The0 curve is given for reference. Samples selected byCMM andCBS have
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samples required for achieving f-score of 88. Similar patterns are observed for other f-score values. Second: Average
number of nested structures of degreeK as a function ofK for the smallest sample required for achieving f-score of
88. Results for each of the methods are normalized by the average number of nested structures of degreeK in the
smallest randomly selected sample required for achieving f-score of 88. The sentences inCMM andCBS samples are
not more complex than sentences in a randomly selected sample. In TE samples sentences are more complex. Third:
Average number of constituents (AC) for the smallest sample of each of the methods that is required for achieving a
given f-score.CMM andCBS samples contain sentences with a smaller number of constituents. Fourth:AC values for
the samples created by the methods (normalized byAC values of a randomly selected sample). The sentences inTE

samples, but not inCMM andCBS samples, are more complex than sentences in a randomly selected sample.

5 Results

Experimental setup. We used Bikel’s reimplemen-
tation of Collins’ parsing model 2 (Bikel, 2004).
Sections 02-21 and 23 of the WSJ were stripped
from their annotation. Sections 2-21 (39832 sen-
tences, about 800K constituents) were used for train-
ing, Section 23 (2416 sentences) for testing. No
development set was used. We used the gold stan-
dard POS tags in two cases: in the test section (23)
in all experiments, and in Sections 02-21 in the
CBS method when these sections are to be parsed
in the process of vector creation. In active learn-
ing methods the unlabelled pool is parsed in each
iteration and thus should be tagged with POS tags.
Hwa (2004) (to whom we compare our results) used
the gold standard POS tags for the same sections
in her work6. We implemented a random baseline

6Personal communication with Hwa. Collins’ parser uses an

where sentences are uniformly selected from the un-
labelled pool for annotation. For reliability we re-
peated each experiment with the algorithms and the
random baseline 10 times, each time with different
random selections (M sentences for creating syntac-
tic tagging and k-means initialization forCBS, sen-
tence order inCMM), and averaged the results.

Each experiment contained 38 runs. In each run
a different desired sample size was selected, from
1700 onwards, in steps of 1000. Parsing perfor-
mance is measured in terms of f-score

Results. We compare the performance of our
CBS andCMM algorithms to theTE method (Hwa,
2004)7, which is the only sample selection work ad-

input POS tag only if it cannot tag its word using the statistics
learned from the training set.

7Hwa has kindly sent us the samples selected by herTE. We
evaluated these samples withTC and the new measures. TheTC

of the minimal sample she sent us needed for achieving f-score
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dressing our experimental setup. Unless otherwise
stated, we report the reduction in annotation cost:
100− 100× (measuremethod/measurerandom).
CMM results are very similar fort ∈ {2, 3, . . . , 14},
and presented fort = 8.

Table 1 presents reduction in annotation cost in
TC terms. CBS achieves greater reduction forf =
86, 87.5, TE for f = 86.5, 87, 88. For f = 88, TE

andCMM performance are almost similar. Examin-
ing the f-score vs.TC sample size over the whole
constituents range (not shown due to space con-
straints) reveals thatCBS, CMM andTE outperform
random selection over the whole range.CBS and
TE performance are quite similar withTE being bet-
ter in the ranges of 170–300K and 520–650K con-
stituents (42% of the 620K constituents compared)
andCBSbeing better in the ranges of 130–170K and
300–520K constituents (44% of the range).CMM

performance is worse thanCBS and TE until 540K
constituents. From 650K constituents on, where
the parser achieves its best performance, the perfor-
mance ofCMM andTE methods are similar, outper-
forming CBS.

Table 2 shows the annotation cost reduction in
ANSK and TNSK terms. TE achieves remarkable
reduction in the total number of relatively shallow
structures (TNSK K = 1–6). Our methods, in con-
trast, achieve remarkable reduction in the number of
deep structures (TNSK K = 7–22)8. This is true for
all f-score values. Moreover, the average number of
nested structures per sentence, for every degreeK
(ANSK for everyK) in TE sentences is much higher
than in sentences of a randomly selected sample. In
samples selected by our methods, theANSK values
are very close to theANSK values of randomly se-
lected samples. Thus, sentences inTE samples are
much more complex than inCBSandCMM samples.

The two leftmost graphs in Figure 3 demonstrate
(for the minimal samples required for f-score of 88)
that these reductions hold for eachK value (ANSK)
and for eachK ∈ [7, 22] (TNSK) not just on the av-

of 88 is different from the number reported in (Hwa, 2004). We
compare ourTC results with theTC result in the sample sent us
by Hwa.

8We present results where the border between shallow and
deep structures is set to beKborder = 6. For everyKborder ∈
{7, 8, . . . , 22} TNSK reductions withCBS andCMM are much
more impressive than withTE for structures whose degree is
K ∈ [Kborder, 22].

erage over theseK values. We observed similar re-
sults for other f-score values.

The two rightmost graphs of Figure 3 demon-
stratesAC results. The left of them shows that for
every f-score value, theAC measure of the minimal
TE sample required to achieve that f-score is higher
than theAC value of PBS samples (which are very
similar to theAC values of randomly selected sam-
ples). The right graph demonstrates that for every
sample size, theAC value of TE samples is higher
than that of PBS samples.

All AL based previous work (includingTE) is it-
erative. In each iteration thousands of sentences
are parsed, while PBS algorithms perform a single
iteration. Consequently, PBS computational com-
plexity is dramatically lower. Empirically, using a
Pentium 4 2.4GHz machine,CMM requires about an
hour andCBSabout 16.5 hours, while theTE parsing
steps alone take 662 hours (27.58 days).

6 Discussion and Future Work

We introduced novel evaluation measures:AC,
TNSK and ANSK for the task of sample selection
for statistical parsers. Based on the psycholinguis-
tic literature we argue that these measures reflect as-
pects of the cognitive efforts of the human annota-
tor that are not reflected by the traditionalTC mea-
sure. We introduced the parameter based sample se-
lection (PBS) approach and itsCMM andCBS algo-
rithms that do not deliberately select difficult sen-
tences. Therefore, our intuition was that they should
select a sample that leads to an accurate parameter
estimation but does not contain a high number of
complex structures. We demonstrated thatCMM and
CBSachieve results that are similar to the state of the
art TE method inTC terms and outperform it when
the cognitively driven measures are considered.

The measures we suggest do not provide a full
and accurate description of human annotator efforts.
In future work we intend to extend and refine our
measures and to revise our algorithms accordingly.

We also intend to design stopping criteria for the
PBS methods. These are criteria that decide when
the selected sample suffices for the parser best per-
formance and further annotation is not needed.
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Abstract

We present a simple but very effective ap-
proach to identifying high-quality data in
noisy data sets for structured problems like
parsing, by greedily exploiting partial struc-
tures. We analyze our approach in an anno-
tation projection framework for dependency
trees, and show how dependency parsers from
two different paradigms (graph-based and
transition-based) can be trained on the result-
ing tree fragments. We train parsers for Dutch
to evaluate our method and to investigate
to which degree graph-based and transition-
based parsers can benefit from incomplete
training data. We find that partial correspon-
dence projection gives rise to parsers that out-
perform parsers trained on aggressively fil-
tered data sets, and achieve unlabeled attach-
ment scores that are only 5% behind the aver-
age UAS for Dutch in the CoNLL-X Shared
Task on supervised parsing (Buchholz and
Marsi, 2006).

1 Introduction

Many weakly supervised approaches to NLP rely on
heuristics or filtering techniques to deal with noise
in unlabeled or automatically labeled training data,
e.g., in the exploitation of parallel corpora for cross-
lingual projection of morphological, syntactic or se-
mantic information. While heuristic approaches can
implement (linguistic) knowledge that helps to de-
tect noisy data (e.g., Hwa et al. (2005)), they are typ-
ically task- and language-specific and thus introduce
a component of indirect supervision. Non-heuristic
filtering techniques, on the other hand, employ re-
liability measures (often unrelated to the task) to
predict high-precision data points (e.g., Yarowsky
et al. (2001)). In order to reach a sufficient level

of precision, filtering typically has to be aggressive,
especially for highly structured tasks like parsing.
Such aggressive filtering techniques incur massive
data loss and enforce trade-offs between the quality
and the amount of usable data.

Ideally, a general filtering strategy for weakly su-
pervised training of structured analysis tools should
eliminate noisy subparts in the automatic annota-
tion without discarding its high-precision aspects;
thereby data loss would be kept to a minimum.
In this paper, we propose an extremely simple ap-
proach to noise reduction which greedily exploits
partial correspondences in a parallel corpus, i.e.,
correspondences potentially covering only substruc-
tures of translated sentences. We implemented this
method in an annotation projection framework to
create training data for two dependency parsers rep-
resenting different parsing paradigms: The MST-
Parser (McDonald et al., 2005) as an instance of
graph-based dependency parsing, and the Malt-
Parser (Nivre et al., 2006) to representtransition-
based dependency parsing. In an empirical evalu-
ation, we investigate how they react differently to
incomplete and noisy training data.

Despite its simplicity, the partial correspondence
approach proves very effective and leads to parsers
that achieve unlabeled attachment scores that are
only 5% behind the average UAS for Dutch in the
CoNLL-X Shared Task (Buchholz and Marsi, 2006).

After a summary of related work in Sec. 2, we
discuss dependency tree projection (Sec. 3) and par-
tial correspondence (Sec. 4). In Sec. 5, we give an
overview of graph- and transition-based dependency
parsing and describe how each can be adapted for
training on partial training data in Sec. 6. Experi-
mental results are presented in Sec. 7, followed by
an analysis in Sec. 8. Sec. 9 concludes.
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a. b. c.

English (L1): I have two questions You are absolutely right You are absolutely right

Dutch (L2): Ik heb twee vragen U heeft volkomen gelijk U heeft volkomengelijk

1
2 3

Figure 1: Dependency tree projection from English to Dutch.(a) Ideal scenario with bidirectional alignments. (b)
Projection fails due to weak alignments. (c) Constrained fallback projection.

2 Related Work

Annotation projection has been applied to many dif-
ferent NLP tasks. On the word or phrase level, these
include morphological analysis, part-of-speech tag-
ging and NP-bracketing (Yarowsky et al., 2001),
temporal analysis (Spreyer and Frank, 2008), or se-
mantic role labeling (Padó and Lapata, 2006). In
these tasks, word labels can technically be intro-
duced in isolation, without reference to the rest of
the annotation. This means that an aggressive filter
can be used to discard unreliable data points (words
in a sentence) without necessarily affecting high-
precision data points in the same sentence. By us-
ing only the bidirectional word alignment links, one
can implement a very robust such filter, as the bidi-
rectional links are generally reliable, even though
they have low recall for overall translational cor-
respondences (Koehn et al., 2003). The bidirec-
tional alignment filter is common practice (Padó and
Lapata, 2006); a similar strategy is to discard en-
tire sentences with low aggregated alignment scores
(Yarowsky et al., 2001).

On the sentence level, Hwa et al. (2005) were
the first to project dependency trees from English
to Spanish and Chinese. They identify unreliable
target parses (as a whole) on the basis of the num-
ber of unaligned or over-aligned words. In addition,
they manipulate the trees to accommodate for non-
isomorphic sentences. Systematic non-parallelisms
between source and target language are then ad-
dressed by hand-crafted rules in a post-projection
step. These rules account for an enormous increase
in the unlabeled f-score of the direct projections,
from 33.9 to 65.7 for Spanish and from 26.3 to 52.4
for Chinese. But they need to be designed anew for
every target language, which is time-consuming and
requires knowledge of that language.

Research in the field of unsupervised and weakly
supervised parsing ranges from various forms of EM
training (Pereira and Schabes, 1992; Klein and Man-
ning, 2004; Smith and Eisner, 2004; Smith and Eis-
ner, 2005) over bootstrapping approaches like self-
training (McClosky et al., 2006) to feature-based
enhancements of discriminative reranking models
(Koo et al., 2008) and the application of semi-
supervised SVMs (Wang et al., 2008). The partial
correspondence method we present in this paper is
compatible with such approaches and can be com-
bined with other weakly supervised machine learn-
ing schemes. Our approach is similar to that of
Clark and Curran (2006) who use partial training
data (CCG lexical categories) for domain adaptation;
however, they assume an existing CCG resource for
the language in question to provide this data.

3 Projection of Dependency Trees

Most state-of-the-art parsers for natural languages
are data-driven and depend on the availability of suf-
ficient amounts of labeled training data. However,
manual creation of treebanks is time-consuming and
labour-intensive. One way to avoid the expensive
annotation process is to automatically label the train-
ing data usingannotation projection (Yarowsky et
al., 2001): Given a suitable resource (such as a
parser) in languageL1, and a word-aligned paral-
lel corpus with languagesL1 andL2, label theL1-
portion of the parallel text (with the parser) and copy
the annotations to the corresponding (i.e., aligned)
elements in languageL2. This is illustrated in Fig.
1a. The arrows between English and Dutch words
indicate the word alignment. Assuming we have a
parser to produce the dependency tree for the En-
glish sentence, we build the tree for the Dutch sen-
tence by establishing arcs between wordswD (e.g.,
Ik) andhD (heb) if there are aligned pairs(wD, wE)
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#sents w/ avg. sent vocab
projected parse length (lemma)

unfiltered (100,000) 24.92 19,066
bidirectional 2,112 6.39 1,905
fallback 6,426 9.72 4,801
bi+frags≤3 7,208 9.44 4,631

Table 1: Data reduction effect of noise filters.

(Ik andI) and(hD, hE) (heb andhave) such thathE

is the head ofwE in the English tree.
Annotation projection assumesdirect correspon-

dence (Hwa et al., 2005) between languages (or
annotations), which—although it is valid in many
cases—does not hold in general: non-parallelism
between corresponding expressions inL1 and L2

causes errors in the target annotations. The word
alignment constitutes a further source for errors if it
is established automatically—which is typically the
case in large parallel corpora.

We have implemented a language-independent
framework for dependency projection and use the
Europarl corpus (Koehn, 2005) as the parallel text.
Europarl consists of the proceedings of the Euro-
pean Parliament, professionally translated in 11 lan-
guages (approx. 30mln words per language). The
data was aligned on the word level with GIZA ++
(Och and Ney, 2003).1 In the experiments reported
here, we use the language pair English-Dutch, with
English as the source for projection (L1) and Dutch
as L2. The English portion of the Europarl cor-
pus was lemmatized and POS tagged with the Tree-
Tagger (Schmid, 1994) and then parsed with Malt-
Parser (which is described in Sec. 6), trained on a
dependency-converted version of the WSJ part from
the Penn Treebank (Marcus et al., 1994), but with
the automatic POS tags. The Dutch sentences were
only POS tagged (with TreeTagger).2

3.1 Data Loss Through Filtering

We quantitatively assess the impact of various fil-
tering techniques on a random sample of 100,000
English-Dutch sentence pairs from Europarl (avg.

1Following standard practice, we computed word align-
ments in both directions (L1 → L2 andL2 → L1); this gives
rise to two unidirectional alignments. Thebidirectional align-
ment is the intersection of the two unidirectional ones.

2The Dutch POS tags are used to train the monolingual
parsers from the projected dependency trees (Sec. 7).

24.9 words/sentence). The English dependency
trees are projected to their Dutch counterparts as ex-
plained above for Fig. 1a.

The first filter we examine is the one that consid-
ers exclusively bidirectional alignments. It admits
dependency arcs to be projected only if the headhE

and the dependentwE are each alignedbidirection-
ally with some word in the Dutch sentence. This is
indicated in Fig. 1b, where the English verbare is
aligned with the Dutch translationheeft only in one
direction. This means that none of the dependencies
involving are are projected, and the projected struc-
ture is not connected. We will discuss in subsequent
sections how less restricted projection methods can
still incorporate such data.

Table 1 shows the quantitative effect of the bidi-
rectional filter in the row labeled ‘bidirectional’. The
proportion of usable sentences is reduced to 2.11%.
Consequently, the vocabulary size diminishes by a
factor of 10, and the average sentence length drops
considerably from almost 25 to less than 7 words,
suggesting that most non-trivial examples are lost.

3.2 Constrained Fallback Projection

As an instance of a more relaxed projection of com-
plete structures, we also implemented a fallback to
unidirectional links which projects further depen-
denciesafter a partial structure has been built based
on the more reliable bidirectional links. That is, the
dependencies established via unidirectional align-
ments are constrained by the existing subtrees, and
are subject to the wellformedness conditions for de-
pendency trees.3 Fig. 1c shows how the fallback
mechanism, initialized with the unconnected struc-
ture built with the bidirectional filter, recovers a
parse tree for the weakly aligned sentence pair in
Fig. 1b. Starting with the leftmost word in the Dutch
sentence and its English translation (U and You),
there is a unidirectional alignment for the head of
You: are is aligned toheeft, so U is established as
a dependent ofheeft via fallback. Likewise,heeft
can now be identified as the root node. Note that the
(incorrect) alignment betweenheeft andYou will not
be pursued because it would lead toheeft being a de-
pendent of itself and thus violating the wellformed-

3I.e., single headedness and acyclicity; we do not require the
trees to be projective, but instead train pseudo-projective models
(Nivre and Nilsson, 2005) on the projected data (cf. fn. 5).
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#frags 1 2 3 4–15 >15
#words
<4 425 80 12 – –
4–9 1,331 1,375 1,567 4,793 –
10–19 339 859 1,503 27,910 522
20–30 17 45 143 20,756 10,087
>30 0 5 5 4,813 23,362

Table 2: Fragmented parses projected with the alignment
filter. The sentences included in the data set ‘bi+frags≤3’
are in boldface.

ness conditions. Finally, the subtree rooted ingelijk
is incorporated as the second dependent ofheeft.

As expected, the proportion of examples that pass
this filter rises, to 6.42% (Table 1, ‘fallback’). How-
ever, we will see in Sec. 7 that parsers trained on
this data do not improve over parsers trained on the
bidirectionally aligned sentences alone. This is pre-
sumably due to the noise that inevitably enters the
training data through fallback.

4 Partial Correspondence Projection

So far, we have only considered complete trees,
i.e., projected structures with exactly one root node.
This is a rather strict requirement, given that even
state-of-the-art parsers sometimes fail to produce
plausible complete analyses for long sentences, and
that non-sentential phrases such as complex noun
phrases still contain valuable, non-trivial informa-
tion. We therefore proposepartial correspondence
projection which, in addition to the complete anno-
tations produced by tree-oriented projection, yields
partial structures: It admits fragmented analyses in
case the tree-oriented projection cannot construct a
complete tree. Of course, the nature of those frag-
ments needs to be restricted so as to exclude data
with no (interesting) dependencies. E.g., a sentence
of five words with a parse consisting of five frag-
ments provides virtually no information about de-
pendency structure. Hence, we impose a limit (fixed
at 3 after quick preliminary tests on automatically
labeled development data) on the number of frag-
ments that can make up an analysis. Alternatively,
one could require a minimum fragment size.

As an example, consider again Fig. 1b. This ex-
ample would be discarded in strict tree projection,
but under partial correspondence it is included as a
partial analysis consisting of three fragments:

U heeft volkomen gelijk

Although the amount of information provided in
this analysis is limited, the arc betweengelijk and
volkomen, which is strongly supported by the align-
ment, can be established without including poten-
tially noisy data points that are only weakly aligned.

We use partial correspondence in combination
with bidirectional projection.4 As can be seen in
Table 1 (‘bi+frags≤3 ’), this combination boosts the
amount of usable data to a range similar to that of
the fallback technique for trees; but unlike the latter,
partial correspondence continues to impose a high-
precision filter (bidirectionality) while improving re-
call through relaxed structural requirements (partial
correspondence). Table 2 shows how fragment size
varies with sentence length.

5 Data-driven Dependency Parsing

Models for data-driven dependency parsing can be
roughly divided into two paradigms: Graph-based
and transition-based models (McDonald and Nivre,
2007).

5.1 Graph-based Models

In the graph-based approach, global optimization
considers all possible arcs to find the treeT̂ s.t.

T̂ = arg max
T∈D

s(T ) = arg max
T∈D

∑

(i,j,l)∈AT

s(i, j, l)

whereD is the set of all well-formed dependency
trees for the sentence,AT is the set of arcs inT , and
s(i, j, l) is the score of an arc between wordswi and
wj with label l. The specific graph-based parser we
use in this paper is the MSTParser of McDonald et
al. (2005). The MSTParser learns the scoring func-
tion s using an online learning algorithm (Crammer
and Singer, 2003) which maximizes the margin be-
tweenT̂ andD \ {T̂}, based on a loss function that
counts the number of words with incorrect parents
relative to the correct tree.

5.2 Transition-based Models

In contrast to the global optimization employed in
graph-based models, transition-based models con-
struct a parse tree in a stepwise way: At each point,

4Fragments from fallback projection turned out not to be
helpful as training data for dependency parsers.
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the locally optimal parser action (transition) t∗ is de-
termined greedily on the basis of the current config-
urationc (previous actions plus local features):

t∗ = arg max
t∈T

s(c, t)

whereT is the set of possible transitions. As a rep-
resentative of the transition-based paradigm, we use
the MaltParser (Nivre et al., 2006). It implements in-
cremental, deterministic parsing algorithms and em-
ploys SVMs to learn the transition scoress.

6 Parsing with Fragmented Trees

To make effective use of the fragmented trees pro-
duced by partial correspondence projection, both
parsing approaches need to be adapted for training
on sentences with unconnected substructures. Here
we briefly discuss how we represent these structures,
and then describe how we modified the parsers.

We use the CoNLL-X data format for dependency
trees (Buchholz and Marsi, 2006) to encode partial
structures. Specifically, every fragment root spec-
ifies as its head an artificial root tokenw0 (distin-
guished from a true root dependency by a special
relation FRAG). Thus, sentences with a fragmented
parse are still represented as a single sentence, in-
cluding all words; the difference from a fully parsed
sentence is that unconnected substructures are at-
tached directly underw0. For instance, the partial
parse in Fig. 1b would be represented as follows (de-
tails omitted):

(1) 1 U pron 0 FRAG
2 heeft verb 0 ROOT
3 volkomen adj 4 mod
4 gelijk noun 0 FRAG

6.1 Graph-based Model: fMST

In the training phase, the MSTParser tries to max-
imize the scoring margin between the correct parse
and all other valid dependency trees for the sentence.
However, in the case of fragmented trees, the train-
ing example is not strictly speaking correct, in the
sense that it does not coincide with the desired parse
tree. In fact, this desired tree is among the other
possible trees that MST assumes to be incorrect, or
at least suboptimal. In order to relax this assump-
tion, we have to ensure that the loss of the desired
tree is zero. While it is impossible to single out this

one tree (since we do not know which one it is), we
can steer the margin in the right direction with a loss
function that assigns zero loss to all trees that are
consistent with the training example, i.e., trees that
differ from the training example at most on those
words that are fragment roots (e.g.,gelijk in Fig. 1).
To reflect this notion of loss during optimization, we
also adjust the definition of the score of a tree:

s(T ) =
∑

(i,j,l)∈AT : l 6=FRAG

s(i, j, l)

We refer to this modified model asf(iltering)MST.

6.2 Transition-based Model: fMalt

In the transition-based paradigm, it is particularly
important to preserve the original context (includ-
ing unattached words) of a partial analysis, because
the parser partly bases its decisions on neighboring
words in the sentence.

Emphasis of the role of isolated FRAG dependents
as context rather than proper nodes in the tree can
be achieved, as with the MSTParser, by eliminat-
ing their effect on the margin learned by the SVMs.
Since MaltParser scores local decisions, this simply
amounts to suppressing the creation of SVM train-
ing instances for such nodes (U and gelijk in (1)).
That is, where the feature model refers to context
information, unattached words provide this infor-
mation (e.g., the feature vector forvolkomen in (1)
contains the form and POS ofgelijk), but there are
no instances indicating how they should be attached
themselves. This technique of excluding fragment
roots during training will be referred to asfMalt.

7 Experiments

7.1 Setup

We train instances of the graph- and the transition-
based parser on projected dependencies, and occa-
sionally refer to these as “projected parsers”.5

All results were obtained on the held-out
CoNLL-X test set of 386 sentences (avg. 12.9

5The MaltParsers use the projective Nivre arc-standard pars-
ing algorithm. For SVM training, data are split on the coarse
POS tag, with a threshold of 5,000 instances. MSTParser in-
stances use the projective Eisner parsing algorithm, and first-
order features. The input for both systems is projectivizedusing
thehead+path schema (Nivre and Nilsson, 2005).
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Malt MST
Alpino 80.05 82.43
EP 75.33 73.09
Alpino + EP 77.47 81.63
baseline 1 (previous) 23.65
baseline 2 (next) 27.63

Table 3: Upper and lower bounds (UAS).

words/sentence) from the Alpino treebank (van der
Beek et al., 2002). The Alpino treebank consists
mostly of newspaper text, which means that we are
evaluating the projected parsers, which are trained
on Europarl, in anout-of-domain setting, in the ab-
sence of manually annotated Europarl test data.

Parsing performance is measured in terms ofun-
labeled attachment score (UAS), i.e., the proportion
of tokens that are assigned the correct head, irrespec-
tive of the label.6

To establish upper and lower bounds for our task
of weakly supervised dependency parsing, we pro-
ceed as follows. We train MaltParsers and MST-
Parsers on (i) the CoNLL-X training portion of the
Alpino treebank (195,000 words), (ii) 100,000 Eu-
roparl sentences parsed with the parser obtained
from (i), and (iii) the concatenation of the data
sets (i) and (ii). The first is a supervised upper
bound (80.05/82.43% UAS)7 trained on manually
labeled in-domain data, while the second constitutes
a weaker bound (75.33/73.09%) subject to the same
out-of-domain evaluation as the projected parsers,
and the third (77.47%) is a self-trained version of (i).
We note in passing that the supervised model does
not benefit from self-training. Two simple baselines
provide approximations to a lower bound: Baseline
1 attaches every word to the preceding word, achiev-
ing 23.65%. Analogously, baseline 2 attaches every
word to the following word (27.63%). These sys-
tems are summarized in Table 3.

6The labeled accuracy of our parsers lags behind the UAS,
because the Dutch dependency relations in the projected anno-
tations arise from a coarse heuristic mapping from the original
English labels. We therefore report only UAS.

7The upper bound models are trained with the same param-
eter settings as the projected parsers (see fn. 5), which were ad-
justed for noisy training data. Thus improvements are likely
with other settings: Nivre et al. (2006) report 81.35% for a
Dutch MaltParser with optimized parameter settings. McDon-
ald et al. (2006) report 83.57% with MST.

words Malt MST
a. trees (bidirectional) 13,500 65.94 67.76

trees (fallback) 62,500 59.28 65.08
bi+frags≤3 68,000 55.09 57.14
bi+frags≤3 (fMalt/fMST) 68,000 69.15 70.02

b. trees (bidirectional) 100,000 61.8669.91
trees (fallback) 100,000 60.05 64.84
bi+frags≤3 100,000 54.50 55.87
bi+frags≤3 (fMalt/fMST) 100,000 68.65 69.86

c. trees (bidirectional) 102,300 63.32 69.85
trees (fallback) 465,500 53.45 64.88
bi+frags≤3 523,000 51.48 57.20
bi+frags≤3 (fMalt/fMST) 523,000 69.52 70.33

Table 4: UAS of parsers trained on projected dependency
structures for (a) a sample of 100,000 sentences, subject
to filtering, (b) 10 random samples, each with 100,000
words after filtering (average scores given), and (c) the
entire Europarl corpus, subject to filtering.

7.2 Results

Table 4a summarizes the results of training parsers
on the 100,000-sentence sample analyzed above.
Both the graph-based (MST) and the transition-
based (Malt) parsers react similarly to the more or
less aggressive filtering methods, but to different de-
grees. The first two rows of the table show the
parsers trained on complete trees (‘trees (bidirec-
tional)’ and ‘trees (fallback)’). In spite of the ad-
ditional training data gained by the fallback method,
the resulting parsers do not achieve higher accuracy;
on the contrary, there is a drop in UAS, especially
in the transition-based model (−6.66%). The in-
creased level of noise in the fallback data has less
(but significant)8 impact on the graph-based coun-
terpart (−2.68%).

Turning to the parsers trained on partial cor-
respondence data (‘bi+frags≤3 ’), we observe even
greater deterioration in both parsing paradigms if the
data is used as is. However, in combination with the
fMalt/fMST systems (‘bi+frags≤3 (fMalt/fMST)’),
both parsers significantly outperform the tree-

8Significance testing (p<.01) was performed by means of
the t-test on the results of 10 training cycles (Table 4c ‘trees
(fb.)’ only 2 cycles due to time constraints). For the experiments
in Table 4a and 4c, the cycles differed in terms of the order in
which sentences where passed to the parser. In Table 4b we base
significance on 10 true random samples for training.
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Recall Precision
dep. length 1 2 3–6 ≥7 root 1 2 3–6 ≥7 root

a. trees (bi.) 83.41 66.44 52.94 40.64 52.45 82.46 66.06 61.38 34.95 50.97
trees (fb.) 82.20 64.21 54.59 37.95 55.72 82.64 61.41 54.39 31.96 68.55
bi+frags≤3 70.18 59.50 46.61 32.14 61.87 83.75 67.22 58.25 32.81 27.01
bi+frags≤3 (fMalt) 89.23 75.34 59.18 41.65 59.06 83.46 69.05 65.85 48.21 75.79
Alpino-Malt 92.81 84.94 75.11 65.44 66.15 89.71 81.08 77.5662.57 84.58

b. trees (bi.) 87.53 73.79 59.57 46.79 71.01 86.43 74.08 64.78 45.1766.79
trees (fb.) 82.53 69.37 55.77 37.46 70.24 85.31 69.29 59.85 40.14 53.99
bi+frags≤3 68.11 57.48 34.30 13.00 90.68 90.28 78.54 66.36 43.70 23.41
bi+frags≤3 (fMST) 87.73 72.84 62.55 50.15 67.78 86.94 71.60 66.05 48.48 68.20
Alpino-MST 94.13 86.60 76.91 65.14 71.60 91.76 82.49 76.23 71.96 85.38

Table 5: Performance relative to dependency length. (a) Projected MaltParsers and (b) projected MSTParsers.

oriented models (‘trees (bidirectional)’) by 3.21%
(Malt) and 2.26% (MST).

It would be natural to presume that the superior-
ity of the partial correspondence filter is merely due
to the amount of training data, which is larger by
a factor of 5.04. We address this issue by isolat-
ing the effect on the quality of the data, and hence
the success at noise reduction: In Table 4b, we con-
trol for the amount of data that is effectively used
in training, so that each filtered training set consists
of 100,000 words. Considering the Malt models, we
find that the trends suggested in Table 4a are con-
firmed: The pattern of relative performance emerges
even though any quantitative (dis-)advantages have
been eliminated.9 10 Interestingly, the MSTParser
does not appear to gain from the increased variety
(cf. Table 1) in the partial data: it does not differ
significantly from the ‘trees (bi.)’ model.

Finally, Table 4c provides the results of training
on the entire Europarl, or what remains of the corpus
after the respective filters have applied. The results
corroborate those obtained for the smaller samples.

In summary, the results support our initial hy-
pothesis that partial correspondence for sentences
containing a highly reliable part is preferable to

9The degree of skewedness in the filtered data is not con-
trolled, as it is an important characteristic of the filters.

10Some of the parsers trained on the larger data sets (Table
4b+c) achieve worse results than their smaller counterparts in
Table 4a. We conjecture that it is due to the thresholded POS-
based data split, performed prior to SVM training: Larger train-
ing sets induce decision models with more specialized SVMs,
which are more susceptible to tagging errors. This could be
avoided by increasing the threshold for splitting.

relaxing the reliability citerion, and—in the case
of the transition-based MaltParser—also to aggres-
sively filtering out all but the reliable complete trees.
With UASs around 70%, both systems are only 5%
behind the average 75.07% UAS achieved for Dutch
in the CoNLL-X Shared Task.

8 Analysis

We have seen that the graph- and the transition-
based parser react similarly to the various filtering
methods. However, there are interesting differences
in the magnitude of the performance changes. If
we compare the two tree-oriented filters ‘trees (bi.)’
and ‘trees (fb.)’, we observe that, although both Malt
and MST suffer from the additional noise that is in-
troduced via the unidirectional alignments, the drop
in accuracy is much less pronounced in the latter,
graph-based model. Recall that in this paradigm,
optimization is performed over the entire tree by
scoring edges independenly; this might explain why
noisy arcs in the training data have only a negligi-
ble impact. Conversely, the transition-based Malt-
Parser, which constructs parse trees in steps of lo-
cally optimal decisions, has an advantage when con-
fronted with partial structures: The individual frag-
ments provide exactly the local context, plus lexical
information about the (unconnected) wider context.

To give a more detailed picture of the differences
between predicted and actual annotations, we show
the performance (of the parsers from Table 4b) sep-
arately for binned arc length (Table 5) and sen-
tence length (Table 6). As expected, the perfor-
mance of both the supervised upper bounds (Alpino-
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sent. length <4 4–9 10–19 20–30 > 30
a. trees (bi.) 73.87 62.13 65.67 60.81 55.18

trees (fb.) 69.91 57.84 62.29 60.04 55.47
bi+frags≤3 74.14 54.40 56.62 54.07 48.95
bi+fr≤3 (fMalt) 73.51 65.69 71.70 68.49 63.71
Alpino-Malt 81.98 69.81 81.11 82.82 76.02

b. trees (bi.) 76.67 70.16 73.09 69.56 63.57
trees (fb.) 73.24 64.93 67.79 64.98 57.70
bi+frags≤3 77.48 59.65 55.96 55.27 52.74
bi+fr≤3 (fMST) 73.24 67.84 73.46 70.04 62.92
Alpino-MST 81.98 72.24 85.10 83.86 78.51

Table 6: UAS relative to sentence length. (a) Projected
MaltParsers and (b) projected MSTParsers.

Malt/MST) and the projected parsers degrades as de-
pendencies get longer, and the difference between
the two grows. Performance across sentence length
remains relatively stable. But note that both tables
again reflect the pattern we saw in Table 4. Impor-
tantly, the relative ranking (in terms of f-score, not
shown, resp. UAS) is still in place even in long dis-
tance dependencies and long sentences. This indi-
cates that the effects we have described are not arti-
facts of a bias towards short dependencies.

In addition, Table 5 sheds some light on the im-
pact of fMalt/fMST in terms of the trade-off between
precision and recall. Without the specific adjust-
ments to handle fragments, partial structures in the
training data lead to an immense drop in recall. By
contrast, when the adapted parsers fMalt/fMST are
applied, they boosts recall back to a level compara-
ble to or even above that of the tree-oriented pro-
jection parsers, while maintaining precision. Again,
this effect can be observed across all arc lengths, ex-
cept arcs to root, which naturally the ‘bi+frags’ mod-
els are overly eager to predict.

Finally, the learning curves in Fig. 2 illus-
trate how much labeled data would be required to
achieve comparable performance in a supervised
setting. The graph-based upper bound (Alpino-
MST) reaches the performance of fMST (trained
on the entire Europarl) with approx. 25,000 words
of manually labeled treebank data; Alpino-Malt
achieves the performance of fMalt with approx.
35,000 words. The manual annotation of even these
moderate amounts of data involves considerable ef-
forts, including the creation of annotation guidelines

Figure 2: Learning curves for the supervised upper
bounds. They reach the performance of the projected
parsers with∼25,000 (MST) resp. 35,000 (Malt) words.

and tools, the training of annotators etc.

9 Conclusion

In the context of dependency parsing, we have pro-
posed partial correspondence projection as a greedy
method for noise reduction, and illustrated how it
can be integrated with data-driven parsing. Our ex-
perimental results show that partial tree structures
are well suited to train transition-based dependency
parsers. Graph-based models do not benefit as much
from additional partial structures, but instead are
more robust to noisy training data, even when the
training set is very small.

In future work, we will explore how well the tech-
niques presented here for English and Dutch work
for languages that are typologically further apart,
e.g., English-Greek or English-Finnish. Moreover,
we are going to investigate how our approach, which
essentially ignores unknown parts of the annotation,
compares to approaches that marginalize over hid-
den variables. We will also explore ways of combin-
ing graph-based and transition-based parsers along
the lines of Nivre and McDonald (2008).
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Abstract

Finding negation signals and their scope in
text is an important subtask in information ex-
traction. In this paper we present a machine
learning system that finds the scope of nega-
tion in biomedical texts. The system combines
several classifiers and works in two phases.
To investigate the robustness of the approach,
the system is tested on the three subcorpora
of the BioScope corpus representing different
text types. It achieves the best results to date
for this task, with an error reduction of 32.07%
compared to current state of the art results.

1 Introduction

In this paper we present a machine learning system
that finds the scope of negation in biomedical texts.
The system works in two phases: in the first phase,
negation signals are identified (i.e., words indicating
negation), and in the second phase the full scope of
these negation signals is determined. Although the
system was developed and tested on biomedical text,
the same approach can also be used for text from
other domains.

Finding the scope of a negation signal means de-
termining at sentence level the sequence of words in
the sentence that is affected by the negation. This
task is different from determining whether a word is
negated or not. For a sentence like the one in Exam-
ple (1) taken from the BioScope corpus (Szarvas et
al., 2008), the system detects that lack, neither, and
nor are negation signals; that lack has as its scope
lack of CD5 expression, and that the discontinuous

negation signal neither ... nor has as its scope nei-
ther to segregation of human autosome 11, on which
the CD5 gene has been mapped, nor to deletion of
the CD5 structural gene.
(1) <sentence id=“S334.5”>Analysis at the phenotype and

genetic level showed that <xcope id“X334.5.3”><cue
type=“negation” ref=“X334.5.3”>lack</cue> of CD5
expression</xcope> was due <xcope id=“X334.5.1”>
<cue type=“negation” ref=“X334.5.1”>neither</cue>
to segregation of human autosome 11, on which the CD5
gene has been mapped, <cue type=“negation”
ref=“X334.5.1”>nor</cue> to deletion of the CD5
structural gene</xcope>.</sentence>

Predicting the scope of negation is relevant for
text mining and information extraction purposes. As
Vincze et al. (2008) put it, extracted information that
falls in the scope of negation signals cannot be pre-
sented as factual information. It should be discarded
or presented separately. Szarvas et al. (2008) report
that 13.45% of the sentences in the abstracts section
of the BioScope corpus and 12.70% of the sentences
in the full papers section contain negations. A sys-
tem that does not deal with negation would treat the
facts in these cases incorrectly as positives. Addi-
tionally, information about the scope of negation is
useful for entailment recognition purposes.

The approach to the treatment of negation in NLP
presented in this paper was introduced in Morante et
al. (2008). This system achieved a 50.05 percent-
age of correct scopes but had a number of impor-
tant shortcomings. The system presented here uses
a different architecture and different classification
task definitions, it can deal with multiword negation
signals, and it is tested on three subcorpora of the
BioScope corpus. It achieves an error reduction of

21



32.07% compared to the previous system.
The paper is organised as follows. In Section 2,

we summarise related work. In Section 3, we de-
scribe the corpus on which the system has been de-
veloped. In Section 4, we introduce the task to be
performed by the system, which is described in Sec-
tion 5. Results are presented and discussed in Sec-
tion 6. Finally, Section 7 puts forward some conclu-
sions.

2 Related work

Negation has been a neglected area in open-domain
natural language processing. Most research has
been performed in the biomedical domain and has
focused on detecting whether a medical term is
negated or not, whereas in our approach we focus
on detecting the full scope of negation signals.

Chapman et al. (2001) developed NegEx, a reg-
ular expression based algorithm for determining
whether a finding or disease mentioned within nar-
rative medical reports is present or absent. The re-
ported results are 94.51% precision and 77.84% re-
call. Mutalik et al. (2001) developed Negfinder, a
rule-based system that recognises negated patterns
in medical documents. It consists of two tools: a lex-
ical scanner that uses regular expressions to generate
a finite state machine, and a parser. The reported re-
sults are 95.70% recall and 91.80% precision.

Sanchez-Graillet and Poesio (2007) present an
analysis of negated interactions in 50 biomedical
articles and a heuristics-based system that extracts
such information. The preliminary results reported
range from 54.32% F-score to 76.68%, depending
on the method applied. Elkin et al. (2005) describe a
rule-based system that assigns to concepts a level of
certainty as part of the generation of a dyadic parse
tree in two phases: First a preprocessor breaks each
sentence into text and operators. Then, a rule based
system is used to decide if a concept has been pos-
itively, negatively, or uncertainly asserted. The sys-
tem achieves 97.20% recall and 98.80% precision.

The systems mentioned above are essentially
based on lexical information. Huang and
Lowe (2007) propose a classification scheme of
negations based on syntactic categories and patterns
in order to locate negated concepts, regardless of
their distance from the negation signal. Their hy-

brid system that combines regular expression match-
ing with grammatical parsing achieves 92.60% re-
call and 99.80% precision. Additionally, Boytcheva
et al. (2005) incorporate the treatment of negation
in a system, MEHR, that extracts from electronic
health records all the information required to gen-
erate automatically patient chronicles. They report
57% of negations correctly recognised.

The above-mentioned research applies rule-based
algorithms to negation finding. Machine learning
techniques have been used in some cases. Averbuch
et al. (2004) developed an algorithm that uses infor-
mation gain to learn negative context patterns. Gold-
ing and Chapman (2003) experiment with Naive
Bayes and Decision Trees to distinguish whether a
medical observation is negated by the word not in a
corpus of hospital reports. They report a maximum
of 90% F-score.

Goryachev et al. (2006) compare the perfor-
mance of four different methods of negation de-
tection, two regular expression-based methods and
two classification-based methods trained on 1745
discharge reports. They show that the regular
expression-based methods show better agreement
with humans and better accuracy than the classifica-
tion methods. Like in most of the work mentioned,
the task consists in determining whether a medi-
cal term is negated. Rokach et al. (2008) present a
new pattern-based algorithm for identifying context
in free-text medical narratives.The originality of the
algorithm lies in that it automatically learns patterns
similar to the manually written patterns for negation
detection.

We are not aware of any research that has focused
on learning the full scope of negation signals outside
biomedical natural language processing.

3 Negation in the BioScope Corpus

The system has been developed using the BioScope
corpus (Szarvas et al., 2008; Vincze et al., 2008)1,
a freely available resource that consists of medical
and biological texts. In the corpus, every sentence
is annotated with information about negation and
speculation. The annotation indicates the bound-
aries of the scope and the keywords, as shown in (1)
above. In the annotation, scopes are extended to the

1Web page: www.inf.u-szeged.hu/rgai/bioscope.
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biggest syntactic unit possible, so that scopes have
the maximal length, and the negation signal is al-
ways included in the scope. The annotation guide-
lines and the inter-annotator agreement information
can be found on the web page.

Clinical Papers Abstracts
#Documents 1954 9 1273
#Sentences 6383 2670 11871
#Words 41985 60935 282243
#Lemmas 2320 5566 14506
Av. length sentences 7.73 26.24 26.43
% Sent. 1-10 tokens 75.85 11.27 3.17
% Sent. 11-20 tokens 20.99 27.67 30.49
% Sent. 21-30 tokens 2.94 29.55 35.93
% Sent. 31-40 tokens 0.15 17.00 19.76
% Sent. > 40 tokens 0.01 0.03 10.63
%Negation sentences 13.55 12.70 13.45
#Negation signals 877 389 1848
Av. length scopes 4.98 8.81 9.43
Av. length scopes 4.84 7.61 8.06
to the right
Av. length scopes 6.33 5.69 8.55
to the left
% Scopes to the right 97.64 81.77 85.70
% Scopes to the left 2.35 18.22 14.29

Table 1: Statistics about the subcorpora in the BioScope
corpus and the negation scopes (“Av”. stands for aver-
age).

The BioScope corpus consists of three parts: clin-
ical free-texts (radiology reports), biological full pa-
pers and biological paper abstracts from the GENIA
corpus (Collier et al., 1999). Table 1 shows statistics
about the corpora. Negation signals are represented
by one or more tokens.

Only one negation signal (exclude) that occurs in
the papers subcorpus does not occur in the abstracts
subcorpus, and six negation signals (absence of, ex-
clude, favor, favor over, may, rule out that appear in
the clinical subcorpus do not appear in the abstracts
subcorpus. The negation signal no (determiner) ac-
counts for 11.74 % of the negation signals in the ab-
stracts subcorpus, 12.88 % in the papers subcorpus,
and 76.65 % in the clinical subcorpus. The nega-
tion signal not (adverb) accounts for 58.89 % of the
negation signals in the abstracts subcorpus, 53.22 %
in the papers subcorpus, and 6.72 % in the clinical
subcorpus.

The texts have been processed with the GENIA
tagger (Tsuruoka and Tsujii, 2005; Tsuruoka et al.,

2005), a bidirectional inference based tagger that an-
alyzes English sentences and outputs the base forms,
part-of-speech tags, chunk tags, and named entity
tags in a tab-separated format. Additionally, we con-
verted the annotation about scope of negation into a
token-per-token representation, following the stan-
dard format of the 2006 CoNLL Shared Task (Buch-
holz and Marsi, 2006), where sentences are sepa-
rated by a blank line and fields are separated by a
single tab character. A sentence consists of a se-
quence of tokens, each one starting on a new line.

4 Finding the scope of negation

We model the scope finding task as two consecutive
classification tasks: a first one that consists of classi-
fying the tokens of a sentence as being at the begin-
ning of a negation signal, inside or outside. This al-
lows the system to find multiword negation signals.

The second classification task consists of classi-
fying the tokens of a sentence as being the first ele-
ment of the scope, the last, or neither. This happens
as many times as there are negation signals in the
sentence. We have chosen this classification model
after experimenting with two additional models that
produced worse results: in one case we classifed to-
kens as being inside or outside of the scope. In an-
other case we classified chunks, instead of tokens, as
being inside or outside of the scope.

5 System description

The two classification tasks (identifying negation
signals and finding the scope) are implemented us-
ing supervised machine learning methods trained on
part of the annotated corpus.

5.1 Identifying negation signals
In this phase, a classifier predicts whether a token is
the first token of a negation signal, inside a nega-
tion signal, or outside of it. We use IGTREE as
implemented in TiMBL (version 6.1.2) (Daelemans
et al., 2007). TiMBL2 is a software package that
contains implementations of memory-based learn-
ing algorithms like IB1 and IGTREE. We also ex-
perimented with IB1, but it produced lower results.

2TiMBL can be downloaded from the web page
http://ilk.uvt.nl/timbl/.
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The classifier was parameterised by using gain ra-
tio for feature weighting. The instances represent all
tokens in the corpus and they have features of the
token (lemma) and of the token context: word form,
POS, and chunk IOB tag3 of one token to the left
and to the right; word form of the second token to
the left and to the right. According to the gain ratio
scores, the most informative feature is the lemma of
the token, followed by the chunk IOB tag of the to-
ken to the right, and the features relative to the token
to the left.

The test file is preprocessed using a list of nega-
tion signals extracted from the training corpus, that
are unambiguous in the training corpus. The list
comprises the following negation signals: absence,
absent, fail, failure, impossible, lack, loss, miss, neg-
ative, neither, never, no, none, nor, not, unable, with-
out. Instances with this negation signals are directly
assigned their class. The classifier predicts the class
of the rest of tokens.

5.2 Scope finding
In this phase three classifiers predict whether a token
is the first token in the scope sequence, the last, or
neither. A fourth classifier is a metalearner that uses
the predictions of the three classifiers to predict the
scope classes. The three object classifiers that pro-
vide input to the metalearner were trained using the
following machine learning methods:

• Memory-based learning as implemented in TiMBL
(version 6.1.2) (Daelemans et al., 2007), a super-
vised inductive algorithm for learning classification
tasks based on the k-nearest neighbor classification
rule (Cover and Hart, 1967). In this lazy learning
approach, all training data is kept in memory and
classification of a new item is achieved by extrap-
olation from the most similar remembered training
items.

• Support vector machines (SVM) as implemented in
SVMlightV6.01 (Joachims, 1999). SVMs are de-
fined on a vector space and try to find a decision
surface that best separates the data points into two
classes. This is achieved by using quadratic pro-
gramming techniques. Kernel functions can be used
to map the original vectors to a higher-dimensional
space that is linearly separable.

3Tags produced by the GENIA tagger that indicate if a token
is inside a certain chunk, outside, or at the beginning.

• Conditional random fields (CRFs) as implemented
in CRF++-0.51 (Lafferty et al., 2001). CRFs de-
fine a conditional probability distribution over label
sequences given a particular observation sequence
rather than a joint distribution over label and ob-
servation sequences, and are reported to avoid the
label bias problem of HMMs and other learning ap-
proaches.

The memory-based learning algorithm was pa-
rameterised by using overlap as the similarity met-
ric, gain ratio for feature weighting, using 7 k-
nearest neighbors, and weighting the class vote of
neighbors as a function of their inverse linear dis-
tance. The SVM was parameterised in the learning
phase for classification, cost factor of 1 and biased
hyperplane, and it used a linear kernel function. The
CRFs classifier used regularization algorithm L2 for
training, the hyper-parameter and the cut-off thresh-
old of features were set to 1.

An instance represents a pair of a negation signal
and a token from the sentence. This means that all
tokens in a sentence are paired with all negation sig-
nals that occur in the sentence. Negation signals are
those that have been classified as such in the previ-
ous phase. Only sentences that have negation signals
are selected for this phase.

We started with a larger, extensive pool of 131
features which encoded information about the nega-
tion signal, the paired token, their contexts, and the
tokens in between. Feature selection experiments
were carried out with the memory-based learning
classifier. Features were selected based on their
gain ratio, starting with all the features and elimi-
nating the least informative features. We also per-
formed experiments applying the feature selection
process reported in Tjong Kim Sang et al. (2005),
a bi-directional hill climbing process. However, ex-
periments with this method did not produce a better
selection of features.

The features of the first three classifers are:

• Of the negation signal: Chain of words.

• Of the paired token: Lemma, POS, chunk IOB tag,
type of chunk; lemma of the second and third tokens
to the left; lemma, POS, chunk IOB tag, and type of
chunk of the first token to the left and three tokens
to the right; first word, last word, chain of words,
and chain of POSs of the chunk of the paired token
and of two chunks to the left and two chunks to the
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right.

• Of the tokens between the negation signal and the
token in focus: Chain of POS types, distance in
number of tokens, and chain of chunk IOB tags.

• Others: A feature indicating the location of the to-
ken relative to the negation signal (pre, post, same).

The fourth classifier, a metalearner, is also a CRF
as implemented in CRF++. The features of this clas-
sifier are:

• Of the negation signal: Chain of words, chain of
POS, word of the two tokens to the right and two
tokens to the left, token number divided by the total
number of tokens in the sentence.

• Of the paired token: Lemma, POS, word of two to-
kens to the right and two tokens to the left, token
number divided by the total number of tokens in the
sentence.

• Of the tokens between the negation signal and the
token in focus: Binary features indicating if there
are commas, colons, semicolons, verbal phrases or
one of the following words between the negation
signal and the token in focus:
Whereas, but, although, nevertheless, notwith-
standing, however, consequently, hence, therefore,
thus, instead, otherwise, alternatively, furthermore,
moreover.

• About the predictions of the three classifiers: pre-
diction, previous and next predictions of each of
the classifiers, full sequence of previous and full se-
quence of next predictions of each of the classifiers.

• Others: A feature indicating the location of the to-
ken relative to the negation signal (pre, post, same).

Negation signals in the BioScope corpus always
have one consecutive block of scope tokens, includ-
ing the signal token itself. However, the classifiers
only predict the first and last element of the scope.
We need to process the output of the classifers in
order to build the complete sequence of tokens that
constitute the scope. We apply the following post-
processing:

(2) - If one token has been predicted as FIRST and one
as LAST, the sequence is formed by the tokens
between first and last.

- If one token has been predicted as FIRST and
none has been predicted as LAST, the sequence is
formed by the token predicted as FIRST.

- If one token has been predicted as LAST and
none as FIRST, the sequence will start at the
negation signal and it will finish at the token
predicted as LAST.

- If one token has been predicted as FIRST and
more than one as LAST, the sequence will end with
the first token predicted as LAST after the token
predicted as FIRST, if there is one.

- If one token has been predicted as LAST and
more than one as FIRST, the sequence will start at
the negation signal.

- If no token has been predicted as FIRST and
more than one as LAST, the sequence will start at
the negation signal and will end at the first token
predicted as LAST after the negation signal.

6 Results

The results provided for the abstracts part of the cor-
pus have been obtained by performing 10-fold cross
validation experiments, whereas the results provided
for papers and clinical reports have been obtained by
training on the full abstracts subcorpus and testing
on the papers and clinical reports subcorpus. The
latter experiment is therefore a test of the robustness
of the system when applied to different text types
within the same domain.

The evaluation is made using the precision and
recall measures (Van Rijsbergen, 1979), and their
harmonic mean, F-score. In the negation finding
task, a negation token is correctly classified if it has
been classified as being at the beginning or inside the
negation signal. We also evaluate the percentage of
negation signals that have been correctly identified.
In the scope finding task, a token is correctly classi-
fied if it has been correctly classified as being inside
or outside of the scope of all the negation signals that
there are in the sentence. This means that when there
is more than one negation signal in the sentence, the
token has to be correctly assigned a class for as many
negation signals as there are. Additionally, we eval-
uate the percentage of correct scopes (PCS). A scope
is correct if all the tokens in the sentence have been
assigned the correct scope class for a specific nega-
tion signal. The evaluation in terms of precision and
recall measures takes as unit a token, whereas the
evaluation in terms of PCS takes as unit a scope.
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6.1 Negation signal finding
An informed baseline system has been created by
tagging as negation signals the tokens with the
words: absence, absent, fail, failure, impossible, in-
stead of, lack, loss, miss, negative, neither, never, no,
none, nor, not, rather than, unable, with the excep-
tion of, without. The list has been extracted from the
training corpus. Baseline results and inter-annotator
agreement scores are shown in Table 2.

Corpus Prec. Recall F1 Correct IAA
Abstracts 100.00 95.17 97.52 95.09 91.46
Papers 100.00 92.46 96.08 92.15 79.42
Clinical 100.00 97.53 98.75 97.72 90.70

Table 2: Baseline results of the negation finding system
and inter-annotator agreement (IAA) in %.

Table 3 shows the results of the system, which are
significantly higher than the results of the baseline
system. With a more comprehensive list of negation
signals it would be possible to identify all of them in
a text.

Corpus Prec. Recall F1 Correct
Abstracts 100.00 98.75 99.37 98.68
Papers 100.00 95.72 97.81 95.80
Clinical 100.00 98.09 99.03 98.29

Table 3: Results of the negation finding system in %.

The lower result of the papers subcorpus is caused
by the high frequency of the negation signal not in
this corpus (53.22 %), that is correct in 93.68 % of
the cases. The same negation signal is also frequent
in the abstracts subcorpus (58.89 %), but in this case
it is correct in 98.25 % of the cases. In the clinical
subcorpus not has low frequency (6.72 %), which
means that the performance of the classifer for this
negation signal (91.22 % correct) does not affect so
much the global results of the classifier. Most errors
in the classification of not are caused by the system
predicting it as a negation signal in cases not marked
as such in the corpus. The following sentences are
some examples:

(3) However, programs for tRNA identification [...] do not
necessarily perform well on unknown ones.
The evaluation of this ratio is difficult because not all
true interactions are known.
However, the Disorder module does not contribute
significantly to the prediction.

6.2 Scope finding
An informed baseline system has been created by
calculating the average length of the scope to the
right of the negation signal in each corpus and tag-
ging that number of tokens as scope tokens. We take
the scope to the right for the baseline because it is
much more frequent than the scope to the left, as is
shown by the statistics contained in Table 1 of Sec-
tion 3.

Corpus Prec. Recall F1 PCS PCS-2 IAA
Abstracts 76.68 78.26 77.46 7.11 37.45 92.46
Papers 69.34 66.92 68.11 4.76 24.86 70.86
Clinical 86.85 74.96 80.47 12.95 62.27 76.29

Table 4: Baseline results of the scope finding system and
inter-annotator agreement (IAA) in %.

Baseline results and inter-annotator agreement
scores are presented in Table 4. The percentage
of correct scopes has been measured in two ways:
PCS measures the proportion of correctly classified
tokens in the scope sequence, whereas PCS-2 mea-
sures the proportion of nouns and verbs that are cor-
rectly classifed in the scope sequence. This less
strict way of computing correctness is motivated by
the fact that being able to determine the concepts
and relations that are negated (indicated by content
words) is the most important use of the negation
scope finder. The low PCS for the three subcorpora
indicates that finding the scope of negations is not a
trivial task. The higher PCS for the clinical subcor-
pus follows a trend that applies also to the results of
the system. The fact that, despite a very low PCS,
precision, recall and F1 are relatively high indicates
that these measures are in themselves not reliable to
evaluate the performance of the system.

The upper-bound results of the metalearner sys-
tem assuming gold standard identification of nega-
tion signals are shown in Table 5.

Corpus Prec. Recall F1 PCS PCS-2
Abstracts 90.68 90.68 90.67 73,36 74.10
Papers 84.47 84.95 84.71 50.26 54.23
Clinical 91.65 92.50 92.07 87.27 87.95

Table 5: Results of the scope finding system with gold-
standard negation signals.

The results of the metalearner system are pre-
sented in Table 6. Results with gold-standard nega-
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tion signals are especially better for the clinical sub-
corpus because except for lack, negative and not,
all negation signals score a PCS higher than 90 %.
Thus, in the clinical subcorpus, if the negation sig-
nals are identified, their scope will be correctly
found. This does not apply to the abstracts and pa-
pers subcorpus.

Corpus Prec. Recall F1 PCS PCS-2
Abstracts 81.76 83.45 82.60 66.07 66.93
Papers 72.21 69.72 70.94 41.00 44.44
Clinical 86.38 82.14 84.20 70.75 71.21

Table 6: Results of the scope finding system with pre-
dicted negation signals.

In terms of PCS, results are considerably higher
than baseline results, whereas in terms of precision,
recall and F1, results are slightly higher. Com-
pared to state of the art results (50.05 % PCS in
(anonymous reference) for the abstracts subcorpus),
the system achieves an error reduction of 32.07 %,
which shows that the system architecture presented
in this paper leads to more accurate results.

Evaluating the system in terms of a more relaxed
measure (PCS-2) does not reflect a significant in-
crease in its performance. This suggests that when
a scope is incorrectly predicted, main content to-
kens are also incorrectly left out of the scope or
added. An alternative to the PCS-2 measure would
be to mark in the corpus the relevant negated content
words and evaluate if they are under the scope.

Results also show that the system is portable to
different types of documents, although performance
varies depending on the characteristics of the corpus.
Clinical reports are easier to process than papers and
abstracts, which can be explained by several factors.
One factor is the length of sentences: 75.85 % of
the sentences in the clinical reports have 10 or less
words, whereas this rate is 3.17 % for abstracts and
11.27 % for papers. The average length of a sen-
tence for clinical reports is 7.73 tokens, whereas for
abstracts it is 26.43 and for papers 26.24. Shorter
sentences imply shorter scopes. In the scope finding
phase, when we process the output of the classifiers
to build the complete sequence of tokens that con-
stitute the scope, we give preference to short scopes
by choosing as LAST the token classified as LAST
that is the closest to the negation signal. A way to

make the system better portable to texts with longer
sentences would be to optimise the choice of the last
token in the scope.

Abstracts Papers Clinical
# PCS # PCS # PCS

absence 57 56.14 - - - -
absent 13 15.38 - - - -
can not 28 42.85 16 50.00 - -
could not 14 57.14 - - - -
fail 57 63.15 13 38.46 - -
lack 85 57.64 20 45.00 - -
negative - - - - 17 0.00
neither 33 51.51 - - - -
no 207 73.42 44 50.00 673 73.10
nor 43 44.18 - - - -
none 7 57.14 10 0.00 - -
not 1036 69.40 200 39.50 57 50.87
rather than 20 65.00 12 41.66 - -
unable 30 40.00 - - - -
without 82 89.02 24 58.33 - -

Table 7: PCS per negation signal for negation signals that
occur more than 10 times in one of the subcorpus.

Another factor that causes a higher performance
on the clinical subcorpus is the frequency of the
negation signal no (76.65 %), which has also a high
PCS in abstracts, as shown in Table 7. Typical ex-
ample sentences with this negation signal are shown
in (4). Its main characteristics are that the scope is
very short (5 tokens average in clinical reports) and
that it scopes to the right over a noun phrase.

(4) No findings to account for symptoms.
No signs of tuberculosis.

The lower performance of the system on the pa-
pers subcorpus compared to the abstracts subcorpus
is due to the high proportion of the negation signal
not (53.22 %), which scores a low PCS (39.50), as
shown in Table 7. Table 7 also shows that, except
for can not, all negation signals score a lower PCS
on the papers subcorpus. This difference can not
be caused by the sentence length, since the average
sentence length in the abstracts subcorpus (26.43 to-
kens) is similar to the average sentence length in the
papers subcorpus (26.24). The difference may be
related to the difference in the length of the scopes
and their direction. For example, the average length
of the scope of not is 8.85 in the abstracts subcorpus
and 6.45 in the papers subcorpus. The scopes to the
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left for not amount to 23.28 % in the papers subcor-
pus and to 16.41 % in the abstracts subcorpus, and
the average scope to the left is 5.6 tokens in the pa-
pers subcorpus and 8.82 in the abstracts subcorpus.

As for the results per negation signal on the ab-
stracts corpus, the negation signals that score higher
PCS have a low (none) or null (absence, fail, lack,
neither, no, rather than, without) percentage of
scopes to the left. An exception is not with a high
score and 16.41% of scopes to the left. The negation
signals with lower PCS have a higher percentage of
scopes to the left (absent, can not, nor, unable). A
typical error for the negation signal unable is exem-
plified by the sentence VDR DNA-binding mutants
were unable to either bind to this element in vitro
or repress in vivo, in which the gold scope starts at
the beginning of the sentence, where the predicted
scopes starts at the negation signal.

6.2.1 Results of the metalearner versus results
of the first three classifiers

The choice of a metalearner approach has been
motivated by the significantly higher results that the
metalearner produces compared to the results of the
first three classifiers. The results of each of the clas-
sifiers independently are presented in Table 8.

Algor. Ev. Abstracts Papers Clinical
TiMBL Prec. 78.85 68.66 82.25

Rec. 80.54 66.29 78.56
F1 79.69 67.46 80.36
PCS 56.80 33.59 70.87
PCS-2 57.99 37.30 71.21

CRF Prec. 78.49 68.94 93.42
Rec. 80.16 66.57 80.24
F1 79.31 67.73 86.33
PCS 59.90 36.50 59.51
PCS-2 60.04 38.88 59.74

SVM Prec. 77.74 68.01 93.80
Rec. 79.35 65.66 85.16
F1 78.54 66.82 89.27
PCS 56.80 33.33 82.45
PCS-2 57.59 35.18 82.68

Table 8: Results for the first three classifiers of the scope
finding system.

PCS results show that the metalearner system per-
forms significantly better than the three classifiers
for the abstracts and papers subcorpora, but not for
the clinical subcorpus, in which case TiMBL and
SVM produce higher scores, although only the SVM

results are significantly better with a difference of
11.7 PCS. An analysis in detail of the SVM scores
per negation signal shows that the main difference
between the scores of the metalearner and SVM is
that the SVM is good at predicting the scopes of the
negation signal no when it occurs as the first token
in the sentence, like in (4) above. When no occurs
in other positions, SVM scores 1.17 PCS better.

We plan to perform experiments with the three
classifiers using the features of the metalearner that
are not related to the predictions, in order to check if
the three classifiers would perform better.

7 Conclusions

In this paper we have presented a metalearning ap-
proach to processing the scope of negation signals.
Its performance is evaluated in terms of percent-
age of correct scopes on three test sets. With 66.07
% PCS on the abstracts corpus the system achieves
32.07 % of error reduction over current state of the
art results. The architecture of the system is new for
this problem, with three classifiers and a metalearner
that takes as input the output of the first classifiers.
The classification task definition is also original.

We have shown that the system is portable to dif-
ferent corpora, although performance fluctuates de-
pending on the characteristics of the corpora. The
results per corpus are determined to a certain extent
by the scores of the negation signals no and not, that
are very frequent and difficult to process in some text
types. Shorter scopes are easier to learn as reflected
in the results of the clinical corpus, where no is the
most frequent negation signal. We have also shown
that the metalearner performs better than the three
first classifiers, except for the negation signal no in
clinical reports, for which the SVM classifier pro-
duces the highest scores.

Future research will deal with a more detailed
analysis of the errors by each of the three initial clas-
sifiers compared to the errors of the metalearner in
order to better understand why the results of the met-
alearner are higher. We also would like to perform
feature analysis, and test the system on general do-
main corpora.
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Abstract

The combination of Support Vector Machines
with very high dimensional kernels, such as
string or tree kernels, suffers from two ma-
jor drawbacks: first, the implicit representa-
tion of feature spaces does not allow us to un-
derstand which features actually triggered the
generalization; second, the resulting compu-
tational burden may in some cases render un-
feasible to use large data sets for training. We
propose an approach based on feature space
reverse engineering to tackle both problems.
Our experiments with Tree Kernels on a Se-
mantic Role Labeling data set show that the
proposed approach can drastically reduce the
computational footprint while yielding almost
unaffected accuracy.

1 Introduction

The use of Support Vector Machines (SVMs)
in supervised learning frameworks is spreading
across different communities, including Computa-
tional Linguistics and Natural Language Processing,
thanks to their solid mathematical foundations, ef-
ficiency and accuracy. Another important reason
for their success is the possibility of using kernel
functions to implicitly represent examples in some
high dimensional kernel space, where their similar-
ity is evaluated. Kernel functions can generate a very
large number of features, which are then weighted
by the SVM optimization algorithm obtaining a fea-
ture selection side-effect. Indeed, the weights en-
coded by the gradient of the separating hyperplane
learnt by the SVM implicitly establish a ranking be-
tween features in the kernel space. This property has
been exploited in feature selection models based on

approximations or transformations of the gradient,
e.g. (Rakotomamonjy, 2003), (Weston et al., 2003)
or (Kudo and Matsumoto, 2003).

However, kernel based systems have two major
drawbacks: first, new features may be discovered
in the implicit space but they cannot be directly ob-
served. Second, since learning is carried out in the
dual space, it is not possible to use the faster SVM or
perceptron algorithms optimized for linear spaces.
Consequently, the processing of large data sets can
be computationally very expensive, limiting the use
of large amounts of data for our research or applica-
tions.

We propose an approach that tries to fill in the
gap between explicit and implicit feature represen-
tations by 1) selecting the most relevant features in
accordance with the weights estimated by the SVM
and 2) using these features to build an explicit rep-
resentation of the kernel space. The most innovative
aspect of our work is the attempt to model and im-
plement a solution in the context of structural ker-
nels. In particular we focus on Tree Kernel (TK)
functions, which are especially interesting for the
Computational Linguistics community as they can
effectively encode rich syntactic data into a kernel-
based learning algorithm. The high dimensionality
of a TK feature space poses interesting challenges in
terms of computational complexity that we need to
address in order to come up with a viable solution.
We will present a number of experiments carried
out in the context of Semantic Role Labeling, show-
ing that our approach can noticeably reduce training
time while yielding almost unaffected classification
accuracy, thus allowing us to handle larger data sets
at a reasonable computational cost.

The rest of the paper is structured as follows: Sec-
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Figure 1: Esemplification of a fragment space and the
kernel product between two trees.

tion 2 will briefly review SVMs and Tree Kernel
functions; Section 3 will detail our proposal for the
linearization of a TK feature space; Section 4 will
review previous work on related subjects; Section 5
will describe our experiments and comment on their
results; finally, in Section 6 we will draw our con-
clusions.

2 Tree Kernel Functions

The decision function of an SVM is:

f(~x) = ~w · ~x+ b =
n∑

i=1

αiyi ~xi · ~x+ b (1)

where ~x is a classifying example and ~w and b are
the separating hyperplane’s gradient and its bias,
respectively. The gradient is a linear combination
of the training points ~xi, their labels yi and their
weights αi. These and the bias are optimized at
training time by the learning algorithm. Applying
the so-called kernel trick it is possible to replace the
scalar product with a kernel function defined over
pairs of objects:

f(o) =
n∑

i=1

αiyik(oi, o) + b

with the advantage that we do not need to provide
an explicit mapping φ(·) of our examples in a vector
space.

A Tree Kernel function is a convolution ker-
nel (Haussler, 1999) defined over pairs of trees.
Practically speaking, the kernel between two trees
evaluates the number of substructures (or fragments)
they have in common, i.e. it is a measure of their

overlap. The function can be computed recursively
in closed form, and quite efficient implementations
are available (Moschitti, 2006). Different TK func-
tions are characterized by alternative fragment defi-
nitions, e.g. (Collins and Duffy, 2002) and (Kashima
and Koyanagi, 2002). In the context of this paper
we will be focusing on the SubSet Tree (SST) ker-
nel described in (Collins and Duffy, 2002), which
relies on a fragment definition that does not allow to
break production rules (i.e. if any child of a node is
included in a fragment, then also all the other chil-
dren have to). As such, it is especially indicated for
tasks involving constituency parsed texts.

Implicitly, a TK function establishes a correspon-
dence between distinct fragments and dimensions in
some fragment space, i.e. the space of all the pos-
sible fragments. To simplify, a tree t can be repre-
sented as a vector whose attributes count the occur-
rences of each fragment within the tree. The ker-
nel between two trees is then equivalent to the scalar
product between pairs of such vectors, as exempli-
fied in Figure 1.

3 Mining the Fragment Space

If we were able to efficiently mine and store in a
dictionary all the fragments encoded in a model,
we would be able to represent our objects explicitly
and use these representations to train larger models
and very quick and accurate classifiers. What we
need to devise are strategies to make this approach
convenient in terms of computational requirements,
while yielding an accuracy comparable with direct
tree kernel usage.

Our framework defines five distinct activities,
which are detailed in the following paragraphs.

Fragment Space Learning (FSL) First of all, we
can partition our training data into S smaller sets,
and use the SVM and the SST kernel to learn S mod-
els. We will use the estimated weights to drive our
feature selection process. Since the time complexity
of SVM training is approximately quadratic in the
number of examples, this way we can considerably
accelerate the process of estimating support vector
weights.

According to statistical learning theory, being
trained on smaller subsets of the available data
these models will be less robust with respect to the
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minimization of the empirical risk (Vapnik, 1998).
Nonetheless, since we do not need to employ them
for classification (but just to direct our feature se-
lection process, as we will describe shortly), we can
accept to rely on sub-optimal weights. Furthermore,
research results in the field of SVM parallelization
using cascades of SVMs (Graf et al., 2004) suggest
that support vectors collected from locally learnt
models can encode many of the relevant features re-
tained by models learnt globally. Henceforth, letMs

be the model associated with the s-th split, and Fs

the fragment space that can describe all the trees in
Ms.

Fragment Mining and Indexing (FMI) In Equa-
tion 1 it is possible to isolate the gradient ~w =∑n

i=1 αiyi ~xi, with ~xi = [x(1)
i , . . . , x

(N)
i ], N being

the dimensionality of the feature space. For a tree
kernel function, we can rewrite x(j)

i as:

x
(j)
i =

ti,jλ
`(fj)

‖ti‖
=

ti,jλ
`(fj)

√∑N
k=1(ti,kλ`(fk))2

(2)

where: ti,j is the number of occurrences of the frag-
ment fj , associated with the j-th dimension of the
feature space, in the tree ti; λ is the kernel decay
factor; and `(fj) is the depth of the fragment.

The relevance |w(j)| of the fragment fj can be
measured as:

|w(j)| =
∣∣∣∣∣

n∑

i=1

αiyix
(j)
i

∣∣∣∣∣ . (3)

We fix a threshold L and from each model Ms

(learnt during FSL) we select the L most relevant
fragments, i.e. we build the set Fs,L = ∪k{fk} so
that:

|Fs,L| = L and |w(k)| ≥ |w(i)|∀fi ∈ F \ Fs,L .

In order to do so, we need to harvest all the frag-
ments with a fast extraction function, store them in
a compact data structure and finally select the frag-
ments with the highest relevance. Our strategy is ex-
emplified in Figure 2. First, we represent each frag-
ment as a sequence as described in (Zaki, 2002). A
sequence contains the labels of the fragment nodes
in depth-first order. By default, each node is the
child of the previous node in the sequence. A spe-
cial symbol (↑) indicates that the next node in the
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Figure 2: Fragment indexing. Each fragment is repre-
sented as a sequence 1 and then encoded as a path in the
index 2 which keeps track of its cumulative relevance.

sequence should be attached after climbing one level
in the tree. For example, the tree (B (Z W)) in figure
is represented as the sequence [B, Z, ↑, W]. Then, we
add the elements of the sequence to a graph (which
we call an index of fragments) where each sequence
becomes a path. The nodes of the index are the la-
bels of the fragment nodes, and each arc is associ-
ated with a pair of values 〈d, n〉: d is a node identi-
fier, which is unique with respect to the source node;
n is the identifier of the arc that must be selected at
the destination node in order to follow the path as-
sociated with the sequence. Index nodes associated
with a fragment root also have a field where the cu-
mulative relevance of the fragment is stored.

As an example, the index node labeled B in fig-
ure has an associated weight of w3, thus identify-
ing the root of a fragment. Each outgoing edge
univocally identifies an indexed fragment. In this
case, the only outgoing edge is labeled with the pair
〈d = 1, n = 1〉, meaning that we should follow it
to the next node, i.e. Z, and there select the edge la-
beled 1, as indicated by n. The edge with d = 1 in Z
is 〈d = 1, n = 1〉, so we browse to ↑ where we se-
lect the edge 〈d = 1, n = −〉. The missing value for
n tells us that the next node, W, is the last element
of the sequence. The complete sequence is then [B,
Z, ↑, W], which encodes the fragment (B (Z W)).

The index implementation has been optimized for
fast insertions and has the following features: 1)
each node label is represented exactly once; 2) each
distinct sequence tail is represented exactly once.
The union of all the fragments harvested from each
model is then saved into a dictionary DL which will
be used by the next stage.

To mine the fragments, we apply to each tree in
each model the algorithm shown in Algorithm 3.1.
In this context, we call fragment expansion the pro-
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Algorithm 3.1: MINE TREE(tree)

global maxdepth, maxexp
main
mined← ∅; indexed← ∅; MINE(FRAG(tree), 0)

procedure MINE(frag, depth)
if frag ∈ indexed

then return
indexed← indexed ∪ {frag}
INDEX(frag)
for each node ∈ TO EXPAND(frag)

do





if node 6∈ mined

then
{

mined← mined ∪ {node}
MINE(FRAG(node), 0)

if depth < maxdepth

then
{

for each fragment ∈ EXPAND(frag, maxexp)
do MINE(fragment, depth + 1)

cess by which tree nodes are included in a frag-
ment. Fragment expansion is achieved via node ex-
pansions, where expanding a node means includ-
ing its direct children in the fragment. The func-
tion FRAG(n) builds the basic fragment rooted in a
given node n, i.e. the fragment consisting only of n
and its direct children. The function TO EXPAND(f)
returns the set of nodes in a fragment f that can
be expanded (i.e. internal nodes in the origin tree),
while the function EXPAND(f,maxexp) returns all
the possible expansions of a fragment f . The pa-
rameter maxexp is a limit to the number of nodes
that can be expanded at the same time when a new
fragment is generated, while maxdepth sets a limit
on the number of times that a base fragment can be
expanded. The function INDEX(f) adds the frag-
ment f to the index. To keep the notation simple,
here we assume that a fragment f contains all the
necessary information to calculate its relevance (i.e.
the weight, label and norm of the support vector αi,
yi, and ‖ti‖, the depth of the fragment `(f) and the
decay factor λ, see equations 2 and 3).

Performing in a different order the same node ex-
pansions on the same fragment f results in the same
fragment f ′. To prevent the algorithm from entering
circular loops, we use the set indexed so that the
very same fragment in each tree cannot be explored
more than once. Similarly, the mined set is used
so that the base fragment rooted in a given node is
considered only once.

Tree Fragment Extraction (TFX) During this
phase, a data file encoding label-tree pairs 〈yi, ti〉 is
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Figure 3: Examples of ASTm structured features.

transformed to encode label-vector pairs 〈yi, ~vi〉. To
do so, we generate the fragment space of ti, using
a variant of the mining algorithm described in Fig-
ure 3.1, and encode in ~vi all and only the fragments
ti,j so that ti,j ∈ DL, i.e. we perform feature extrac-
tion based on the indexed fragments. The process is
applied to the whole training and test sets. The al-
gorithm exploits labels and production rules found
in the fragments listed in the dictionary to generate
only the fragments that may be in the dictionary. For
example, if the dictionary does not contain a frag-
ment whose root is labeled N , then if a node N is
encountered during TFX neither its base fragment
nor its expansions are generated.

Explicit Space Learning (ESL) After linearizing
the training data, we can learn a very fast model by
using all the available data and a linear kernel. The
fragment space is now explicit, as there is a mapping
between the input vectors and the fragments they en-
code.

Explicit Space Classification (ESC) After learn-
ing the linear model, we can classify our linearized
test data and evaluate the accuracy of the resulting
classifier.

4 Previous work

A rather comprehensive overview of feature selec-
tion techniques is carried out in (Guyon and Elis-
seeff, 2003). Non-filter approaches for SVMs and
kernel machines are often concerned with polyno-
mial and Gaussian kernels, e.g. (Weston et al., 2001)
and (Neumann et al., 2005). Weston et al. (2003) use
the `0 norm in the SVM optimizer to stress the fea-
ture selection capabilities of the learning algorithm.
In (Kudo and Matsumoto, 2003), an extension of the
PrefixSpan algorithm (Pei et al., 2001) is used to ef-
ficiently mine the features in a low degree polyno-
mial kernel space. The authors discuss an approx-
imation of their method that allows them to handle
high degree polynomial kernels.
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Data set Non-linearized classifiers Linearized classifiers (Thr=10k)
Task Pos Neg Train Test P R F1 Train Test P R F1

A0 60,900 118,191 521 7 90.26 92.95 91.59 209 3 88.95 91.91 90.40
A1 90,636 88,455 1,206 11 89.45 88.62 89.03 376 3 89.39 88.13 88.76
A2 21,291 157,800 692 7 84.56 64.42 73.13 248 3 81.23 68.29 74.20
A3 3,481 175,610 127 2 97.67 40.00 56.76 114 3 97.56 38.10 54.79
A4 2,713 176,378 47 1 92.68 55.07 69.10 92 2 95.00 55.07 69.72
A5 69 179,022 3 0 100.00 50.00 66.67 63 2 100.00 50.00 66.67
BC 61,062 938,938 3,059 247 82.57 80.96 81.76 916 39 83.36 78.95 81.10
RM - - 2,596 27 89.37 86.00 87.65 1,090 16 88.50 85.81 87.13

Table 1: Accuracy (P, R, F1), training (Train) and test (Test) time of non-linearized (center) and linearized (right)
classifiers. Times are in minutes. For each task, columns Pos and Neg list the number of positive and negative training
examples, respectively. The accuracy of the role multiclassifiers is the micro-average of the individual classifiers
trained to recognize core PropBank roles.

Suzuki and Isozaki (2005) present an embedded
approach to feature selection for convolution ker-
nels based on χ2-driven relevance assessment. To
our knowledge, this is the only published work
clearly focusing on feature selection for tree ker-
nel functions. In (Graf et al., 2004), an approach
to SVM parallelization is presented which is based
on a divide-et-impera strategy to reduce optimiza-
tion time. The idea of using a compact graph rep-
resentation to represent the support vectors of a TK
function is explored in (Aiolli et al., 2006), where a
Direct Acyclic Graph (DAG) is employed.

Concerning the use of kernels for NLP, inter-
esting models and results are described, for exam-
ple, in (Collins and Duffy, 2002), (Moschitti et al.,
2008), (Kudo and Matsumoto, 2003), (Cumby and
Roth, 2003), (Shen et al., 2003), (Cancedda et al.,
2003), (Culotta and Sorensen, 2004), (Daumé III
and Marcu, 2004), (Kazama and Torisawa, 2005),
(Kudo et al., 2005), (Titov and Henderson, 2006),
(Moschitti et al., 2006), (Moschitti and Bejan, 2004)
or (Toutanova et al., 2004).

5 Experiments

We tested our model on a Semantic Role La-
beling (SRL) benchmark, using PropBank annota-
tions (Palmer et al., 2005) and automatic Charniak
parse trees (Charniak, 2000) as provided for the
CoNLL 2005 evaluation campaign (Carreras and
Màrquez, 2005). SRL can be decomposed into
two tasks: boundary detection, where the word se-
quences that are arguments of a predicate word w
are identified, and role classification, where each ar-
gument is assigned the proper role. The former task
requires a binary Boundary Classifier (BC), whereas

the second involves a Role Multi-class Classifier
(RM).

Setup. If the constituency parse tree t of a sen-
tence s is available, we can look at all the pairs
〈p, ni〉, where ni is any node in the tree and p is
the node dominating w, and decide whether ni is an
argument node or not, i.e. whether it exactly dom-
inates all and only the words encoding any of w’s
arguments. The objects that we classify are sub-
sets of the input parse tree that encompass both p
and ni. Namely, we use the ASTm structure defined
in (Moschitti et al., 2008), which is the minimal tree
that covers all and only the words of p and ni. In
the ASTm, p and ni are marked so that they can be
distinguished from the other nodes. An ASTm is
regarded as a positive example for BC if ni is an ar-
gument node, otherwise it is considered a negative
example. Positive BC examples can be used to train
an efficient RM: for each role r we can train a clas-
sifier whose positive examples are argument nodes
whose label is exactly r, whereas negative examples
are argument nodes labeled r′ 6= r. Two ASTms
extracted from an example parse tree are shown in
Figure 3: the first structure is a negative example for
BC and is not part of the data set of RM, whereas
the second is a positive instance for BC and A1.

To train BC we used PropBank sections 1 through
6, extracting ASTm structures out of the first 1 mil-
lion 〈p, ni〉 pairs from the corresponding parse trees.
As a test set we used the 149,140 instance collected
from the annotations in Section 24. There are 61,062
positive examples in the training set (i.e. 6.1%) and
8,515 in the test set (i.e. 5.7%).

For RM we considered all the argument nodes of
any of the six PropBank core roles (i.e. A0, . . . ,
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Figure 4: Training time decomposition for the linearized
BC with respect to its main components when varying the
threshold value.

A5) from all the available training sections, i.e. 2
through 21, for a total of 179,091 training instances.
Similarly, we collected 5,928 test instances from the
annotations of Section 24.

In the remainder, we will mark with an ` the lin-
earized classifiers, i.e. BC` and RM` will refer to
the linearized boundary and role classifiers, respec-
tively. Their traditional, vanilla SST counterparts
will be simply referred to as BC and RM.

We used 10 splits for the FMI stage and we set
maxdepth = 4 and maxexp = 5 during FMI and
TFX. We didn’t carry out an extensive validation of
these parameters. These values were selected dur-
ing the development of the software because, on a
very small development set, they resulted in a very
responsive system.

Since the main topic of this paper is the assess-
ment of the efficiency and accuracy of our lineariza-
tion technique, we did not carry out an evaluation
on the whole SRL task using the official CoNLL’05
evaluator. Indeed, producing complete annotations
requires several steps (e.g. overlap resolution, OvA
or Pairwise combination of individual role classi-
fiers) that would shade off the actual impact of the
methodology on classification.

Platform. All the experiments were run on a ma-
chine equipped with 4 Intel R© Xeon R© CPUs clocked
at 1.6 GHz and 4 GB of RAM running on a Linux
2.6.9 kernel. As a supervised learning framework
we used SVM-Light-TK 1, which extends the SVM-
Light optimizer (Joachims, 2000) with tree kernel

1
http://disi.unitn.it/˜moschitt/Tree-Kernel.htm
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Figure 5: BC` accuracy for different thresholds.

support. During FSL, we learn the models using a
normalized SST kernel and the default decay factor
λ = 0.4. The same parameters are used to train
the models of the non linearized classifiers. During
ESL, the classifier is trained using a linear kernel.
We did not carry out further parametrization of the
learning algorithm.

Results. The left side of Table 1 shows the distri-
bution of positive (Column Pos) and negative (Neg)
data points in each classifier’s training set. The cen-
tral group of columns lists training and test effi-
ciency and accuracy of BC and RM, i.e. the non-
linearized classifiers, along with figures for the indi-
vidual role classifiers that make up RM.

Training BC took more than two days of CPU
time and testing about 4 hours. The classifier
achieves an F1 measure of 81.76, with a good bal-
ance between precision and recall. Concerning RM,
sequential training of the 6 models took 2,596 min-
utes, while classification took 27 minutes. The slow-
est of the individual role classifiers happens to be
A1, which has an almost 1:1 ratio between posi-
tive and negative examples, i.e. they are 90,636 and
88,455 respectively.

We varied the threshold value (i.e. the number of
fragments that we mine from each model, see Sec-
tion 3) to measure its effect on the resulting classi-
fier accuracy and efficiency. In this context, we call
training time all the time necessary to obtain a lin-
earized model, i.e. the sum of FSL, FMI and TFX
time for every split, plus the time for ESL. Similarly,
we call test time the time necessary to classify a lin-
earized test set, i.e. the sum of TFX and ESC on test
data.

In Figure 4 we plot the efficiency of BC` learn-

35



ing with respect to different threshold values. The
Overall training time is shown alongside with par-
tial times coming from FSL (which is the same for
every threshold value and amounts to 433 minutes),
FMI, training data TFX and ESL. The plot shows
that TFX has a logarithmic behaviour, and that quite
soon becomes the main player in total training time
after FSL. For threshold values lower than 10k, ESL
time decreases as the threshold increases: too few
fragments are available and adding new ones in-
creases the probability of including relevant frag-
ments in the dictionary. After 10k, all the relevant
fragments are already there and adding more only
makes computation harder. We can see that for a
threshold value of 100k total training time amounts
to 1,104 minutes, i.e. 36% of BC. For a threshold
value of 10k, learning time further decreases to 916
minutes, i.e. less than 30%. This threshold value
was used to train the individual linearized role clas-
sifiers that make up RM`.

These considerations are backed by the trend of
classification accuracy shown in Figure 5, where the
Precision, Recall and F1 measure of BC`, evaluated
on the test set, are shown in comparison with BC.
We can see that BC` precision is almost constant,
while its recall increases as we increase the thresh-
old, reaches a maximum of 78.95% for a threshold
of 10k and then settles around 78.8%. The F1 score
is maximized for a threshold of 10k, where it mea-
sures 81.10, i.e. just 0.66 points less than BC. We
can also see that BC` is constantly more conserva-
tive than BC, i.e. it always has higher precision and
lower recall.

Table 1 compares side to side the accuracy
(columns P, R and F1), training (Train) and test
(Test) times of the different classifiers (central block
of columns) and their linearized counterparts (block
on the right). Times are measured in minutes. For
the linearized classifiers, test time is the sum of
TFX and ESC time, but the only relevant contribu-
tion comes from TFX, as the low dimensional linear
space and fast linear kernel allow us to classify test
instances very efficiently 2. Overall, BC` test time is
39 minutes, which is more than 6 times faster than
BC (i.e. 247 minutes). It should be stressed that we

2Although ESC is not shown in table, the classification of all
149k test instances with BC` took 5 seconds with a threshold of
1k and 17 seconds with a threshold of 100k.

Learning parallelization

Task Non Lin.
Linearized (Thr=10k)

1 cpu 5 cpus 10 cpus
BC 3,059 916 293 215
RM 2,596 1,090 297 198

Table 2: Learning time when exploiting the framework’s
parallelization capabilities. Column Non Lin. lists non-
linearized training time.

are comparing against a fast TK implementation that
is almost linear in time with respect to the number of
tree nodes (Moschitti, 2006).

Concerning RM`, we can see that the accuracy
loss is even less than with BC`, i.e. it reaches an F1

measure of 87.13 which is just 0.52 less than RM.
It is also interesting to note how the individual lin-
earized role classifiers manage to perform accurately
regardless of the distribution of examples in the data
set: for all the six classifiers the final accuracy is
in line with that of the corresponding non-linearized
classifier. In two cases, i.e. A2 and A4, the accuracy
of the linearized classifier is even higher, i.e. 74.20
vs. 73.13 and 69.72 vs. 69.10, respectively. As for
the efficiency, total training time for RM` is 37% of
RM, i.e. 1,190 vs. 2,596 minutes, while test time
is reduced to 60%, i.e. 16 vs 27 minutes. These
improvements are less evident than those measured
for boundary detection. The main reason is that
the training set for boundary classification is much
larger, i.e. 1 million vs. 179k instances: therefore,
splitting training data during FSL has a reduced im-
pact on the overall efficiency of RM`.

Parallelization. All the efficiency improvements
that have been discussed so far considered a com-
pletely sequential process. But one of the advan-
tages of our approach is that it allows us to paral-
lelize some aspect of SVM training. Indeed, every
activity (but ESL) can exploit some degree of par-
allelism: during FSL, all the models can be learnt
at the same time (for this activity, the maximum de-
gree of parallelization is conditioned by the number
of training data splits); during FMI, models can be
mined concurrently; during TFX, the data-set to be
linearized can be split arbitrarily and individual seg-
ments can be processed in parallel. Exploiting this
possibility we can drastically improve learning ef-
ficiency. As an example, in Table 2 we show how
the total learning of the BC` can be cut to as low as
215 seconds when exploiting ten CPUs and using a
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Figure 6: Growth of dictionary size when including frag-
ments from more splits at different threshold values.
When a low threshold is used, the contribution of indi-
vidual dictionaries tends to be more marginal.

threshold of 10k. Even running on just 5 CPUs, the
overall computational cost of BC` is less than 10%
of BC (Column Non Lin.). Similar considerations
can be drawn concerning the role multi-classifier.

Fragment space. In this section we take a look at
the fragments included in the dictionary of the BC`

classifier. During FMI, we incrementally merge the
fragments mined from each of the models learnt dur-
ing FSL. Figure 6 plots, for different threshold val-
ues, the percentage of new fragments (on the y axis)
that the i-th model (on the x axis) contributes with
respect to the number of fragments mined from each
model (i.e. the threshold value).

If we consider the curve for a threshold equal to
100k, we can see that each model after the first ap-
proximately contributes with the same number of
fragments. On the other hand, if the threshold is set
to 1k than the contribution of subsequent models is
increasingly more marginal. Eventually, less than
10% of the fragments mined from the last model are
new ones. This behaviour suggests that there is a
core set of very relevant fragments which is com-
mon across models learnt on different data, i.e. they
are relevant for the task and do not strictly depend
on the training data that we use. When we increase
the threshold value, the new fragments that we index
are more and more data specific.

The dictionary compiled with a threshold of 10k
lists 62,760 distinct fragments. 15% of the frag-
ments contain the predicate node (which generally
is the node encoding the predicate word’s POS tag),
more than one third contain the candidate argument

node and, of these, about one third are rooted in it.
This last figure strongly suggests that the internal
structure of an argument is indeed a very powerful
feature not only for role classification, as we would
expect, but also for boundary detection. About 10%
of the fragments contain both the predicate and the
argument node, while about 1% encode the Path fea-
ture traditionally used in explicit semantic role label-
ing models (Gildea and Jurafsky, 2002). About 5%
encode a sort of extended Path feature, where the ar-
gument node is represented together with its descen-
dants. Overall, about 2/3 of the fragments contain at
least some terminal symbol (i.e. words), generally a
preposition or an adverb.

6 Conclusions

We presented a supervised learning framework for
Support Vector Machines that tries to combine the
power and modeling simplicity of convolution ker-
nels with the advantages of linear kernels and ex-
plicit feature representations. We tested our model
on a Semantic Role Labeling benchmark and ob-
tained very promising results in terms of accuracy
and efficiency. Indeed, our linearized classifiers
manage to be almost as accurate as non linearized
ones, while drastically reducing the time required to
train and test a model on the same amounts of data.

To our best knowledge, the main points of nov-
elty of this work are the following: 1) it addresses
the problem of feature selection for tree kernels, ex-
ploiting SVM decisions to guide the process; 2) it
provides an effective way to make the kernel space
observable; 3) it can efficiently linearize structured
data without the need for an explicit mapping; 4) it
combines feature selection and SVM parallelization.

We began investigating the fragments generated
by a TK function for SRL, and believe that study-
ing them in more depth will be useful to identify
new, relevant features for the characterization of
predicate-argument relations.

In the months to come, we plan to run a set of ex-
periments on a wider list of tasks so as to consolidate
the results we obtained so far. We will also test the
generality of the approach by testing with different
high-dimensional kernel families, such as sequence
and polynomial kernels.
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Hal Daumé III and Daniel Marcu. 2004. Np bracketing
by maximum entropy tagging and SVM reranking. In
Proceedings of EMNLP’04.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic la-
beling of semantic roles. Computational Linguistics,
28:245–288.

Hans P. Graf, Eric Cosatto, Leon Bottou, Igor Dur-
danovic, and Vladimir Vapnik. 2004. Parallel support
vector machines: The cascade svm. In Neural Infor-
mation Processing Systems.
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Abstract

A survey of existing methods for stopping ac-
tive learning (AL) reveals the needs for meth-
ods that are: more widely applicable; more ag-
gressive in saving annotations; and more sta-
ble across changing datasets. A new method
for stopping AL based on stabilizing predic-
tions is presented that addresses these needs.
Furthermore, stopping methods are required
to handle a broad range of different annota-
tion/performance tradeoff valuations. Despite
this, the existing body of work is dominated
by conservative methods with little (if any) at-
tention paid to providing users with control
over the behavior of stopping methods. The
proposed method is shown to fill a gap in the
level of aggressiveness available for stopping
AL and supports providing users with control
over stopping behavior.

1 Introduction

The use of Active Learning (AL) to reduce NLP an-
notation costs has generated considerable interest re-
cently (e.g. (Bloodgood and Vijay-Shanker, 2009;
Baldridge and Osborne, 2008; Zhu et al., 2008a)).
To realize the savings in annotation efforts that AL
enables, we must have a mechanism for knowing
when to stop the annotation process.

Figure 1 is intended to motivate the value of stop-
ping at the right time. The x-axis measures the num-
ber of human annotations that have been requested
and ranges from 0 to 70,000. The y-axis measures

∗This research was conducted while the first author was a
PhD student at the University of Delaware.
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Figure 1: Hypothetical Active Learning Curve with hy-
pothetical stopping points.

performance in terms of F-Measure. As can be seen
from the figure, the issue is that if we stop too early
while useful generalizations are still being made, we
wind up with a lower performing system but if we
stop too late after all the useful generalizations have
been made, we just wind up wasting human annota-
tion effort.

The termsaggressiveand conservativewill be
used throughout the rest of this paper to describe the
behavior of stopping methods. Conservative meth-
ods tend to stop further to the right in Figure 1.
They are conservative in the sense that they’re very
careful not to risk losing significant amounts of F-
measure, even if it means annotating many more ex-
amples than necessary. Aggressive methods, on the
other hand, tend to stop further to the left in Figure 1.
They are aggressively trying to reduce unnecessary
annotations.

There has been a flurry of recent work tackling the
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problem of automatically determining when to stop
AL (see Section 2). There are three areas where this
body of work can be improved:

applicability Several of the leading methods are re-
stricted to only being used in certain situations,
e.g., they can’t be used with some base learn-
ers, they have to select points in certain batch
sizes during AL, etc. (See Section 2 for dis-
cussion of the exact applicability constraints of
existing methods.)

lack of aggressive stopping The leading methods
tend to find stop points that are too far to the
right in Figure 1. (See Section 4 for empirical
confirmation of this.)

instability Some of the leading methods work well
on some datasets but then can completely break
down on other datasets, either stopping way too
late and wasting enormous amounts of annota-
tion effort or stopping way too early and losing
large amounts of F-measure. (See Section 4 for
empirical confirmation of this.)

This paper presents a new stopping method based
on stabilizing predictions that addresses each of
these areas and provides user-adjustable stopping
behavior. The essential idea behind the new method
is to test the predictions of the recently learned mod-
els (during AL) on examples which don’t have to
be labeled and stop when the predictions have sta-
bilized. Some of the main advantages of the new
method are that: it requires no additional labeled
data, it’s widely applicable, it fills a need for a
method which can aggressively save annotations, it
has stable performance, and it provides users with
control over how aggressively/conservatively to stop
AL.

Section 2 discusses related work. Section 3 ex-
plains our Stabilizing Predictions (SP) stopping cri-
terion in detail. Section 4 evaluates the SP method
and discusses results. Section 5 concludes.

2 Related Work

Laws and Schütze (2008) present stopping criteria
based on the gradient of performance estimates and
the gradient of confidence estimates. Their tech-
nique with gradient of performance estimates is only

applicable when probabilistic base learners are used.
The gradient of confidence estimates method is more
generally applicable (e.g., it can be applied with
our experiments where we use SVMs as the base
learner). This method, denoted by LS2008 in Tables
and Figures, measures the rate of change of model
confidence over a window of recent points and when
the gradient falls below a threshold, AL is stopped.

The margin exhaustion stopping criterion was de-
veloped for AL with SVMs (AL-SVM). It says to
stop when all of the remaining unlabeled examples
are outside of the current model’s margin (Schohn
and Cohn, 2000) and is denoted as SC2000 in Ta-
bles and Figures. Ertekin et al. (2007) developed a
similar technique that stops when the number of sup-
port vectors saturates. This is equivalent to margin
exhaustion in all of our experiments so this method
is not shown explicitly in Tables and Figures. Since
we use AL with SVMs, we will compare with mar-
gin exhaustion in our evaluation section. Unlike our
SP method, margin exhaustion is only applicable for
use with margin-based methods such as SVMs and
can’t be used with other base learners such as Maxi-
mum Entropy, Naive Bayes, and others. Schohn and
Cohn (2000) show in their experiments that margin
exhaustion has a tendency to stop late. This is fur-
ther confirmed in our experiments in Section 4.

The confidence-based stopping criterion (here-
after, V2008) in (Vlachos, 2008) says to stop when
model confidence consistently drops. As pointed out
by (Vlachos, 2008), this stopping criterion is based
on the assumption that the learner/feature represen-
tation is incapable of fully explaining all the exam-
ples. However, this assumption is often violated and
then the performance of the method suffers (see Sec-
tion 4).

Two stopping criteria (max-conf and min-err) are
reported in (Zhu and Hovy, 2007). The max-conf
method indicates to stop when the confidence of the
model on each unlabeled example exceeds a thresh-
old. In the context of margin-based methods, max-
conf boils down to be simply a generalization of the
margin exhaustion method. Min-err, reported to be
superior to max-conf, says to stop when the accu-
racy of the most recent model on the current batch of
queried examples exceeds some threshold (they use
0.9). Zhu et al. (2008b) proposes the use of multi-
criteria-based stopping to handle setting the thresh-
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old for min-err. They refuse to stop and they raise
the min-err threshold if there have been any classi-
fication changes on the remaining unlabeled data by
consecutive actively learned models when the cur-
rent min-err threshold is satisfied. We denote this
multi-criteria-based strategy, reported to work better
than min-err in isolation, by ZWH2008. As seen in
(Zhu et al., 2008a), sometimes min-err indeed stops
later than desired and ZWH2008 must (by nature
of how it operates) stop at least as late as min-err
does. The susceptibility of ZWH2008 to stopping
late is further shown emprically in Section 4. Also,
ZWH2008 is not applicable for use with AL setups
that select examples in small batches.

3 A Method for Stopping Active Learning
Based on Stabilizing Predictions

To stop active learning at the point when annotations
stop providing increases in performance, perhaps the
most straightforward way is to use a separate set of
labeled data and stop when performance begins to
level off on that set. But the problem with this is that
it requires additional labeled data which is counter
to our original reason for using AL in the first place.
Our hypothesis is that we can sense when to stop AL
by looking at (only) thepredictionsof consecutively
learned models on examples that don’t have to be
labeled. We won’t know if the predictions are cor-
rect or not but we can see if they have stabilized. If
the predictions have stabilized, we hypothesize that
the performance of the models will have stabilized
and vice-versa, which will ensure a (much-needed)
aggressive approach to saving annotations.

SP checks for stabilization of predictions on a set
of examples, called the stop set, that don’t have to
be labeled. Since stabilizing predictions on the stop
set is going to be used as an indication that model
stabilization has occurred, the stop set ought to be
representative of the types of examples that will be
encountered at application time. There are two con-
flicting factors in deciding upon the size of the stop
set to use. On the one hand, a small set is desir-
able because then SP can be checked quickly. On
the other hand, a large set is desired to ensure we
don’t make a decision based on a set that isn’t repre-
sentative of the application space. As a compromise
between these factors, we chose a size of 2000. In

Section 4, sensitivity analysis to stop set size is per-
formed and more principled methods for determin-
ing stop set size and makeup are discussed.

It’s important to allow the examples in the stop
set to be queried if the active learner selects them
because they may be highly informative and ruling
them out could hurt performance. In preliminary ex-
periments we had made the stop set distinct from the
set of unlabeled points made available for querying
and we saw performance wasqualitativelythe same
but the AL curve was translated down by a few F-
measure points. Therefore, we allow the points in
the stop set to be selected during AL.1

The essential idea is to compare successive mod-
els’ predictions on the stop set to see if they have
stabilized. A simple way to define agreement be-
tween two models would be to measure the percent-
age of points on which the models make the same
predictions. However, experimental results on a sep-
arate development dataset show then that the cutoff
agreement at which to stop is sensitive to the dataset
being used. This is because different datasets have
different levels of agreement that can be expected by
chance and simple percent agreement doesn’t adjust
for this.

Measurement of agreement between human anno-
tators has received significant attention and in that
context, the drawbacks of using percent agreement
have been recognized (Artstein and Poesio, 2008).
Alternative metrics have been proposed that take
chance agreement into account. In (Artstein and
Poesio, 2008), a survey of several agreement met-
rics is presented. Most of the agreement metrics are
of the form:

agreement =
Ao − Ae

1 − Ae
, (1)

whereAo = observed agreement, andAe = agree-
ment expected by chance. The different metrics dif-
fer in how they computeAe.

The Kappa statistic (Cohen, 1960) measures
agreement expected by chance by modeling each
coder (in our case model) with a separate distribu-
tion governing their likelihood of assigning a partic-
ular category. Formally, Kappa is defined by Equa-

1They remain in the stop set if they’re selected.
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tion 1 withAe computed as follows:

Ae =
∑

k∈{+1,−1}
P (k|c1) · P (k|c2), (2)

where eachci is one of the coders (in our case,
models), andP (k|ci) is the probability that coder
(model)ci labels an instance as being in categoryk.
Kappa estimatesP (k|ci) based on the proportion of
observed instances that coder (model)ci labeled as
being in categoryk.

We have found Kappa to be a robust parameter
that doesn’t require tuning when moving to a new
dataset. On a separate development dataset, a Kappa
cutoff of 0.99 worked well. All of the experiments
(except those in Table 2) in the current paper used an
agreement cutoff of Kappa = 0.99 with zero tuning
performed. We will see in Section 4 that this cutoff
delivers robust results across all of the folds for all
of the datasets.

The Kappa cutoff captures theintensity of the
agreement that must occur before SP will conclude
to stop. Though an intensity cutoff of K=0.99 is
an excellent default (as seen by the results in Sec-
tion 4), one of the advantages of the SP method is
that by giving users the option to vary the intensity
cutoff, users can control how aggressive SP will be-
have. This is explored further in Section 4.

Another way to give users control over stopping
behavior is to give them control over thelongevity
for which agreement (at the specified intensity) must
be maintained before SP concludes to stop. The sim-
plest implementation would be to check the most
recent model with the previous model and stop if
their agreement exceeds the intensity cutoff. How-
ever, independent of wanting to provide users with
a longevity control, this is not an ideal approach be-
cause there’s a risk that these two models could hap-
pen to highly agree but then the next model will not
highly agree with them. Therefore, we propose us-
ing the average of the agreements from a window
of the k most recent pairs of models. If we call the
most recent modelMn, the previous modelMn−1

and so on, with a window size of 3, we average the
agreements betweenMn andMn−1, betweenMn−1

andMn−2, and betweenMn−2 andMn−3. On sepa-
rate development data a window size of k=3 worked
well. All of the experiments (except those in Ta-
ble 3) in the current paper used a longevity window

size of k=3 with zero tuning performed. We will
see in Section 4 that this longevity default delivers
robust results across all of the folds for all of the
datasets. Furthermore, Section 4 shows that varying
the longevity requirement provides users with an-
other lever for controlling how aggressively SP will
behave.

4 Evaluation and Discussion

4.1 Experimental Setup

We evaluate the Stabilizing Predictions (SP) stop-
ping method on multiple datasets for Text Classifi-
cation (TC) and Named Entity Recognition (NER)
tasks. All of the datasets are freely and publicly
available and have been used in many past works.

For Text Classification, we use two publicly avail-
able spam corpora: the spamassassin corpus used in
(Sculley, 2007) and the TREC spam corpus trec05p-
1/ham25 described in (Cormack and Lynam, 2005).
For both of these corpora, the task is a binary clas-
sification task and we perform 10-fold cross valida-
tion. We also use the Reuters dataset, in particular
the Reuters-21578 Distribution 1.0 ModApte split2.
Since a document may belong to more than one cat-
egory, each category is treated as a separate binary
classification problem, as in (Joachims, 1998; Du-
mais et al., 1998). Consistent with (Joachims, 1998;
Dumais et al., 1998), results are reported for the ten
largest categories. Other TC datasets we use are the
20Newsgroups3 newsgroup article classification and
the WebKB web page classification datasets. For
WebKB, as in (McCallum and Nigam, 1998; Zhu et
al., 2008a; Zhu et al., 2008b) we use the four largest
categories. For all of our TC datasets, we use binary
features for every word that occurs in the training
data at least three times.

For NER, we use the publicly available GENIA
corpus4. Our features, based on those from (Lee et
al., 2004), are surface features such as the words in

2http://www.daviddlewis.com/resources/
testcollections/reuters21578

3We used the “bydate” version of the dataset downloaded
from http://people.csail.mit.edu/jrennie/20Newsgroups/. This
version is recommended since it makes cross-experiment com-
parison easier since there is no randomness in the selectionof
train/test splits.

4http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/home/
wiki.cgi?page=GENIA+Project
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the named entity and two words on each side, suf-
fix information, and positional information. We as-
sume a two-phase model where boundary identifica-
tion has already been performed, as in (Lee et al.,
2004).

SVMs deliver high performance for the datasets
we use so we employ SVMs as our base learner
in the bulk of our experiments (maximum entropy
models are used in Subsection 4.3). For selection of
points to query, we use the approach that was used
in (Tong and Koller, 2002; Schohn and Cohn, 2000;
Campbell et al., 2000) of selecting the points that are
closest to the current hyperplane. We use SVMlight

(Joachims, 1999) for training the SVMs. For the
smaller datasets (less than 50,000 examples in total),
a batch size of 20 was used with an initial training
set of size 100 and for the larger datasets (greater
than 50,000 examples in total), a batch size of 200
was used with an initial training set of size 1000.

4.2 Main Results

Table 1 shows the results for all of our datasets. For
each dataset, we report the average number of anno-
tations5 requested by each of the stopping methods
as well as the average F-measure achieved by each
of the stopping methods.6

There are two facts worth keeping in mind. First,
the numbers in Table 1 are averages and therefore,
sometimes two methods could have very similar
average numbers of annotations but wildly differ-
ent average F-measures (because one of the meth-
ods was consistently stopping around its average
whereas the other was stopping way too early and
way too late). Second, sometimes a method with a
higher average number of annotations has a lower

5Better evaluation metrics would use more refined measures
of annotation effort than the number of annotations becausenot
all annotations require the same amount of effort to annotate but
lacking such a refined model for our datasets, we use number of
annotations in these experiments.

6Tests of statistical significance are performed using
matched pairs t tests at a 95% confidence level.

7(Vlachos, 2008) suggests using three drops in a row to de-
tect a consistent drop in confidence so we do the same in our
implementation of the method from (Vlachos, 2008).

8Following (Zhu et al., 2008b), we set the starting accuracy
threshold to 0.9 when reimplementing their method.

9(Laws and Schütze, 2008) uses a window of size 100
and a threshold of 0.00005 so we do the same in our re-
implementation of their method.

average F-measure than a method with a lower aver-
age number of annotations. This can be caused be-
cause of the first fact just mentioned about the num-
bers being averages and/or this can also be caused
by the ”less is more” phenomenon in active learn-
ing where often with less data, a higher-performing
model is learned than with all the data; this was
first reported in (Schohn and Cohn, 2000) and sub-
sequently observed by many others (e.g., (Vlachos,
2008; Laws and Schütze, 2008)).

There are a few observations to highlight regard-
ing the performance of the various stopping meth-
ods:

• SP is the most parsimonious method in terms
of annotations. It stops the earliest and remark-
ably it is able to do so largely without sacrific-
ing F-measure.

• All the methods except for SP and SC2000 are
unstable in the sense that on at least one dataset
they have a major failure, either stopping way
too late and wasting large numbers of anno-
tations (e.g. ZWH2008 and V2008 on TREC
Spam) or stopping way too early and losing
large amounts of F-measure (e.g. LS2008 on
NER-Protein) .

• It’s not always clear how to evaluate stopping
methods because the tradeoff between the value
of extra F-measure versus saving annotations is
not clearly known and will be different for dif-
ferent applications and users.

This last point deserves some more discussion. In
some cases it is clear that one stopping method is
the best. For example, on WKB-Project, the SP
method saves the most annotationsandhas the high-
est F-measure. But which method performs the
best on NER-DNA? Arguments can reasonably be
made for SP, SC2000, or ZWH2008 being the best
in this case depending on what exactly the anno-
tation/performance tradeoff is. A promising direc-
tion for research on AL stopping methods is to de-
velop user-adjustable stopping methods that stop as
aggressively as the user’s annotation/performance
preferences dictate.

One avenue of providing user-adjustable stopping
is that if some methods are known to perform con-
sistently in an aggressive manner against annotating
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Task-Dataset SP V20087 SC2000 ZWH20088 LS20089 All
TREC-SPAM 2100 56000 3900 29220 3160 56000
(10-fold AVG) 98.33 98.47 98.41 98.44 96.63 98.47
20Newsgroups 678 181 1984 1340 1669 11280
(20-cat AVG) 60.85 18.06 55.43 60.72 54.79 54.81
Spamassassin 326 4362 862 398 1176 5400
(10-fold AVG) 94.57 95.00 95.53 95.94 95.62 95.63
NER-protein 8720 67220 17680 18580 2360 67220
(10-fold AVG) 89.48 90.28 90.38 90.31 76.47 90.28
NER-DNA 4020 67220 10640 7200 3900 67220
(10-fold AVG) 82.40 84.31 84.73 84.51 74.74 84.31
NER-cellType 3840 29600 5540 11580 4580 67220
(10-fold AVG) 86.15 86.87 87.19 87.32 85.65 87.83
Reuters 484 6762 1196 650 1272 9580
(10-cat AVG) 74.29 65.81 73.88 76.77 74.00 75.64
WKB-Course 790 184 1752 912 1740 7420
(10-fold AVG) 83.12 30.34 80.47 83.16 80.55 80.19
WKB-Faculty 808 892 1932 1062 1818 7420
(10-fold AVG) 81.53 40.14 81.79 81.64 81.99 82.36
WKB-Project 646 916 1358 794 1482 7420
(10-fold AVG) 63.30 25.33 58.11 61.82 59.30 61.19
WKB-Student 1258 894 2400 1468 2150 7420
(10-fold AVG) 84.70 50.66 83.46 84.39 83.19 83.30
Average 2152 21294 4477 6655 2301 28509
(macro-avg) 81.70 62.30 80.85 82.27 78.45 81.27

Table 1: Methods for stopping AL. For each dataset, the average number of annotations at the automatically determined
stopping points and the average F-measure at the automatically determined stopping points are displayed.Bold entries
are statistically significantly different than SP (and non-bold entries are not). The Average row is simply an unweighted
macro-average over all the datasets. The final column (labeled ”All”) represents standard fully supervised passive
learning with the entire set of training data.

too much while others are known to perform consis-
tently in a conservative manner, then users can pick
the stopping criterion that’s more suitable for their
particular annotation/performance valuation. For
this purpose, SP fills a gap as the other stopping cri-
teria seem to be conservative in the sense defined
in Section 1. SP, on the other hand, is more of an
aggressive stopping criterion and is less likely to an-
notate data that is not needed.

A second avenue for providing user-adjustable
stopping is a single stopping method that is itself ad-
justable. To this end, Section 4.3 shows howinten-
sity and longevityprovide levers that can be used to
control the behavior of SP in a controlled fashion.

Sometimes viewing the stopping points of the var-

ious criteria on a graph with the active learning curve
can help one visualize how the methods perform.
Figure 2 shows the graph for a representative fold.10

The x-axis measures the number of human annota-
tions that have been requested so far. The y-axis
measures performance in terms of F-Measure. The
vertical lines are where the various stopping meth-
ods would have stopped AL if we hadn’t continued
the simulation. The figure reinforces and illustrates
what we have seen in Table 1, namely that SP stops
more aggressively than existing criteria and is able

10It doesn’t make sense to show a graph for the average over
cross validation because the average number of annotationsat
the stopping point may cross the learning curve at a completely
misleading point. Consider a method that stops way too early
and way too late at times.
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Figure 2: Graphic with stopping criteria in action for fold
1 of NER of DNA from the GENIA corpus. The x-axis
ranges from 0 to 70,000.

to do so without sacrificing performance.

4.3 Additional Experiments

All of the additional experiments in this subsection
were conducted on our least computationally de-
manding dataset, Spamassassin. The results in Ta-
bles 2 and 3 show how varying the intensity cut-
off and the longevity requirement, respectively, of
SP enable a user to control stopping behavior. Both
methods enable a user to adjust stopping in a con-
trolled fashion (without radical changes in behav-
ior). Areas of future work include: combining the
intensity and longevity methods for controlling be-
havior; and developing precise expectations on the
change in behavior corresponding to changes in the
intensity and longevity settings.

The results in Table 4 show results for different
stop set sizes. Even with random selection of a stop
set as small as 500, SP’s performance holds fairly
steady. This plus the fact that random selection of
stop sets of size 2000 worked across all the folds of
all the datasets in Table 1 show that in practice per-
haps the simple heuristic of choosing a fairly large
random set of points works well. Nonetheless, we
think the size necessary will depend on the dataset
and other factors such as the feature representation
so more principled methods of determining the size
and/or the makeup of the stop set are an area for
future work. For example, construction techniques

Intensity Annotations F-Measure
K=99.5 364 96.01
K=99.0 326 94.57
K=98.5 304 95.59
K=98.0 262 93.75
K=97.5 242 93.35
K=97.0 224 90.91

Table 2: Controlling the behavior of stopping through the
use ofintensity. For Kappa intensity levels in{97.0, 97.5,
98.0, 98.5, 99.0, 99.5}, the 10-fold average number of an-
notations at the automatically determined stopping points
and the 10-fold average F-measure at the automatically
determined stopping points are displayed for the Spamas-
sassin dataset.

Longevity Annotations F-Measure
k=1 284 95.17
k=2 318 94.95
k=3 326 94.57
k=4 336 95.40
k=5 346 96.41
k=6 366 94.53

Table 3: Controlling the behavior of stopping through the
use oflongevity. For window length k longevity levels in
{1, 2, 3, 4, 5, 6}, the 10-fold average number of annota-
tions at the automatically determined stopping points and
the 10-fold average F-measure at the automatically deter-
mined stopping points are displayed for the Spamassassin
dataset.

could be developed to create stop sets with high rep-
resentativeness (in terms of feature space) density
(meaning representativeness of stop set divided by
size of stop set). For example, a possibility is to
cluster examples before AL begins and then make
sure the stop set contains examples from each of the
clusters. Another possibility is to use a greedy algo-
rithm where the stop set is iteratively grown where
on each iteration the center of mass of the stop set
in feature space is computed and an example in the
unlabeled pool that is maximally far in feature space
from this center of mass is selected for inclusion in
the stop set. This could be useful for efficiency (in
terms of getting the same stopping performance with
a smaller stop set as could be achieved with a larger
stop set) and also as a way to ensure adequate repre-
sentation of the task space. The latter can be accom-
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Task-Dataset SP V2008 ZWH2008 LS2008 All
Spamassassin 286 1208 386 756 5400
(10-fold AVG) 94.92 89.89 95.31 96.40 91.74

Table 5: Methods for stopping AL with maximum entropy as the base learner. For each stopping method, the average
number of annotations at the automatically determined stopping point and the average F-measure at the automatically
determined stopping point are displayed.Bold entries are statistically significantly different than SP (and non-bold
entries are not). SC2000, the margin exhaustion method, is not shown since it can’t be used with a non-margin-based
learner. The final column (labeled ”All”) represents standard fully supervised passive learning with the entire set of
training data.

Stop Set Size Annotations F-Measure
2500 326 95.58
2000 326 94.57
1500 314 95.00
1000 328 95.73
500 314 94.57

Table 4: Investigating the sensitivity to stop set size. For
stop set sizes in{2500, 2000, 1500, 1000, 500}, the 10-
fold average number of annotations at the automatically
determined stopping points and the 10-fold average F-
measure at the automatically determined stopping points
are displayed for the Spamassassin dataset.

plished by perhaps continuing to add examples to
the stop set until adding new examples is no longer
increasing the representativeness of the stop set.

As one of the advantages of SP is that it’s widely
applicable, Table 5 shows the results when using
maximum entropy models as the base learner dur-
ing AL (the query points selected are those which
the model is most uncertain about). The results re-
inforce our conclusions from the SVM experiments,
with SP performing aggressively and all statistically
significant differences in performance being in SP’s
favor. Figure 3 shows the graph for a representative
fold.

5 Conclusions

Effective methods for stopping AL are crucial for re-
alizing the potential annotation savings enabled by
AL. A survey of existing stopping methods identi-
fied three areas where improvements are called for.
The new stopping method based on Stabilizing Pre-
dictions (SP) addresses all three areas: SP is widely
applicable, stable, and aggressive in saving annota-
tions.
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Figure 3: Graphic with stopping criteria in action for fold
5 of TC of the spamassassin corpus. The x-axis ranges
from 0 to 6,000.

The empirical evaluation of SP and the existing
methods was informative for evaluating the crite-
ria but it was also informative for demonstrating the
difficulties for rigorous objective evaluation of stop-
ping criteria due to different annotation/performance
tradeoff valuations. This opens up a future area for
work on user-adjustable stopping. Two potential
avenues for enabling user-adjustable stopping are a
single criterion that is itself adjustable or a suite of
methods with consistent differing levels of aggres-
siveness/conservativeness from which users can pick
the one(s) that suit their annotation/performance
tradeoff valuation. SP substantially widens the range
of behaviors of existing methods that users can
choose from. Also, SP’s behavior itself can be ad-
justed through user-controllable parameters.
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Abstract

Sets of lexical items sharing a significant
aspect of their meaning (concepts) are fun-
damental for linguistics and NLP. Unsuper-
vised concept acquisition algorithms have
been shown to produce good results, and are
preferable over manual preparation of con-
cept resources, which is labor intensive, er-
ror prone and somewhat arbitrary. Some ex-
isting concept mining methods utilize super-
vised language-specific modules such as POS
taggers and computationally intensive parsers.

In this paper we present an efficient fully
unsupervised concept acquisition algorithm
that uses syntactic information obtained from
a fully unsupervised parser. Our algorithm
incorporates the bracketings induced by the
parser into the meta-patterns used by a sym-
metric patterns and graph-based concept dis-
covery algorithm. We evaluate our algorithm
on very large corpora in English and Russian,
using both human judgments and WordNet-
based evaluation. Using similar settings as
the leading fully unsupervised previous work,
we show a significant improvement in con-
cept quality and in the extraction of multiword
expressions. Our method is the first to use
fully unsupervised parsing for unsupervised
concept discovery, and requires no language-
specific tools or pattern/word seeds.

1 Introduction

Comprehensive lexical resources for many domains
and languages are essential for most NLP applica-
tions. One of the most utilized types of such re-
sources is a repository ofconcepts: sets of lexical
items sharing a significant aspect of their meanings
(e.g., types of food, tool names, etc).

While handcrafted concept databases (e.g., Word-
Net) are extensively used in NLP, manual compila-
tion of such databases is labor intensive, error prone,
and somewhat arbitrary. Hence, for many languages
and domains great efforts have been made for au-
tomated construction of such databases from avail-
able corpora. While language-specific and domain-
specific studies show significant success in develop-
ment of concept discovery frameworks, the majority
of domains and languages remain untreated. Hence
there is a need for a framework that performs well
for many diverse settings and is as unsupervised and
language-independent as possible.

Numerous methods have been proposed for seed-
based concept extraction where a set of concept pat-
terns (or rules), or a small set of seed words for each
concept, is provided as input to the concept acqui-
sition system. However, even simple definitions for
concepts are not always available.

To avoid requiring this type of input, a number of
distributional and pattern-based methods have been
proposed for fully unsupervised seed-less acquisi-
tion of concepts from text. Pattern-based algorithms
were shown to obtain high quality results while be-
ing highly efficient in comparison to distributional
methods. Such fully unsupervised methods do not
incorporate any language-specific parsers or taggers,
so can be successfully applied to diverse languages.

However, unsupervised pattern-based methods
suffer from several weaknesses. Thus they are fre-
quently restricted to single-word terms and are un-
able to discover multiword expressions in efficient
and precise manner. They also usually ignore poten-
tially useful part-of-speech and other syntactic in-
formation. In order to address these weaknesses,
several studies utilize language-specific parsing or
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tagging systems in concept acquisition. Unfortu-
nately, while improving results, this heavily affects
the language- and domain- independence of such
frameworks, and severely impacts efficiency since
even shallow parsing is computationally demanding.

In this paper we present a method to utilize the in-
formation induced by unsupervised parsers in an un-
supervised pattern-based concept discovery frame-
work. With the recent development of fast fully un-
supervised parsers, it is now possible to add parser-
based information to lexical patterns while keep-
ing the language-independence of the whole frame-
work and still avoiding heavy computational costs.
Specifically, we incorporate the bracketings induced
by the parser into the meta-patterns used by a sym-
metric patterns and graph-based unsupervised con-
cept discovery algorithm.

We performed a thorough evaluation on two En-
glish corpora (the BNC and a 68GB web corpus)
and on a 33GB Russian corpus. Evaluations were
done using both human judgments and WordNet, in
similar settings as that of the leading unsupervised
previous work. Our results show that utilization of
unsupervised parser both improves the assignment
of single-word terms to concepts and allows high-
precision discovery and assignment of of multiword
expressions to concepts.

2 Previous Work

Much work has been done on lexical acquisition of
all sorts and the acquisition of concepts in particu-
lar. Concept acquisition methods differ in the type of
corpus annotation and other human input used, and
in their basic algorithmic approach. Some methods
directly aim at concept acquisition, while the direct
goal in some is the construction of hyponym (‘is-a’)
hierarchies. A subtree in such a hierarchy can be
viewed as defining a concept.

A major algorithmic approach is to represent
word contexts as vectors in some space and use dis-
tributional measures and clustering in that space.
Pereira (1993), Curran (2002) and Lin (1998) use
syntactic features in the vector definition. (Pantel
and Lin, 2002) improves on the latter by clustering
by committee. Caraballo (1999) uses conjunction
and appositive annotations in the vector representa-
tion. Several studies avoid requiring any syntactic
annotation. Some methods are based on decompo-

sition of a lexically-defined matrix (by SVD, PCA
etc), e.g. (Scḧutze, 1998; Deerwester et al., 1990).

While great effort has been made for improv-
ing the computational complexity of distributional
methods (Gorman and Curran, 2006), they still re-
main highly computationally intensive in compari-
son to pattern approaches (see below), and most of
them do not scale well for very large datasets.

The second main approach is to use lexico-
syntactic patterns. Patterns have been shown to pro-
duce more accurate results than feature vectors, at
a lower computational cost on large corpora (Pan-
tel et al., 2004). Since (Hearst, 1992), who used a
manually prepared set of initial lexical patterns, nu-
merous pattern-based methods have been proposed
for the discovery of concepts from seeds. Other
studies develop concept acquisition for on-demand
tasks where concepts are defined by user-provided
seeds. Many of these studies utilize information ob-
tained by language-specific parsing and named en-
tity recognition tools (Dorow et al., 2005). Pantel et
al. (2004) reduce the depth of linguistic data used,
but their method requires POS tagging.

TextRunner (Banko et al., 2007) utilizes a set
of pattern-based seed-less strategies in order to ex-
tract relational tuples from text. However, this sys-
tem contains many language-specific modules, in-
cluding the utilization of a parser in one of the pro-
cessing stages. Thus the majority of the existing
pattern-based concept acquisition systems rely on
pattern/word seeds or supervised language-specific
tools, some of which are very inefficient.

Davidov and Rappoport (2006) developed a
framework which discovers concepts based on high
frequency words and symmetry-based pattern graph
properties. This framework allows a fully unsuper-
vised seed-less discovery of concepts without rely-
ing on language-specific tools. However, it com-
pletely ignores potentially useful syntactic or mor-
phological information.

For example, the pattern ‘X and his Y’ is useful
for acquiring the concept of family member types,
as in “his siblings and his parents’. Without syn-
tactic information, it can capture noise, as in “... in
ireland) and his wife)” (parentheses denote syntac-
tic constituent boundaries). As another example, the
useful symmetric pattern “either X or Y” can appear
in both good examples (“choose eitherChihuahua
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or Collie.”) and bad ones (“eitherCollie or Aus-
tralian Bulldog”). In the latter case, the algorithm
both captures noise (“Australlian” is now consid-
ered as a candidate for the ‘dog type’ concept), and
misses the discovery of a valid multiword candidate
(“Australlian Bulldog”). While symmetry-based fil-
tering greatly reduces such noise, the basic problem
remains. As a result, incorporating at least some
parsing information in a language-independent and
efficient manner could be beneficial.

Unsupervised parsing has been explored for sev-
eral decades (see (Clark, 2001; Klein, 2005) for re-
cent reviews). Recently, unsupervised parsers have
for the first time outperformed the right branch-
ing heuristic baseline for English. These include
CCM (Klein and Manning, 2002), the DMV and
DMV+CCM models (Klein and Manning, 2004),
(U)DOP based models (Bod, 2006a; Bod, 2006b;
Bod, 2007), an exemplar based approach (Den-
nis, 2005), guiding EM using contrastive estimation
(Smith and Eisner, 2006), and the incremental parser
of Seginer (2007) which we use here. These works
learn an unlabeled syntactic structure, dependency
or constituency. In this work we use constituency
trees as our syntactic representation.

Another important factor in concept acquisition
is the source of textual data used. To take advan-
tage of the rapidly expanding web, many of the pro-
posed frameworks utilize web queries rather than
local corpora (Etzioni et al., 2005; Davidov et al.,
2007; Pasca and Van Durme, 2008; Davidov and
Rappoport, 2009). While these methods have a defi-
nite practical advantage of dealing with the most re-
cent and comprehensive data, web-based evaluation
has some methodological drawbacks such as limited
repeatability (Kilgarriff, 2007). In this study we ap-
ply our framework on offline corpora in settings sim-
ilar to that of previous work, in order to be able to
make proper comparisons.

3 Efficient Unsupervised Parsing

Our method utilizes the information induced by un-
supervised parsers. Specifically, we make use of the
bracketings induced by Seginer’s parser1 (Seginer,
2007). This parser has advantages in three major as-

1The parser is freely available at
http://staff.science.uva.nl/∼yseginer/ccl

pects relevant to this paper.
First, it achieves state of the art unsupervised

parsing performance: its F-score2 is 75.9% for sen-
tences of up to 10 words from the PennTreebank
Wall Street Journal corpus (WSJ) (Marcus, 1993),
and 59% for sentences of the same length from the
German NEGRA (Brants, 1997) corpus. These cor-
pora consists of newspaper texts.

Second, to obtain good results, manually created
POS tags are used as input in all the unsupervised
parsers mentioned above except of Seginer’s, which
uses raw sentences as input. (Headden et al., 2008)
have shown that the performance of algorithms that
require POS tags substantially decreases when using
POS tags induced by unsupervised POS taggers in-
stead of manually created ones. Seginer’s incremen-
tal parser is therefore the onlyfully unsupervised
parser providing high quality parses.

Third, Seginer’s parser is extremely fast. During
its initial stage, the parser builds a lexicon. Our Pen-
tium 2.8GHB machines with 4GHB RAM can store
in memory the lexicon created by up to 0.2M sen-
tences. We thus divided our corpora to batches of
0.2M sentences and parsed each of them separately.
Note that in this setup parsing quality might be even
better than the quality reported in (Seginer, 2007),
since in the setup reported in that paper the parser
was applied to a few thousand sentences only. On
average, the parsing time of a single batch was 5
minutes (run time did not significantly differ across
batches and corpora).
Parser description. The parser utilizes the novel
common-cover link representation for syntactic
structure. This representation resembles depen-
dency structure but unlike the latter, it can be trans-
lated into a constituency tree, which is the syntactic
representation we use in this work.

The parsing algorithm creates the common-cover
links structure of a sentence in an incremental man-
ner. This means that the parser reads the words of
a sentence one after the other and, as each word is
read, it is only allowed to add links that have one of
their ends at that words (and update existing ones).
Words which have not yet been read are not avail-

2F = 2·R·P
R+P

, whereR andP are the recall and precision of
the parsers’ bracketing compared to manually created bracket-
ing of the same text. This is the accepted measure for parsing
performance (see (Klein, 2005)).
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able to the parser at this stage. This restriction is
inspired by psycholinguistics research which sug-
gests that humans process language incrementally.
This results in a significant restriction of the parser’s
search space, which is the reason it is so fast.

During its initial stage the parser builds a lexicon
containing, for each word, statistics helping the deci-
sion of whether to link that word to other words. The
lexicon is updated as any new sentence is read. Lex-
icon updating is also done in an incremental manner
so this stage is also very fast.

4 Unsupervised Pattern Discovery

In the first stage of our algorithm, we run the unsu-
pervised parser on the corpus in order to produce a
bracketing structure for each sentence. In the sec-
ond stage, described here, we use these bracketings
in order to discover, in a fully unsupervised manner,
patterns that could be useful for concept mining.

Our algorithm is based on the concept acquisition
method of (Davidov and Rappoport, 2006). We dis-
cover patterns that connect terms belonging to the
same concept in two main stages: discovery of pat-
tern candidates, and identification of the symmetric
patterns among the candidates.

Pattern candidates. A major idea of (Davidov
and Rappoport, 2006) is that a few dozen high fre-
quency words (HFW) such as ‘and’ and ‘is’ con-
nect other, less frequent content terms into relation-
ships. They definemeta-patterns, which are short
sequences of H’s and C’s, where H is a slot for
a HFW and C is a slot for a content word (later
to become a word belonging to a discovered con-
cept). Their method was shown to produce good
results. However, the fact that it does not consider
any syntactic information causes problems. Specif-
ically, it does not consider the constituent structure
of the sentence. Meta-patterns that cross constituent
boundaries are likely to generate noise – two content
words (C’s) in a meta-pattern that belong to differ-
ent constituents are likely to belong to different con-
cepts as well. In addition, meta-patterns that do not
occupy a full constituent are likely to ‘cut’ multi-
word expressions (MWEs) into two parts, one part
that gets treated as a valid C word and one part that
is completely ignored.

The main idea in the present paper is to use the

bracketings induced by unsupervised parsers in or-
der to avoid the problems above. We utilize brack-
eting boundaries in our meta-patterns in addition
to HFW and C slots. In other words, their origi-
nal meta-patterns are totally lexical, while ours are
lexico-syntactic meta-patterns. We preserve the at-
tractive properties of meta-patterns, because both
HFWs and bracketings can be found or computed in
a language independent manner and very efficiently.

Concretely, we define a HFW as a word appearing
more thanTH times per million words, and aC as
a word or multiword expression containing up to 4
words, appearing less thanTC times per million.

We require that our patterns include two slots for
C’s, separated by at least a single HFW or bracket.
We allow separation by a single bracket because the
lowest level in the induced bracketing structure usu-
ally corresponds to lexical items, while higher levels
correspond to actual syntactic constituents.

In order to avoid truncation of multiword expres-
sions, we also require the meta pattern to start and
end by a HFW or bracket. Thus our meta-patterns
match the following regular expression:

{H|B}∗ C1 {H|B}+ C2 {H|B}∗

where “*” means zero or more times, and “+” means
one or more time andB can be “(”,“)” brackets pro-
duced by the parser (in these patterns we do not
need to guarantee that brackets match properly). Ex-
amples of such patterns include “((C1)in C2))”,
“(C1)(such(as(((C2)”, and “(C1)and(C2)”3. We
dismiss rare patterns that appear less thanTP times
per million words.

Symmetric patterns. Many of the pattern candi-
dates discovered in the previous stage are not usable.
In order to find a usable subset, we focus on the sym-
metric patterns. We define a symmetric pattern as a
pattern in which the same pair of terms (C words)
is likely to appear in both left-to-right and right-to-
left orders. In order to identify symmetric patterns,
for each pattern we define a pattern graphG(P ), as
proposed by (Widdows and Dorow, 2002). If term
pair (C1, C2) appears in patternP in some context,

3This paper does not use any punctuation since the parser
is provided with sentences having all non-alphabetic characters
removed. We assume word separation.C1,2 can be a word or a
multiword expression.
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we add nodesc1, c2 to the graph and a directed edge
EP (c1, c2) between them. In order to select sym-
metric patterns, we create such a pattern graph for
every discovered pattern, and create a symmetric
subgraph SymG(P) in which we take only bidirec-
tional edges fromG(P ). Then we compute three
measures for each pattern candidate as proposed by
(Davidov and Rappoport, 2006):

M1(P ) :=
|{c1|∃c2EP (c1, c2) ∧ ∃c3EP (c3, c1)}|

|Nodes(G(P ))|

M2(P ) :=
|Nodes(SymG(P ))|
|Nodes(G(P ))|

M3(P ) :=
|Edges(SymG(P ))|
|Edges(G(P ))|

For each measure, we prepare a sorted list of all can-
didate patterns. We remove patterns that are not in
the topZT (we use 100, see Section 6) in any of the
three lists, and patterns that are in the bottomZB in
at least one of the lists.

5 Concept Discovery
At the end of the previous stage we have a set of
symmetric patterns. We now use them in order to
discover concepts. The concept discovery algorithm
is essentially the same as used by (Davidov and Rap-
poport, 2006) and has some similarity with the one
used by (Widdows and Dorow, 2002). In this section
we outline the algorithm.

The clique-set method. The utilized approach to
concept discovery is based on connectivity struc-
tures in the all-pattern term relationship graphG,
resulting from merging all of the single-pattern
graphs for symmetric patterns selected in the previ-
ous stage. The main observation regardingG is that
highly interconnected words are good candidates to
form a concept. We find all strongn-cliques (sub-
graphs containingn nodes that are all interconnected
in both directions). A cliqueQ defines a concept that
contains all of the nodes inQ plus all of the nodes
that are (1) at least unidirectionally connected to all
nodes inQ, and (2) bidirectionally connected to at
least one node inQ. Using this definition, we create
a concept for each such clique.

Note that a single term can be assigned to several
concepts. Thus a clique based on a connection of the
word ‘Sun’ to ‘Microsoft’ can lead to a concept of

computer companies, while the connection of ‘Sun’
to ‘Earth’ can lead to a concept of celestial bodies.

Reducing noise: merging and windowing. Since
any given term can participate in many cliques, the
algorithm creates overlapping categories, some of
which redundant. In addition, due to the nature of
language and the imperfection of the corpus some
noise is obviously to be expected. We enhance the
quality of the obtained concepts by merging them
and by windowing on the corpus. We merge two
conceptsQ, R, iff there is more than a 50% overlap
between them:(|Q⋂

R| > |Q|/2) ∧ (|Q⋂
R| >

|R|/2). In order to increase concept quality and re-
move concepts that are too context-specific, we use
a simple corpus windowing technique. Instead of
running the algorithm of this section on the whole
corpus, we divide the corpus into windows of equal
size and perform the concept discovery algorithm of
this section (without pattern discovery) on each win-
dow independently. We now have a set of concepts
for each window. For the final set, we select only
those concepts that appear in at least two of the win-
dows. This technique reduces noise at the potential
cost of lowering coverage.

A decrease in the number of windows should pro-
duce more noisy results, while discovering more
concepts and terms. In the next section we show that
while windowing is clearly required for a large cor-
pus, incorporation of parser data increases the qual-
ity of the extracted corpus to the point where win-
dowing can be significantly reduced.

6 Results

In order to estimate the quality of concepts and to
compare it to previous work, we have performed
both automatic and human evaluation. Our basic
comparison was to (Davidov and Rappoport, 2006)
(we have obtained their data and utilized their al-
gorithm), where we can estimate if incorporation of
parser data can solve some fundamental weaknesses
of their framework. In the following description, we
call their algorithmP and our parser-based frame-
work P+. We have also performed an indirect com-
parison to (Widdows and Dorow, 2002).

While there is a significant number of other re-
lated studies4 on concept acquisition (see Section 2),

4Most are supervised and/or use language-specific tools.
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direct or even indirect comparison to these works is
problematic due to difference in corpora, problem
definitions and evaluation strategies. Below we de-
scribe the corpora and parameters used in our evalu-
ation and then show and discuss WordNet-based and
Human evaluation settings and results.

Corpora. We performed in-depth evaluation in
two languages, English and Russian, using three
corpora, two for English and one for Russian.
The first English corpus is the BNC, containing
about 100M words. The second English corpus,
DMOZ(Gabrilovich and Markovitch, 2005), is a
web corpus obtained by crawling URLs in the Open
Directory Project (dmoz.org), resulting in 68GB
containing about 8.2G words from 50M web pages.
The Russian corpus (Davidov and Rappoport, 2006)
was assembled from web-based Russian reposito-
ries, to yield 33GB and 4G words. All of these cor-
pora were also used by (Davidov and Rappoport,
2006) and BNC was used in similar settings by
(Widdows and Dorow, 2002).

Algorithm parameters. The thresholds
TH , TC , TP , ZT , ZB, were determined mostly
by practical memory size considerations: we com-
puted thresholds that would give us the maximal
number of terms, while enabling the pattern access
table to reside in main memory. The resulting
numbers are100, 50, 20, 100, 100. Corpus window
size was determined by starting from a small
window size, extracting at random a single window,
running the algorithm, and iterating this process
with increased×2 window sizes until reaching a
desired vocabulary concept participation percentage
(before windowing) (i.e., x% of the different words
in the corpus participate in terms assigned into
concepts. We used 5%.). We also ran the algorithm
without windowing in order to check how well the
provided parsing information can help reduce noise.
Among the patterns discovered are the ubiquitous
ones containing “and”,“or”, e.g. ‘((X) or (a Y))’,
and additional ones such as ‘from (X) to (Y)’.

Influence of parsing data on number of discov-
ered concepts. Table 1 compares the concept ac-
quisition framework with (P+) and without (P) uti-
lization of parsing data.

We can see that the amount of different words

V W C AS
P P+ P P+ P P+

DMOZ 16 330 504 142 130 12.8 16.0
BNC 0.3 25 42 9.6 8.9 10.2 15.6
Russ. 10 235 406 115 96 11.6 15.1

Table 1: Results for concept discovery with (P+) and
without (P) utilization of parsing data.V is the total num-
ber (millions) of different words in the corpus.W is the
number (thousands) of words belonging to at least one of
the terms for one of the concepts.C is the number (thou-
sands) of concepts (after merging and windowing).AS
is the average(words) category size.

covered by discovered concepts raises nearly 1.5-
fold when we utilize patterns based on parsing data
in comparison to pure HFW patterns used in previ-
ous work. We can also see nearly the same increase
in average concept size. At the same time we ob-
serve about 15% reduction in the total number of
discovered concepts.

There are two opposite factors in P+ which may
influence the number of concepts, their size and cov-
erage in comparison to P. On one hand, utilization of
more restricted patterns that include parsing infor-
mation leads to a reduced number of concept term
instances being discovered. Thus, the P+ pattern “(X
(or (a Y))” will recognize “(TV (or (a movie))” in-
stance and will miss “(lunch) or (a snack))”, while
the P pattern “X or a Y” will capture both. This leads
to a decrease in the number of discovered concepts.

On the other hand, P+ patterns, unlike P ones, al-
low the extraction of multiword expressions5, and
indeed more than third of the discovered terms us-
ing P+ were MWEs. Utilization of MWEs not only
allows to cover a greater amount of different words,
but also increases the number of discovered concepts
since new concepts can be found using cliques of
newly discovered MWEs. From the results, we can
see that for a given concept size and word coverage,
the ability to discover MWEs overcomes the disad-
vantage of ignoring potentially useful concepts.

Human judgment evaluation. Our human judge-
ment evaluation closely followed the protocol (Davi-
dov and Rappoport, 2006).

We used 4 subjects for evaluation of the English

5While P method can potentially be used to extract MWEs,
preliminary experimentation shows that without significant
modification, quality of MWEs obtained by P is very low in
comparison to P+
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concepts and 4 subjects for Russian ones. In order
to assess subjects’ reliability, we also included ran-
dom concepts (see below). The goal of the exper-
iment was to examine the differences between the
P+ and P concept acquisition frameworks. Subjects
were given 50 triplets of words and were asked to
rank them using the following scale: (1) the words
definitely share a significant part of their meaning;
(2) the words have a shared meaning but only in
some context; (3) the words have a shared mean-
ing only under a very unusual context/situation; (4)
the words do not share any meaning; (5) I am not
familiar enough with some/all of the words.

The 50 triplets were obtained as follows. We have
randomly selected 40 concept pairs (C+,C): C+ in
P+ and C in P using five following restrictions: (1)
concepts should contain at least 10 words; (2) for
a selected pair, C+ should share at least half of its
single-word terms with C, and C should share at
least half of its words with C+; (3) C+ should con-
tain at least 3 MWEs; (4) C should contain at least 3
words not appearing in C+; (5) C+ should contain at
least 3 single-word terms not appearing in C.

These restrictions allow to select concept pairs
such that C+ is similar to C while they still carry
enough differences which can be examined. We se-
lected the triplets as following: for pairs (C+, C) ten
triplets include terms appearing in both C+ and C
(Bothcolumn in Table 2), ten triplets include single-
word terms appearing in C+ but not C (P+ single
column), ten triplets include single-word terms ap-
pearing in C but not C+ (P column), ten triplets in-
clude MWEs appearing in C+ (P+ mwecolumn) and
ten triplets include random terms obtained from P+
concepts (Randcolumn).

P+ P Both Rand
mwe single

% shared
meaning
DMOZ 85 88 68 81 6
BNC 85 90 61 88 0
Russ. 89 95 70 93 11
triplet
score(1-4)
DMOZ 1.7 1.4 2.5 1.7 3.8
BNC 1.6 1.3 2.1 1.5 4.0
Russ. 1.5 1.1 2.0 1.3 3.7

Table 2: Results of evaluation by human judgment of
three data sets. P+ single/mwe: single-word/MWE terms
existing only in P+ concept; P: single-word terms existing
only in P concept; Both: terms existing in both concepts;
Rand: random terms. See text for detailed explanations.

The first part of Table 2 gives the average per-
centage of triplets that were given scores of 1 or 2
(that is, ‘significant shared meaning’). The second
part gives the average score of a triplet (1 is best).
In these lines scores of 5 were not counted. Inter-
evaluator Kappa between scores are 0.68/0.75/0.76
for DMOZ, BNC and Russian respectively. We can
see that terms selected by P and skipped by P+
receive low scores, at the same time even single-
word terms selected by P+ and skipped by P show
very high scores. This shows that using parser data,
the proposed framework can successfully avoid se-
lection of erroneous terms, while discovering high-
quality terms missed by P. We can also see that P+
performance on MWEs, while being slightly infe-
rior to the one for single-word terms, still achieves
results comparable to those of single-word terms.

Thus our algorithm can greatly improve the re-
sults not only by discovering of MWEs but also by
improving the set of single word concept terms.

WordNet-based evaluation. The major guideline
in this part of the evaluation was to compare our re-
sults with previous work (Davidov and Rappoport,
2006; Widdows and Dorow, 2002) without the pos-
sible bias of human evaluation. We have followed
their methodology as best as we could, using the
same WordNet (WN) categories and the same cor-
pora. This also allows indirect comparison to several
other studies, thus (Widdows and Dorow, 2002) re-
ports results for an LSA-based clustering algorithm
that are vastly inferior to the pattern-based ones.

The evaluation method is as follows. We took
the exact 10 WN subsets referred to as ‘subjects’ in
(Widdows and Dorow, 2002), and removed all multi-
word items. We then selected at random 10 pairs of
words from each subject. For each pair, we found
the largest of our discovered concepts containing it.
The various morphological forms or clear typos of
the same word were treated as one in the evaluation.

We have improved the evaluation framework for
Russian by using the Russian WordNet (Gelfenbey-
nand et al., 2003) instead of back-translations as
done in (Davidov and Rappoport, 2006). Prelim-
inary examination shows that this has no apparent
effect on the results.

For each found conceptC containingN words,
we computed the following: (1) Precision: the num-
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ber of words present in bothC and WN divided by
N ; (2) Precision*: the number of correct words di-
vided by N . Correct words are either words that
appear in the WN subtree, or words whose entry in
the American Heritage Dictionary or the Britannica
directly defines them as belonging to the given class
(e.g., ‘murder’ is defined as ‘a crime’). This was
done in order to overcome the relative poorness of
WN; (3) Recall: the number of words present in
both C and WN divided by the number of words
in WN; (4) The percentage of correctly discovered
words (according to Precision*) that are not in WN.

Table 3 compares the macro-average of these 10
categories to corresponding related work. We do not

Prec. Prec.* Rec. %New
DMOZ
P 79.8 86.5 22.7 2.5
P+ 79.5 91.3 28.6 3.7
BNC
P 92.76 95.72 7.22 0.4
P+ 93.0 96.1 14.6 1.7
Widdows 82.0 - - -
Russian
P 82.39 89.64 20.03 2.1
P+ 83.5 92.6 29.6 4.0

Table 3: WordNet evaluation in comparison to P (Davi-
dov and Rappoport, 2006) and to Widdows(Widdows and
Dorow, 2002). Columns show average precision, preci-
sion* (as defined in text), recall, and % of new words
added to corresponding WN subtree.

observe apparent rise in precision when comparing
P+ and P, but we can see significant improvement
in both recall and precision* for all of three cor-
pora. In combination with human judgement results,
this suggests that the P+ framework successfully dis-
covers more correct terms not present in WN. This
causes precision to remain constant while precision*
improves significantly. Rise in recall also shows that
the P+ framework can discover significantly more
correct terms from the same data.

Windowing requirement. As discussed in Sec-
tion 5, windowing is required for successful noise
reduction. However, due to the increase in pattern
quality with parser data, it is likely that less noise
will be captured by the discovered patterns. Hence,
windowing could be relaxed allowing to obtain more
data with sufficiently high precision.

In order to test this issue we applied our algo-
rithms on the DMOZ corpus with 3 different win-
dowing settings: (1) choosing window size as de-
scribed above; (2) using×4 larger window; (3)

avoiding windowing altogether. Each time we ran-
domly sampled a set of 100 concepts and tagged (by
the authors) noisy ones. A concept is considered to
be noisy if it has at least 3 words unrelated to each
other. Table 4 shows results of this test.

Reg. Window ×4 Window No windowing
P 4 18 33
P+ 4 5 21

Table 4: Percentage of noisy concepts as a function of
windowing.

We can see that while windowing is still essential
even with available parser data, using this data we
can significantly reduce windowing requirements,
allowing us to discover more concepts from the
same data.

Timing requirements are modest, considering we
parsed such large amounts of data. BNC pars-
ing took 45 minutes, and the total single-machine
processing time for the 68Gb DMOZ corpus was
4 days6. In comparison, a state-of-art supervised
parser (Charniak and Johnson, 2005) would process
the same amount of data in 1.3 years7.

7 Discussion
We have presented a framework which utilizes an
efficient fully unsupervised parser for unsupervised
pattern-based discovery of concepts. We showed
that utilization of unsupervised parser in pattern ac-
quisition not only allows successful extraction of
MWEs but also improves the quality of obtained
concepts, avoiding noise and adding new terms
missed by the parse-less approach. At the same time,
the framework remains fully unsupervised, allowing
its straightforward application to different languages
as supported by our bilingual evaluation.

This research presents one more step towards the
merging of fully unsupervised techniques for lex-
ical acquisition, allowing to extract semantic data
without strong assumptions on domain or language.
While we have aimed for concept acquisition, the
proposed framework can be also useful for extrac-
tion of different types of lexical relationships, both
among concepts and between concept terms.

6In fact, we used a PC cluster, and all 3 corpora were parsed
in 15 hours.

7Considering the reported parsing rate of 10 sentences per
second
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Abstract

Vector space models of word meaning typi-
cally represent the meaning of a word as a vec-
tor computed by summing over all its corpus
occurrences. Words close to this point in space
can be assumed to be similar to it in meaning.
But how far around this point does the region
of similar meaning extend? In this paper we
discuss two models that represent word mean-
ing as regions in vector space. Both represen-
tations can be computed from traditional point
representations in vector space. We find that
both models perform at over 95% F-score on
a token classification task.

1 Introduction

Vector space models of word meaning (Lund and
Burgess, 1996; Landauer and Dumais, 1997; Lowe,
2001; Jones and Mewhort, 2007; Sahlgren and Karl-
gren, 2005) represent words as points in a high-
dimensional semantic space. The dimensions of the
space represent the contexts in which each target
word has been observed. Distance between vec-
tors in semantic space predicts the degree of seman-
tic similarity between the corresponding words, as
words with similar meaning tend to occur in simi-
lar contexts. Because of this property, vector space
models have been used successfully both in com-
putational linguistics (Manning et al., 2008; Snow
et al., 2006; Gorman and Curran, 2006; Schütze,
1998) and in cognitive science (Landauer and Du-
mais, 1997; Lowe and McDonald, 2000; McDon-
ald and Ramscar, 2001). Given the known problems
with defining globally appropriate senses (Kilgarriff,
1997; Hanks, 2000), vector space models are espe-

cially interesting for their ability to represent word
meaning without relying on dictionary senses.

Vector space models typically compute one vec-
tor per target word (what we will call word type vec-
tors), summing co-occurrence counts over all corpus
tokens of the target. If the target word is polyse-
mous, the representation will constitute a union over
the uses or senses of the word. Such a model does
not provide information on the amount of variance
in each dimension: Do values on each dimension
vary a lot across occurrences of the target? Also, it
does not provide information on co-occurrences of
feature values in occurrences of the target. To en-
code these two types of information, we study richer
models of word meaning in vector space beyond sin-
gle point representations.

Many models of categorization in psychology
represent a concept as a region, characterized by
feature vectors with dimension weights (Smith et
al., 1988; Hampton, 1991; Nosofsky, 1986). Tak-
ing our cue from these approaches, we study two
models that represent a word as a region in vector
space rather than a point. The first model is one
that we have recently introduced for representing hy-
ponymy in vector space (Erk, 2009). We now test
its suitability as a general region model for word
meaning. This model can be viewed as a prototype-
style model that induces a region surrounding a cen-
tral vector. As it does not record co-occurrences of
feature values, we contrast it with a second model,
an exemplar-style model using a k-nearest neighbor
analysis, which can represent both degree of vari-
ance in each dimension and value co-occurrences.

Both models induce regions representations with-
out labeled data. The idea on which both models
are based is to use word token vectors to estimate a
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region representation. We evaluate the two region
models on a task of token classification: Given a
point in vector space, the task is predict the word
of which it is a token vector.

By representing the meaning of words as regions
in vector space, we can describe areas in which
points encode similar meanings. This description is
flexible, depending on the target word in question,
rather than uniform for all words through a fixed
distance threshold from the target’s type vector. One
possible application of region models of word mean-
ing is in the task of determining the appropriateness
of a paraphrase in a given context (Connor and Roth,
2007). This task is highly relevant for textual entail-
ment (Szpektor et al., 2008). Current vector space
approaches typically compare the target word’s to-
ken vector to the type vector of the potential para-
phrase (Mitchell and Lapata, 2008; Erk and Pado,
2008). A region model could instead test the tar-
get’s token vector for inclusion in the potential para-
phrase’s region.

2 Related work

This section discusses existing vector space models
and compares vector space models in computational
linguistics to feature-based models of human con-
cept representation in psychology.

Vector space models. Vector space models rep-
resent the meaning of a target word as a vector in a
high-dimensional space (Lund and Burgess, 1996;
Landauer and Dumais, 1997; Sahlgren and Karl-
gren, 2005; Padó and Lapata, 2007; Jones and Me-
whort, 2007). Dimensions stand for context items
which which the target word has been observed
to co-occur, for example other words (Lund and
Burgess, 1996) or syntactic paths (Padó and Lapata,
2007). In the simplest case, the value on a dimension
is the raw co-occurrence count between the target
word and the context item for which the dimension
stands. Raw counts are often transformed, for ex-
ample using a log-likelihood transformation (Lowe,
2001). Sometimes the vector space as a whole is
transformed using dimensionality reduction (Lan-
dauer and Dumais, 1997).

In NLP, vector space models have featured most
prominently in information retrieval (Manning et
al., 2008), but have also been used for ontology

learning (Lin, 1998; Snow et al., 2006; Gorman
and Curran, 2006) and word sense-related tasks
(McCarthy et al., 2004; Schütze, 1998). In psy-
chology, vector space models have been used to
model synonymy (Landauer and Dumais, 1997;
Padó and Lapata, 2007), lexical priming phenom-
ena (Lowe and McDonald, 2000), and similarity
judgments (McDonald and Ramscar, 2001). There
have also been studies on inducing hyponymy in-
formation from vector space representations. Gef-
fet and Dagan (2005) use a dimension re-weighting
scheme, then predict entailment when the most
highly weighted dimensions of two verbs stand in
a subset relation. However, they find that while re-
call of this method is good (whenever some senses
of two words stand in an entailment relation, top-
weighted dimensions of their vectors stand in a sub-
set relation), precision is problematic. Weeds, Weir
and McCarthy (2004) introduce the notion of distri-
butional generality (x is more distributionally gen-
eral than y if x occurs in more contexts than y) and
find that for hyponym-hypernym pairs from Word-
Net, hyponyms are typically more distributionally
general. (As they study only word pairs that are
known to be related by hyponymy, they test for recall
but not precision.) Erk (2009) suggests that while it
may not be possible to induce hyponymy informa-
tion from a vector space representation, it is possible
to encode it in a vector space representation after it
has been obtained through some other means.

Vector space models of word tokens. Vector
space models have mostly been used to represent
the meaning of a word type by summing its co-
occurrence counts over a complete corpus. There
are several approaches to computing vectors for in-
dividual word tokens. All of them compute word
type vectors first, then combine them into token vec-
tors. Kintsch (2001) and Mitchell and Lapata (2008)
combine the target’s type vector with that of a sin-
gle word in the target’s syntactic context. Lan-
dauer and Dumais (Landauer and Dumais, 1997)
and Schütze (1998) combine the type vectors of
all the words surrounding the target token. Erk
and Padó (2008) combine the target’s type vector
with a vector representing the selectional preference
of a single word in the target’s syntactic context.
Smolensky (1990) focuses on integrating syntactic
information in the vector representation rather than
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on representing the lexical meaning of the target.
Feature-based models of human concept rep-

resentation. Many models of human concept rep-
resentation in psychology are based on vectors of
features (e.g. (Smith et al., 1988; Hampton, 1991;
Nosofsky, 1986)). Features in these models are
typically weighted to represent their importance to
the concept in question. Similarity to a given fea-
ture vector is usually taken to decrease exponentially
with distance from that vector, following Shepard’s
law (Shepard, 1987). Categorization involves com-
petition between categories. Feature-based models
of human concept representation can be broadly cat-
egorized into prototype models, which represent a
concept by a single summary representation, and ex-
emplar models, which assume that categorization is
by comparison to remembered exemplars. As an ex-
ample of a feature-based model of concept represen-
tation, we show the definition of Nosofsky’s (1986)
Generalized Context Model (GCM). This exemplar
model estimates the probability of categorizing an
exemplar ~e as a member of a concept C as

P (C|~e) =

∑
~η∈C w~ηsim(~η,~e)∑

concept C′
∑

~η∈C′ w~ηsim(~η,~e)
(1)

where the concept C is a set of remembered exem-
plars, w~η is an exemplar weight, and the similarity
sim(~η,~e) between ~η and ~e is defined as

sim(~η,~e) = exp(z ·
∑

dimension i

wi(ηi − ei)2) (2)

Here, z is a general sensitivity parameter, wi is a
weight for dimension i, and ηi, ei are the values
of ~η and ~e on dimension i. This model shows all
the properties listed above: It has weighted dimen-
sions through the wi. It incorporates Shepard’s law
through the exponential relation between sim and
the sum of squared value distances wi(ηi − ei)2.
Competition between categories arises through the
normalization of ~e’s similarity to C by the similar-
ity to all other categories in Eq. (1). While feature-
based models of concept representation talk about
concepts rather than word meaning, Murphy (2002)
argues that there is “overwhelming empirical evi-
dence for the conceptual basis of word meaning”
through experimental results on conceptual phenom-
ena that have also been shown to hold for words.

Gärdenfors (2004) proposes a model that repre-
sents concepts as convex regions in a conceptual
space. Feature structures play no central role in this
model, but Gärdenfors suggests that concepts may
be represented by a central point, such that cate-
gorization could simply be determining the nearest
central point (without positing an exponential rela-
tion between distance and similarity).

3 Models

In this section, we present two models for represent-
ing word meaning as regions in vector space.

The centered model. The first model that we de-
fine, which we call the centered model, is prototype-
like. As the representation for a target word, it in-
duces a region surrounding the target’s type vec-
tor (Erk, 2009). Let w be the target word and
~w its type vector. Let ~x be a point in the same
vector space. To predict whether ~x represents the
same meaning as ~w, we estimate the probability
P (IN(~x, ~w)) that ~x is in the region around ~w, using
a log-linear model:

P (IN(~x, ~w)) =
1
Z

exp(
∑

i

β IN
i fi(~x, ~w)) (3)

where the fi are features that characterize the point
~x, and the β IN

i are weights identifying the impor-
tance of the different features for the class IN. Z is a
normalizing factor that ensures that P is a probability
distribution: If P (OUT(~x, ~w)) = 1−P (IN(~x, ~w)) is
the probability that ~x is not in the region around ~w,
with associated weights βOUT

i for the same features
fi, then Z =

∑
`=IN,OUT exp(

∑
i β

`
i fi(~x, ~w)).

We define the features fi as follows: If ~w =
〈w1, . . . , wn〉, we define the feature fi(~x, ~w), for
1 ≤ i ≤ n, as the squared distance between ~w and ~x
on dimension i:

fi(~x) = (wi − xi)2 (4)

This model, like feature-based models of catego-
rization from psychology, has weighted dimensions
through the βi. It follows Shepard’s law – the ex-
ponential relation between similarity and distance –
through the exponential function in Eq. (3). Compe-
tition between categories is implicit in the estimation
of P (OUT(~x, ~w)).

59



Most of the weights β IN
i can reasonably be ex-

pected to be negative, since a negative β IN
i indicates

that membership of a point ~x in the w-region gets
less likely as the distance (wi−xi)2 increases. If β IN

i

has a large negative value, categorization is highly
sensitive to changes in the ith dimension. If on the
other hand, β IN

i is negative but close to zero, this
means that vector entries in dimension i can vary
greatly without much influence on categorization.

The parameters β IN
i and βOUT

i need to be estimated
from training data. Although the log-likelihood
model is a supervised learning scheme, we do not
need to take recourse to labeled data. Instead, we
use token vectors: Token vectors of w will serve
as positive training data for estimating P (IN(~x, ~w)),
and token vectors of other words than w will con-
stitute negative training data. The amount of pre-
processing needed depends on the approach to com-
puting token vectors that we use. We will use an
approach that combines w’s type vector with that
of a single word in its syntactic context. This pre-
supposes a syntactic parse of the corpus. Note that
we could just as well have used a Schütze-style ap-
proach, which does not rely on parsing.

The distributed model. The second model that
we consider is an exemplar-style, instance-based
model. The simplest instance-based models are k-
nearest neighbor classifiers, which assign to a test
item the majority label of its k nearest neighbors
among the training items. We will here use a very
simple model, doing k nearest neighbor classifica-
tion where the distance between two vectors ~w and
~x is the sum of dimension distances δi with

δi =
βi|wi − xi|

maxi−mini

maxi and mini are the maximum and minimum
values observed for dimension i, and βi is a fea-
ture weight. We use a standard feature weighting
method, gain ratio, which is information gain nor-
malized by the entropy of feature values. Informa-
tion gain on its own has a bias towards features with
many values, which gain ratio attenuates in favor of
features with lower entropy:

βi =
H(C)−∑

y∈val(i) P (y)H(C|y)

−∑
y∈val(i) P (y) log2 P (y)

(5)

for the set C = {IN, OUT} of classes and sets val(i)
of values seen for dimension i. We call this the dis-
tributed model. As with the centered model, we
compare it to models of concept representation: It
has weighted dimensions (Eq. (5)), and it incorpo-
rates competition between categories by storing both
positive and negative exemplars and categorizing ac-
cording to the majority among the k nearest neigh-
bors. However, it does not implement Shepard’s law.
It additionally differs from the GCM (Eq. (1)) in bas-
ing categorization on the k nearest neighbors rather
than summed similarity to all neighbors.

Like the centered model, the distributed model
needs both positive and negative training data.
Again, labeled data is not necessary as we can use
word token vectors. Positive training data consists of
tokens of the target word, and tokens of other words
are negative training data. This model does not make
use of the target’s type vector.

Above we have discussed two pieces of informa-
tion that region models can encode and that are hard
to encode in single-point models of word meaning:
variance in each dimension and co-occurrence of
feature values. The centered model encodes the vari-
ance in the values of each dimension through the
weights β IN

i , but it does not retain information on
feature values of different dimensions that tend to
co-occur. The distributed model encodes both vari-
ance in each dimension and co-occurrence of fea-
ture values through the remembered exemplars. So
the centered model should do well for monosemous
words, since it seems reasonable that their token
vectors should form a single region around the type
vector. For polysemous words, token vectors could
be more scattered in semantic space, in which case
the distributed model should do better.

Note that neither the centered nor the distributed
model is a clustering model: Both are supervised
models learning the distinctions between tokens of
the target word and other vectors. Neither of them
groups vectors in an unsupervised fashion.

Hard versus soft region boundaries. In the
current paper, we consider only regions with sharp
boundaries. In the centered model, a point ~x
will be considered a member of the w-region if
P (IN(~x, ~w)) ≥ 0.5. In the distributed model, ~x
will be considered a member if the majority of its
k nearest neighbors are members. However, it is im-
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portant that both models can also be used to repre-
sent regions with soft boundaries. In the centered
model, we can use P (IN(~x, ~w)) without a thresh-
old. In the distributed model, we can use the fraction
of k that are positive instances, or we can compute
summed similarity to the positive instances like the
GCM does. So both models can be used to estimate
degrees of membership in a target word’s region.

4 Task, Data, and Implementation

This section describes the task used for evaluation,
the data, and the implementation of the models.

Task. The main task will be for a model trained
on a target word w to predict, for a given point ~x in
semantic space, whether ~x is a token vector of w or
not. This task is a direct test of whether the region
induced for w succeeds in characterizing the region
in semantic space in which tokens of w will occur.

As an example, consider the target word super-
sede: Region models of supersede will be trained
on tokens of supersede in a training dataset. One
such token is supersede knowledge (i.e., knowledge
as the direct object of supersede). We compute a to-
ken vector for this occurrence by combining the type
vectors of supersede and knowledge. After train-
ing a model, we test it on tokens occurring in a test
dataset. Positive test items are tokens of supersede,
and negative test items are tokens of other words, for
example guard. An example of a positive test item
is supersede collection. The test items will consist
solely of tokens that do not occur in the training data.

Data. We focus on verbs in this paper since para-
phrase appropriateness for verbs is an important task
in the context of textual entailment. Since we sus-
pect that the centered model will be better suited to
modeling monosemous words while the distributed
model should do equally well on monosemous and
polysemous words, we first test a group of monose-
mous verbs, then a mixed group. We use WordNet
3.0 to form the two groups. The first group consists
of all verbs listed in WordNet 3.0 as being monose-
mous. We refer to this set as Mon. Since we also
want to compare the two region models on the task
of hyponymy encoding (Erk, 2009), we use as our
set of mixed monosemous and polysemous verbs the
verbs used there to test hyponymy encoding: the set
of all verbs that are hypernyms of the Mon verbs ac-

cording to WordNet 3.0. We call this set Hyp.
We use the British National Corpus (BNC) to

compute the vector space and as our source of tar-
get word tokens. We need token vectors for training
the two region models, and we need separate, previ-
ously unseen token vectors as test data. So we split
the written portion of the BNC in half at random,
leaving files intact. This yielded a training and a test
set. We computed word type vectors from the train-
ing half of the BNC, using a syntax-based vector
space (Padó and Lapata, 2007) of 500 dimensions,
with raw co-occurrence counts as dimension values.
We used the dv package1 to compute type vectors
from a Minipar (Lin, 1993) parse of the BNC.

We computed token vectors by combining the tar-
get verb’s type vector with the type vector of the
word occurring as the target’s direct object. We
test three methods for combining type vectors: First,
component-wise multiplication (below called mult),
which showed best results in Mitchell and Lapata’s
(2008) analysis. Second, component-wise averag-
ing (below called avg), a variant of type vector addi-
tion, a method often used for computing token vec-
tors. Third, we consider component-wise minimum
(min), which can be viewed as a kind of intersection
of the contexts with which the two words have been
observed. We used the training half of the BNC to
extract training tokens of the target verbs, and the
test half for extracting test tokens. We used only
those verb/object pairs as test tokens that did not also
occur in the training data.

We restricted the set of verbs to avoid data sparse-
ness issues, using only verbs that occurred with at
least 50 different direct objects in the training part of
the BNC. The direct objects, in turn, were restricted
to exclude overly rare and overly frequent (and thus
potentially uninformative) items. We restricted the
direct objects to those with no more than 6,500 and
no less than 270 occurrences in Mon ∪ Hyp. The
resulting set Mon consisted of 120 verbs, and Hyp
consisted of 430 verbs.

Model implementation. We implemented the
centered model using the OpenNLP maxent pack-
age2, and the distributed model using TiMBL3 in the
IB1 setting with k = 5 nearest neighbors. We use bi-

1http://www.nlpado.de/∼sebastian/dv.html
2http://maxent.sourceforge.net/
3http://ilk.uvt.nl/timbl/
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centered distributed
Prec Rec F Prec Rec F

mult 100 73.2 84.5 29.4 47.5 36.3
avg 99.6 91.3 95.3 71.1 99.9 83.1
min 97.9 85.4 91.2 21.0 90.3 34.1

Table 1: Results: token classification for monosemous
verbs. Random baseline: Prec 0.8, Rec 49.8, F 1.6.

nary models throughout, such that the classification
task is always between IN and OUT. In training and
testing, each token vector was presented to a model
only once, ignoring the frequency of direct objects.

5 Experiments

This section reports on experiments that test the per-
formance of the two region models of word meaning
in vector space that we have presented in Sec. 3, the
centered and the distributed model.

Experiment 1: Token classification for
monosemous verbs
In the first experiment, we test whether the two
region models can identify novel tokens of the
monosemous verbs in Mon. The task is the one de-
scribed in Sec. 4. We focus on monosemous verbs
first because we suspect that the centered model
should do better here than on polysemous verbs.
Both models were trained using token vectors com-
puted from the training half of the BNC. Token vec-
tors of the target verb were treated as positive data,
and token vectors of other verbs as negative data.4

We used resampling to restrict the number of nega-
tive items used during training, using 3% of the neg-
ative items, randomly sampled.5 We use for test-
ing only those direct objects that do not also ap-
pear in the training data, yielding 6,339 positive and
1,396,552 negative test items summed over all tar-
get verbs. The case of supersede discussed in Sec. 4
is an example of a monosemous verb according to
WordNet 3.0.

Table 1 summarizes precision, recall and F-score
results. Both models easily beat the random base-

4This simplification breaks down for 6 of the 120 verbs
(5%), which are in fact synonyms. We consider this an accept-
able level of noise.

5The number of 3% was determined on a development set
constructed by further splitting the training set into training and
development portion.

centered distributed
freq. Prec Rec F Prec Rec F

mult 50-100 100 59.3 74.5 20.8 47.2 28.9
100-200 100 89.4 94.4 57.4 49.7 53.2
200-500 100 97.4 98.7 92.1 41.1 56.9

avg 50 - 100 99.5 86.6 92.6 61.6 99.8 76.2
100-200 99.7 96.6 98.1 86.3 100 92.6
200-500 100 100 100 99.1 100 99.6

min 50-100 100 82.9 90.6 17.9 92.6 30.1
100-200 98.2 88.2 93.0 25.4 89.2 39.6
200-500 86.4 90.3 88.3 42.9 80.0 55.9

Table 2: Results: token classification for monosemous
verbs, by target frequency

centered distributed
# senses Prec Rec F Prec Rec F
all 100 92.9 96.3 99.6 99.8 99.7
1 100 86.1 92.5 99.0 99.5 99.2
2-5 100 90.8 95.2 99.4 99.6 99.5
6-10 100 93.5 96.7 99.9 99.9 99.9
11-20 100 96.6 98.3 100 100 100
≥ 21 100 99.5 99.7 100 100 100

Table 3: Results: Token classification for polysemous
verbs, avg token computation. Random baseline: Prec
8.2, Rec 50.4, F 14.0.

line. The centered model shows better performance
overall than the distributed one, and the avg method
of computing token vector worked best for both
models. The centered model has extremely high
precision throughout, while the distributed model
has better recall for conditions avg and min. Ta-
ble 2 breaks down the results by the frequency of
the target verb, measured in the number of different
verb/object tokens in the training data.

Experiment 2: Token classification for
polysemous verbs

We now test how the centered and distributed mod-
els fare on the same task, but with a mixture of
monosemous and polysemous verbs. We use the
verbs in Hyp, which in WordNet 3.0 have on aver-
age 6.79 senses. For example, follow is a WordNet
hypernym of the monosemous supersede. It has 24
senses, among them comply and postdate. Among
its training tokens are follow instruction and follow
dinner. The first is probably the comply sense of fol-
low, the second the postdate sense. An example of a
test token (i.e., occurring in the test but not the train-
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ing data) is follow tea. (If tea is tea time, this is also
the postdate sense.)

We computed type vectors for the Hyp verbs and
their objects from the training half of the BNC, and
computed token vectors using the best method from
Exp. 1, avg. Again, we use for testing only those to-
kens that do not also appear in the training data. Due
to the larger amount of data, we used resampling in
the training as well as the test data, using only a ran-
dom 3% of negative tokens for testing. This yielded
25,736 positive and 670,630 negative test items.

Table 3 shows the results: The first line has the
overall results, and the following lines break down
the results by the number of senses each lemma has
in WordNet 3.0.6 Both models, centered and dis-
tributed, easily beat the random baseline. The cen-
tered model has comparable results for the Hyp as
for the Mon verbs (cf. Table 1), while the distributed
model has better results for this dataset, and better
results than the centered model. The centered model
shows a marked improvement in recall as the num-
ber of senses increases.

Experiment 3: Encoding hyponymy

We first proposed the centered model as a method
for encoding hyponymy information in a vector
space representation (Erk, 2009). Hyponymy infor-
mation from another source, in this case WordNet,
was encoded in a centered region representation of
a target verb by using tokens of the verb itself as
well as tokens from its direct hyponyms in training
the model. Negative data consisted of training data
tokens that were not occurrences of the target verb
or its direct hyponyms. In the example of the verb
follow, the positive training data would contain to-
kens of follow along with tokens of supersede and
guard, another direct hyponym of follow. Negative
training tokens would include, for example, tokens
of the word destroy. The resulting centered model,
in this case of follow, was then tested on previously
unseen tokens, for example guard purpose (a token
of a hyponym) and destroy lawn (a token of a non-
hyponym), with the task of predicting whether they
were tokens of direct hyponyms of follow or not.

6The one-sense items in Table 3 are a 43 verb subset of Mon.
The reason for the difference in performance in comparison to
Table 1 is unclear, as the two sets have similar distributions of
lemma frequencies.

centered distributed
Prec Rec F Prec Rec F
95.2 43.4 59.6 68.3 58.6 63.1

Table 4: Results: Identifying hyponyms based on ex-
tended hypernym representations, avg token computa-
tion. Random baseline: Prec 11.0, Rec 50.2, F 18.0

We now repeat this experiment with the dis-
tributed model. We use the direct hypernyms of the
verbs in Mon, with the same frequency restrictions
as above. We refer to this set of 273 verbs as DHyp.
We train one centered and one distributed model for
each verb w in DHyp. Positive training tokens for
training a model for a verb w ∈ DHyp are tokens
of w and of all sufficiently frequent children of w
in WordNet 3.0. Negative training tokens are to-
kens of other verbs in DHyp and their children. We
again sample a random 3% of the negative data dur-
ing both training and testing.

Table 4 shows the results. Both models again beat
the baseline. The distributed model shows slightly
better results overall, while the centered model has
by far the highest precision.

Discussion

Performance on monosemous verbs. For the
monosemous verbs in Exp. 1, both models succeed
in inducing regions that characterize tokens of a tar-
get word with high precision as well as high recall.
The extremely high precision of the centered model
shows that in general the region surrounding the type
vector does not contain any tokens of other verbs
than the target. Concerning the distributed model, it
is to be expected that in min, and even more so in
mult, dimension values will vary more than in avg;
this could explain the huge difference between avg
and the other two conditions for this model. It is
interesting to note that the centered model achieves
better precision, while the distributed model reaches
higher recall. Maybe it will be possible in later mod-
els to combine their strengths. The breakdown by
frequency bands in Table 2 shows that in mult and
avg, the models get strictly better with more data,
while min has a precision/recall tradeoff.

Performance on polysemous verbs. For the pol-
ysemous verbs in Exp. 2, like for the monosemous
verbs in Exp. 1, both models show excellent per-
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formance in distinguishing tokens of the target verb
from tokens of other verbs.7 The distributed model
surpasses the centered one on this dataset. However,
it is not clear that this is because the contiguous re-
gion that the centered model infers is inappropriate
for polysemous verbs. After all the centered model,
too, achieves better performance on this dataset than
on Mon. The fact that results get better with the de-
gree of polysemy, at first surprising, may indicate
that the centered model draws an overly tight bound-
ary around the type vector and that this boundary
improves when token vectors differ more, and are
at greater distance from the type vector, as should
be the case for more polysemous lemmas. Another
possible reason for the better performance of both
models is that this dataset is larger and in particular
provides a larger set of negative data.

Encoding external information in a region
model. In the hyponymy encoding task in Exp. 3,
both models successfully encode hyponymy infor-
mation in vector space representations. The cen-
tered model manages to derive a high-precision re-
gion around the type vector, while the distributed
model makes use of outliers in the training data to
achieve higher recall.

Comparing region representations to point
representations. We now compare the two region
models to existing variants of point-based vector
space models. Both region models have dimen-
sion weights, whose function is somewhat similar to
that of log-likelihood or mutual information trans-
formations of raw co-occurrence counts: to estimate
the importance of each dimension for characteriz-
ing the target word in question. However, dimension
weights in region models are computed based on to-
ken vectors, while all co-occurrence count transfor-
mations work on type vectors.

The distributed model additionally has the ability
to represent typical co-occurrences of feature values
because the training tokens are remembered in their
entirety. The most similar mechanism in point-based
vector space models is probably dimensionality re-
duction, which strives to find latent dimensions that
explain most of the variance in the data. But again,
dimensionality reduction uses type vectors while the

7The near-perfect performance in particular of the dis-
tributed model has been confirmed on a separate noun dataset.

distributed model stores token vectors, which can
show more variance than the type vectors alone.

Applications of region models. Region models
of word meaning are interesting for the task of test-
ing the appropriateness of paraphrases in context.
Previous models either used competition between
paraphrase candidates or a global similarity thresh-
old to decide whether to accept a paraphrase can-
didate (Mitchell and Lapata, 2008; Szpektor et al.,
2008). A region model of word meaning used for
the same task would still require a threshold, in this
case a threshold on membership probability, but the
regions for which membership is tested could dif-
fer in their size, and the extent of each region would
be learned individually from the data. To use the
model, for example to test whether trickle is a good
paraphrase for run in the color ran, we would test
whether the sentence-specific token vector for run
falls into the region of trickle.

6 Conclusion and outlook

In this paper, we have proposed using region models
for word meaning in vector space, predicting regions
in space in which points can be assumed to carry the
same meaning. We have studied two models, the
prototype-like centered models and the exemplar-
like distributed model, both of which are learned
without labeled data by making use of token vectors
of the target word in question. Both models show
excellent performance, with F-scores of 83%-99%,
on the task of identifying previously unseen occur-
rences of the target word.

Our aim is to to test the usability of region mod-
els for predicting paraphrase appropriateness in con-
text. The next step towards that will be to test region
models on the task of identifying synonym tokens.
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Abstract

Specifying an appropriate feature space is an
important aspect of achieving good perfor-
mance when designing systems based upon
learned classifiers. Effectively incorporat-
ing information regarding semantically related
words into the feature space is known to pro-
duce robust, accurate classifiers and is one ap-
parent motivation for efforts to automatically
generate such resources. However, naive in-
corporation of this semantic information may
result in poor performance due to increased
ambiguity. To overcome this limitation, we
introduce the interactive feature space con-
struction protocol, where the learner identi-
fies inadequate regions of the feature space
and in coordination with a domain expert adds
descriptiveness through existing semantic re-
sources. We demonstrate effectiveness on an
entity and relation extraction system includ-
ing both performance improvements and ro-
bustness to reductions in annotated data.

1 Introduction

An important natural language processing (NLP)
task is the design of learning systems which per-
form well over a wide range of domains with limited
training data. While the NLP community has a long
tradition of incorporating linguistic information into
statistical systems, machine learning approaches to
these problems often emphasize learning sophisti-
cated models over simple, mostly lexical, features.
This trend is not surprising as a primary motivation
for machine learning solutions is to reduce the man-
ual effort required to achieve state of the art perfor-

mance. However, one notable advantage of discrimi-
native classifiers is the capacity to encode arbitrarily
complex features, which partially accounts for their
popularity. While this flexibility is powerful, it often
overwhelms the system designer causing them to re-
sort to simple features. This work presents a method
to partially automate feature engineering through an
interactive learning protocol.

While it is widely accepted that classifier perfor-
mance is predicated on feature engineering, design-
ing good features requires significant effort. One un-
derutilized resource for descriptive features are ex-
isting semantically related word lists (SRWLs), gen-
erated both manually (Fellbaum, 1998) and automat-
ically (Pantel and Lin, 2002). Consider the follow-
ing named entity recognition (NER) example:

His father was rushed to [Westlake
Hospital]ORG, an arm of [Resurrection
Health Care]ORG, in west suburban
[Chicagoland]LOC.

For such tasks, it is helpful to know that west is
a member of the SRWL [Compass Direction] and
other such designations. If extracting features using
this information, we would require observing only
a subset of the SRWL in the data to learn the cor-
responding parameter. This statement suggests that
one method for learning robust classifiers is to in-
corporate semantic information through features ex-
tracted from the more descriptive representation:

His father was rushed to Westlake [Health
Care Institution], an [Subsidiary] of Resur-
rection Health Care, [Locative Preposition]
[Compass Direction] suburban Chicagoland.
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Deriving discriminative features from this rep-
resentation often results in more informative fea-
tures and a correspondingly simpler classification
task. Although effective approaches along this vein
have been shown to induce more accurate classi-
fiers (Boggess et al., 1991; Miller et al., 2004; Li and
Roth, 2005), naive approaches may instead result in
higher sample complexity due to increased ambi-
guity introduced through these semantic resources.
Features based upon SRWLs must therefore balance
the tradeoff between descriptiveness and noise.

This paper introduces the interactive feature
space construction (IFSC) protocol, which facil-
itates coordination between a domain expert and
learning algorithm to interactively define the feature
space during training. This paper describes the par-
ticular instance of the IFSC protocol where seman-
tic information is introduced through abstraction of
lexical terms in the feature space with their SRWL
labels. Specifically, there are two notable contri-
butions of this work: (1) an interactive method for
the expert to directly encode semantic knowledge
into the feature space with minimal effort and (2) a
querying function which uses both the current state
of the learner and properties of the available SRWLs
to select informative instances for presentation to
the expert. We demonstrate the effectiveness of this
protocol on an entity and relation extraction task in
terms of performance and labeled data requirements.

2 Preliminaries

Following standard notation, let x ∈ X represent
members of an input domain and y ∈ Y represent
members of an output domain where a learning al-
gorithm uses a training sample S = {(xi, yi)}mi=1

to induce a prediction function h : X → Y . We
are specifically interested in discriminative classi-
fiers which use a feature vector generating procedure
Φ(x) → x, taking an input domain member x and
generating a feature vector x. We further assume the
output assignment of h is based upon a scoring func-
tion f : Φ(X ) × Y → R such that the prediction is
stated as ŷ = h(x) = argmaxy′∈Y f(x, y′).

The feature vector generating procedure is com-
posed of a vector of feature generation functions
(FGFs), Φ(x) = 〈Φ1(x),Φ2(x), . . . ,Φn(x)〉, where
each feature generation function, Φi(x) → {0, 1},

takes the input x and returns the appropriate fea-
ture vector value. Consider the text “in west sub-
urban Chicagoland” where we wish to predict the
entity classification for Chicagoland. In this case,
example active FGFs include Φtext=Chicagoland,
ΦisCapitalized, and Φtext(−2)=west while FGFs such
as Φtext=and would remain inactive. Since we are
constructing sparse feature vectors, we use the infi-
nite attribute model (Blum, 1992).

Semantically related word list (SRWL) feature
abstraction begins with a set of variable sized
word lists {W} such that each member lexical
element (i.e. word, phrase) has at least one
sense that is semantically related to the concept
represented by W (e.g. Wcompass direction =
north, east, . . . , southwest). For the purpose of
feature extraction, whenever the sense of a lexical el-
ement associated with a particularW appears in the
corpus, it is replaced by the name of the correspond-
ing SRWL. This is equivalent to defining a FGF for
the specified W which is a disjunction of the func-
tionally related FGFs over the member lexical ele-
ments (e.g. Φtext∈Wcompass direction

= Φtext=north ∨
Φtext=east ∨ . . . ∨ Φtext=southwest).

3 Interactive Feature Space Construction

The machine learning community has become in-
creasingly interested in protocols which allow inter-
action with a domain expert during training, such as
the active learning protocol (Cohn et al., 1994). In
active learning, the learning algorithm reduces the
labeling effort by using a querying function to in-
crementally select unlabeled examples from a data
source for annotation during learning. By care-
fully selecting examples for annotation, active learn-
ing maximizes the quality of inductive information
while minimizing label acquisition cost.

While active learning has been shown to reduce
sample complexity, we contend that it significantly
underutilizes the domain expert – particularly for
complex annotation tasks. More precisely, when a
domain expert receives an instance, world knowl-
edge is used to reason about the instance and sup-
ply an annotation. Once annotated and provided for
training, the learner must recover this world knowl-
edge and incorporate it into its model from a small
number of instances, exclusively through induction.
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Learning algorithms generally assume that the
feature space and model are specified before learn-
ing begins and remain static throughout learning,
where training data is exclusively used for parameter
estimation. Conversely, the interactive feature space
construction (IFSC) protocol relaxes this static fea-
ture space assumption by using information about
the current state of the learner, properties of knowl-
edge resources (e.g. SRWLs, gazetteers, unlabeled
data, etc.), and access to the domain expert during
training to interactively improve the feature space.
Whereas active learning focuses on the labeling ef-
fort, IFSC reduces sample complexity and improves
performance by modifying the underlying represen-
tation to simplify the overall learning task.

The IFSC protocol for SRWL abstraction is pre-
sented in Algorithm 1. Given a labeled data set S,
an initial feature vector generating procedure Φ0, a
querying function Q : S × h → Sselect, and an
existing set of semantically related word lists, {W}
(line 1), an initial hypothesis is learned (line 3). The
querying function scores the labeled examples and
selects an instance for interaction (line 6). The ex-
pert selects lexical elements from this instance for
which feature abstractions may be performed (line
8). If the expert doesn’t deem any elements vi-
able for interaction, the algorithm returns to line 5.
Once lexical elements are selected for interaction,
the SRWLWε associated with each selected element
is retrieved (line 11) and refined by the expert (line
12). Using the validated SRWL definition W∗ε , the
lexical FGFs are replaced with the SRWL FGF (line
14). This new feature vector generating procedure
Φt+1 is used to train a new classifier (line 18) and
the algorithm is repeated until the annotator halts.

3.1 Method of Expert Interaction

The method of interaction for active learning is
very natural; data annotation is required regardless.
To increase the bandwidth between the expert and
learner, a more sophisticated interaction must be al-
lowed while ensuring that the expert task of remains
reasonable. We require the interaction be restricted
to mouse clicks. When using this protocol to in-
corporate semantic information, the primary tasks
of the expert are (1) selecting lexical elements for
SRWL feature abstraction and (2) validating mem-
bership of the SRWL for the specified application.

Algorithm 1 Interactive Feature Space Construction
1: Input: Labeled training data S, feature vector

generating procedure Φ0, querying function Q,
set of known SRWLs {W}, domain expert A∗

2: t← 0
3: ht ← A(Φt,S); learn initial hypothesis
4: Sselected ← ∅
5: while annotator is willing do
6: Sselect ← Q(S\Sselected, ht); Q proposes

(labeled) instance for interaction
7: Sselected ← Sselected ∪ Sselect; mark selected

examples to prevent reselection
8: Eselect ← A∗(Sselect); the expert selects lex-

ical elements for semantic abstraction
9: Φt+1 ← Φt; initialize new FGF vector with

existing FGFs
10: for each ε ∈ Eselect do
11: Retrieve word listWε

12: W∗ε ← A∗(Wε); the expert refines the ex-
isting semantic classWε for this task

13: for each Φ ∼ ε do
14: Φt+1 ← (Φt+1\Φ) ∪ ΦW∗ε ; re-

place features with SRWL features (e.g.
Φtext=ε → Φtext∈W∗ε )

15: end for
16: end for
17: t← t+ 1
18: ht ← A(Φt,S); learn new hypothesis
19: end while

20: Output: Learned hypothesis hT , final feature
space ΦT , refined semantic classes {W∗}

3.1.1 Lexical Feature Selection (Line 8)
Once an instance is selected by the querying func-

tion (line 6), the the domain expert selects lexical el-
ements (i.e. words, phrases) believed appropriate for
SRWL feature abstraction. This step is summarized
by Figure 1 for the example introduced in Section 1.

For this NER example, features extracted include
the words and bigrams which form the named en-
tity and those within a surrounding two word win-
dow. All lexical elements which have membership
to at least one SRWL and are used for feature ex-
traction are marked with a box and may be selected
by the user for interaction. In this particular case,
the system has made a mistake in classification of
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His father was rushed to [Westlake
Hospital ]ORG, an arm of [Resurrection

Health Care ]ORG, in west suburban
[Chicagoland]ORG.

Figure 1: Lexical Feature Selection – All lexical ele-
ments with SRWL membership used to derive features
are boxed. Elements used for the incorrect prediction for
Chicagoland are double-boxed. The expert may select
any boxed element for SRWL validation.

Chicagoland and the lexical elements used to derive
features for this prediction are emphasized with a
double-box for expository purposes. The expert se-
lects lexical elements which they believe will result
in good feature abstractions; the querying function
must present examples believed to have high impact.

3.1.2 Word List Validation (Lines 11 &12)
Once the domain expert has selected a lexical el-

ement for SRWL feature abstraction, they are pre-
sented with the SRWL W to validate membership
for the target application as shown in Figure 2. In
this particular case, the expert has chosen to perform
two interactions, namely for the lexical elements
west and suburban. Once they have chosen which
words and phrases will be included in this particular
feature abstraction,W is updated and the associated
features are replaced with their SRWL counterpart.
For example, Φtext=west, Φtext=north, etc. would all
be replaced with Φtext∈WA1806

later in lines 13 & 14.

A1806: southeast, northeast, south
southeast, northeast, south, north, south-
west, west, east, northwest, inland, outside

A1558: suburban, nearby, downtown
suburban, nearby, downtown, urban,
metropolitan, neighboring, near, coastal

Figure 2: Word List Validation – Completing two domain
expert interactions. Upon selecting either double-boxed
element in Figure 1, the expert validates the respective
SRWL for feature extraction.

Accurate sense disambiguation is helpful for ef-
fective SRWL feature abstraction to manage situa-
tions where lexical elements belong to multiple lists.
In this work, we first disambiguate by predicted part

of speech (POS) tags. In cases of multiple SRWL
senses for a POS, the given SRWLs (Pantel and Lin,
2002) rank list elements according their semantic
representativeness which we use to return the high-
est ranked sense for a particular lexical element.
Also, as SRWL resources emphasize recall over pre-
cision, we reduce expert effort by using the Google
n-gram counts (Brandts and Franz, 2006) to auto-
matically prune SRWLs.

3.2 Querying Function (Line 6)

A primary contribution of this work is designing an
appropriate querying function. In doing so, we look
to maximize the impact of interactions while min-
imizing the total number. Therefore, we look to
select instances for which (1) the current hypoth-
esis indicates the feature space is insufficient and
(2) the resulting SRWL feature abstraction will help
improve performance. To account for these two
somewhat orthogonal goals, we design two query-
ing functions and aggregate their results.

3.2.1 Hypothesis-Driven Querying

To find areas of the feature space which are be-
lieved to require more descriptiveness, we look to
emphasize those instances which will result in the
largest updates to the hypothesis. To accomplish
this, we adopt an idea from the active learning
community and score instances according to their
margin relative to the current learned hypothesis,
ρ(ft, xi, yi) (Tong and Koller, 2001). This results
in the hypothesis-driven querying function

Qmargin = argsort
i=1,...,m

ρ(ft, xi, yi)

where the argsort operator is used to sort the input
elements in ascending order (for multiple instance
selection). Unlike active learning, where selection
is from an unlabeled data source, the quantity of la-
beled data is fixed and labeled data is selected during
each round. Therefore, we use the true margin and
not the expected margin. This means that we will
first select instances which have large mistakes, fol-
lowed by those instances with small mistakes, and
finally instances that make correct predictions in the
order of their confidence.
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3.2.2 SRWL-Driven Querying
An equally important goal of the querying func-

tion is to present examples which will result in
SRWL feature abstractions of broad usability. Intu-
itively, there are two criteria distinguishing desirable
SRWLs for this purpose. First of all, large lists are
desirable as there are many lists of cities, countries,
corporations, etc. which are extremely informative.
Secondly, preference should be given to lists where
the distribution of lexical elements within a particu-
lar word list, ε ∈ W , is more uniform. For example,
consider W = {devour, feed on, eat, consume}.
While all of these terms belong to the same SRWL,
learning features based on eat is sufficient to cover
most examples. To derive a SRWL-driven querying
function based on these principles, we use the word
list entropy, H(W) = −∑ε∈W p(ε) log p(ε). The
querying score for a sentence is determined by its
highest entropy lexical element used for feature ex-
traction, resulting in the querying function

Qentropy = argsort
i=1,...,m

[
argmin
ε∼Φxi

−H(Wε)

]

This querying function is supported by the under-
lying assumption of SRWL abstraction is that there
exists a true feature space Φ∗(x) which is built upon
SRWLs and lexical elements but is being approxi-
mated by Φ(x), which doesn’t use semantic infor-
mation. In this context, a lexical feature provides
one bit of information to the prediction function
while a SRWL feature provides information content
proportional to its SRWL entropy H(W).

To study one aspect of this phenomena empiri-
cally, we examine the rate at which words are first
encountered in our training corpus from Section 4,
as shown by Figure 3. The first observation is
the usefulness of SRWL feature abstraction in gen-
eral as we see that when including an entire SRWL
from (Pantel and Lin, 2002) whenever the first ele-
ment of the list is encountered, we cover the unigram
vocabulary much more rapidly. The second observa-
tion is that when sentences are presented in the or-
der of the average SRWL entropy of their words, this
coverage rate is further accelerated. Figure 3 helps
explain the recall focused aspect of SRWL abstrac-
tion while we rely on hypothesis-driven querying to
target interactions for the specific task at hand.
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Figure 3: The Impact of SRWL Abstraction and SRWL-
driven Querying – The first occurrence of words occur at
a much lower rate than the first occurrence of words when
abstracted through SRWLs, particularly when sentences
are introduced as ranked by average SRWL entropy cal-
culated using (Brandts and Franz, 2006).

3.2.3 Aggregating Querying Functions
To combine these two measures, we use the Borda

count method of rank aggregation (Young, 1974) to
find a consensus between the two querying func-
tions without requiring calibration amongst the ac-
tual ranking scores. Defining the rank position of
an instance by r(x), the Borda count based querying
function is stated by

QBorda = argsort
i=1,...,m

[rmargin(xi) + rentropy(xi)]

QBorda selects instances which consider both wide
applicability through rentropy and which focus on
the specific task through rmargin.

4 Experimental Evaluation

To demonstrate the IFSC protocol on a practical ap-
plication, we examine a three-stage pipeline model
for entity and relation extraction, where the task is
decomposed into sequential stages of segmentation,
entity classification, and relation classification (Roth
and Small, 2008). Extending the standard classifi-
cation task, a pipeline model decomposes the over-
all classification into a sequence of D stages such
that each stage d = 1, . . . , D has access to the in-
put instance along with the classifications from all
previous stages, ŷ(d). Each stage of the pipeline
model uses a feature vector generating procedure
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Φ(d)(x, ŷ(0), . . . , ŷ(d−1)) → x(d) to learn a hypoth-
esis h(d). Once each stage of the pipelined classifier
is learned, predictions are made sequentially, where

ŷ = h(x) =

〈
argmax
y′∈Y(d)

f (d)
(
x(d), y′

)〉D

d=1

Each pipeline stage requires a classifier which
makes multiple interdependent predictions based on
input from multiple sentence elements x ∈ X1 ×
· · · × Xnx using a structured output space, y(d) ∈
Y(d)

1 × · · · × Y(d)
ny . More specifically, segmenta-

tion makes a prediction for each sentence word over
Y ∈ {begin, inside, outside} and constraints are
enforced between predictions to ensure that an in-
side label can only follow a begin label. Entity clas-
sification begins with the results of the segmenta-
tion classifier and classifies each segment into Y ∈
{person, location, organization}. Finally, rela-
tion classification labels each predicted entity pair
with Y ∈ {located in, work for, org based in,
live in, kill} × {left, right}+ no relation.

The data used for empirical evaluation was taken
from (Roth and Yih, 2004) and consists of 1436 sen-
tences, which is split into a 1149 (80%) sentence
training set and a 287 (20%) sentence testing set
such that all have at least one active relation. SR-
WLs are provided by (Pantel and Lin, 2002) and
experiments were conducted using a custom graphi-
cal user interface (GUI) designed specifically for the
IFSC protocol. The learning algorithm used for each
stage of the classification task is a regularized vari-
ant of the structured Perceptron (Collins, 2002). Re-
sources used to perform experiments are available at
http://L2R.cs.uiuc.edu/∼cogcomp/.

We extract features in a method similar to (Roth
and Small, 2008), except that we do not include
gazetteer features in Φ(d)

0 as we will include this
type of external information interactively. Secondly,
we use SRWL features as introduced. The segmen-
tation features include the word/SRWL itself along
with the word/SRWL of three words before and two
words after, bigrams of the word/SRWL surround-
ing the word, capitalization of the word, and capi-
talization of its neighbor on each side. Entity clas-
sification uses the segment size, the word/SRWL
members within the segment, and a window of two
word/SRWL elements on each side. Relation clas-

sification uses the same features as entity classifica-
tion along with the entity labels, the length of the
entities, and the number of tokens between them.

4.1 Interactive Querying Function
When using the interactive feature space construc-
tion protocol for this task, we require a querying
function which captures the hypothesis-driven as-
pect of instance selection. We observed that basing
Qmargin on the relation stage performs best, which
is not surprising given that this stage makes the most
mistakes, benefits the most from semantic informa-
tion, and also has many features which are similar to
features from previous stages. Therefore, we adapt
the querying function described by (Roth and Small,
2008) for the relation classification stage and define
our margin for the purposes of instance selection as

ρrelation = min
i=1,...,ny

[
fy+(x, i)− fẏ+(x, i)

]

where ẏ = argmaxy′∈Y\y fy′(x), the highest scor-
ing class which is not the true label, and Y+ =
Y\no relation.

4.2 Interactive Protocol on Entire Data Set
The first experiments we conduct uses all available
training data (i.e. |S| = 1149) to examine the im-
provement achieved with a fixed number of IFSC
interactions. A single interaction is defined by the
expert selecting a lexical element from a sentence
presented by the querying function and validating
the associated word list. Therefore, it is possible that
a single sentence may result in multiple interactions.

The results for this experimental setup are sum-
marized in Table 1. For each protocol configura-
tion, we report F1 measure for all three stages of
the pipeline. As our simplest baseline, we first train
using the default feature set without any semantic
features (Lexical Features). The second baseline
is to replace all instances of any lexical element
with its SRWL representation as provided by (Pan-
tel and Lin, 2002) (Semantic Features). The next
two baselines attempt to automatically increase pre-
cision by defining each semantic class using only the
top fraction of the elements in each SRWL (Pruned
Semantic (top {1/2,1/4})). This pruning procedure
often results in smaller SRWLs with a more precise
specification of the semantic concept.
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Pruned Pruned 50 interactions
Lexical Semantic Semantic Semantic Interactive Interactive

Features Features (top 1/2) (top 1/4) (select only) (select & validate)
Segmentation 90.23 90.14 90.77 89.71 92.24 93.43
Entity Class. 82.17 83.28 83.93 83.04 85.81 88.76
Relation Class. 54.67 55.20 56.34 56.21 59.14 62.08

Table 1: Relative performance of the stated experiments conducted over the entire available dataset. The interactive
feature construction protocol outperforms all non-interactive baselines, particularly for later stages of the pipeline
while requiring only 50 interactions.

Finally, we consider the interactive feature space
construction protocol at two different stages. We
first consider the case where 50 interactions are per-
formed such that the algorithm assumes W∗ = W ,
that is, the expert selects features for abstraction,
but doesn’t perform validation (Interactive (select
only)). The second experiment performs the entire
protocol, including validation (Interactive (select &
validate)) for 50 interactions. On the relation ex-
traction task, we observe a 13.6% relative improve-
ment over the lexical model and a 10.2% relative im-
provement over the best SRWL baseline F1 score.

4.3 Examination of the Querying Function

As stated in section 3.2, an appropriate querying
function presents sentences which will result in the
expert selecting features from that example and for
which the resulting interactions will result in a large
performance increase. The former is difficult to
model, as it is dependent on properties of the sen-
tence (such as length), will differ from user to user,
and anecdotally is negligibly different for the three
querying functions for earlier interactions. How-
ever, we are able to measure the performance im-
provement of interactions associated with different
querying functions. For our second experiment, we
evaluate the relative performance of the three query-
ing functions defined after every ten interactions in
terms of the F1 measure for relation extraction. The
results of this experiment are shown in figure 4,
where we first see that the Qrandom generally leads
to the least useful interactions. Secondly, while
Qentropy performs well early, Qmargin works bet-
ter as more interactions are performed. Finally, we
also observe that QBorda exceeds the performance
envelope of the two constituent querying functions.
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Figure 4: Relative performance of interactions generated
through the respective querying functions. We see that
Qentropy performs well for a small number of interac-
tions, Qmargin performs well as more interactions are
performed and QBorda outperforms both consistently.

4.4 Robustness to Reduced Annotation

The third set of experiments consider the relative
performance of the configurations from the first set
of experiments as the amount of available training
data is reduced. To study this scenario, we per-
form the same set of experiments with 50 interac-
tions while varying the size of the training set (e.g.
|S| = {250, 500, 600, 675, 750, 1000}), summariz-
ing the results in Figure 5. One observation is that
the interactive feature space construction protocol
outperforms all other configurations at all annota-
tion levels. A second important observation is made
when comparing these results to those presented in
(Roth and Small, 2008), where this data is labeled
using active learning. In (Roth and Small, 2008),
once 65% of the labeled data is observed, a perfor-
mance level is achieved comparable to training on
the entire labeled dataset. In this work, an interpo-
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lation of the performance at 600 and 675 labeled in-
stances implies that we achieve a performance level
comparable to training on all of the data of the base-
line learner while about 55% of the labeled data is
observed at random. Furthermore, as more labeled
data is introduced, the performance continues to im-
prove with only 50 interactions. This supports the
hypothesis that a good representation is often more
important than additional training data, even when
the data is carefully selected.
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Figure 5: Relative performance of several baseline al-
gorithm configurations and the interactive feature space
construction protocol with variable labeled dataset sizes.
The interactive protocol outperforms other baseline meth-
ods in all cases. Furthermore, the interactive protocol (In-
teractive) outperforms the baseline lexical system (Base-
line) trained on all 1149 sentences even when trained
with a significantly smaller subset of labeled data.

5 Related Work

There has been significant recent work on designing
learning algorithms which attempt to reduce annota-
tion requirements through a more sophisticated an-
notation method. These methods allow the annota-
tor to directly specify information about the feature
space in addition to providing labels, which is then
incorporated into the learning algorithm (Huang and
Mitchell, 2006; Raghavan and Allan, 2007; Zaidan
et al., 2007; Druck et al., 2008; Zaidan and Eisner,
2008). Additionally, there has been recent work us-
ing explanation-based learning techniques to encode
a more expressive feature space (Lim et al., 2007).
Amongst these works, the only interactive learning
protocol is (Raghavan and Allan, 2007) where in-

stances are presented to an expert and features are
labeled which are then emphasized by the learning
algorithm. Thus, in this case, although additional
information is provided the feature space itself re-
mains static. To the best of our knowledge, this is
the first work that interactively modifies the feature
space by abstracting the FGFs.

6 Conclusions and Future Work

This work introduces the interactive feature space
construction protocol, where the learning algorithm
selects examples for which the feature space is be-
lieved to be deficient and uses existing semantic
resources in coordination with a domain expert to
abstract lexical features with their SRWL names.
While the power of SRWL abstraction in terms of
sample complexity is evident, incorporating this in-
formation is fraught with pitfalls regarding the in-
troduction of additional ambiguity. This interactive
protocol finds examples for which the domain ex-
pert will recognize promising semantic abstractions
and for which those semantic abstraction will signif-
icantly improve the performance of the learner. We
demonstrate the effectiveness of this protocol on a
named entity and relation extraction system.

As a relatively new direction, there are many
possibilities for future work. The most immedi-
ate task is effectively quantifying interaction costs
with a user study, including the impact of includ-
ing users with varying levels of expertise. Recent
work on modeling the costs of the active learn-
ing protocol (Settles et al., 2009; Haertel et al.,
2009) provides some insight on modeling costs as-
sociated with interactive learning protocols. A sec-
ond potentially interesting direction would be to
incorporate other semantic resources such as lexi-
cal patterns (Hearst, 1992) or Wikipedia-generated
gazetteers (Toral and Muñoz, 2006).
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Abstract

In this paper we address the problem of
identifying reciprocal relationships in English.
In particular we introduce an algorithm that
semi-automatically discovers patterns encod-
ing reciprocity based on a set of simple but
effective pronoun templates. Using a set of
most frequently occurring patterns, we extract
pairs of reciprocal pattern instances by search-
ing the web. Then we apply two unsuper-
vised clustering procedures to form meaning-
ful clusters of such reciprocal instances. The
pattern discovery procedure yields an accu-
racy of 97%, while the clustering procedures
indicate accuracies of 91% and 82%. More-
over, the resulting set of 10,882 reciprocal in-
stances represent a broad-coverage resource.

1 Introduction

Reciprocity is a pervasive concept which has been
studied a lot in a wide variety of fields from ethics
to game theory where it is analyzed as a highly ef-
fective “tit for tat” strategy. The ethic of reciprocity
(also known as the golden rule), for example, is a
moral code born from social interaction: “Do onto
others as you would wish them do onto you”. The
golden rule appears in most religions and cultures as
a standard used to resolve conflicts.

According to sociologists and philosophers, the
concept of reciprocity lies at the foundation of social
organization. It strengthens and maintains social re-
lations among people, beyond the basic exchange of
useful goods. Thus, the way people conceptualize
reciprocity and the way it is expressed in language

play an important role in governing people’s behav-
ior, judgments, and thus their social interactions.

In this paper we present an analysis of the concept
of reciprocity as expressed in English and present a
way to model it. In particular we introduce an al-
gorithm that semi-automatically discovers patterns
encoding reciprocity based on a set of simple but ef-
fective pronoun templates. We then rank the identi-
fied patterns according to a scoring function and se-
lect the most frequent ones. Using these patterns we
query the web and run two unsupervised clustering
procedures to form meaningful clusters of reciprocal
pattern instances. The pattern discovery procedure
yields an accuracy of 97%, while the clustering pro-
cedures indicate accuracies of 91% and 82%. More-
over, the resulting set of 10,882 reciprocal instances
represent a broad-coverage resource.

Next we define the concept of reciprocity as ex-
pressed in English.

Reciprocity in language
The Oxford English Dictionary Online1 defines

reciprocity as “a state or relationship in which there
is mutual action, influence, giving and taking, cor-
respondence, etc., between two parties”, while in
WordNet the verb to reciprocate means “to act, feel,
or give mutually or in return”.

Reciprocity is defined as a relation between two
eventualities eo (original eventuality) and er (recip-
rocated eventuality), which can occur in various re-
ciprocal constructions. Each eventuality is an event2

or a state between two participants. Thus, the rela-
1http://www.oed.com/
2We use the term “event” to denote all those actions or ac-

tivities performed by people.
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tion of reciprocity <(eo(X, Y), er(Z, W)) describes
a situation where the eventuality er is performed “in
return” for eo. Thus, reciprocity can be seen as a
special type of causal relation.

The two arguments of each eventuality represent
the subject and the object (direct or indirect), in this
order, and they might not all be explicitely stated
in the sentence, but can be inferred. Moreover, the
participants of the two eventualities might or might
not be the same. A few such examples are presented
below with the corresponding reciprocity relations:

(1) Mary argued with Paul at the station.
<(argue with(Mary, Paul), argue with(Paul Mary)) &
<(argue with(Paul, Mary), argue with(Mary, Paul))

(2) Paul and Mary hate each other.
<(hate(Paul, Mary), hate(Mary, Paul)) &
<(hate(Mary, Paul), hate(Paul, Mary))

(3) Mary likes Paul and he likes her, too.
<(like(Mary, Paul), like(Paul, Mary)) &
<(like(Paul, Mary), like(Mary, Paul))

(4) Mary likes Paul for helping her sister.
<(help(Paul, Mary’s sister), like(Mary,Paul))3

As shown in the examples above, in English
there are two basic types of reciprocal construc-
tions: mono-clausal reciprocals (involving words
such as (to) hug, to agree/argue with, partner of, mu-
tual(ly), together, each other – examples (1) and (2))
or sentence-level reciprocals (involving two consec-
utive clauses – examples (3) and (4)). Most of the
sentence-level reciprocals are paraphrased by coor-
dinations or subordinations of two clauses with the
same or different predicate and most of the time in-
verted arguments. They might also manifest various
markers as shown in bold in the examples.

In this paper we focus only on sentence-level con-
structions when the eventualities occur in different
consecutive clauses, and when the subject – object
arguments of each eventuality are personal pronoun
pairs which occur in reverse order in each eventual-
ity. One such example is “She likes him for help-
ing her”. Here the two eventualities are like(she,
he) and help(he, she). In this example, although the
subject of the second verb is not explicitely stated,
it is easily inferred. These simplifying assumptions

3We assume here that the subject of the verb help has been
recovered and the coreference solved.

will prove very useful in the semi-supervised pat-
tern discovery procedure to ensure the accuracy of
the discovered patterns and their matched instances.

Such a resource of reciprocal event pairs can
be very useful in a number of applications, rang-
ing from question answering and textual entailment
(since reciprocal event pairs encode a type of causal
relation), to behavior analysis of social groups (to
monitor cooperation, trustworthiness and personal-
ity), and behavior prediction in negotiations.

The paper is organized as follows. In the next sec-
tion we present relevant previous work. In Section
3 we detail a semi-supervised approach of extract-
ing patterns which encode reciprocity in English. In
section 4 we extract pairs of reciprocal instances and
cluster them in meaningful clusters. In section 5 we
present the experimental data and results. Discus-
sions and conclusion are presented in Section 6.

2 Previous work

Although the concept of reciprocity has been studied
a lot in different disciplines such as social sciences
(Gergen et al., 1980), anthropology (Sahlins, 1972),
economics (Fehr and Gachter, 2000), and philoso-
phy (Becker, 1990), linguists have started to look
deeper into this problem only more recently. More-
over, to the best of our knowledge, in computational
linguistics the problem is novel.

In linguistics, most of the work on reciprocity fo-
cuses on mono-clausal reciprocal constructions, in
particular on the quantifiers each other and one an-
other (Dalrymple et al., 1998; Heim, 1991; König,
2005). Most of this work has been done by lan-
guage typologists (Maslova and Nedjalkov, 2005;
Haspelmath, 2007) who are interested in how recip-
rocal constructions of these types vary from one lan-
guage to another and they do this through compara-
tive studies of large sets of world’s languages.

In computational linguistics, our pattern discov-
ery procedure extends over previous approaches
that use surface patterns as indicators of semantic
relations between nouns or verbs ((Hearst, 1998;
Chklovski and Pantel, 2004; Etzioni et al., 2004;
Turney, 2006; Davidov and Rappoport, 2008) inter
alia). We extend over these approaches in two ways:
(i) our patterns indicate a new type of relation be-
tween verbs, (ii) instead of seed or hook words we
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use a set of simple but effective pronoun templates
which ensure the validity of the patterns extracted.

To the best of our knowledge, the rest of our
reciprocity model is novel. In particular, we use a
novel procedure which extracts pairs of reciprocal
instances and present two novel unsupervised clus-
tering methods which group the instance pairs in
meaningful ways. We also present some interesting
observations on the data thus obtained and suggest
future research directions.

3 Pattern discovery procedure

Our algorithm first discovers clusters of patterns in-
dicating reciprocity in English, and then merges the
resulting clusters to identify the final set of recipro-
cal constructions. In this section we detail the algo-
rithm and evaluate it in subsection 5.2.

3.1 Pronoun templates
In this paper we focus on reciprocal eventualities
which occur in two consecutive clauses and have
two arguments: a subject and an object. One way
to do this is to fully parse each sentence of a corpus
and identify coordinations or subordinations of two
clauses. Then identify the subject and object argu-
ments of each verb in each clause with the help of
a PropBank-style grammatical or semantic role la-
beler (Kingsbury et al., 2002) and make sure they
represent people named entities (as indicated by
proper names, personal pronouns, etc.). Since our
focus is on reciprocal constructions, we also have to
keep in mind that the verbs have to have the same
set of arguments (subject-object) in reverse order.
Thus, noun and pronoun coreference should also be
resolved at this point.

Instead of starting with such a complex and error-
prone preprocessing procedure, our algorithm con-
siders a set of pronoun templates, where personal
pronouns are anchor words (they have to be matched
as such). Each template consists of four personal
pronouns corresponding to a subject - object pair in
one clause, and a subject - object pair in the other
clause. Two such examples are

“[Part1] I [Part2] him [Part3] he [Part4] me [Part5]” and

“[Part1] they [Part2] us [Part3] we [Part4] them [Part5]”,

where [Part1] - [Part5] are partitions identifying

any sequence of words. This is an elegant proce-
dure since in English, pronouns have different cases
such as nominative and accusative4 which identify
the subject, and respectively the object of an event.
This saves us the trouble of parsing a sentence to
find the grammatical roles of each verb. In English,
there are 30 possible arrangements of nominative -
accusative case personal pronoun pairs. Thus we
built 30 pronoun templates.

This approach is similar to that of seed words
(e.g., (Hearst, 1998)) or hook words (e.g., (Davidov
and Rappoport, 2008)) in previous work. However,
in our case they are fixed and rich in grammatical in-
formation in the sense that they have to correspond
to subject - object pairs in consecutive clauses.

Since the first two pronouns in each pronoun tem-
plate belong to the first clause (C1), and the last two
to the second clause (C2), the templates can be re-
stated as [Part1] C1 [Part3] C2 [Part5], with the re-
striction that partition 3 should not contain any of
the four pronouns in the template. C1 denotes “Pro-
noun1 [Part2] Pronoun2” and C2 denotes “Pronoun3
[Part4] Pronoun4”. Partitions 2 and 4 contain the
verb phrases (and thus the eventualities) we would
like to extract. For speed and memory reasons, we
limit their size to no more than 5 words.

Moreover, since the two clauses are consecutive,
we hypothesize that they should be very close to
each other. Thus, we restrict the size of each par-
tition 1, 3, and 5 to no more than 5 words. We then
consider all possible variations of the pattern where
the size of each partition varies from 0 to 5. This re-
sults in 216 possible combinations (63). Moreover,
to ensure the accuracy of the procedure, partitions 1
and 5 should be bounded to the left and respectively
to the right by punctuation marks, parentheses, or
paragraph boundaries. An example of an instance
matched by one such pattern is “, I cooked dinner
for her and she loves me for that .”

3.2 Scoring function

One way to compute the prominence of the discov-
ered patterns would be to consider the frequency of
each of the five partitions. However, as our pre-
liminary experiments suggest, although individual

4In English, the pronouns you has the same form in nomina-
tive and accusative.
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patterns within each partition do often repeat, rank-
ing patterns spanning all three partitions (PART1,
PART3, and PART5) is problematic. Patterns with
relatively long partitions (more than 2 words each)
seldomly occur more than once in the entire corpus.
Thus frequency would produce very little differenti-
ation in ranking the patterns.

Thus we developed an alternative scoring system
in lieu of frequencies. A sequence of size n (seq(n))
is an instance of a pronoun template and a subse-
quence of size k (seq(k)) is simply a substring of the
sequence with k < n. For example, for the instance
“I love her and she loves me , too” of length 9, there
will be two subsequences of length 8: “love her and
she loves me , too” and “I love her and she loves me
,”. Taking into account the frequencies of the subse-
quences occurring within instances of each partition,
we use the following recursive scoring function (n is
the length of each subsequence of size n):

Score(seq(n)) =8><>:
Disc(freq(seq(n)))+P

seq(n−1) Disc(Score(seq(n − 1))), if n> 1
freq(seq(n)), if n= 1

(1)

In addition, in order to ensure a valid ranking
over the extracted templates with different lengths
for each partition, we need to normalize the scores
obtained for PART1, PART3, and PART5. In other
words, we need to scale the scores obtained for each
partition to discount the scores of longer partitions,
so that the maximum possible score would remain
the same regardless of how long the partition is.
So we use the following formula to compute the
discount for each of PART1, PART3, and PART5,
where n is the length of the subsequence:

Disc(Score(seq(n))) =
{

(1.0− fraction) ∗ fractionm−n

m−n+1 , if n> 1
fractionm−n

m−n+1 , if n= 1
(2)

Fraction is an empirically predetermined parame-
ter - here set to 0.5. The variable m is the length of
the entire PART1, PART3, or PART5 in question.

This allows not only the frequency of the exact
pattern to contribute to the score, but also occur-
rences of similar patterns, although to a lesser ex-
tent. And since partitions 1, 3, and 5 constitute the
salient parts of the pattern as the environment for the
two reciprocal clauses C1 and C2, we take the score

to be ranked as Score(PART1)∗Score(PART3)∗
Score(PART5).

We searched the 30 pronoun templates with var-
ious partition sizes on a 20 million word English
corpus obtained from Project Gutenberg, the largest
single collection of free electronic books (over
27,000) (http://www.gutenberg.org) and British Na-
tional Corpus (BNC), an 100 million word collec-
tion of English from spoken and written sources.
There were 2,750 instances matched which were
ranked by the scoring function. There were 1,613
distinct types of patterns which generated 1,866 dis-
tinct pattern instances. Thus, we selected the top
15 patterns, after manual validation. These patterns
represent 56% of the data (Table 1). All the other
patterns were discarded as having very low frequen-
cies and being very specific.

The manual validation was necessary in order to
collapse some of the identified instances into more
general classes. For example, the patterns “C1 and
C2 to” (e.g., “He could not hurt me and I would not
wish him to.”), “C1 and C2 in” (e.g., “I give you and
you take me in.”), and “C1 and C2 fast said Aunt
Jane” (e.g., “He will come to her and she can hold
him fast said Aunt Jane.”) were collapsed into “C1
and C2”. This procedure can be partially solved by
identifying complex verbs such as “take in”. How-
ever, we leave this improvement for future work.

Patterns Examples
C1 [, |; |.] C2 I help him; he helps me.
C1 and C2 He understands her and she understands

him.
C1 and C2 [right] back I kissed him and and he kissed me back.
C1 and C2 for that They helped us and we appreciate them

for that.
C1 and C2, too I love her and she loves me, too.
C1 when C2 He ignores her when she scolds him.
C1 whenever C2 He is there for her whenever she needs

him.
C1 because C2 They tolerate us because we helped them.
C1 as much as C2 He loves her as much as she loves him.
C1 for C2 (vb-ing) He thanked her for being patient with him.
C1 but C2 I loved her but she dumped me.
C1 for what C2 They will punish him for what he did to

them.
C1 and thus C2 She rejected him and thus he killed her.
when C1, C2 When he confronted them, they arrested

him.
C1 as long as C2 She will stay with him as long as

he doesn’t hurt her.

Table 1: The top 15 reciprocal patterns along with examples.
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4 Clustering of Reciprocal Eventualities

It seems reasonable to expect that certain reciproc-
ities could be grouped together. For example, the
language used in convincing a person of some-
thing could be characterized by verbs such as
eo = {convince, promise, assure, beg} and er =
{believe, trust, choose, forgive}.

There are many potential uses for this sort of
grouping. Having a single group label for multiple
reciprocal eventuality pairs would allow us to iden-
tify certain language patterns as a particular speech
act. Also, such clusters could be useful if one wants
to perform a macro-level analysis of reciprocity in a
specific domain. For example, examining reciprocal
language could be useful in analyzing the nature of
a social community or the theme of a literary work.
Generalizing over many similar instances, will give
us better insight into how people communicate – as
reactions (effects) to other people’s actions (causes).

Thus, in this section we present a model for clus-
tering the eventualities we extract through the pro-
cess described in the previous sections. Experimen-
tal results are presented in Section 5.

4.1 Representing the data

After obtaining these patterns, we must extract pairs
of eventualities of the form (eo, er). This involves
both reducing the clauses into a form that is seman-
tically representative of some eventuality, as well as
determining the order of the two eventualities (i.e.,
if they are asymmetric).

As shown in the previous sections, each pat-
tern contains two clauses of the form “Pronouni

[Part2/4] Pronounj”, where the first pronouns is
the subject and the second is the object. From
each clause we extract only the non-auxiliary verb,
as it carries the most meaning. We first stem the
verb and then negate it if it is preceded by not or
n’t. For example, “They do not like him because
he snubbed them” is represented as the eventualities
(eo, er) = (snub,¬like).

Certainly, we are missing important information
by excluding phrases and ignoring modality. How-
ever, these features can be difficult to capture accu-
rately, and since inaccurate input could degrade the
clustering accuracy, in this research we stick with
the important and easily-obtainable features.

4.2 Ordering the eventualities

Most patterns entail a particular ordering of the two
eventualities, corresponding to symmetric (e.g., “He
loves her and she loves him”) or asymmetric eventu-
alities (e.g., “He ignores her when she scolds him”).
In ambiguous situations (e.g., He loves her and she
loves him” and “He cheated on her and she still
loves him!”), we determine the order through clues
such as the relative temporal ordering of the verbs as
determined by their tense (e.g., past or present tense
happens before future tense) and whether the verbs
denote an action (e.g., “to chase”) or a state (e.g.,
“to love”). For this we rely on our previous work
(Girju, 2009) where we identified the order of even-
tualities based on a set of such features employed in
a semi-supervised model whose accuracy is 90.2%.

4.3 Modeling the relationships

The extracted eventuality pairs can be represented
as a bipartite graph with a node for all eo values
in one partition, a node for all er values in another
partition, and an edge between these nodes for each
(eo, er) pair. An intuitive way to cluster these even-
tualities is to find groups of nodes such that each
node in one partition has an edge to every node in
the other partition and vice versa. This is a form of
hard-clustering, as membership in a cluster is strictly
yes or no. The goal is that one could randomly pull
an eo and an er from a given cluster and the reci-
procity would be valid. For example, “help” and
“give” could both be reciprocated by either “thank”
or “like”. Thus, given a cluster, not only is there a
reciprocal relationship between verbs in the eo group
with the verbs in the er group, but there is often
a kind of similarity relationship between the verbs
within each eo or er group.

This approach gives precise and concrete relations
between verbs, but while it could be well-suited
to some applications (such as knowledge base con-
struction or automatic verb classification (Joanis et
al., 2008)5) it has disadvantages in the context of
grouping these verbs together. The clusters are small
and sparse, and the results are difficult to interpret,
as there are many overlapping clusters.

5These verb classes correspond to some extent to the Verb-
Net (Kipper et al., 2000) or FrameNet-style (Baker et al., 1998)
verb classes such as admire, judgment.
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Figure 1: A sample of our data as a bipartite graph. Some edges have
been omitted for readability. The nodes {eo=”betray”, eo=”cheat”,
er=”despise”, er=”hate”} form a cluster with our hard-clustering ap-
proach.

We instead adopt a probabilistic framework,
which allows us to relax the restrictiveness of
the clusters while retaining information about the
strength of the pairwise relations. Thus, we design
a bimodal mixture model in which we assume that
each pair of eventualities (eo, er) belongs to a latent
class z, and each class is associated with two distinct
multinomial distributions from which the two even-
tualities are independently drawn. Thus, the proba-
bility of generating a particular pair is:

P (eo, er) =
|Z|∑

k

P (eo|z = k)P (er|z = k) (3)

Each class can be thought of as a general type of
reciprocity, such as an action followed by apprecia-
tion, or an attack followed by retaliation. We should
be clear that each class is characterized not by a dis-
tribution of specific pairs, but by a distribution of
eo verbs and a distribution of er verbs. This allows
for the classification of (eo, er) pairs that do not ap-
pear in the corpus. For example, if we have not seen
the pair (slap, punch), but we know that (slap, hit)
and (kick, punch) belong to the same class, then it
is likely that (slap, punch) is in the same group.

This model can be used in a fully supervised as
well as a semi-/unsupervised setting. If some or
all of the class labels are unknown, we can learn
the model parameters using an estimator such as
Expectation-Maximization (EM) (Dempster et al.,
1977). For each eventuality pair ci in a collection
C, we update P (z = k|ci) with the following equa-
tion, which represents the E-step:

P (z|ci) ∝ P (z)P (e(ci)
o |z)P (e(ci)

r |z) (4)

In the M-step, we use the following update equa-
tions:

P (z = k) ∝ α +
|C|∑

i

P (z = k|ci) (5)

P (eo = j|z) =
β +

∑|C|
i I(e(ci)

o = j)P (z|ci)

|Eo|β +
∑

j′
∑

i I(e(ci)
o = j′)P (z|ci)

(6)

where I is a binary indicator function. The equa-
tion for P (er = j|z) is identical to that for eo, but
with er instead6.

α and β are the hyperparameters of the uniform
Dirichlet priors of P (z) and P (e∗|z). They can
be tuned to control the level of smoothing; a value
of 1.0 is equivalent to the commonly-used Laplace
smoothing (Nigam et al., 2000).

4.4 Identifying polarity words
Since we are interested in analyzing how people in-
teract, we would also like to identify the polarity
(affective value) associated with each eventuality.
Thus, we automatically identify polarity words in
both clauses. For this we consider the standard po-
larity values: Good, Bad, and Neutral.

In the next section we present in detail the results
of the evaluation.

5 Experimental data and results

5.1 Data collection
While the Gutenberg and BNC collections are use-
ful in obtaining the frequent patterns, they do not
contain a very large number of eventuality pairs
to do meaningful clustering. We thus query the
web through Google to easily obtain thousands of
examples. We queried each of the top 15 pat-
terns and all pronoun combinations thereof (e.g.
“they * us because we * them”) and took the top
500 results for each pattern/pronoun combination
(15*30*500)7. We then extracted the clauses from
the result snippets using the procedure outlined in
the previous section and ended up with 10,882 pairs

6We sometimes use the shorthand P (z) to represent P (z =
k), which is updated for each particular value of z.

7This is because Google limits traffic. However, in the future
we can acquire more instances.
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(4,403 unique pairs) since some of the queries had
less than 500 matched instances8.

5.2 Pattern discovery procedure

Since we wanted to see to what extent the 15 most
frequently occurring patterns encode reciprocity, we
selected a sample of 10 pattern instances matched
by each pattern in the text collection obtained from
the web. We presented the resulting 130 sentences
(a few patterns were not frequent on the web, so we
obtained a few less than 10 instances) to 2 judges
who evaluated them as encoding reciprocity (’yes’)
or not (’no’). The judges agreed 97% of the time.
Moreover, only 2.3% of the 130 pattern instances
did not encode reciprocity as agreed by both judges.

These statistics show that these patterns are highly
accurate indicators of reciprocity in English.

5.3 Unsupervised clustering

We can capture pattern instance clusters with no
prior labeling by initializing the EM parameters ran-
domly. In our experiments we used α = 1.0 and
β = 0.01, with varying numbers of clusters (which
we denote as k). EM is sensitive to the initial pa-
rameters and can perform poorly due to many local
maxima. We thus ran the algorithm several times,
and saved the output with the best log-likelihood.

Results from clustering with k = 6 are shown
in Table 2. The examples shown correspond to a
random sample of 10 pairs within the top 10% of
P (eo, er|cluster) within each cluster. We find that
with larger values of k such as 30 or 50, some of the
clusters become noisier, but we can capture finer-
grained clusters such as eo = {libel, defame} and
er = {sue,¬sue}.

Upon a close look at the clusters in Table 2, one
can see that each one seems to have a central theme.
Cluster 1 seems to contain mostly positive actions
reciprocated by verbs describing gratitude and ap-
preciation. Cluster 2 has to do with cognition; Clus-
ter 3 has to do with the way people communicate and
interact. Cluster 4 captures relationships of need and
desire. Cluster 5 is about love and adoration, while
Cluster 6 is about hate and other negative events, and
how they are reciprocated.

8The reciprocity dataset is available for download at
http://apfel.ai.uiuc.edu/resources.html.

Accuracy
No. instances 6 clusters 9 clusters

Top 20 90.8% 82.2%
20/100 71.7% 66.1%
20/All 34.2% 26.1%

Table 3: Cluster membership accuracy for 6 and 9 clusters.

Cluster membership is defined as argmaxc

P (eo|c) P (er|c). We took three samples of pairs:
(1) the top 20 pairs with the highest P (eo, er|c) val-
ues, (2) a random 20 of the top 10%, and (3) a ran-
dom 20 of all pairs assigned to each cluster. We pre-
sented the pairs to two judges who were asked to
identify each pair as belonging to the cluster or not
based on coherence; that is, all pairs labeled ”yes”
appear to be related in some way.

Because we fix the number of clusters, we are
making the assumption that each reciprocal pair
could be put into one of k groups, which is obviously
an assumption that will not hold true. However, if a
pair does not fit well into any of the clusters, this
should be reflected by a low probability. Thus we
can achieve decently high accuracy if we consider
only the highest-ranked pairs. The accuracy when
considering all pairs is only 34% which means that
34% of reciprocal pairs can be meaningfully placed
into only 6 groups, which is actually fairly high.

A big source of inter-annotator disagreement
comes from the ambiguity of certain verbs, which
is a weakness of our limited representation. For ex-
ample, without additional information it is not clear
how a pair like (know, ask) might relate to others.

5.4 Polarity word identification

For this procedure we used the Subjectivity Clues
(Wilson et al., 2005) which provides 8,220 entries.
From all the 10,882 eventuality pairs, 40.1% of the
total number of words were in the subjectivity lexi-
con, while 36.9% of the pairs had both words in the
subjectivity lexicon.

Table 4 shows all possible combinations of pairs
of affective values and their associated probabilities
in the corpus. These values are computed for those
pairs where both words have known polarity.

As one might expect, each polarity class is most
likely to be reciprocated by itself: Good for Good
(altruism) and Bad for Bad (retaliation). Further-
more, it is more likely that Good follows Bad (’turn
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eo er eo er eo er eo er eo er eo er

help thank know respect call tell need need love love hate hate
allow thank trust know ask give need trust adore love attack hate
invite thank tell trust tell help want need understand love attack forgive
rescue thank tell know tell tell want trust love adore slap hate
join thank know know contact tell want want teach love hurt attack

inform thank know trust meet hear help need protect love betray punish
join admire know follow follow see offer need feed love kill hate
send thank give let watch send help help challenge love hit curse

support thank let like tell ignore help trust need love treat dislike
teach owe help marry confront tell love need give love ruin shoot

Table 2: The clusters induced after running our unsupervised algorithm with k = 6 clusters. The pairs correspond to a sample of the top 10% of
pairs with the highest value of P (eo, er|cluster) for each cluster.

Good Bad Neutral Total
Good 0.90 0.18 0.29 0.63
Bad 0.09 0.82 0.08 0.29
Neutral 0.01 0.002 0.63 0.09

Table 4: All possible combinations of pairs of affective values and
their associated probabilities as found in the corpus. The numbers in the
table correspond to conditional probabilities P(rowi|colj ). The Total
column indicates the probability of each affective class (P(rowi)).

the other cheek’) than that Bad follows Good.

We experimented with incorporating polarity into
our clustering process. We defined 9 clusters for
each combination of polarity pairs, and initialized
the model by labeling the eventuality pairs where
the polarity of both words was known. We then
ran the EM process on all of the pairs, and since
the model parameters were initialized with these 9
groups, their pairs were more likely to fit into clus-
ters that matched their polarity. We found, how-
ever, that it had trouble clustering the less-common
classes – essentially, everything but (Good, Good)
and (Bad, Bad). For example, the cluster that was
initialized as (Bad, Good) ended up being dominated
by er = thanks and mostly positive-polarity words
as eo. This seems to be due to the fact that many of
these pairs included er = thanks (often in sarcasm,
as in “he thanked them for embarrassing him”). But
there are many more words associated with thanks
that are Good, thus those pairs were put into the
same group, and the Good verbs eventually overtook
the cluster. Problems such as this could perhaps be
avoided with more varied labeled data.

We selected a sample of the top 20 pair instances
for each of the 9 clusters of polarity pairs and gave
them to 2 judges who agreed 82% of the time.

6 Discussion and Conclusions

In this paper we presented an analysis of the concept
of reciprocity as expressed in English and a way to
model it. The experimental results provided nice in-
sights into the problem, but can be further improved.

We noticed that the identification of polarity
words is not always enough to capture the affect of
each eventuality. Thus, the text needs to be further
processed to identify speech acts corresponding to
each clause in the reciprocal patterns. For exam-
ple, words such as “sorry” can be classified as neg-
ative, while the entire clause “I am sorry” captures
the speech act of APOLOGY which is associated with
good intentions. As future work, we will recluster
the reciprocity pairs.

Another observation concerns the reciprocity
property of magnitude (cf. (Jackendoff, 2005))
or equivalence of value between two eventualities.
Most of the time reciprocal eventualities have the
same or similar magnitude, as the patterns identified
indicate a more or less equivalence of value – i.e.,
hugs for kisses, thanks for help. And most of these
constructions do not focus so much on the magni-
tude, but on the order in which one eventuality (the
effect) is a reaction to the other (the cause). How-
ever, a closer look at our data shows that there are
also constructions which indicate this property more
precisely. One such example is “C1 as much as C2”
where even a negation in C1 or C2 might destroy the
magnitude balance (e.g., “She does not love him as
much as he loves her.”).

We would like to study this property in more de-
tail as well. This kind of study is very important
in the analysis of people’s behavior, judgments, and
thus their social interactions.
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Abstract

Theories of human language acquisition as-
sume that learning to understand sentences is
a partially-supervised task (at best). Instead
of using ‘gold-standard’ feedback, we train
a simplified “Baby” Semantic Role Labeling
system by combining world knowledge and
simple grammatical constraints to form a po-
tentially noisy training signal. This combina-
tion of knowledge sources is vital for learn-
ing; a training signal derived from a single
component leads the learner astray. When this
largely unsupervised training approach is ap-
plied to a corpus of child directed speech, the
BabySRL learns shallow structural cues that
allow it to mimic striking behaviors found in
experiments with children and begin to cor-
rectly identify agents in a sentence.

1 Introduction

Sentence comprehension involves assigning seman-
tic roles to sentence constituents, determining who
does what to whom. How do young children be-
gin learning to interpret sentences? The structure-
mapping view of early verb and syntax acquisition
proposes that children treat the number of nouns
in the sentence as a cue to its semantic predicate-
argument structure (Fisher, 1996), and represent lan-
guage experience in an abstract format that promotes
generalization to new verbs (Gertner et al., 2006).

Theories of human language acquisition assume
that learning to understand sentences is naturally
a partially-supervised task: the fit of the learner’s
predicted meaning with the referential context and

background knowledge provides corrective feed-
back (e.g., Pinker (1989)). But this feedback must
be noisy; referential scenes provide ambiguous in-
formation about the semantic roles of sentence par-
ticipants. For example, the same participant could
be construed as an agent who ’fled’ or as a patient
who is ’chased’.

In this paper, we address this problem by de-
signing a Semantic Role Labeling system (SRL),
equipped with shallow representations of sentence
structure motivated by the structure-mapping ac-
count, that learns with no gold-standard feedback at
all. Instead, the SRL provides its own internally-
generated feedback based on a combination of world
knowledge and linguistic constraints. As a sim-
ple stand-in for world knowledge, we assume that
the learner has animacy information for some set of
nouns, and uses this knowledge to determine their
likely roles. In terms of linguistic constraints, the
learner uses simple knowledge about the possible ar-
guments verbs can appear with.

This approach has two goals. The first is to in-
form theories of language learning by investigating
the utility of the proposed internally-generated feed-
back as one component of the human learner’s tools.
Second, from an NLP and Machine Learning per-
spective we propose to inject information into a su-
pervised learning algorithm through a channel other
than labeled training data. From both perspectives,
our key question is whether the algorithm can use
these internally labeled examples to extract general
patterns that can be applied to new cases.

By building a model that uses shallow representa-
tions of sentences and minimal feedback, but that
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mimics features of language development in chil-
dren, we can explore the nature of initial representa-
tions of syntactic structure.

1.1 Background

The structure-mapping account of early verb and
syntax acquisition makes strong predictions. First,
it predicts early use of simple structural cues to sen-
tence interpretation. As soon as children can iden-
tify some nouns, they should assign different in-
terpretations to transitive and intransitive sentences,
simply by assuming that each noun in the sentence
bears a distinct semantic role. Similarly, language-
specific syntactic learning should transfer rapidly to
new verbs. Second, however, this account predicts
striking errors. In “Fred and Ginger danced”, an
intransitive verb occurs with two nouns. If chil-
dren interpret any two-noun sentence as if it were
transitive, they should mistakenly interpret the order
of two nouns in such conjoined-subject intransitive
sentences as agent-patient. Experiments with young
children support these predictions. 21-month-olds
use the number of nouns to understand sentences
containing new verbs (Yuan et al., 2007), generalize
what they have learned about transitive word-order
to new verbs (Gertner et al., 2006), and make the
predicted error, treating intransitive sentences con-
taining two nouns as if they were transitive (Gert-
ner and Fisher, 2006). By 25 months, children have
learned enough about English syntax to interpret
conjoined-subject intransitives differently from tran-
sitives (Naigles, 1990).

Our previous computational experiments with a
system for automatic semantic role labeling (Con-
nor et al., 2008) suggest that it is possible to learn
to assign basic semantic roles based on the simple
representations proposed by the structure-mapping
view. The classifier’s features were limited to lexical
information (nouns and verbs only) and the number
and order of nouns in the sentence, and trained on a
sample of child-directed speech annotated in Prop-
Bank (Kingsbury and Palmer, 2002) style. Given
this training, our classifier learned to label the first
of two nouns as an agent and the second as a patient.
Even amid the variability of casual speech, simply
representing the target word as the first or the second
of two nouns significantly boosts SRL performance
(relative to a lexical baseline) on transitive sentences

containing novel verbs. This result depends on key
assumptions of the structure-mapping view, includ-
ing abstract representations of semantic roles, and
abstract but simple representations of sentence struc-
ture. Another approach was taken by (Alishahi and
Stevenson, 2007). Their model learned to assign se-
mantic roles without prior knowledge of abstract se-
mantic roles. Instead, it relied on built-in syntactic
knowledge and a rich hierarchical representation of
semantic knowledge to learn links between sentence
structure and meaning.

However, our previous experimental design has
a serious drawback that limits its relevance to the
study of how children learn their first language.
In training, our SRL received gold standard feed-
back consisting of correctly labeled sentences. Thus
when the SRL made a mistake in identifying the se-
mantic role of any noun in a sentence, it received
feedback about the ‘true’ semantic role of this noun.
As noted above, this is an unrealistic assumption for
the input to human learners.

Here we ask whether an SRL could learn to in-
terpret simple sentences even without gold-standard
feedback by relying on world knowledge to gen-
erate its own feedback. This internally-generated
feedback was based on the following assumptions.
First, nouns referring to animate entities are likely
to be agents, and nouns referring to inanimate en-
tities are not. Second, each predicate takes at most
one agent. Such role uniqueness constraints are typ-
ically included in linguistic discussions of thematic
roles (Bresnan, 1982; Carlson, 1998). The animacy
heuristic is not always correct, of course. For ex-
ample, in “The door hit you”, an inanimate object
is the agent of action, and an animate being is the
patient. Nevertheless, it is useful for two reasons.
First, there is a strong cross-linguistic association
between agency and animacy (Aissen, 1999; Dowty,
1991). Second, from the first year of life, children
have strong expectations about the capacities of an-
imate and inanimate entities (Baillargeon et al., in
press). Given the universal tendency for speakers to
talk about animate action on less animate objects,
many sentences will present useful training data to
the SRL: In ordinary sentences such as ”You broke
it,” feedback generated based on animacy will re-
semble gold-standard feedback.
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2 Learning Model

Our learning task is similar to the full SRL task (Car-
reras and M̀arquez, 2004), except that we classify
the roles of individual words rather than full phrases.
A full automatic SRL system (e.g. (Punyakanok et
al., 2005a)) typically involves multiple stages to 1)
parse the input, 2) identify arguments, 3) classify
those arguments, and then 4) run inference to make
sure the final labeling for the full sentence does not
violate any linguistic constraints. Our simplified
BabySRL architecture essentially replaces the first
two steps with developmentally plausible heuris-
tics. Rather than identifying arguments via a learned
classifier with access to a full syntactic parse, the
BabySRL treats each noun in the sentence as a can-
didate argument and assigns a semantic role to it. A
simple heuristic collapsed compound or sequential
nouns to their final noun, an approximation of the
head noun of the noun phrase. For example, ‘Mr.
Smith’ was treated as the single noun ‘Smith’. Other
complex noun phrases were not simplified in this
way. Thus, a phrase such as ‘the toy on the floor’
would be treated as two separate nouns, ‘toy’ and
‘floor’. This represents the assumption that young
children know ‘Mr. Smith’ is a single name, but
they do not know all the predicating terms that may
link multiple nouns into a single noun phrase. The
simplified learning task of the BabySRL implements
a key assumption of the structure-mapping account:
that at the start of multiword sentence comprehen-
sion children can tell which words in a sentence are
nouns (Waxman and Booth, 2001), and treat each
noun as a candidate argument.

We further simplify the SRL task such that clas-
sification is between two macro-roles: A0 (agent)
and A1 (non-agent; all non-A0 arguments). We did
so because we reason that this simplified feedback
scheme can be primarily informative for a first stage
of learning in which learners identify how their lan-
guage identifies agents vs. non-agents in sentences.
In addition, this level of role granularity is more con-
sistent across verbs (Palmer et al., 2005).

For argument classification we use a linear clas-
sifier trained with a regularized perceptron update
rule (Grove and Roth, 2001). This learning algo-
rithm provides a simple and general linear classifier
that works well in other language tasks, and allows

us to inspect the weights of key features to determine
their importance for classification.

For the final predictions, the classifier uses
predicate-level inference to ensure coherent argu-
ment assignments. In our task the only active con-
straints are that all nouns require a tag, and that they
have unique labels, which for this restricted case of
A0 vs. not A0 means there will be only one agent.

2.1 Training and Feedback

The key feature of our BabySRL lies in the way
feedback is provided. Ordinarily, during training,
SRL classifiers predict a semantic label for an argu-
ment and receive gold-standard feedback about its
correct semantic role. Such accurate feedback is not
available for the child learner. Children must rely on
their own error-prone interpretation of events to sup-
ply feedback. This internally-generated feedback
signal is presumably derived from multiple infor-
mation sources, including the plausibility of partic-
ular combinations of argument-roles given the cur-
rent situation (Chapman and Kohn, 1978). Here
we model this process by combining background
knowledge with linguistic constraints to generate
a training signal. The ‘unsupervised’ feedback is
based on: 1) nouns referring to animate entities are
assumed to be agents, while nouns referring to inan-
imate entities are non-agents and 2) each predicate
can have at most one agent.

This internally-generated feedback bears some
similarities to Inference Based Training (Pun-
yakanok et al., 2005b). In both cases the feedback to
local supervised classifiers depends on global con-
straints. With IBT, feedback for mistakes is only
considered after global inference, but for BabySRL
the global inference is applied to the feedback itself.
Figure 1 gives an overview of the training and test-
ing procedure, making clear the distinction between
training and testing inference.

The training data were samples of parental speech
to one child (‘Sarah’; (Brown, 1973), available
via Childes (MacWhinney, 2000)). We trained
on parental utterances in samples 1 through 80,
recorded at child age 2;3-3;10 years. All verb-
containing utterances without symbols indicating
long pauses or unintelligible words were automat-
ically parsed with the Charniak parser (Charniak,
1997) and annotated using an existing SRL sys-
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tem (Punyakanok et al., 2005a). In this initial
pass, sentences with parsing errors that misidenti-
fied argument boundaries were excluded. Role la-
bels were hand-corrected using the PropBank anno-
tation scheme. The child-directed speech training
set consists of about 8300 tagged arguments over
4700 sentences, of which a majority had a single
verb and two labeled nouns1. The annotator agree-
ment on this data set ranged between 95-97% at the
level of arguments. In the current paper these role-
tagged examples provide a comparison point for the
utility of animacy-based feedback during training.

Our BabySRL did not receive these hand-
corrected semantic roles during training. Instead,
for each training example it generated its own feed-
back based in part on an animacy table. To ob-
tain the animacy table we coded the 100 most fre-
quent nouns in our corpus (which constituted less
than 15% of the total number of nouns, but 65%
of noun occurrences). We considered 84 of these
nouns to be unambiguous in animacy: Personal pro-
nouns and nouns referring to people were coded as
animate (30). Nouns referring to objects, body parts,
locations, and times, were coded as inanimate (54).
The remaining 16 nouns were excluded because they
were ambiguous in animacy (e.g., dolls, actions).

We test 3 levels of feedback representing increas-
ing amounts of linguistic knowledge used to gener-
ate internal interpretations of the sentences. Using
the animacy table, Animacy feedback (Feedback 1)
was generated as follows: for each noun in training,
if it was coded as animate it was labeled A0, if it was
coded as inanimate it was labeled A1, otherwise no
feedback was given. Because of the frequency of an-
imate nouns this gives a skewed distribution of 4091
animate agents and 1337 inanimate non-agents.

(Feedback 2) builds on Feedback 1 by adding an-
other linguistic constraint: if a noun was not found
in the animacy-table and there is another noun in the
sentence that is labeled A0, then the unknown noun
is an A1. In the training set this adds non-agent
training examples, yielding 4091 A0 and 2627 A1
examples.

Feedback 1 and Feedback 2 allow two nouns in
a sentence to be labeled with A0.Feedback 3pre-

1Corpus available athttp://l2r.cs.uiuc.edu/

˜ cogcomp

vents this; it implements a unique agent constraint
that incorporates bootstrapping to make an ‘intelli-
gent guess’ about which noun is the correct agent.
This decision is made based on the current predic-
tions of the classifier. Given a sentence with multi-
ple animate nouns, the classifier predicts a label for
each, and the one with the highest score for A0 is
declared the true agent and the rest are classified as
non-agent. Note that we cannot apply role unique-
ness to the A1 (not A0) role, given that this label en-
compasses multiple non-agent roles. This feedback
scheme, allowing at most one agent per sentence, re-
duces the number of A0 examples and increases the
number of A1 examples to 3019 A0 and 3699 A1.

2.2 Feature Sets

The basic feature we propose is the noun pattern fea-
ture (NPattern). We hypothesize that children use
the number and order of nouns to represent argument
structure. The NPattern feature indicates how many
nouns there are in the sentence and which noun the
target is. For example, in the two-noun sentence
‘Did you see it?’, ‘you’ has a feature active indicat-
ing that it is the first noun of two. Likewise, for ‘it’ a
feature is active indicating that it is the second of two
nouns. This feature is easy to compute once nouns
are identified, and does not require fine-grained part-
of-speech distinctions.

We compare the noun pattern feature to a baseline
lexical feature set (Words): the target noun and the
root form of the predicate. The NPattern feature set
includes lexical features as well as features indicat-
ing the number and order of the noun (first of two,
second of three, etc.). With gold-standard role feed-
back, (Connor et al., 2008) found that the NPattern
feature allowed the BabySRL to generalize to new
verbs: it increased the system’s tendency to predict
that the first of two nouns was A0 and the second of
two nouns A1 for verbs not seen in training.

To the extent that in child-directed speech the first
of two nouns tends to be an agent, and agents tend
to be animate, we anticipate that with the NPat-
tern feature the BabySRL will learn the same thing,
even when provided with internally-generated feed-
back based on animacy. In Connor et al. (2008) we
showed that, because this NPattern feature set repre-
sents only the number and order of nouns, with this
feature set the BabySRL reproduced the errors chil-
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Algorithm BABY SRL TRAINING

INPUT: Unlabeled Training Sentences
OUTPUT: Trained Argument Classifier

For each training sentence
Generate Internal Feedback:Find interpreted meaning

Feedback 1:Apply Animacy Heuristic
For each argument in the sentence (noun)

If noun is animate→ mark as agent
If noun is inanimate→mark as non-agent
else leave unknown

end

Feedback 2:Known agent constraint
Beginning with Feedback 1
If an agent was found

Mark all unknown arguments as non-agent

Feedback 3:Unique agent constraint
Beginning with Feedback 2
If multiple agents found

Find argument with highest agent prediction
Leave this argument an agent, mark rest as non-agent

Train Supervised Classifier
Present each argument to classifier
Update if interpreted meaning does not match
classifier prediction

end

(a) Training

Algorithm BABY SRL TESTING

INPUT: Unlabeled Testing Sentences
OUTPUT: Role labels for each argument

For each test sentence
Predict roles for each argument
Test Inference:

Find assignment to whole sentence with highest sum of
predictions that doesn’t violate uniqueness constraint

end

(b) Testing

Figure 1: BabySRL training and testing procedures. In-
ternal feedback is generated using animacy plus optional
constraints. This feedback is fed to a supervised learning
algorithm to create an agent-identification classifier.

dren make as noted in the Introduction, mistakenly
assigning agent- and non-agent roles to the first and
second nouns in intransitive test sentences contain-
ing two nouns. In the present paper, the linguistic
constraints provide an additional cause for this er-
ror. In addition, as a first step in examining recov-
ery from the predicted error, Connor et al. (2008)
added a verb position feature (VPosition) specifying
whether the target noun is before or after the verb.
Given these features, the BabySRL’s classification

of transitive and two-noun intransitive test sentences
diverged, because the gold-standard training sup-
ported the generalization that pre-verbal nouns tend
to be agents, and post-verbal nouns tend to be pa-
tients. In the present paper we include the VPosition
feature for comparison to Connor et al. (2008).

2.3 Testing

To evaluate the BabySRL we tested it with both a
held-out sample of child-directed speech, and with
constructed sentences containing novel verbs, like
those used in the experiments with children de-
scribed above. These sentences provide a more
stringent test of generalization than the customary
test on a held-out section of the data. Although the
held-out section of data contains unseen sentences,
it may contain few unseen verbs. In a held out sec-
tion of our data, 650 out of 696 test examples contain
a verb that was encountered in training. Therefore,
the customary test cannot tell us whether the system
generalizes what it learned to novel verbs.

All constructed test sentences contained a novel
verb (‘gorp’). We constructed two test sentence tem-
plates: ‘A gorps B’ and ‘A and B gorp’, where A and
B were replaced with nouns that appeared more than
twice in training. For each test sentence template we
built a test set of 100 sentences by randomly sam-
pling nouns in two different ways described next.

Full distribution : The first nouns in the test sen-
tences (A) are chosen from the set of all first nouns
in our corpus, taking their frequency into account
when sampling. The second nouns in the sentences
(B) are chosen from the set of nouns appearing as
second nouns in the sentence of our corpus. This
way of sampling the nouns will maximize the SRL’s
test performance based on the baseline feature set
of lexical information alone (Words). This is so be-
cause in our data many sentences have an animate
first noun and an inanimate second noun. Based on
these words alone the SRL could learn to predict an
A0-A1 role sequence for our test sentences. Nev-
ertheless, we expect that when the BabySRL is also
given the NPattern feature it should be able to per-
form better than this high lexical baseline.

Two animate nouns: In these test sentences the
A and B nouns are chosen from our list of animate
nouns. We chose nouns from this list that were
fairly frequent (ranging from 8 to 240 uses in the
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corpus), and that occurred roughly equally as the
first and second noun. This mimics the sentences
used in the experiments with children (e.g., “The
girl is kradding the boy!”). The lexical baseline sys-
tem’s tendency to assign an A0-A1 sequence to these
nouns should be much lower for these test sentences.
We therefore expect the contribution of the NPattern
feature to be more apparent in these test sentences.

The test sentences with novel verbs ask whether
the classifier transfers its learning about argument
role assignment to unseen verbs. Does it assume
the first of two nouns in a simple transitive sentence
(’A gorps B’) is the agent (A0) and the second is
not an agent (A1)? In (Connor et al., 2008) we
showed that a system with the same feature and rep-
resentations also over-generalized this rule to two-
noun intransitives (‘A and B gorp’), mimicking chil-
dren’s behavior. In the present paper this error is
over-determined, because the classifier learns only
an agent/non-agent contrast, and the linguistic con-
straints forbid duplicate agents in a sentence. How-
ever, for comparison to the earlier paper we test our
system on the ‘A and B gorp’ sentences as well.

3 Experimental Results

Our experiments use internally-generated feedback
to train simple, abstract structural features: the
NPattern features that proved useful with gold-
standard training in Connor et al. (2008). Sec-
tion 3.1 tests the system on agent-identification in
held-out sentences from the corpus, and demon-
strates that the animacy-based feedback is useful,
yielding SRL performance comparable to that of a
system trained with 1000 sentences of gold-standard
feedback. Section 3.2 presents the critical novel-
verb test data, demonstrating that this system repli-
cates key findings of (Connor et al., 2008) with no
gold standard feedback. Using only noisy internally-
generated feedback, the BabySRL learned that the
first of two nouns is an agent, and generalized this
knowledge to sentences with novel verbs.

3.1 Comparing Self Generated Feedback with
Gold Standard Feedback

Table 1 reports for the varying feedback schemes,
the A0 F1 performance for a system with either lex-
ical baseline feature (Words) or structural features

Feedback Words +NPattern
1. Just Animacy 0.72 0.73
2. + non A0 Inference 0.74 0.75
3. + unique A0 bootstrap 0.70 0.74
10 Gold 0.43 0.47
100 Gold 0.61 0.65
1000 Gold 0.75 0.76

Table 1: Agent identification results (A0 F1) on held-
out sections of the Sarah Childes corpus. We compare
a classifier trained with various amounts of gold labeled
data (averaging over 10 different samples at each level
of data). For noun pattern features the internally gener-
ated bootstrap feedback provides comparable accuracy to
training with between 100-1000 fully labeled examples.

(+NPattern) when tested on a held-out section of
the Sarah Childes corpus section 84-90, recorded
at child ages 3;11-4;1 years. Agent identification
based on lexical features is quite accurate given an-
imacy feedback alone (Feedback 1). As expected,
because many agents are animate, the animacy tag-
ging heuristic itself is useful. As linguistic con-
straints are added via non-A0 inference (Feedback
2), performance increases for both the lexical base-
line and NPattern feature-set, because the system ex-
periences more non-A0 training examples.

When the unique A0 constraint is added (Feed-
back 3), the lexical baseline performance decreases,
because for the first time animate nouns are being
tagged as non-agents. With this feedback the NPat-
tern feature set yields a larger improvement over lex-
ical baseline, showing that it extracts more general
patterns. We discuss the source of these feedback
differences in the novel-verb test section below.

We compared the usefulness of the internally-
generated feedback to gold-standard feedback by
training a classifier equipped with the same features
on labeled sentences. We reduced the SRL labeling
for the training sentences to the binary agent/non-
agent set, and trained the classifier with 10, 100,
or 1000 labeled examples. Surprisingly, the simple
feedback derived from 84 nouns labeled with ani-
macy information yields performance equivalent to
between 100 and 1000 hand-labeled examples.
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Full Distribution Nouns Animate Nouns
Feedback Words NPattern VPosition Words NPattern VPosition

‘A gorps B’
1. Animacy 0.86 0.86 0.87 0.76 0.79 0.70
2. + non A0 Inference 0.87 0.92 0.90 0.63 0.86 0.85
3. + unique A0 bootstrap 0.87 0.95 0.89 0.63 0.82 0.66

‘A and B gorp’
1. Animacy 0.86 0.86 0.84 0.76 0.79 0.68
2. + non A0 Inference 0.87 0.92 0.85 0.63 0.86 0.66
3. + unique A0 bootstrap 0.87 0.95 0.86 0.63 0.82 0.63

Table 2: Percentage of sentences interpreted as agent first (%A0-A1) by the BabySRL when trained on unlabeled data
with the 3 internally-generated feedback schemes described in the text. Two different two-noun sentence structures
were used (‘A gorps B’, ‘A and B gorp’), along with two different methods of sampling the nouns (Full Distribution,
Animate Nouns) to create test sets with 100 sentences each.

3.2 Comparing Structural Features with
Lexical Features

The previous section shows that the BabySRL
equipped with simple structural features can use
internally generated feedback to learn a simple
agent/non-agent classification, and apply it to un-
seen sentences. In this section we probe what the
SRL has learned by testing generalization to new
verbs in constructed sentences. Table 2 summarizes
these experiments. The results are broken down both
by what sentence structure is used in test (‘A gorps
B’, ‘A and B gorp’) and how the nouns ‘A’ and
‘B’ are sampled (Full Distribution, Animate Nouns).
The results are presented in terms of %A0A1: the
percentage of test sentences that are assigned an
Agent role for ‘A’ and a non-Agent role for ‘B’.

For the transitive ‘A gorps B’ sentences, A0A1 is
the correct interpretation; A should be the agent. As
predicted, when A and B are sampled from the full
distribution of nouns, simply basing classification on
the Words feature-set already strongly predicts this
A0A1 ordering for the majority of cases. This is be-
cause the data (language in general, child directed
speech in particular here) are naturally distributed
such that particular nouns that refer to animates tend
to be agents, and tend to appear as first nouns, and
those that refer to inanimates tend to be non-agents
and second nouns. Thus, a learner representing sen-
tence information in terms of words only succeeds
with full-distribution ’A gorps B’ test sentences even
with the simplest animacy feedback (Feedback 1);

the A and B nouns in these test sentences reproduce
the learned distribution. Also as predicted, given this
simple feedback, the additional higher-level features
(NPattern, VPosition) do not improve much upon
the lexical baseline. This is due to the strictly lexical
nature of the animacy feedback: each lexical item
(e.g., ’you’ or ’it’) will always either be animate or
inanimate and therefore either A0 or A1. Therefore,
in this case lexical features are the best predictors.

Also as expected, higher-level features (NPat-
tern, and VPosition) improve performance with a
more sophisticated self-generated feedback scheme.
Adding inferred feedback to label unknown nouns
as A1 when the sentence contains a known animate
noun (Feedback 2) decreases the ratio of A0 to non-
A0 arguments. This feedback is less lexically deter-
mined: for nouns whose animacy is unknown, feed-
back will be provided only if there is another ani-
mate noun in the sentence. This leaves room for the
abstract structural features to play a role.

Next we test a form of the unique-A0 constraint.
In (Feedback 3), in addition to the non-A0 inference
added in (Feedback 2), the BabySRL intelligently
selects one noun as A0 in sentences with multiple
animate nouns. With this feedback we see a striking
increase in test performance based on the noun pat-
tern features over the lexical baseline. In principle,
this feedback mechanism might permit the classifier
to start to learn that animate nouns are not always
agents. Early in training, the noun pattern feature
learns that first nouns tend to be animate (and there-
fore interpreted as agents), and it feeds this informa-
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tion back into subsequent training examples, gen-
erating new feedback that continues to interpret as
agents those animate nouns that appear first in sen-
tences containing two animates.

For the nouns sampled from the full distribution
we see that structural features improve over the lex-
ical baseline despite the high performance of the
lexical baseline. This finding tells us that simple
representations of sentence structure can be use-
ful in learning to interpret sentences even with no
gold-standard training. Provided only with sim-
ple internally-generated feedback based on animacy
knowledge and linguistic constraints, the BabySRL
learned that the first of two nouns tends to be an
agent, and the second of two does not.

The results for the ‘A B gorp’ test sentences
demonstrate an important way in which predictions
based on different simple structure representations
can diverge. As expected, the NPattern feature
makes the same overgeneralization error seen by
children and the system in (Connor et al., 2008).
However, when the VPosition feature is added, dif-
ferent results are obtained for the ‘A gorp B’ and
‘A and B gorp’ sentences. The SRL predicts fewer
A0A1 for ‘A and B gorp’ (it cannot predict the ex-
pected A0A0 because of the uniqueness constraint
used in test inference).

Next, we replicate our findings by performing the
same experiments with test sentences in which both
‘A’ and ‘B’ are animate. Because lexical features
alone cannot determine if ‘A’ or ‘B’ should be the
agent, it is a more sensitive test of generalization.

When we look at the lexical baseline for animate
sentences, the agent-first percentage is lower com-
pared to the full distribution results, because the
word features indicate nearly evenly that both nouns
should be agents, so the Words baseline model must
rely on small, chance differences in its experience
with particular words. This percentage is still well
above chance due to the method used to apply in-
ference during testing. Recall that the classifier uses
predicate-level inference at test to ensure that only
one argument is labeled A0. This inference is imple-
mented using a beam search that looks at arguments
in a fixed order and roles from A0 up. Thus in the
case of ties there is a preference for first seen solu-
tions, meaning A0A1 in this case. This bias has a
large effect on the SRL’s baseline performance with

the test sentences containing two animate nouns.
Despite this high baseline, however, because lexical
features alone cannot determine if ‘A’ or ‘B’ should
be the agent, we are able to see more clearly the im-
provement gained by including structural features.

Regardless of our testing scheme, we see that as
the feedback incorporates more information, both
added linguistic constraints and the SRL’s own prior
learning, the noun pattern structural feature is better
used to identify agents beyond the lexical baseline.
The largest improvement over this lexical baseline is
obtained by combining knowledge of animacy with
a single-agent constraint and bootstrapping predic-
tions based on prior learning.

4 Conclusion and Future Work

Conventional approaches to supervised learning re-
quire creating large amounts of hand-labeled data.
This is labor-intensive, and limits the relevance of
the work to the study of how children learn lan-
guages. Children do not receive perfect feedback
about sentence interpretation. Here we found that
our simple SRL classifier can, to a surprising de-
gree, attain performance comparable to training with
1000 sentences of labeled data. This suggests that
fully labeled training data can be supplemented by a
combination of simple world knowledge (animates
make good agents) and linguistic constraints (each
verb has only one agent). The combination of these
sources provides an informative training signal that
allows our BabySRL to learn a high-level seman-
tic task and generalize beyond the training data we
provided to it. The SRL learned, based on the dis-
tribution of animates in sentences of child-directed
speech, that the first of two nouns tends to be an
agent. It did so based on representations of sentence
structure as simple as the ordered set of nouns in
the sentence. This demonstrates that it is possible to
learn how to correctly assign semantic roles based
on these very simple cues. This together with exper-
imental work (e.g. (Fisher, 1996) suggests that such
representations might play a role in children’s early
sentence comprehension.
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Abstract

We propose a novel machine learning task that
consists in learning to predict which words in
a text are fixated by a reader. In a first pilot
experiment, we show that it is possible to out-
perform a majority baseline using a transition-
based model with a logistic regression classi-
fier and a very limited set of features. We also
show that the model is capable of capturing
frequency effects on eye movements observed
in human readers.

1 Introduction

Any person engaged in normal skilled reading pro-
duces an alternating series of rapid eye movements
and brief fixations that forms a rich and detailed be-
havioral record of the reading process. In the last
few decades a great deal of experimental evidence
has accumulated to suggest that the eye movements
of readers are reflective of ongoing language pro-
cessing and thus provide a useful source of infor-
mation for making inferences about the linguistic
processes involved in reading (Clifton et al., 2007).
In psycholinguistic research, eye movement data is
now commonly used to study how experimental ma-
nipulations of linguistic stimuli manifest themselves
in the eye movement record.

Another related strand of research primarily at-
tempts to understand what determines when and
where the eyes move during reading. This line of
research has led to mathematically well specified ac-
counts of eye movement control in reading being
instantiated as computational models (Legge et al.,
1997; Reichle et al., 1998; Salvucci, 2001; Engbert

et al., 2002; McDonald et al., 2005; Feng, 2006;
Reilly and Radach, 2006; Yang, 2006). (For a re-
cent overview, see (Reichle, 2006).) These models
receive text as input and produce predictions for the
location and duration of eye fixations, in approxima-
tion to human reading behavior. Although there are
substantial differences between the various models,
they typically combine both mechanisms of visuo-
motor control and linguistic processing. Two impor-
tant points of divergence concern the extent to which
language processing influences eye movements and
whether readers process information from more than
one word at a time (Starr and Rayner, 2001). More
generally, the models that have emerged to date are
based on different sets of assumptions about the un-
derlying perceptual and cognitive mechanisms that
control eye movements. The most influential model
so far, the E-Z Reader model (Reichle et al., 1998;
Reichle et al., 2003; Pollatsek et al., 2006), rests on
the assumptions that cognitive / lexical processing is
the engine that drives the eyes through the text and
that words are identified serially, one at a time.

Although eye movement models typically have
parameters that are fitted to empirical data sets, they
are not based on machine learning in the standard
sense and their predictions are hardly ever tested on
unseen data. Moreover, their predictions are nor-
mally averaged over a whole group of readers or
words belonging to a given frequency class. In this
study, however, we investigate whether saccadic eye
movements during reading can be modeled using
machine learning. The task we propose is to learn
to predict the eye movements of an individual reader
reading a specific text, using as training data the eye
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movements recorded for the same person reading
other texts.

Predicting the eye movements of an individual
reader on new texts is arguably a hard problem, and
we therefore restrict the task to predicting word-
based fixations (but not the duration of these fixa-
tions) and focus on a first pilot experiment inves-
tigating whether we can outperform a reasonable
baseline on this task. More precisely, we present ex-
perimental results for a transition-based model, us-
ing a log-linear classifier, and show that the model
significantly outperforms the baseline of always pre-
dicting the most frequent saccade. In addition, we
show that even this simple model is able to capture
frequency effects on eye movements observed in hu-
man readers.

We want to emphasize that the motivation for this
modeling experiment is not to advance the state of
the art in computational modeling of eye movements
during reading. For this our model is far too crude
and limited in scope. The goal is rather to propose a
novel approach to the construction and evaluation of
such models, based on machine learning and model
assessment on unseen data. In doing this, we want
to establish a reasonable baseline for future research
by evaluating a simple model with a restricted set
of features. In future studies, we intend to inves-
tigate how results can be improved by introducing
more complex models as well as a richer feature
space. More generally, the machine learning ap-
proach explored here places emphasis on modeling
eye movement behavior with few a priori assump-
tions about underlying cognitive and physiological
mechanisms.

The rest of the paper is structured as follows. Sec-
tion 2 provides a brief background on basic charac-
teristics of eye movements in reading. The emphasis
is on saccadic eye movements rather than on tempo-
ral aspects of fixations. Section 3 defines the novel
task of learning to predict fixations during reading
and discusses different evaluation metrics for this
task. Section 4 presents a transition-based model
for solving this task, using a log-linear classifier to
predict the most probable transition after each fixa-
tion. Section 5 presents experimental results for the
model using data from the Dundee corpus (Kennedy
and Pynte, 2005), and Section 6 contains conclu-
sions and suggestions for future research.

2 Eye Movements in Reading

Perhaps contrary to intuition, the eyes of readers do
not move smoothly across a line or page of text. It is
a salient fact in reading research that the eyes make
a series of very rapid ballistic movements (called
saccades) from one location to another. In between
saccades, the eyes remain relatively stationary for
brief periods of time (fixations). Most fixations last
about 200-300 ms but there is considerable variabil-
ity, both between and within readers. Thus, some
fixations last under 100 ms while others last over
500 ms (Rayner, 1998). Much of the variability in
fixation durations appears associated to processing
ease or difficulty.

The number of characters that is within the re-
gion of effective vision on any fixation is known as
the perceptual span. For English readers, the per-
ceptual span extends approximately four characters
to the left and fifteen characters to the right of the
fixation. Although readers fixate most words in a
text, many words are also skipped. Approximately
85% of the content words are fixated and 35% of
the function words (Carpenter and Just, 1983). Vari-
ables known to influence the likelihood of skipping
a word are word length, frequency and predictabil-
ity. Thus, more frequent words in the language are
skipped more often than less frequent words. This is
true also when word length is controlled for. Simi-
larly, words that occur in constrained contexts (and
are thus more predictable) are skipped more often
than words in less constrained contexts.

Although the majority of saccades in reading is
relatively local, i.e., target nearby words, more dis-
tant saccades also occur. Most saccades move the
eyes forward approximately 7–9 character spaces.
Approximately 15% of the saccades, however, are
regressions, in which the eyes move back to earlier
parts of the text (Rayner, 1998). It has long been
established that the length of saccades is influenced
by both the length of the fixated word and the word
to the right of the fixation (O’Regan, 1979). Re-
gressions often go back one or two words, but occa-
sionally they stretch further back. Such backward
movements are often thought to reflect linguistic
processing difficulty, e.g., because of syntactic pars-
ing problems. Readers, however, are often unaware
of making regressions, especially shorter ones.
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3 The Learning Task

We define a text T as a sequence of word tokens
(w1, . . . , wn), and we define a fixation sequence
F for T as a sequence of token positions in T
(i1, . . . , im) (1 < ik < n). The fixation set S(F )
corresponding to F is the set of token positions that
occur in F . For example, the text Mary had a lit-
tle lamb is represented by T = (Mary, had, a, little,
lamb); a reading of this text where the sequence of
fixations is Mary – little – Mary – lamb is repre-
sented by F = (1, 4, 1, 5); and the corresponding
fixation set is S(F ) = {1, 4, 5}.

The task we now want to consider is the one
of predicting the fixation sequence F for a spe-
cific reading event E involving person P reading
text T . The training data consist of fixation se-
quences F1, . . . , Fk for reading events distinct from
E involving the same person P but different texts
T1, . . . , Tk. The performance of a model M is eval-
uated by comparing the predicted fixation sequence
FM to the fixation sequence FO observed in a read-
ing experiment involving P and T . Here are some
of the conceivable metrics for this evaluation:

1. Fixation sequence similarity: How similar
are the sequences FM and FO, as measured, for
example, by some string similarity metric?

2. Fixation accuracy: How large is the agree-
ment between the sets S(FM ) and S(FO), as
measured by 0-1-loss over the entire text, i.e.,
how large is the proportion of positions that are
either in both S(FM ) and S(FO) (fixated to-
kens) or in neither (skipped tokens). This can
also be broken down into precision and recall
for fixated and skipped tokens, respectively.

3. Fixation distributions: Does the model pre-
dict the correct proportion of fixated and
skipped tokens, as measured by the difference
between |S(FM )|/|T | and |S(FO)|/|T |? This
can also be broken down by frequency classes
of words, to see if the model captures frequency
effects reported in the literature.

These evaluation metrics are ordered by an implica-
tional scale from hardest to easiest. Thus, a model
that correctly predicts the exact fixation sequence
also makes correct predictions with respect to the

set of words fixated and the number of words fixated
(but not vice versa). In the same fashion, a model
that correctly predicts which words are fixated (but
not the exact sequence) also correctly predicts the
number of words fixated.

In the experiments reported in Section 5, we will
use variants of the latter two metrics and compare
the performance of our model to the baseline of al-
ways predicting the most frequent type of saccade
for the reader in question. We will report results
both for individual readers and mean scores over all
readers in the test set. The evaluation of fixation se-
quence similarity (the first type of metric) will be
left for future work.

4 A Transition-Based Model

When exploring a new task, we first have to decide
what kind of model to use. As stated in the introduc-
tion, we regard this as a pilot experiment to establish
the feasibility of the task and have therefore chosen
to start with one of the simplest models possible and
see whether we can beat the baseline of always pre-
dicting the most frequent saccade. Since the task
consists in predicting a sequence of different actions,
it is very natural to use a transition-based model,
with configurations representing fixation states and
transitions representing saccadic movements. Given
such a system, we can train a classifier to predict the
next transition given the information in the current
configuration. In order to derive a complete tran-
sition sequence, we start in an initial configuration,
representing the reader’s state before the first fixa-
tion, and repeatedly apply the transition predicted by
the classifier until we reach a terminal state, repre-
senting the reader’s state after having read the entire
text. At an abstract level, this is essentially the same
idea as in transition-based dependency parsing (Ya-
mada and Matsumoto, 2003; Nivre, 2006; Attardi,
2006). In the following subsections, we discuss the
different components of the model in turn, including
the transition system, the classifier used, the features
used to represent data, and the search algorithm used
to derive complete transition sequences.

4.1 Transition System

A transition system is an abstract machine consist-
ing of a set of configurations and transitions between
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configurations. A configuration in the current sys-
tem is a triple C = (L,R, F ), where

1. L is a list of tokens representing the left con-
text, including the currently fixated token and
all preceding tokens in the text.

2. R is a list of tokens representing the right con-
text, including all tokens following the cur-
rently fixated token in the text.

3. F is a list of token positions, representing the
fixation sequence so far, including the currently
fixated token.

For example, if the text to be read is Mary had a
little lamb, then the configuration

([Mary,had,a,little], [lamb], [1,4])

represents the state of a reader fixating the word little
after first having fixated the word Mary.

For any text T = w1 . . . wn, we define initial and
terminal configurations as follows:

1. Initial: C = ([ ], [w1, . . . , wn], [ ])

2. Terminal: C = ([w1, . . . , wn], [ ], F )
(for any F )

We then define the following transitions:1

1. Progress(n):
([λ|wi], [wi+1, . . . , wi+n|ρ], [φ|i])⇒
([λ|wi, wi+1, . . . , wi+n], ρ, [φ|i, i+n])

2. Regress(n):
([λ|wi−n, . . . , wi−1, wi], ρ, [φ|i])⇒
([λ|wi−n], [wi−n+1, . . . , wi|ρ], [φ|i, i−n])

3. Refixate:
([λ|wi], ρ, [φ|i])⇒ ([λ|wi], ρ, [φ|i, i])

The transition Progress(n) models progressive sac-
cades of length n, which means that the next fixated
word is n positions forward with respect to the cur-
rently fixated word (i.e., n−1 words are skipped).
In a similar fashion, the transition Regress(n) mod-
els regressive saccades of length n. If the parameter

1We use the variables λ, ρ and φ for arbitrary sublists of L,
R and F , respectively, and we write the L and F lists with their
tails to the right, to maintain the natural order of words.

n of either Progress(n) or Regress(n) is greater than
the number of words remaining in the relevant di-
rection, then the longest possible movement is made
instead, in which case Regress(n) leads to a terminal
configuration while Progress(n) leads to a configu-
ration that is similar to the initial configuration in
that it has an empty L list. The transition Refixate,
finally, models refixations, that is, cases where the
next word fixated is the same as the current.

To illustrate how this system works, we may con-
sider the transition sequence corresponding to the
reading of the text Mary had a little lamb used as
an example in Section 3:2

Init ⇒ ([ ], [Mary, . . . , lamb], [ ])
P(1) ⇒ ([Mary], [had, . . . , lamb], [1])
P(3) ⇒ ([Mary, . . . , little], [lamb], [1,4])
R(3) ⇒ ([Mary], [had, . . . , lamb], [1,4,1])
P(4) ⇒ ([Mary, . . . , lamb], [ ], [1,4,1,5])

4.2 Learning Transitions

The transition system defined in the previous section
specifies the set of possible saccade transitions that
can be executed during the reading of a text, but it
does not say anything about the probability of dif-
ferent transitions in a given configuration, nor does
it guarantee that a terminal configuration will ever
be reached. The question is now whether we can
learn to predict the most probable transition in such
a way that the generated transition sequences model
the behavior of a given reader. To do this we need
to train a classifier that predicts the next transition
for any configuration, using as training data the ob-
served fixation sequences of a given reader. Before
that, however, we need to decide on a feature repre-
sentation for configurations.

Features used in this study are listed in Table 1.
We use the notation L[i] to refer to the ith token
in the list L and similarly for R and F . The first
two features refer to properties of the currently fix-
ated token. Length is simply the character length
of the word, while frequency class is an index of
the word’s frequency of occurrence in representative
text. Word frequencies are based on occurrences in
the Bristish National Corpus (BNC) and divided into

2We abbreviate Progress(n) and Regress(n) to P(n) and
R(n), respectively.
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Feature Description
CURRENT.LENGTH The length of the token L[1]
CURRENT.FREQUENCYCLASS The frequency class of the token L[1]
NEXT.LENGTH The length of the token R[1]
NEXT.FREQUENCYCLASS The frequency class of the token R[1]
NEXTPLUSONE.LENGTH The length of the token R[2]
NEXTPLUSTWO.LENGTH The length of the token R[3]
DISTANCE.ONETOTWO The distance, in tokens, between F [1] and F [2]
DISTANCE.TWOTOTHREE The distance, in tokens, between F [2] and F [3]

Table 1: Features defined over fixation configurations. The notation L[i] is used to denote the ith element of list L.

five classes. Frequencies were computed per million
words in the ranges 1–10, 11–100, 101–1000, 1001–
10000, and more than 10000.

The next four features define features of tokens
to the right of the current fixation. For the to-
ken immediately to the right, both length and fre-
quency are recorded whereas only length is con-
sidered for the two following tokens. The last
two features are defined over tokens in the fixa-
tion sequence built thus far and record the history
of the two most recent saccade actions. The first
of these (DISTANCE.ONETOTWO) defines the sac-
cade distance, in number of tokens, that led up
to the token currently being fixated. The second
(DISTANCE.TWOTOTHREE), defines the next most
recent saccade distance, that led up to the previous
fixation. For these two features the following holds.
If the distance is positive, the saccade is progressive,
if the distance is negative, the saccade is regressive,
and if the distance amounts to zero, the saccade is a
refixation.

The small set of features used in the current model
were chosen to reflect experimental evidence on eye
movements in reading. Thus, for example, as noted
in section 2, it is a well-documented fact that short,
frequent and predictable words tend to be skipped.
The last two features are included in the hope of
capturing some of the dynamics in eye movement
behavior, for example, if regressions are more likely
to occur after longer progressive saccades, or if the
next word is skipped more often if the current word
is refixated. Still, it is clear that this is only a tiny
subset of the feature space that might be considered,
and it remains an important topic for future research
to further explore this space and to study the impact

of different features.
Given our feature representation, and given some

training data derived from reading experiments, it
is straightforward to train a classifier for predicting
the most probable transition out of any configura-
tion. There are many learning algorithms that could
be used for this purpose, but in the pilot experiments
we only make use of logistic regression.

4.3 Search Algorithm

Once we have trained a classifier f that predicts the
next transition f(C) out of any configuration C, we
can simulate the eye movement behavior of a person
reading the text T = (w1, . . . , wn) using the follow-
ing simple search algorithm:

1. Initialize C to ([ ], [w1, . . . , wn], [ ]).

2. While C is not terminal, apply f(C) to C.

3. Return F of C.

It is worth noting that search will always terminate
once a terminal configuration has been reached, even
though there is nothing in the transition system that
forbids transitions out of terminal configurations. In
other words, while the model itself allows regres-
sions and refixations after the last word of the text
has been fixated, the search algorithm does not. This
seems like a reasonable approximation for this pilot
study.

5 Experiments

5.1 Experimental Setup

The experiments we report are based on data from
the English section of the Dundee corpus. This sec-
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Fixation Accuracy Fixations Skips
Reader # sentences Baseline Model Prec Rec F1 Prec Rec F1

a 136 53.3 70.0 69.9 73.8 71.8 69.0 65.8 67.4
b 156 55.7 66.5 65.2 85.8 74.1 70.3 80.4 75.0
c 151 59.9 70.9 72.5 82.8 77.3 67.4 53.1 59.4
d 162 69.0 78.9 84.7 84.8 84.7 66.0 65.8 65.9
e 182 51.7 71.8 69.1 78.4 73.5 75.3 65.2 69.9
f 157 63.5 67.9 70.9 83.7 76.8 58.7 40.2 47.7
g 129 43.3 56.6 49.9 80.8 61.7 72.2 38.1 49.9
h 143 57.6 66.9 69.4 76.3 72.7 62.8 54.3 58.2
i 196 56.4 69.1 69.6 80.3 74.6 68.2 54.7 60.7
j 166 66.1 76.3 82.2 81.9 82.0 65.0 65.4 65.2

Average 157.8 57.7 69.5 70.3 80.9 75.2 67.5 58.3 62.6

Table 2: Fixation and skipping accuracy on test data; Prec = precision, Rec = recall, F1 = balanced F measure.

tion contains the eye tracking record of ten partici-
pants reading editorial texts from The Independent
newspaper. The corpus contains 20 texts, each of
which were read by all participants. Participants also
answered a set of multiple-choice comprehension
questions after having finished reading each text.
The corpus consists of 2379 sentences, 56212 tokens
and 9776 types. The data was recorded using a Dr.
Bouis Oculometer Eyetracker, sampling the position
of the right eye every millisecond (see Kennedy and
Pynte, 2005, for further details).

For the experiments reported here, the corpus was
divided into three data sets: texts 1-16 for training
(1911 sentences), texts 17-18 for development and
validation (237 sentences), and the last two texts 19-
20 for testing (231 sentences).

Since we want to learn to predict the observed
saccade transition for any fixation configuration,
where configurations are represented as feature vec-
tors, it is not possible to use the eye tracking data
directly as training and test data. Instead, we simu-
late the search algorithm on the corpus data of each
reader in order to derive, for each sentence, the fea-
ture vectors over the configurations and the tran-
sitions corresponding to the observed fixation se-
quence. The instances to be classified then consist of
feature representations of configurations while the
classes are the possible transitions.

To somewhat simplify the learning task in this
first study, we removed all instances of non-local
saccades prior to training. Progressions stretching

further than five words ahead of the current fixation
were removed, as were regressions stretching further
back than two words. Refixations were not removed.
Thus we reduced the number of prediction classes to
eight. Removal of the non-local saccade instances
resulted in a 1.72% loss over the total number of in-
stances in the training data for all readers.

We trained one classifier for each reader using lo-
gistic regression, as implemented in Weka (Witten
and Eibe, 2005) and default options. In addition, we
trained majority baseline classifiers for all readers.
These models always predict the most frequent sac-
cadic eye movement for a given reader.

The classifiers were evaluated with respect to the
accuracy achieved when reading previously unseen
text using the search algorithm in 4.3. To ensure
that test data were consistent with training data, sen-
tences including any saccade outside of the local
range were removed prior to test. This resulted
in removal of 18.9% of the total number of sen-
tences in the test data for all readers. Accuracy was
measured in three different ways. First, we com-
puted the fixation accuracy, that is, the proportion
of words that were correctly fixated or skipped by
the model, which we also broke down into precision
and recall for fixations and skips separately.3 Sec-
ondly, we compared the predicted fixation distribu-

3Fixation/skip precision is the proportion of tokens fix-
ated/skipped by the model that were also fixated/skipped by
the reader; fixation/skip recall is the proportion of tokens fix-
ated/skipped by the reader that were also fixated/skipped by the
model.
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tions to the observed fixation distributions, both over
all words and broken down into the same five fre-
quency classes that were used as features (see Sec-
tion 4). The latter statistics, averaged over all read-
ers, allow us to see whether the model correctly pre-
dicts the frequency effect discussed in section 2.

5.2 Results and Discussion
Table 2 shows the fixation accuracy, and precision,
recall and F1 for fixations and skips, for each of the
ten different models and the average across all mod-
els (bottom row). Fixation accuracy is compared to
the baseline of always predicting the most frequent
saccade type (Progress(2) for readers a and e, and
Progress(1) for the rest).

If we consider the fixation accuracy, we see that
all models improve substantially on the baseline
models. The mean difference between models and
baselines is highly significant (p < .001, paired t-
test). The relative improvement ranges from 4.4 per-
centage points in the worst case (model of reader f )
to 20.1 percentage points in the best case (model of
reader e). The highest scoring model, the model of
reader d, has an accuracy of 78.9%. The lowest scor-
ing model, the model of reader g, has an accuracy
of 56.6%. This is also the reader for whom there
is the smallest number of sentences in the test data
(129), which means that a large number of sentences
were removed prior to testing because of the greater
number of non-local saccades made by this reader.
Thus, this reader has an unusually varied saccadic
behaviour which is particularly hard to model.

Comparing the precision and recall for fixation
and skips, we see that while precision tends to be
about the same for both categories (with a few no-
table exceptions), recall is consistently higher for
fixations than for skips. We believe that this is due
to a tendency of the model to overpredict fixations,
especially for low-frequency words. This has a great
impact on the F1 measure (unweighted harmonic
mean of precision and recall), which is considerably
higher for fixations than for skips.

Figure 1 shows the distributions of fixations
grouped by reader and model. The models appear
reasonably good at adapting to the empirical fixa-
tion distribution of individual readers. However, the
models typically tend to look at more words than the
readers, as noted above. This suggests that the mod-

els lack sufficient information to learn to skip words
more often. This might be overcome by introducing
features that further encourage skipping of words. In
addition to word length and word frequency, that are
already accounted for, n-gram probability could be
included as a measure of predictability, for example.

We also note that there is a strong linear relation
between the capability of fitting the empirical dis-
tribution well and achieving high fixation accuracy
(Pearson’s r: -0.91, as measured by taking the dif-
ferences of each pair of distributions and correlating
them with the fixation accuracy of the models).

Figure 2 shows the mean observed and predicted
fixation and skipping probability as a function of
word frequency class, averaged over all readers. As
seen here, model prediction is responsive to fre-
quency class in a fashion comparable to the read-
ers, although the predictions typically tend to exag-
gerate the observed frequency effect. In the lower
to medium classes (1–3), almost every word is fix-
ated. Then there is a clear drop in fixation proba-
bility for words in frequency class 4 which fits well
with the observed fixation probability. Finally there
is another drop in fixation probability for the most
frequent words (5). The skipping probabilities for
the different classes show the corresponding reverse
trend.

6 Conclusion

In this paper we have defined a new machine learn-
ing task where the goal is to learn the saccadic eye
movement behavior of individual readers in order
to predict the sequence of word fixations for novel
reading events. We have discussed different evalua-
tion metrics for this task, and we have established a
first benchmark by training and evaluating a simple
transition-based model using a log-linear classifier
to predict the next transition. The evaluation shows
that even this simple model, with features limited to
a few relevant properties in a small context window,
outperforms a majority baseline and captures some
of the word frequency effects on eye movements ob-
served in human readers.

This pilot study opens up a number of direc-
tions for future research. With respect to mod-
eling, we need to explore more complex models,
richer feature spaces, and alternative learning algo-
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Figure 2: Mean observed and predicted fixation and skipping probability for five frequency classes of words

rithms. For example, given the sequential nature
of the task, it seems natural to explore probabilistic
sequence models such as HMMs (see for example
Feng (2006)). With respect to evaluation, we need
to develop metrics that are sensitive to the sequential
behavior of models, such as the fixation sequence
similarity measure discussed in Section 3, and in-
vestigate to what extent results can be generalized

across readers. With respect to the task itself, we
need to introduce additional aspects of the reading
process, in particular the duration of fixations. By
pursuing these lines of research, we should be able
to gain a better understanding of how machine learn-
ing methods in eye movement modeling can inform
and advance current theories and models in reading
and psycholinguistic research.
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Abstract

Recent advances in statistical machine
translation have used beam search for
approximate NP-complete inference within
probabilistic translation models. We present
an alternative approach of sampling from the
posterior distribution defined by a translation
model. We define a novel Gibbs sampler
for sampling translations given a source
sentence and show that it effectively explores
this posterior distribution. In doing so
we overcome the limitations of heuristic
beam search and obtain theoretically sound
solutions to inference problems such as
finding the maximum probability translation
and minimum expected risk training and
decoding.

1 Introduction

Statistical machine translation (SMT) poses the
problem: given a foreign sentence f , find the
translation e∗ that maximises the conditional
posterior probability p(e|f). This probabilistic
formulation of translation has driven development
of state-of-the-art systems which are able to learn
from parallel corpora which were generated for
other purposes — a direct result of employing a
mathematical framework that we can reason about
independently of any particular model.

For example, we can train SMT models using
maximum likelihood estimation (Brown et al., 1993;
Och and Ney, 2000; Marcu and Wong, 2002). Alter-
natively, we can train to minimise probabilistic con-
ceptions of risk (expected loss) with respect to trans-
lation metrics, thereby obtaining better results for
those metrics (Kumar and Byrne, 2004; Smith and

Eisner, 2006; Zens and Ney, 2007). We can also use
Bayesian inference techniques to avoid resorting to
heuristics that damage the probabilistic interpreta-
tion of the models (Zhang et al., 2008; DeNero et
al., 2008; Blunsom et al., 2009).

Most models define multiple derivations for each
translation; the probability of a translation is thus
the sum over all of its derivations. Unfortunately,
finding the maximum probability translation is NP-
hard for all but the most trivial of models in this
setting (Sima’an, 1996). It is thus necessary to resort
to approximations for this sum and the search for its
maximum e∗.

The most common of these approximations is
the max-derivation approximation, which for many
models can be computed in polynomial time via
dynamic programming (DP). Though effective for
some problems, it has many serious drawbacks for
probabilistic inference:

1. It typically differs from the true model maxi-
mum.

2. It often requires additional approximations in
search, leading to further error.

3. It introduces restrictions on models, such as
use of only local features.

4. It provides no good solution to compute the
normalization factor Z(f) required by many prob-
abilistic algorithms.

In this work, we solve these problems using a
Monte Carlo technique with none of the above draw-
backs. Our technique is based on a novel Gibbs
sampler that draws samples from the posterior dis-
tribution of a phrase-based translation model (Koehn
et al., 2003) but operates in linear time with respect
to the number of input words (Section 2). We show
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that it is effective for both decoding (Section 3) and
minimum risk training (Section 4).

2 A Gibbs sampler for phrase-based
translation models

We begin by assuming a phrase-based translation
model in which the input sentence, f , is segmented
into phrases, which are sequences of adjacent
words.1 Each foreign phrase is translated into the
target language, to produce an output sentence e
and an alignment a representing the mapping from
source to target phrases. Phrases are allowed to be
reordered during translation.

The model is defined with a log-linear form,
with feature function vector h and parametrised by
weight vector θ, as described in Koehn et al. (2003).

P (e, a|f ;θ) =
exp [θ · h(e, a, f)]∑

〈e′,a′〉 exp [θ · h(e′, a′, f)]
(1)

The features h of the model are usually few and
are themselves typically probabilistic models
indicating e.g, the relative frequency of a target
phrase translation given a source phrase (translation
model), the fluency of the target phrase (language
model) and how phrases reorder with respect
to adjacent phrases (reordering model). There
is a further parameter Λ that limits how many
source language words may intervene between
two adjacent target language phrases. For the
experiments in this paper, we use Λ = 6.

2.1 Gibbs sampling
We use Markov chain Monte Carlo (MCMC) as an
alternative to DP search (Geman and Geman, 1984;
Metropolis and Ulam, 1949). MCMC probabilis-
tically generates sample derivations from the com-
plete search space. The probability of generating
each sample is conditioned on the previous sam-
ple, forming a Markov chain. After a long enough
interval (referred to as the burn-in) this chain returns
samples from the desired distribution.

Our MCMC sampler uses Gibbs sampling, which
obtains samples from the joint distribution of a set
of random variables X = {X1, . . . , Xn}. It starts
with some initial state (X1 = x10, . . . , Xn = xn0),
and generates a Markov chain of samples, where

1These phrases are not necessarily linguistically motivated.

each sample is the result of applying a set of Gibbs
operators to the previous sample. Each operator is
defined by specifying a subset of the random vari-
ables Y ⊂ X , which the operator updates by sam-
pling from the conditional distribution P (Y |X \Y ).
The set X \ Y is referred to as the Markov blanket
and is unchanged by the operator.

In the case of translation, we require a Gibbs sam-
pler that produces a sequence of samples, SN

1 =
(e1, a1) . . . (eN , aN ), that are drawn from the dis-
tribution P (e, a|f). These samples can thus be used
to estimate the expectation of a function h(e, a, f)
under the distribution as follows:

EP (a,e|f)[h] = lim
N→∞

1
N

N∑

i=1

h(ai, ei, f) (2)

Taking h to be an indicator function
h = δ(a, â)δ(e, ê) provides an estimate of
P (â, ê|f), and using h = δ(e, ê) marginalises over
all derivations a′, yielding an estimate of P (ê|f).

2.2 Gibbs operators

Our sampler consists of three operators. Examples
of these are depicted in Figure 1.

The RETRANS operator varies the translation of a
single source phrase. Segmentation, alignment, and
all other translations are held constant.

The MERGE-SPLIT operator varies the source
segmentation at a single word boundary. If the
boundary is a split point in the current hypothesis,
the adjoining phrases can be merged, provided
that the corresponding target phrases are adjacent
and the phrase table contains a translation of the
merged phrase. If the boundary is not a split point,
the covering phrase may be split, provided that
the phrase table contains a translation of both new
phrases. Remaining segmentation points, phrase
alignment and phrase translations are held constant.

The REORDER operator varies the target phrase
order for a pair of source phrases, provided that
the new alignment does not violate reordering limit
Λ. Segmentation, phrase translations, and all other
alignments are held constant.

To illustrate the RETRANS operator, we will
assume a simplified model with two features: a
bigram language model Plm and a translation model
Ptm. Both features are assigned a weight of 1.
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c’est un résultat remarquable

it is some result remarkable

(a)

Initial

c’est un résultat remarquable

but some result remarkable

c’est un résultat remarquable

but some result remarkable

(b)

Retrans

c’est un résultat remarquable

it is a result remarkable

c’est un résultat remarquable

it is a result remarkable

(c)

Merge

c’est un résultat remarquable

it is a remarkable result

c’est un résultat remarquable

it is a remarkable result

(d)

Reorder

1

Figure 1: Example evolution of an initial hypothesis via
application of several operators, with Markov blanket
indicated by shading.

We denote the start of the sentence with S and the
language model context with C. Assuming the
French phrase c’est can be translated either as it is or
but, the RETRANS operator at step (b) stochastically
chooses an English phrase, ê in proportion to the
phrases’ conditional probabilities.

P (but|c’est, C) =
Ptm(but|c’est) · Plm(S but some)

Z

and

P (it is|c’est, C) =
Ptm(it is|c’est) · Plm(S it is some)

Z

where

Z = Ptm(but|c’est) · Plm(S but some) +
Ptm(it is|c’est) · Plm(S it is some)

Conditional distributions for the MERGE-SPLIT and
REORDER operators can be derived in an analogous
fashion.

A complete iteration of the sampler consists of
applying each operator at each possible point in the
sentence, and a sample is collected after each opera-
tor has performed a complete pass.

2.3 Algorithmic complexity
Since both the RETRANS and MERGE-SPLIT oper-
ators are applied by iterating over source side word

positions, their complexity is linear in the size of the
input.

The REORDER operator iterates over the positions
in the input and for the source phrase found at that
position considers swapping its target phrase with
that of every other source phrase, provided that the
reordering limit is not violated. This means that it
can only consider swaps within a fixed-length win-
dow, so complexity is linear in sentence length.

2.4 Experimental verification

To verify that our sampler was behaving as expected,
we computed the KL divergence between its
inferred distribution q̂(e|f) and the true distribution
over a single sentence (Figure 2). We computed
the true posterior distribution p(e|f) under an
Arabic-English phrase-based translation model
with parameters trained to maximise expected
BLEU (Section 4), summing out the derivations for
identical translations and computing the partition
term Z(f). As the number of iterations increases,
the KL divergence between the distributions
approaches zero.

3 Decoding

The task of decoding amounts to finding the single
translation e∗ that maximises or minimises some cri-
terion given a source sentence f . In this section
we consider three common approaches to decod-
ing, maximum translation (MaxTrans), maximum
derivation (MaxDeriv), and minimum risk decoding
(MinRisk):

e∗ =





arg max(e,a) p(e, a|f) (MaxDeriv)
arg maxe p(e|f) (MaxTrans)
arg mine

∑
e′ `e′(e)p(e′|f) (MinRisk)

In the minimum risk decoder, `e′(e) is any real-
valued loss (error) function that computes the error
of one hypothesis e with respect to some reference
e′. Our loss is a sentence-level approximation of
(1− BLEU).

As noted in section 2, the Gibbs sampler can
be used to provide an estimate of the probability
distribution P (a, e|f) and therefore to determine
the maximum of this distribution, in other words
the most likely derivation. Furthermore, we can
marginalise over the alignments to estimate P (e|f)
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Figure 2: The KL divergence of the true posterior distri-
bution and the distribution estimated by the Gibbs sam-
pler at different numbers of iterations for the Arabic
source sentence r}ys wzrA’ mAlyzyA yzwr Alflbyn (in
English, The prime minister of Malaysia visits the Philip-
pines).

and so obtain the most likely translation. The Gibbs
sampler can therefore be used as a decoder, either
running in max-derivation and max-translation
mode. Using the Gibbs sampler in this way makes
max-translation decoding tractable, and so will
help determine whether max-translation offers any
benefit over the usual max-derivation. Using the
Gibbs sampler as a decoder also allows us to verify
that it is producing valid samples from the desired
distribution.

3.1 Training data and preparation.
The experiments in this section were performed
using the French-English and German-English
parallel corpora from the WMT09 shared translation
task (Callison-Burch et al., 2009), as well as 300k
parallel Arabic-English sentences from the NIST
MT evaluation training data.2 For all language
pairs, we constructed a phrase-based translation
model as described in Koehn et al. (2003), limiting
the phrase length to 5. The target side of the parallel
corpus was used to train a 3-gram language model.

2The Arabic-English training data consists of the
eTIRR corpus (LDC2004E72), the Arabic news corpus
(LDC2004T17), the Ummah corpus (LDC2004T18), and the
sentences with confidence c > 0.995 in the ISI automatically
extracted web parallel corpus (LDC2006T02).

For the German and French systems, the DEV2006
set was used for model tuning and the TEST2007
(in-domain) and NEWS-DEV2009B (out-of-domain)
sets for testing. For the Arabic system, the MT02
set (10 reference translations) was used for tuning
and MT03 (4 reference translations) was used for
evaluation. To reduce the size of the phrase table,
we used the association-score technique suggested
by Johnson et al. (2007a). Translation quality is
reported using case-insensitive BLEU (Papineni et
al., 2002).

3.2 Translation performance
For the experiments reported in this section, we
used feature weights trained with minimum error
rate training (MERT; Och, 2003) . Because MERT
ignores the denominator in Equation 1, it is invari-
ant with respect to the scale of the weight vector
θ — the Moses implementation simply normalises
the weight vector it finds by its `1-norm. However,
when we use these weights in a true probabilistic
model, the scaling factor affects the behaviour of
the model since it determines how peaked or flat the
distribution is. If the scaling factor is too small, then
the distribution is too flat and the sampler spends
too much time exploring unimportant probability
regions. If it is too large, then the distribution is too
peaked and the sampler may concentrate on a very
narrow probability region. We optimised the scaling
factor on a 200-sentence portion of the tuning set,
finding that a multiplicative factor of 10 worked best
for fr-en and a multiplicative factor of 6 for de-en. 3

The first experiment shows the effect of different
initialisations and numbers of sampler iterations on
max-derivation decoding performance of the sam-
pler. The Moses decoder (Koehn et al., 2007) was
used to generate the starting hypothesis, either in
full DP max-derivation mode, or alternatively with
restrictions on the features and reordering, or with
zero weights to simulate a random initialisation, and
the number of iterations varied from 100 to 200,000,
with a 100 iteration burn-in in each case. Figure 3
shows the variation of model score with sampler iter-
ation, for the different starting points, and for both
language pairs.

3We experimented with annealing, where the scale factor is
gradually increased to sharpen the distribution while sampling.
However, we found no improvements with annealing.
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Figure 3: Mean maximum model score, as a function of iteration number and starting point. The starting point can
either be the full max-derivation translation (full), the monotone translation (mono), the monotone translation with no
language model (nolm) or the monotone translation with all weights set to zero (zero).

Comparing the best model scores found by the
sampler, with those found by the Moses decoder
with its default settings, we found that around
50,000 sampling iterations were required for
fr-en and 100,000 for de-en, for the sampler to
give equivalent model scores to Moses. From
Figure 3 we can see that the starting point did not
have an appreciable effect on the model score of
the best derivation, except with low numbers of
iterations. This indicates that the sampler is able
to move fairly quickly towards the maximum of
the distribution from any starting point, in other
words it has good mobility. Running the sampler
for 100,000 iterations took on average 1670 seconds
per sentence on the French-English data set and
1552 seconds per sentence on German-English.

A further indication of the dependence of sampler
accuracy on the iteration count is provided by Fig-
ure 4. In this graph, we show the mean Spearman’s
rank correlation between the nbest lists of deriva-
tions when ranked by (i) model score and (ii) the
posterior probability estimated by the sampler. This
measure of sampler accuracy also shows a logarith-
mic dependence on the sample size.

3.3 Minimum risk decoding
The sampler also allows us to perform minimum
Bayes risk (MBR) decoding, a technique introduced
by Kumar and Byrne (2004). In their work, as an
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Figure 4: Mean Spearman’s rank correlation of 1000-best
list of derivations ranked according to (i) model score and
(ii) posterior probability estimated by sampler. This was
measured on a 200 sentence subset of DEV2006.

approximation of the model probability distribution,
the expected loss of the decoder is calculated by
summing over an n-best list. With the Gibbs sam-
pler, however, we should be able to obtain a much
more accurate view of the model probability distri-
bution. In order to compare max-translation, max-
derivation and MBR decoding with the Gibbs sam-
pler, and the Moses baseline, we ran experiments
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fr-en de-en
in out in out

Moses 32.7 19.1 27.4 15.9
MaxD 32.6 19.1 27.0 15.5
MaxT 32.6 19.1 27.4 16.0
MBR 32.6 19.2 27.3 16.0

Table 1: Comparison of the BLEU score of the Moses
decoder with the sampler running in max-derivation
(MaxD), max-translation (MaxT) and minumum Bayes
risk (MBR) modes. The test sets are TEST2007 (in) and
NEWS-DEV2009B (out)

on both European language pairs, using both the in-
domain and out-of-domain test sets. The sampler
was initialised with the output of Moses with the
feature weights set to zero and restricted to mono-
tone, and run for 100,000 iterations with a 100 iter-
ation burn-in. The scale factors were set to the same
values as in the previous experiment. The relative
translation quality (measured according to BLEU) is
shown in Table 1.

3.4 Discussion

These results show very little difference between the
decoding methods, indicating that the Gibbs sam-
pling decoder can perform as well as a standard DP
based max-derivation decoder with these models,
and that there is no gain from doing max-translation
or MBR decoding. However it should be noted that
the model used for these experiments was optimised
by MERT, for max-derivation decoding, and so the
experiments do not rule out the possibility that max-
translation and MBR decoding will offer an advan-
tage on an appropriately optimised model.

4 Minimum risk training

In the previous section, we described how our sam-
pler can be used to search for the best translation
under a variety of decoding criteria (max deriva-
tion, translation, and minimum risk). However, there
appeared to be little benefit to marginalizing over
the latent derivations. This is almost certainly a side
effect of the MERT training approach that was used
to construct the models so as to maximise the per-
formance of the model on its single best derivation,
without regard to the shape of the rest of the dis-
tribution (Blunsom et al., 2008). In this section we

describe a further application of the Gibbs sampler:
to do unbiased minimum risk training.

While there have been at least two previous
attempts to do minimum risk training for MT, both
approaches relied on biased k-best approximations
(Smith and Eisner, 2006; Zens and Ney, 2007).
Since we sample from the whole distribution, we
will have a more accurate risk assessment.

The risk, or expected loss, of a probabilistic trans-
lation model on a corpus D, defined with respect to
a particular loss function `ê(e), where ê is the refer-
ence translation and e is a hypothesis translation

L =
∑

〈ê,f〉∈D

∑

e

p(e|f)`ê(e) (3)

This value can be trivially computed using equa-
tion (2). In this section, we are concerned with find-
ing the parameters θ that minimise (3). Fortunately,
with the log-linear parameterization of p(e|f), L is
differentiable with respect to θ:

∂L
∂θk

=
∑

〈ê,f〉∈D

∑

e

p(e|f)`ê(e)
(
hk − Ep(e|f)[hk]

)

(4)
Equation (4) is slightly more complicated to com-
pute using the sampler since it requires the feature
expectation in order to evaluate the final term. How-
ever, this can be done simply by making two passes
over the samples, computing the feature expecta-
tions on the first pass and the gradient on the second.

We have now shown how to compute our
objective (3), the expected loss, and a gradient
with respect to the model parameters we want
to optimise, (4), so we can use any standard
first-order optimization technique. Since the
sampler introduces stochasticity into the gradient
and objective, we use stochastic gradient descent
methods which are more robust to noise than
more sophisticated quasi-Newtonian methods
like L-BFGS (Schraudolph et al., 2007). For the
experiments below, we updated the learning rate
after each step proportionally to difference in
successive gradients (Schraudolph, 1999).

For the experiments reported in this section, we
used sample sizes of 8000 and estimated the gradi-
ent on sets of 100 sentences drawn randomly (with
replacement) from the development corpus. For a
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Training Decoder MT03
Moses Max Derivation 44.6

MERT Moses MBR 44.8
Gibbs MBR 44.9
Moses Max Derivation 40.6

MinRisk MaxTrans 41.8
Gibbs MBR 42.9

Table 2: Decoding with minimum risk trained systems,
compared with decoding with MERT-trained systems on
Arabic to English MT03 data

loss function we use 4-gram (1 − BLEU) computed
individually for each sentence4. By examining per-
formance on held-out data, we find the model con-
verges typically in fewer than 20 iterations.

4.1 Training experiments

During preliminary experiments with training, we
observed on a held-out data set (portions of MT04)
that the magnitude of the weights vector increased
steadily (effectively sharpening the distribution), but
without any obvious change in the objective. Since
this resulted in poor generalization we added a reg-
ularization term of ||~θ − ~µ||2/2σ2 to L. We initially
set the means to zero, but after further observing that
the translations under all decoding criteria tended to
be shorter than the reference (causing a significant
drop in performance when evaluated using BLEU),
we found that performance could be improved by
setting µWP = −0.5, indicating a preference for a
lower weight on this parameter.

Table 2 compares the performance on Arabic to
English translation of systems tuned with MERT
(maximizing corpus BLEU) with systems tuned to
maximise expected sentence-level BLEU. Although
the performance of the minimum risk model under
all decoding criteria is lower than that of the orig-
inal MERT model, we note that the positive effect
of marginalizing over derivations as well as using
minimum risk decoding for obtaining good results
on this model. A full exploration of minimum risk
training is beyond the scope of this paper, but these
initial experiments should help emphasise the versa-
tility of the sampler and its utility in solving a variety
of problems. In the conclusion, we will, however,

4The ngram precision counts are smoothed by adding 0.01
for n > 1

discuss some possible future directions that can be
taken to make this style of training more competitive
with standard baseline systems.

5 Discussion and future work

We have described an algorithmic technique that
solves certain problems, but also verifies the utility
of standard approximation techniques. For exam-
ple, we found that on standard test sets the sampler
performs similarly to the DP max-derivation solu-
tion and equally well regardless of how it is ini-
tialised. From this we conclude that at least for
MERT-trained models, the max-derivation approx-
imation is adequate for finding the best translation.

Although the training approach presented in
Section 4 has a number of theoretical advantages,
its performance in a one-best evaluation falls short
when compared with a system tuned for optimal
one-best performance using MERT. This contradicts
the results of Zens and Ney (2007), who optimise
the same objective and report improvements over a
MERT baseline. We conjecture that the difference
is due to the biased k-best approximation they used.
By considering only the most probable derivations,
they optimise a smoothed error surface (as one
does in minimum risk training), but not one that
is indicative of the true risk. If our hypothesis
is accurate, then the advantage is accidental and
ultimately a liability. Our results are in line with
those reported by Smith and Eisner (2006) who
find degradation in performance when minimizing
risk, but compensate by “sharpening” the model
distribution for the final training iterations,
effectively maximising one-best performance
rather minimising risk over the full distribution
defined by their model. In future work, we will
explore possibilities for artificially sharpening the
distribution during training so as to better anticipate
the one-best evaluation conditions typical of MT.
However, for applications which truly do require a
distribution over translations, such as re-ranking,
our method for minimising expected risk would be
the objective of choice.

Using sampling for model induction has two fur-
ther advantages that we intend to explore. First,
although MERT performs quite well on models with
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small numbers of features (such as those we consid-
ered in this paper), in general the algorithm severely
limits the number of features that can be used since
it does not use gradient-based updates during opti-
mization, instead updating one feature at a time. Our
training method (Section 4) does not have this limi-
tation, so it can use many more features.

Finally, for the DP-based max-derivation approx-
imation to be computationally efficient, the features
characterizing the steps in the derivation must be
either computable independently of each other or
with only limited local context (as in the case of the
language model or distortion costs). This has led to
a situation where entire classes of potentially use-
ful features are not considered because they would
be impractical to integrate into a DP based trans-
lation system. With the sampler this restriction is
mitigated: any function of h(e, f, a) may partici-
pate in the translation model subject only to its own
computability. Freed from the rusty manacles of
dynamic programming, we anticipate development
of many useful features.

6 Related work

Our sampler is similar to the decoder of Germann
et al. (2001), which starts with an approximate solu-
tion and then incrementally improves it via operators
such as RETRANS and MERGE-SPLIT. It is also
similar to the estimator of Marcu and Wong (2002),
who employ the same operators to search the align-
ment space from a heuristic initialisation. Although
the operators are similar, the use is different. These
previous efforts employed their operators in a greedy
hill-climbing search. In contrast, our operators are
applied probabilistically, making them theoretically
well-founded for a variety of inference problems.

Our use of Gibbs sampling follows from its
increasing use in Bayesian inference problems in
NLP (Finkel et al., 2006; Johnson et al., 2007b).
Most closely related is the work of DeNero
et al. (2008), who derive a Gibbs sampler for
phrase-based alignment, using it to infer phrase
translation probabilities. The use of Monte Carlo
techniques to calculate posteriors is similar to that
of Chappelier and Rajman (2000) who use those
techniques to find the best parse under models where
the derivation and the parse are not isomorphic.

To our knowledge, we are the first to apply Monte
Carlo methods to maximum translation and mini-
mum risk translation. Approaches to the former
(Blunsom et al., 2008; May and Knight, 2006) rely
on dynamic programming techniques which do not
scale well without heuristic approximations, while
approaches to the latter (Smith and Eisner, 2006;
Zens et al., 2007) use biased k-best approximations.

7 Conclusion

We have described a Gibbs sampler for approxi-
mating two intractable problems in SMT: maximum
translation decoding (and its variant, minimum risk
decoding) and minimum risk training. By using
Monte Carlo techniques we avoid the biases associ-
ated with the more commonly used DP based max-
derivation (or k-best derivation) approximation. In
doing so we provide a further tool to the translation
community that we envision will allow the devel-
opment and analysis of increasing theoretically well
motivated techniques.
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Abstract

In this paper we investigate the task of auto-
matic generation of slide presentations from
academic papers, focusing initially on slide
to paper alignment. We compare and eval-
uate four different alignment systems which
utilize various combinations of methods used
widely in other alignment and question an-
swering approaches, such as TF-IDF term
weighting and query expansion. Our best
aligner achieves an accuracy of 75% and our
findings show that for this application, av-
erage TF-IDF scoring performs more poorly
than a simpler method based on the number of
matched terms, and query expansion degrades
aligner performance.

1 Introduction

Automatic generation of slide presentations is a task
the Computational Linguistics community has not
yet pursued in much depth. A robust system capable
of generating slide presentations from papers would
save the author much tedium when organizing her
presentations. In this paper we investigate this task
from a novel perspective. While others have devel-
oped interesting approaches to slide generation from
documents by modeling the problem in a unique
way (Utiyama and Hasida, 1999; Shibata and Kuro-
hashi, 2005), the aim of the research this paper initi-
ates is to discover how humans create slide presen-
tations, focusing more specifically on academic pa-
pers. Thus we take a corpus-based approach to the
problem, and as a first step focus on the task of au-
tomatically aligning slide presentations to academic
papers.

We built a corpus of 296 slide-paper pairs and im-
plemented four slide to paper aligners which utilize
popular information retrieval methods such as TF-
IDF term weighting and query expansion. In this
paper we show that, in this application, TF-IDF term
weighting is inferior to a simpler scoring mecha-
nism based only on the number of matched terms
and query expansion degrades aligner performance.
Our best aligner achieves an accuracy of 75%.

2 Related Work

Automatic slide generation from documents is a thus
far under-investigated topic. Utiyama and Hasida
(1999) generate slides from GDA1 (global document
annotation) tagged documents. They detect topics
within the documents by analyzing GDA corefer-
ence links, modeled each slide as a topic and item-
ized elaborations (which were also tagged with the
GDA tag set). Shibata and Kurohashi (2005) convert
Japanese documents to slide representation by pars-
ing their discourse structures and representing the
resulting tree in an outline format. While (Utiyama
and Hasida, 1999) and (Shibata and Kurohashi,
2005) generate slides from documents by modeling
the task in creative ways, we aim to learn something
deeper regarding how humans actually go about the
task. Creating a corpus of slide/paper pairs will en-
able us to study the intricacies involved in how real
humans approach this task.

Our current focus is slide to paper (region) align-
ment, which can be categorized best as align-
ment between monolingual comparable corpora, but

1The GDA tag set is designed to allow machines to auto-
matically infer the underlying structure of documents. More
information is available at http://i-content.org/gda.
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could also be easily construed as document passage
retrieval, which is a well-researched topic in the In-
formation Retrieval community. Barzilay and El-
hadad (2003) incorporate context to facilitate align-
ment between monolingual comparable corpora by
first learning paragraph matching rules in a super-
vised way, and then refining the alignment at the sen-
tence level within paragraphs. Nelken and Shieber
(2008) used TF-IDF term weighting with logistic
regression to align sentences from pericopes in the
gospels of the new testament. Callan (1994) ana-
lyzed various ways to define document passages and
identified three main passage types, discourse (based
on physical structure of the document), semantic
(based on topic boundaries), and window (based on
token distance) and suggests that while discourse
passages may be an attractive way to define and re-
trieve document passages, due to reasons related to
sloppy writing, visual aids, or other factors, para-
graph boundaries may not be the best indicators of
content boundaries. Our alignment task differs from
that of (Barzilay and Elhadad, 2003) and (Nelken
and Shieber, 2008) in two ways. First, Barzilay
and Elhadad (2003) and Nelken and Shieber (2008)
align like-chunks between the two documents. That
is, they are either aligning sentences to sentences or
paragraphs to paragraphs. In our task we are align-
ing slide regions which are usually bullets spanning
at most a couple lines, to paper regions which can
be a whole paragraph long. Second, Barzilay and
Elhadad (2003) and (Nelken and Shieber, 2008) are
working with comparable corpora in which the same
information is assumed to be present in each docu-
ment, but expressed in a different way. We are not
able to necessarily make this assumption, in fact we
show in this paper that as much as half of the infor-
mation in slide presentations may not be present in
the corresponding paper.

The concept of query expansion that we im-
plement in some of our aligners is also not new.
Voorhees (1994) suggests that query expansion
tends to help performance with short, incomplete
queries but degrades performance with longer, more
complete queries. van der Plas and Tiedemann
(2008) investigated several types of lexico-semantic
information for query expansion in their question
answering system. They found that expansions that
bridge the terminology gap (synonyms, etc.) did not

result in improvement but expansions that bridge the
knowledge gap (words belonging to the same subject
field) did. In this paper, to get an idea of the base-
line performance of query expansion with regard to
our unique task, we implement a more rudimentary
form of query expansion which only expands syn-
onyms of terms. Since our slide regions don’t vary
much in length, it’s hard to say how our results relate
to the findings of Voorhees (1994). Our results par-
tially support (van der Plas and Tiedemann, 2008) in
that our implementation only bridges the terminol-
ogy gap, and isn’t very successful.

3 The Corpus

The first step to understanding how humans generate
slides from papers is to collect real-world examples
of academic papers and corresponding slide presen-
tations. To build our corpus, we searched the in-
ternet for web pages containing workshop proceed-
ings from various fields using generic queries such
as ‘workshop slide paper’. The collected papers and
presentations come from a variety of fields but tend
to be focused generally on science and technology.
Workshop proceedings are an ideal source for our
data because they often provide the papers and slide
presentations side-by-side. Using this strategy, we
manually extracted 296 slide-paper pairs. The pa-
pers were downloaded in PDF format and the slides
were a mixture of PDF and Powerpoint formats. Be-
fore working with these files, we converted them to a
custom XML format which represents relevant parts
of the original data as logical regions. In the case of
slides, regions include bullets, headings, and other
text spans. In the case of papers, regions include re-
gions (or passages) which correspond to paragraphs,
section headings, and list items.

To work with PDF data, we convert it to a cus-
tom XML format which represents logical chunks
or regions of the paper. In our approach we delimit
regions by orthographic boundaries. Orthographic
boundaries delimit the physical structure of a paper
and describe the paper in a physical fashion in terms
of paragraphs, headings, bullets, etc. We do recog-
nize that there are other ways to define paper regions
though. As Callan (1994) observes, academic papers
could also be represented via semantic boundaries
which delimit the topical structure of papers and de-
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scribe them in terms of where new topics are intro-
duced and where old ones are no longer discussed.
We prefer using orthographic boundaries in our ap-
proach for two reasons. First, detecting orthographic
boundaries can be accomplished with simple heuris-
tics while topic boundary detection requires more
sophisticated methods2, thus implementation is eas-
ier. Second, because orthographic boundaries are far
less subjective than topic boundaries, it’s easier to
verify the validity of orthographic boundaries than
semantic ones.

Preprocessing Powerpoint files is significantly
simpler than PDF files. To convert the Powerpoint
data to our custom XML, we first convert the Pow-
erpoint file to an OpenOffice.org3 ODP file via the
document converter tool that comes standard with
OpenOffice. ODP files are already encoded with a
rich XML which already describes physical regions
such as list items, bullets, and other text, so region
identification is unnecessary. We only needed to im-
plement a filter that translates the available data to
the custom XML format.

4 Alignment Methods

Discovering how humans generate slide presenta-
tions from papers starts with observing where slide
regions originate from. We make the general as-
sumption that a slide region either a) is a summa-
rization (excerpt or abstract) from the associated pa-
per, or b) comes from other sources including but
not limited to the author’s personal (world and/or
specific) knowledge. A complete alignment module
would thus need to be able to discern if the informa-
tion in a region comes from the target paper or if it
does not. When it does, the task of the aligner is then
to choose the region in the paper that is summarized
or from which the excerpt is taken. Our original hy-
pothesis was that the vast majority of the data in a
given slide presentation would come from the target
paper and concluded that a reasonable first attempt
at building an aligner could be made under this as-
sumption.

We approach the task of aligning slide regions to
paper regions with methods popular in information

2Reynar (1998) provides a detailed overview of the basic
topic detection and segmentation methods

3OpenOffice.org is a freely available office suite available at
http://www.openoffice.org.

Aligner Scoring Query Expansion
A Method 1 No
B Method 1 Yes
C Method 2 No
D Method 2 Yes

Table 1: Features implemented by each aligner.

retrieval. When aligning a slide region to a paper
region, we treat the slide region as a search query
and the target regions as documents in the informa-
tion retrieval sense. We compare two TF-IDF based
scoring methods and the effect of query expansion
by building four different aligners, each of which
corresponds to one combination of scoring type and
usage of query expansion. Table 1 shows a diagram
indicating which aligners have which features.

To prepare both the slide region and paper for
alignment, certain preprocessing tasks are executed
by all our aligners. The general procedure all our
aligners follow is outlined below:

1. For each token in each region in the paper, the to-
ken’s TF-IDF score is calculated, where the token’s
term frequency is the frequency of the token’s stem
in the region and the term’s document frequency is
the number of regions containing the token’s stem.

2. The slide region is tokenized and part-of-speech
tagged with the SNoW tagger (Roth, 1998) and non-
content words are removed. We consider content
words to be any token which is either a noun, adjec-
tive, verb, adverb, or cardinal number.

3. Each token in the slide region is stemmed and, in
the case of aligners B and D, query expansion is
performed.

4. A score is calculated for each region in the target pa-
per according to the scoring function implemented
by the aligner–method 1 for aligners A and B and
method 2 for aligners C and D.

These methods are presented in detail below.

4.1 Scoring Methods
In this paper we investigate two scoring methods,
which we’ll refer to as scoring method 1 and scor-
ing method 2. Scoring method 1 is implemented by
aligners A and B and is equivalent to the average TF-
IDF score of the search terms relative to the target
region. I.e. to calculate the score for a slide region
relative to a target paper region with method 1, the
TF-IDF scores of all the search terms are added and
the sum is divided by the number of terms, and the
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target region with the highest average score wins.
Scoring method 2 is implemented by aligners C and
D and is based on the quantity of matched terms, re-
verting to scoring method 1 only in the case of a tie.
Thus, to calculate the score for a slide region rela-
tive to a target paper region with method 2, the num-
ber of search terms with non-zero TF-IDF scores for
the paper region is counted and the region with the
largest number of such search terms wins. In the
case of a tie, the average score is calculated as it is
in method 1 and the region with the highest average
score wins the tie.

With either scoring method, a zero score results
in the system predicting that the slide region is not
derived from any paper region.

4.2 Query Expansion
One common problem with rudimentary TF-IDF
based information retrieval systems is that match-
ing tokens must have a form identical to the search
terms. Hence, synonyms and other semantically-
related words that probably should match do not.
Query expansion is one way to consider terms which
are semantically near, but orthographically differ-
ent from the search terms. The general principle of
query expansion is that, via an external knowledge
base, semantic neighbors of search terms are added
to the search query before the score is calculated.

Our implementation of query expansion is utilized
by aligners B and D and uses Wordnet (Fellbaum,
1998) to extract synonyms of search terms. When a
slide region undergoes query expansion our aligner
executes the following steps:

1. The search terms are part-of-speech tagged using
the SNoW part-of-speech tagger (Roth, 1998) and
lemmatized with a morphological analyzer4.

2. The resulting lemmas and parts of speech are used
to query Wordnet for matching synsets.

3. Synonyms for all retrieved synsets are recorded.
4. When scoring occurs, the TF-IDF score of a search

term changes from the score of the stem to the maxi-
mum score among the stem and all its synonyms. In
the case of scoring method 2, a search term matches
if it stem is found in the target region or if any of its
synonyms’ stems are found.

4The morphological analyzer we use is called mor-
pha and is freely available and can be downloaded at
http://www.informatics.susx.ac.uk/research/groups/nlp/carroll
/morph.html

5 Evaluation

To evaluate our aligners, we manually checked the
alignment of each on four randomly chosen slide
presentation-paper pairs. We refer to these presen-
tations here as P1, P2, P3, and P4. Collectively,
these four presentations with their respective papers
amount to 587 alignment decisions which were eval-
uated according to the following guidelines. If the
slide region is either an excerpt from the chosen pa-
per region or if the slide region is an abstract of
the chosen paper region, the alignment is judged as
good. In cases where the matching excerpt or ab-
stract text spans more than one paper region, the
alignment is judged as good if the aligner selected
any of the involved regions. Otherwise, the align-
ment is judged as bad and an error code is recorded.
The three error codes we utilize are BR, NR, and ER.
BR is short for “better region” and indicates that the
alignment is bad because the chosen paper region is
not the paper region from which the slide region is
extracted or generated, but such a region does in-
deed exist. NR is short for “no region” and indi-
cates that the alignment is bad because there is no
region in the paper to which the slide region should
be aligned. ER is short for “existing region” and in-
dicates that the alignment is bad because the aligner
decided there was no paper region to which the slide
region should be aligned, but in fact there was. Also,
the type of each slide region was recorded as either
frontmatter (which covers text spans such as titles,
authors, dates, and addresses), outline, heading, bul-
let, or diagram. Table 2 illustrates the composition
of the four presentations insofar as slide region type
is concerned.

The distribution of slide region types is not sur-
prising. Table 2 shows that two of our presentations
included diagrams and the other two did not, and
that bullets not surprisingly account for more slide
regions than any other region type.

5.1 Alignability of Slide Regions

Table 3 shows the percentage of slide regions which
have a target paper region (i.e. the percentage of
alignable slide regions). One surprising observation
is that only about half (57%) of the slide bullets were
alignable. This goes against our initial hypothesis
that the vast majority of slide regions would come
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Presentation Frontmatter Outline Heading Bullet Diagram
P1 3/174 (1.7%) 0/174 (0.0%) 5/174 (2.9%) 74/174 (42.5%) 92/174 (52.9%)
P2 9/181 (5.0%) 9/181 (5.0%) 34/181 (18.8%) 129/181 (71.3%) 0/181 (0.0%)
P3 5/114 (4.4%) 1/114 (0.9%) 52/114 (45.6%) 55/114 (48.2%) 0/114 (0.0%)
P4 5/118 (4.2%) 1/118 (0.8%) 13/118 (11.0%) 47/118 (39.8%) 52/118 (44.0%)
Total 22/587 (3.7%) 11/587 (1.9%) 104/587 (17.7%) 305/587 (52.0%) 144/587 (24.5%)

Table 2: Breakdown of slide text spans by type. Columns correspond to slide text span types. Percentages in each column measure the fraction
of text spans which are of the given type.

from the associated paper, and not from the author’s
knowledge.

Another important observation from the data in
table 3 is that the fraction of slide regions which are
alignable for any given presentation can vary wildly.
82% of P4’s regions were alignable while 60% of
P3’s and only 14% of P1’s regions were alignable.

5.2 Aligner Accuracy

Tables 4 and 5 show the raw accuracy and alignable
accuracy of the four aligners respectively. Raw
accuracy is the number of slide regions correctly
aligned out of the total number of slide regions.
Alignable accuracy is the percentage of alignable
slide regions which were aligned correctly.

Given the surprising results that a large percent-
age of slide regions need not come from the paper,
any fully fledged slide to paper aligner would need
a module which first filters out the unalignable slide
regions. Because such a module is not implemented
in our aligners, as our aligners make the assumption
that each slide region has a corresponding paper re-
gion, we limit most of our accuracy evaluation to
alignable accuracy rather than raw accuracy.

From tables 4 and 5 we can easily see the im-
portance of such a filtering module. As our best
aligner, which achieves an average alignable accu-
racy of 75%, only achieves an average raw accuracy
of 50%.

5.3 Error Analysis

Tables 6 and 7 show what percentage of an aligner’s
errors correspond to which error types. Because our
aligners are based on term matching, the only way
for them to predict no alignment is for the average
TF-IDF score of the terms to be zero (no matching
terms anywhere). Because this is a very rare event,
ER-type errors are also extremely rare, and are ex-
cluded from our error analysis.

We can see from tables 6 and 7 that our poorer
aligners (A and B) have a fairly even split between
BR-type and NR-type errors, while our better align-
ers (C and D) have a far greater percentage of NR-
type errors, indicating that the features we are in-
vestigating can only reduce BR-type errors. This
verifies the importance of the proposed alignability
module which first filters out unalignable slide re-
gions.

5.4 Error Reduction

Tables 8 and 9 analyze how well query expansion
and scoring method 2 reduce errors by measuring
the percentage of errors made by one aligner, which
were not made by another. Four pairings of align-
ers are considered: A and B, A and C, B and D, and
C and D. By comparing aligner A to B and C to D,
we have one measure of the error reduction achieved
by adding query expansion to an aligner. If the ad-
dition of query expansion enables an aligner to cor-
rectly align slide regions which its query expansion-
less counterpart could not, then we should see large
percentages of errors being corrected when compar-
ing aligner A to B and C to D. By comparing aligner
A to C and B to D, we have a measure of the error
reduction achieved by implementing scoring method
2 instead of method 1.

Tables 8 and 9 show that aligner D significantly
reduced aligner B’s errors and aligner C significantly
reduced aligner A’s errors, but aligner B did not im-
prove much on A, nor did D on C. In other words,
adding query expansion did not significantly reduce
errors, but using scoring method 2 instead of 1 did.

6 Discussion

6.1 On Alignability

Before mentioning alignment performance, it is im-
portant to notice from our data that there is great va-
riety among slide presentations. For example, ta-
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Presentation Frontmatter Outline Heading Bullet Diagram Overall
P1 3/3 (100.0%) 0/0 0/5 (0.0%) 21/74 (28.4%) 0/92 (0.0%) 24/174 (13.8%)
P2 9/9 (100.0%) 8/9 (88.9%) 24/34 (70.6%) 104/129 (80.6%) 0/0 145/181 (80.1%)
P3 5/5 (100.0%) 0/1 (0.0%) 48/52 (92.3%) 15/55 (27.3%) 0/0 68/114 (59.5%)
P4 4/5 (80.0%) 0/1 (0.0%) 11/13 (74.6%) 33/47 (70.2%) 49/52 (94.2%) 97/118 (82.2%)
Total 21/22 (95.5%) 8/11 (72.7%) 83/104 (79.8%) 173/305 (56.7%) 49/144 (34.0%) 334/587 (56.9%)

Table 3: Breakdown of alignable slide text spans by type. Columns correspond to slide text span types. Percentages in each column measure the
fraction of text spans of that type which are alignable. E.g. of the 129 bullets in presentation P2, 104 are alignable. The “Overall” column measures
the fraction of all text spans which are alignable. E.g. of the 181 text spans in presentation P2, 145 are alignable.

Presentation Aligner A Aligner B Aligner C Aligner D
P1 34/174 (19.5%) 129/174 (16.7%) 37/174 (21.3%) 35/174 (20.1%)
P2 71/181 (39.2%) 64/181 (35.4%) 101/181 (55.8%) 97/181 (53.6%)
P3 66/114 (57.9%) 64/114 (56.1%) 77/114 (67.5%) 77/114 (67.5%)
P4 50/118 (42.4%) 48/118 (40.7%) 78/118 (66.1%) 77/118 (65.3%)
Total 221/587 (37.6%) 205/587 (34.9%) 293/587 (49.9%) 286/587 (48.7%)

Table 4: Raw accuracy. Each column corresponds to one of the four aligners evaluated. Percentages measure the fraction of text spans which
were aligned correctly.

Presentation Aligner A Aligner B Aligner C Aligner D
P1 12/24 (50.0%) 9/24 (37.5%) 15/24 (62.5%) 15/24 (62.5%)
P2 63/145 (43.4%) 56/145 (38.6%) 93/145 (64.1%) 90/145 (62.1%)
P3 55/68 (80.9%) 54/68 (79.4%) 66/68 (97.1%) 67/68 (98.5%)
P4 49/97 (50.5%) 47/97 (48.5%) 77/97 (79.4%) 76/97 (78.4%)
Total 179/334 (53.6%) 166/334 (49.7%) 251/334 (75.1%) 248/334 (74.3%)

Table 5: Alignable accuracy. Each column corresponds to one of the four aligners evaluated. Percentages measure the fraction of alignable text
spans which were aligned correctly.

Aligner A Aligner B
Presentation BR NR BR NR
P1 11/140 (7.9%) 128/140 (91.4%) 14/145 (9.7%) 130/145 (89.7%)
P2 82/110 (74.5%) 28/110 (25.5%) 89/117 (76.1%) 28/117 (23.9%)
P3 13/48 (27.1%) 35/48 (72.9%) 14/50 (28.0%) 36/50 (72.0%)
P4 48/68 (70.6%) 20/68 (29.4%) 50/70 (71.4%) 20/70 (28.6%)
Total 154/366 (42.1%) 211/366 (57.7%) 167/382 (43.7%) 214/382 (56.0%)

Table 6: Error type breakdown for aligners A and B. Columns correspond to specific types of alignment errors. “BR” is short for “better region”
and “NR” is short for “no region”. An error of type “BR” means that the aligner choose an incorrect region in the paper, and a better region existed.
An error of type “NR” means the aligner choose an incorrect region, and there was no correct region.

Aligner C Aligner D
Presentation BR NR BR NR
P1 8/137 (5.8%) 128/137 (93.4%) 8/139 (5.8%) 130/139 (93.5%)
P2 52/80 (65.0%) 28/80 (35.0%) 55/84 (65.5%) 29/84 (34.5%)
P3 2/37 (5.4%) 35/37 (94.6%) 1/37 (2.7%) 36/37 (97.3%)
P4 20/40 (50.0%) 20/40 (50.0%) 21/41 (51.2%) 20/41 (48.8%)
Total 82/294 (27.9%) 211/294 (71.8%) 85/301 (28.2%) 215/301 (71.4%)

Table 7: Error type breakdown for aligners C and D. Columns correspond to specific types of alignment errors. “BR” is short for “better region”
and “NR” is short for “no region”. An error of type “BR” means that the aligner choose an incorrect region in the paper, and a better region existed.
An error of type “NR” means the aligner choose an incorrect region, and there was no correct region.
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Aligner A→ B Aligner A→ C
Presentation BR NR Overall BR NR Overall
P1 0/11 (0.0%) 0/128 (0.0%) 0/140 (0.0%) 4/11 (36.4%) 0/128 (0.0%) 4/140 (2.9%)
P2 0/82 (0.0%) 0/28 (0.0%) 0/110 (0.0%) 38/82 (46.3%) 0/28 (0.0%) 38/110 (34.5%)
P3 0/13 (0.0%) 0/35 (0.0%) 0/48 (0.0%) 11/13 (84.6%) 0/35 (0.0%) 11/48 (22.9%)
P4 0/48 (0.0%) 0/20 (0.0%) 0/68 (0.0%) 31/48 (64.6%) 0/20 (0.0%) 31/68 (45.6%)
Total 0/154 (0.0%) 0/211 (0.0%) 0/366 (0.0%) 84/154 (54.5%) 0/211 (0.0%) 84/366 (23.0%)

Table 8: Error reduction between aligners A and B, and between aligners A and C. Major columns correspond to aligner pairs and minor columns
correspond to error types. A pair denoted by X → Y indicates that the corresponding percentages are measuring the fraction of slide text spans
aligned incorrectly by aligner X , which were aligned correctly by aligner Y . E.g. from this table you can see that in presentation P1, aligner A
incorrectly aligned 140 text spans. 11 of them were BR-type errors and 128 of them were NR-type errors. Four of aligner A’s BR-type errors were
aligned correctly by aligner C.

Aligner B→ D Aligner C→ D
Presentation BR NR Overall BR NR Overall
P1 7/14 (50.0%) 0/130 (0.0%) 7/145 (4.8%) 0/8 (0.0%) 0/128 (0.0%) 0/137 (0.0%)
P2 42/89 (47.2%) 0/28 (0.0%) 42/117 (35.9%) 1/52 (1.9%) 0/28 (0.0%) 1/80 (1.2%)
P3 13/14 (92.9%) 0/36 (0.0%) 13/50 (26.0%) 1/2 (50.0%) 0/35 (0.0%) 1/37 (2.7%)
P4 32/50 (64.0%) 0/20 (0.0%) 32/70 (45.7%) 1/20 (5.0%) 0/20 (0.0%) 1/40 (2.5%)
Total 94/167 (56.3%) 0/214 (0.0%) 94/382 (24.6%) 3/82 (3.7%) 0/211 (0.0%) 3/294 (1.0%)

Table 9: Error reduction between aligners B and D, and between aligners C and D. Major columns correspond to aligner pairs and minor columns
correspond to error types. A pair denoted by X → Y indicates that the corresponding percentages are measuring the fraction of slide text spans
aligned incorrectly by aligner X , which were aligned correctly by aligner Y . E.g. from this table you can see that in presentation P1, aligner B
incorrectly aligned 145 text spans. 14 of them were BR-type errors and 130 of them were NR-type errors. 7 of aligners B’s BR-type errors were
correctly aligned by aligner D.

ble 3 shows that 28% of P1’s bullets were alignable,
while 81% of P2’s were alignable. P1 and P4 both
contained diagrams, but only P4’s diagram existed
in the paper. Our initial hypothesis was that the vast
majority of slide regions would either be excerpts or
abstracts from/of the paper regions. Table 3 shows
that a nontrivial amount of slide regions does not
map to the paper at all. Also, tables 6 and 7 show
that as a result, NR-type errors make up the majority
of the errors made by the better aligners. Thus, the
data indicates that the task of slide-presentation gen-
eration is highly dependent on the end purpose the
presentation will serve, as well as the target audience
and other factors. We will focus more on identify-
ing these factors in future research. Once identified,
these factors should be quantified and controlled in
future corpora of presentation-paper pairs used for
this task.

6.2 On Scoring Methods and Query Expansion

Our results clearly show that, for this task, query
expansion has little or negative impact on aligners
and that scoring method 2 is indeed superior to scor-
ing method 1. Tables 4 and 5 show that aligner
C consistently outperforms aligner A and aligner D
consistently outperforms aligner B, especially when

limited to alignable slide regions. Hence, scoring
method 2 is better than method 1. We can also
see from tables 4 and 5 that aligner B consistently
under-performs A and aligner D consistently under-
performs C, which shows that query expansion does
not improve performance and in fact, it degrades it.
Tables 8 and 9 show the same results from a differ-
ent perspective: aligner C correctly aligned 55% of
the aligner A’s erroneous alignable slide regions and
aligner D correctly aligned 56% of aligner B’s erro-
neous alignable slide regions. But aligner B did not
catch any of aligner A’s errors and aligner D only
caught 4% of aligner C’s errors – but ended up mak-
ing more in the end anyway.

With regard to query expansion, there are two
possibilities. Query expansion was not very help-
ful here because either (a) slide authors tend to use
wording identical to that in the paper, or (b) using
synonyms from Wordnet is not aggressive enough
and we should consider expanding our query expan-
sion approach to include hypernyms, immediate hy-
ponyms, and other semantically related terms. We
think the data suggests that (a) is more the case than
(b). If (b) were the case, including synonyms in our
search should have improved the performance, just
not by a lot. In actually, aligner B performed worse

117



on average than aligner A, and likewise with aligner
D when compared to C. Synonyms are semanti-
cally closer to the original term than hypernyms,
hyponyms, or other semantically related terms, and
our results show that introducing this small amount
of semantic distance is (a little bit) detrimental. By
adding hypernyms and other relations, only a wider,
less focused group of terms will be introduced which
will probably just result in more false positives.

One possible criticism against our argument for
(a) could be that our implementation of query expan-
sion performed poorly because we don’t word sense
disambiguate, and thus we introduce synonyms from
incorrect senses of each term. This probably isn’t
the case because the search terms are not in isolation,
but are part of a larger query. For an incorrect paper
region to be select based on an error of this type,
it would have to contain many of the terms in the
query as well as the semantically inaccurate sense of
the one in question. This situation is unlikely due to
one of the most basic assumptions made when sense
disambiguating: that context restricts the possible
senses of any word. So, if a paper region contains
many of the terms in a slide region, it is unlikely
that it will also contain the off-topic, semantically
awkward term pertaining to a bad sense of one of
them.

With regard to scoring methods. Average TF-IDF
scoring is probably ineffective in this application be-
cause of the nature of paper regions. When retriev-
ing whole documents given a search query, one doc-
ument’s contents are probably independent of any
other, so terms related to the document’s topic are
stated explicitly. Paper regions, however, are in the
context of each other. The topic of one can be very
similar to another, only because it’s nearby, not be-
cause of the terms explicitly mentioned in the re-
gion. Add to this the fact that paper regions are ex-
tremely non-uniform in length and TF-IDF scores
end up skewed.

6.3 On Improvement

There is a lot of room for improvement on slide
to paper alignment. As mentioned previously in
section 6.1, unalignable slide regions account for a
much larger portion of the slide presentations than
our initial hypothesis predicted; around 70% of the
errors made by our better aligners (C and D) were

NR-type errors, meaning the alignment was bad be-
cause the system selected a paper region when in fact
there was no correct paper region. A robust slide to
paper aligner would need to have a module capable
of filtering out unalignable slide regions. If this task
were solved and implemented on our better aligners,
raw accuracy would raise from 50% to about 75%
on average which is nearing the level of robustness
necessary for real-world applications.

We also suggest that, in regard to alignable slide
regions, performance would be significantly boosted
by taking context into account, both on the slide and
paper side. We noticed during evaluation that many
of the BR-type errors occurred when the slide region
in question lacked the necessary terms, but the terms
existed in nearby slide regions. Examples of this in-
clude when for instance, the title is broken across
two lines and the second line only has a word or
two in it, or when a heading is rather non-descriptive
but the sub-bullets beneath it contain many relevant
terms to the topic. Incorporating terms of nearby
slide regions (perhaps in query-expansion fashion),
rather than just treating each one as an independent
search query will certainly boost performance.

Likewise on the paper end, it is reasonable to as-
sume that in most cases, the topic of one region is
similar to the topics of adjacent regions. And just as
terms from nearby slide regions could supplement
term-poor slide regions, terms from nearby paper re-
gions could supplement term-poor paper regions.

7 Conclusion

In this paper we investigated the task of automatic
slide to paper alignment. We built a corpus of
slide-paper pairs and used four presentations from
it to evaluate four aligners which utilize methods
such as TF-IDF term weighting and query expan-
sion. We showed that query expansion does not im-
prove performance in our application and that TF-
IDF term weighting is inferior to a much simpler
scoring mechanism based on the number of matched
terms. For future improvements, we suggest that a
module capable of robustly filtering out unalignable
slide regions is necessary. We also suggest that per-
formance can be improved by taking context into ac-
count and using terms in nearby regions to supple-
ment both slide regions and paper regions.
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Abstract

English pronouns likeheandtheyreliably re-
flect the gender and number of the entities to
which they refer. Pronoun resolution systems
can use this fact to filter noun candidates that
do not agree with the pronoun gender. In-
deed, broad-coverage models of noun gender
have proved to be the most important source
of world knowledge in automatic pronoun res-
olution systems.

Previous approaches predict gender by count-
ing the co-occurrence of nouns with pronouns
of each gender class. While this provides use-
ful statistics for frequent nouns, many infre-
quent nouns cannot be classified using this
method. Rather than using co-occurrence in-
formation directly, we use it to automatically
annotate training examples for a large-scale
discriminative gender model. Our model col-
lectively classifies all occurrences of a noun
in a document using a wide variety of con-
textual, morphological, and categorical gender
features. By leveraging large volumes of un-
labeled data, our full semi-supervised system
reduces error by 50% over the existing state-
of-the-art in gender classification.

1 Introduction

Pronoun resolution is the process of determining
which preceding nouns are referred to by a partic-
ular pronoun in text. Consider the sentence:

(1) Glen told Glenda that she was wrong about
Glendale.

A pronoun resolution system should determine that
the pronounshe refers to the nounGlenda. Pro-
noun resolution is challenging because it requires a

lot of world knowledge(general knowledge of word
types). Ifsheis replaced with the pronounhe in (1),
Glen becomes the antecedent. Pronoun resolution
systems need the knowledge ofnoun genderthat ad-
vises thatGlen is usually masculine (and thus re-
ferred to byhe) while Glendais feminine.

English third-person pronouns are grouped in four
gender/number categories: masculine (he, his, him,
himself), feminine (she, her, herself), neutral (it, its,
itself), and plural (they, their, them, themselves). We
broadly refer to these gender and number classes
simply asgender. The objective of our work is to
correctly assign gender to English noun tokens, in
context; to determine which class of pronoun will
refer to a given noun.

One successful approach to this problem is to
build a statistical gender model from a noun’s asso-
ciation with pronouns in text. For example, Ge et al.
(1998) learnFord has a 94% chance of being neu-
tral, based on its frequent co-occurrence with neu-
tral pronouns in text. Such estimates are noisy but
useful. Both Ge et al. (1998) and Bergsma and Lin
(2006) show that learned gender is the most impor-
tant feature in their pronoun resolution systems.

English differs from other languages like French
and German in that gender is not an inherent gram-
matical property of an English noun, but rather a
property of a real-world entity that is being referred
to. A common noun likelawyer can be (semanti-
cally) masculine in one document and feminine in
another. While previous statistical gender models
learn gender for noun types only, we use document
context to correctly determine the current gender
class of noun tokens, making dynamic decisions on
common nouns likelawyer and ambiguous names
like Ford. Furthermore, if a noun type has not yet
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been observed (an unknown word), previous ap-
proaches cannot estimate the gender. Our system,
on the other hand, is able to correctly determine that
unknown wordscorroboratorsandpropeller-heads
are plural, whilePope Formosusis masculine, using
learned contextual and morphological cues.

Our approach is based on the key observation that
while gender information from noun-pronoun co-
occurrence provides imperfect noun coverage, it can
nevertheless provide rich and accurate training data
for a large-scale discriminative classifier. The clas-
sifier leverages a wide variety of noun properties to
generalizefrom the automatically-labeled examples.
The steps in our approach are:

1. Training:

(a) Automatically extract a set of seed
(noun,gender) pairs from high-quality in-
stances in a statistical gender database.

(b) In a large corpus of text, find documents con-
taining these nouns.

(c) For all instances of each noun in each document,
create a single, composite feature vector repre-
senting all the contexts of the noun in the docu-
ment, as well as encoding other selected proper-
ties of the noun type.

(d) Label each feature vector with the seed noun’s
corresponding gender.

(e) Train a 4-way gender classifier (masculine, fem-
inine, neutral, plural) from the automatically-
labeled vectors.

2. Testing:

(a) Given a new document, create a composite fea-
ture vector for all occurrences of each noun.

(b) Use the learned classifier to assign gender to
each feature vector, and thus all occurrences of
all nouns in the document.

This algorithm achieves significantly better per-
formance than the existing state-of-the-art statisti-
cal gender classifier, while requiring no manually-
labeled examples to train. Furthermore, by training
on a small number of manually-labeled examples,
we can combine the predictions of this system with
the counts from the original gender database. This
semi-supervised extension achieves 95.5% accuracy
on final unseen test data, an impressive 50% reduc-
tion in error over previous work.

2 Path-based Statistical Noun Gender

Seed(noun,gender)examples can be extracted re-
liably and automatically from raw text, providing
the training data for our discriminative classifier.
We call these examplespseudo-seeds because they
are created fully automatically, unlike the small set
of manually-created seeds used to initialize other
bootstrapping approaches (cf. the bootstrapping ap-
proaches discussed in Section 6).

We adopt a statistical approach to acquire the
pseudo-seed(noun,gender)pairs. All previous sta-
tistical approaches rely on a similar observation: if
a noun likeGlen is often referred to by masculine
pronouns, likehe or his, thenGlen is likely a mas-
culine noun. But for most nouns we have no an-
notated data recording their coreference with pro-
nouns, and thus no data from which we can ex-
tract the co-occurrence statistics. Thus previous ap-
proaches rely on either hand-crafted coreference-
indicating patterns (Bergsma, 2005), or iteratively
guess and improve gender models through expec-
tation maximization of pronoun resolution (Cherry
and Bergsma, 2005; Charniak and Elsner, 2009). In
statistical approaches, the more frequent the noun,
the more accurate the assignment of gender.

We use the approach of Bergsma and Lin (2006),
both because it achieves state-of-the-art gender
classification performance, and because a database
of the obtained noun genders is available online.1

Bergsma and Lin (2006) use an unsupervised
algorithm to identify syntactic paths along which a
noun and pronoun are highly likely to corefer. To
extract gender information, they processed a large
corpus of news text, and obtained co-occurrence
counts for nouns and pronouns connected with these
paths in the corpus. In their database, each noun is
listed with its corresponding masculine, feminine,
neutral, and plural pronoun co-occurrence counts,
e.g.:
glen 555 42 32 34
glenda 8 102 0 11
glendale 24 2 167 18
glendalians 0 0 0 1
glenn 3182 207 95 54
glenna 0 6 0 0

1Available at http://www.cs.ualberta.ca/˜bergsma/Gender/
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This sample of the gender data shows that the
nounglenda, for example, occurs 8 times with mas-
culine pronouns, 102 times with feminine pronouns,
0 times with neutral pronouns, and 11 times with
plural pronouns; 84% of the timeglendaco-occurs
with a feminine pronoun. Note that all nouns in the
data have been converted to lower-case.2

There are gender counts for 3.1 million English
nouns in the online database. These counts form the
basis for the state-of-the-art gender classifier. We
can either take the most-frequent pronoun-gender
(MFPG) as the class (e.g.feminine for glenda), or
we can supply the logarithm of the counts as features
in a 4-way multi-class classifier. We implement the
latter approach as a comparison system and refer to
it as PATHGENDER in our experiments.

In our approach, rather than using these counts
directly, we process the database to automatically
extract a high-coverage but also high-quality set of
pseudo-seed(noun,gender)pairs. First, we filter
nouns that occur less than fifty times and whose
MFPG accounts for less than 85% of counts. Next,
we note that the most reliable nouns should occur
relatively often in a coreferent path. For exam-
ple, note thatimportanceoccurs twice as often on
the web asClinton, but has twenty-four times less
counts in the gender database. This is becauseim-
portanceis unlikely to be a pronoun’s antecedent.
We plan to investigate this idea further in future
work as a possible filter on antecedent candidates
for pronoun resolution. For the present work, sim-
ply note that a high ratio of database-count to web-
count provides a good indication of the reliability of
a noun’s gender counts, and thus we filter nouns that
have such ratios below a threshold.3 After this fil-
tering, we have about 45 thousand nouns to which
we automatically assign gender according to their
MFPG. These(noun,gender)pairs provide the seed
examples for the training process described in the

2Statistical approaches can adapt to the idiosyncrasies of the
particular text domain. In the news text from which this data
was generated, for example, both the wordshipsand specific
instances of ships (the USS Cole, the Titanic, etc.) are neutral.
In Wikipedia, on the other hand, feminine pronouns are often
used for ships. Such differences can be learned automatically.

3We roughly tuned all the thresholds to obtain the highest
number of seeds such that almost all of them looked correct
(e.g. Figure 1). Further work is needed to determine whethera
different precision/recall tradeoff can improve performance.

. . .
stefanie
steffi graf
steinem
stella mccartney
stellar jayne
stepdaughter
stephanie
stephanie herseth
stephanie white
stepmother
stewardess
. . .

Figure 1: Samplefeminine seed nouns

following section. Figure 1 provides a portion of the
orderedfeminine seed nouns that we extracted.

3 Discriminative Learning of Gender

Once we have extracted a number of pseudo-seed
(noun,gender)pairs, we use them to automatically-
label nouns (in context) in raw text. The auto-
labeled examples provide training data for discrimi-
native learning of noun gender.

Since the training pairs are acquired from a
sparse and imperfect model of gender, what can
we gain by training over them? We can regard the
Bergsma and Lin (2006) approach and our discrim-
inative system as two orthogonal views of gender,
in a co-training sense (Blum and Mitchell, 1998).
Some nouns can be accurately labeled by noun-
pronoun co-occurrence (a view based on pronoun
co-occurrence), and these examples can be used to
deduce other gender-indicating regularities (a view
based on other features, described below).

We presently explain how examples are extracted
using our pseudo-seed pairs, turned into auto-
labeled feature vectors, and then used to train a su-
pervised classifier.

3.1 Automatic example extraction

Our example-extraction module processes a large
collection of documents (roughly a million docu-
ments in our experiments). For each document, we
extract all the nouns, including context words within
±5 tokens of each noun. We then group the nouns by
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Class=masculine String=“Lee”
Contexts =
“led some to suggest that⋆ , who was born in”
“⋆ also downloaded secret files to”
“⋆ says he was just making”
“by mishandling the investigation of⋆ .”

. . .

Figure 2: Sample noun training instance

their (lower-case) string. If a group’s noun-string is
in our set of seed(noun,gender)pairs, we assign the
correspondinggenderto be the class of the group.
Otherwise, we discard the group. To prevent fre-
quent nouns from dominating our training data, we
only keep the first 200 groups corresponding to each
noun string. Figure 2 gives an example training noun
group with some (selected) context sentences. At
test time, all nouns in the test documents are con-
verted to this format for further processing.

We group nouns because there is a strong ten-
dency for nouns to have only one sense (and hence
gender) per discourse. We extract contexts because
nearby words provide good clues about which gen-
der is being used. The notion that nouns have only
one sense per discourse/collocation was also ex-
ploited by Yarowsky (1995) in his seminal work on
bootstrapping for word sense disambiguation.

3.2 Feature vectors

Once the training instances are extracted, they are
converted to labeled feature vectors for supervised
learning. The automatically-determined gender pro-
vides the class label (e.g.,masculine for the group
in Figure 2). The features identify properties of the
noun and its context that potentially correlate with a
particular gender category. We divide the features
into two sets: those that depend on the contexts
within the document (Context features: features of
the tokensin the document), and those that depend
on the noun string only (Type features). In both
cases we induce the feature space from the train-
ing examples, keeping only those features that occur
more than 5 times.

3.2.1 Context features

The first set of features represent the contexts of
the word, using all the contexts in the noun group.

To illustrate the potential utility of the context infor-
mation, consider the context sentences for the mas-
culine noun in Figure 2. Even if these snippets were
all the information we were given, it would be easy
to guess the gender of the noun.

We use binary attribute-value features to flag, for
any of the contexts, the presence of all words at con-
text positions±1,±2, etc. (sometimes calledcol-
location features (Golding and Roth, 1999)). For
example, feature 255920 flags that the word two-to-
the-right of the noun ishe. We also provide fea-
tures for the presence of all wordsanywherewithin
±5 tokens of the noun (sometimes calledcontext
words). We also parse the sentence and provide a
feature for the noun’s parent (and relationship with
the parent) in the parse tree. For example, the in-
stance in Figure 2 has featuresdownloaded(subject),
says(subject), etc. Since plural nouns should be gov-
erned by plural verbs, this feature is likely to be es-
pecially helpful for number classification.

3.2.2 Type features

The next group of features represent morpholog-
ical properties of the noun. Binary features flag the
presence of all prefixes and suffixes of one-to-four
characters. For multi-token nouns, we have features
for the first and last token in the noun. Thus we hope
to learn thatBobbegins masculine nouns whileinc.
ends neutral ones.

Finally, we have features that indicate if the noun
or parts of the noun occur on various lists. Indica-
tor features specify if any token occurs on in-house
lists of given names, family names, cities, provinces,
countries, corporations, languages, etc. A feature
also indicates if a token is a corporate designation
(like inc. or ltd.) or a human one (likeMr. or Sheik).
We also made use of the person-name/instance
pairs automatically extracted by Fleischman et al.
(2003).4 This data provides counts for pairs such
as (Zhang Qiyue,spokeswoman) and (Thorvald
Stoltenberg,mediator). We have features for allcon-
cepts(like spokeswomanand mediator) and there-
fore learn their association with each gender.

3.3 Supervised learning and classification

Once all the feature vectors have been extracted,
they are passed to a supervised machine learn-

4Available at http://www.mit.edu/˜mbf/instances.txt.gz
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ing algorithm. We train and classify using a
multi-class linear-kernel Support Vector Machine
(SVM) (Crammer and Singer, 2001). SVMs are
maximum-margin classifiers that achieve good per-
formance on a range of tasks. At test time, nouns in
test documents are processed exactly as the training
instances described above, converting them to fea-
ture vectors. The test vectors are classified by the
SVM, providing gender classes for all the nouns in
the test document. Since all training examples are
labeled automatically (auto-trained), we denote sys-
tems using this approach as -AUTO.

3.4 Semi-supervised extension

Although a good gender classifier can be learned
from the automatically-labeled examples alone, we
can also use a small quantity of gold-standard la-
beled examples to achieve better performance.

Combining information from our two sets of la-
beled data is akin to a domain adaptation prob-
lem. The gold-standard data can be regarded as
high-quality in-domain data, and the automatically-
labeled examples can be regarded as the weaker, but
larger, out-of-domain evidence.

There is a simple but effective method for com-
bining information from two domains using predic-
tions as features. We train a classifier on the full set
of automatically-labeled data (as described in Sec-
tion 3.3), and then use this classifier’s predictions as
features in a separate classifier, which is trained on
the gold-standard data. This is like the competitive
Featsdomain-adaptation system in Daumé III and
Marcu (2006).

For our particular SVM classifier (Section 4.1),
predictions take the form of four numerical scores
corresponding to the four different genders. Our
gold-standard classifier has features for these four
predictions plus features for the original path-based
gender counts (Section 2).5 Since this approach uses
both automatically-labeled and gold-standard data in
a semi-supervised learning framework, we denote
systems using this approach as -SEMI .

5We actually use 12 features for the path-based counts: the
4 original, and then 4 each for counts for the first and last token
in the noun string. See PATHGENDER+ in Section 4.2.

4 Experiments

4.1 Set-up

We parsed the 3 GB AQUAINT corpus (Vorhees,
2002) using Minipar (Lin, 1998) to create our un-
labeled data. We process this data as described in
Section 3, making feature vectors from the first 4
million noun groups. We train from these exam-
ples using a linear-kernel SVM via the the efficient
SVMmulticlass instance of the SVMstruct software
package (Tsochantaridis et al., 2004).

To create our gold-standard gender data, we fol-
low Bergsma (2005) in extracting gender informa-
tion from the anaphora-annotated portion6 of the
American National Corpus (ANC) (Ide and Sud-
erman, 2004). In each document, we first group
all nouns with a common lower-case string (exactly
as done for our example extraction (Section 3.1)).
Next, for each group we determine if a third-person
pronoun refers to any noun in that group. If so, we
label all nouns in the group with the gender of the
referring pronoun. For example, if the pronounhe
refers to a nounBrown, then all instances ofBrown
in the document are labeled as masculine. We ex-
tract the genders for 2794 nouns in the ANC train-
ing set (in 798 noun groups) and 2596 nouns in the
ANC test set (in 642 groups). We apply this method
to other annotated corpora (including MUC corpora)
to create a development set.

The gold standard ANC training set is used to
set the weights on the counts in the PATHGENDER

classifiers, and to train the semi-supervised ap-
proaches. We also use an SVM to learn these
weights. We use the development set to tune the
SVM’s regularization parameter, both for systems
trained on automatically-generated data, and for sys-
tems trained on gold-standard data. We also opti-
mize each automatically-trained system on the de-
velopment set when we include this system’s pre-
dictions as features in the semi-supervised exten-
sion. We evaluate and state performance for all ap-
proaches on the final unseen ANC test set.

4.2 Evaluation

The primary purpose of our experiments is to de-
termine if we can improve on the existing state-of-
the-art in gender classification (path-based gender

6Available at http://www.cs.ualberta.ca/˜bergsma/CorefTags/
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counts). We test systems both trained purely on
automatically-labeled data (Section 3.3), and those
that leverage some gold-standard annotations in a
semi-supervised setting (Section 3.4). Another pur-
pose of our experiments is to investigate the relative
value of our context-based features and type-based
features. We accomplish these objectives by imple-
menting and evaluating the following systems:

1. PATH GENDER:
A classifier with the four path-based gender
counts as features (Section 2).

2. PATH GENDER+:
A method of back-off to help classify unseen
nouns: For multi-token nouns (likeBob John-
son), we also include the four gender counts
aggregated over all nouns sharing the first to-
ken (Bob .*), and the four gender counts over
all nouns sharing the last token (.* Johnson).

3. CONTEXT -AUTO:
Auto-trained system using only context fea-
tures (Section 3.2.1).

4. TYPE-AUTO:
Auto-trained system using only type features
(Section 3.2.2).

5. FULL -AUTO:
Auto-trained system using all features.

6. CONTEXT -SEMI :
Semi-sup. combination of the PATHGENDER+
features and the CONTEXT-AUTO predictions.

7. TYPE-SEMI :
Semi-sup. combination of the PATHGENDER+
features and the TYPE-AUTO predictions.

8. FULL -SEMI :
Semi-sup. combination of the PATHGENDER+
features and the FULL -AUTO predictions.

We evaluate usingaccuracy: the percentage of
labeled nouns that are correctly assigned a gender
class. As a baseline, note that always choosing
neutral achieves 38.1% accuracy on our test data.

5 Results and Discussion

5.1 Main results

Table 1 provides our experimental results. The orig-
inal gender counts already do an excellent job clas-
sifying the nouns; PATHGENDER achieves 91.0%
accuracy by looking for exact noun matches. Our

1. PATHGENDER 91.0
2. PATHGENDER+ 92.1
3. CONTEXT-AUTO 79.1
4. TYPE-AUTO 89.1
5. FULL -AUTO 92.6
6. CONTEXT-SEMI 92.4
7. TYPE-SEMI 91.3
8. FULL -SEMI 95.5

Table 1: Noun gender classification accuracy (%)

simple method of using back-off counts for the first
and last token, PATHGENDER+, achieves 92.1%.
While PATHGENDER+ uses gold standard data to
determine optimum weights on the twelve counts,
FULL -AUTO achieves 92.6% accuracy using no
gold standard training data. This confirms that our
algorithm, using no manually-labeled training data,
can produce a competitive gender classifier.

Both PATHGENDER and PATHGENDER+ do
poorly on the noun types that have low counts in
the gender database, achieving only 63% and 66%
on nouns with less than ten counts. On these
same nouns, FULL -AUTO achieves 88% perfor-
mance, demonstrating the robustness of the learned
classifier on the most difficult examples for previ-
ous approaches (FULL -SEMI achieves 94% on these
nouns).

If we break down the contribution of the two fea-
ture types in FULL -AUTO, we find that we achieve
89.1% accuracy by only using type features, while
we achieve 79.1% with only context features. While
not as high as the type-based accuracy, it is impres-
sive that almost four out of five nouns can be classi-
fied correctly based purely on the document context,
using no information about the noun itself. This is
information that has not previously been systemati-
cally exploited in gender classification models.

We examine the relationship between training
data size and accuracy by plotting a (logarithmic-
scale) learning curve for FULL -AUTO (Figure 3).
Although using four million noun groups originally
seemed sufficient, performance appears to still be in-
creasing. Since more training data can be generated
automatically, it appears we have not yet reached the
full power of the FULL -AUTO system. Of course,
even with orders of magnitude more data, the system
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Figure 3: Noun gender classification learning curve for
FULL -AUTO

does not appear destined to reach the performance
obtained through other means described below.

We achieve even higher accuracy when the output
of the -AUTO systems are combined with the orig-
inal gender counts (the semi-supervised extension).
The relative value of the context and type-based fea-
tures is now reversed: using only context-based fea-
tures (CONTEXT-SEMI ) achieves 92.4%, while us-
ing only type-based features (TYPE-SEMI ) achieves
91.3%. This is because much of the type informa-
tion is already implicit in the PATHGENDER counts.
The TYPE-AUTO predictions contribute little infor-
mation, only fragmenting the data and leading to
over-training and lower accuracy. On the other hand,
the CONTEXT-AUTO predictions improve accuracy,
as these scores provide orthogonal and hence helpful
information for the semi-supervised classifier.

Combining FULL -AUTO with our enhanced path
gender counts, PATHGENDER+, results in the over-
all best performance, 95.5% for FULL -SEMI , signif-
icantly better than PATHGENDER+ alone.7 This is
a 50% error reduction over the PATHGENDER sys-
tem, strongly confirming the benefit of our semi-
supervised approach.

To illustrate the importance of the unlabeled data,
we created a system that uses all features, including
the PATHGENDER+ counts, and trained this system
using only the gold standard training data. This sys-
tem was unable to leverage the extra features to im-
prove performance; its accuracy was 92.0%, roughly
equal to PATHGENDER+ alone. While SVMs work

7We evaluate significance using McNemar’s test, p<0.01.
Since McNemar’s test assumes independent classifications,we
apply the test to the classification of noungroups, not instances.

well with high-dimensional data, they simply cannot
exploit features that do not occur in the training set.

5.2 Further improvements

We can improve performance further by doing some
simple coreference before assigning gender. Cur-
rently, we only group nouns with the same string,
and then decide gender collectively for the group.
There are a few cases, however, where an ambiguous
surname, such asWilley, can only be classified cor-
rectly if we link the surname to an earlier instance of
the full name, e.g.Katherine Willey. We thus added
the following simple post-processing rule: If a noun
is classified asmasculine or feminine (like the am-
biguousWilley), and it was observed earlier as the
last part of a larger noun, then re-assign the gender
to masculine or feminine if one of these is the most
common path-gender count for the larger noun. We
back off to counts for the first name (e.g.Kathleen
.*) if the full name is unobserved.

This enhancement improved the PATHGENDER

and PATHGENDER+ systems to 93.3% and 94.3%,
respectively, while raising the accuracy of our
FULL -SEMI system to 96.7%. This demonstrates
that the surname-matching post-processor is a sim-
ple but worthwhile extension to a gender predictor.8

The remaining errors represent a number of chal-
lenging cases:United States, group, andpublic la-
beled asplural but classified asneutral ; spectator
classified asneutral , etc. Some of these may yield
to more sophisticated joint classification of corefer-
ence and gender, perhaps along the lines of work in
named-entity classification (Bunescu and Mooney,
2004) or anaphoricity (Denis and Baldridge, 2007).

While gender has been shown to be the key fea-
ture for statistical pronoun resolution (Ge et al.,
1998; Bergsma and Lin, 2006), it remains to be
seen whether the exceptional accuracy obtained here
will translate into improvements in resolution per-
formance. However, given the clear utility of gender
in coreference, substantial error reductions in gender

8One might wonder, why not provide special features so that
the system canlearn how to handle ambiguous nouns that oc-
curred as sub-phrases in earlier names? The nature of our train-
ing data precludes this approach. We only includeunambiguous
examples as pseudo-seeds in the learning process. Without
providing ambiguous (but labeled) surnames in some way, the
learner will not take advantage of features to help classifythem.
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assignment will likely be a helpful contribution.

6 Related Work

Most coreference and pronoun resolution papers
mention that they use gender information, but few
explain how it is acquired. Kennedy and Boguraev
(1996) use gender information produced by their en-
hanced part-of-speech tagger. Gender mistakes ac-
count for 35% of their system’s errors. Gender is
less crucial in some genres, like computer manuals;
most nouns are either neutral or plural and gender
can be determined accurately based solely on mor-
phological information (Lappin and Leass, 1994).

A number of researchers (Evans and Orăsan,
2000; Soon et al., 2001; Harabagiu et al., 2001) use
WordNet classes to infer gender knowledge. Unfor-
tunately, manually-constructed databases like Word-
Net suffer from both low coverage and rare senses.
Pantel and Ravichandran (2004) note that the nouns
computerandcompanyboth have a WordNet sense
that is a hyponym ofperson, falsely indicating these
nouns would be compatible with pronouns likehe
or she. In addition to using WordNet classes, Soon
et al. (2001) assign gender if the noun has a gen-
dered designator (likeMr. or Mrs.) or if the first
token is present on a list of common human first
names. Note that we incorporate such contextual
and categorical information (among many other in-
formation sources) automatically in our discrimina-
tive classifier, while they manually specify a few
high-precision rules for particular gender cues.

Ge et al. (1998) pioneered the statistical approach
to gender determination. Like others, they consider
gender and number separately, only learning statis-
tical gender for the masculine, feminine, and neu-
tral classes. While gender and number can be han-
dled together for pronoun resolution, it might be use-
ful to learn them separately for other applications.
Other statistical approaches to English noun gender
are discussed in Section 2.

In languages with ‘grammatical’ gender and plen-
tiful gold standard data, gender can be tagged along
with other word properties using standard super-
vised tagging techniques (Hajič and Hladká, 1997).
While our approach is the first to exploit a dual
or orthogonal representation of English noun gen-
der, a bootstrapping approach has been applied to

determining grammatical gender in other languages
by Cucerzan and Yarowsky (2003). In their work,
the two orthogonal views are: 1) the context of the
noun, and 2) the noun’s morphological properties.
Bootstrapping with these views is possible in other
languages where context is highly predictive of gen-
der class, since contextual words like adjectives and
determiners inflect to agree with the grammatical
noun gender. We initially attempted a similar system
for English noun gender but found context alone to
be insufficiently predictive.

Bootstrapping is also used in general information
extraction. Brin (1998) shows how to alternate be-
tween extracting instances of a class and inducing
new instance-extracting patterns. Collins and Singer
(1999) and Cucerzan and Yarowsky (1999) apply
bootstrapping to the related task of named-entity
recognition. Our approach was directly influenced
by the hypernym-extractor of Snow et al. (2005) and
we provided an analogous summary in Section 1.
While their approach uses WordNet to label hyper-
nyms in raw text, our initial labels are generated au-
tomatically. Etzioni et al. (2005) also require no la-
beled data or hand-labeled seeds for their named-
entity extractor, but by comparison their classifier
only uses a very small number of both features and
automatically-generated training examples.

7 Conclusion

We have shown how noun-pronoun co-occurrence
counts can be used to automatically annotate the
gender of millions of nouns in unlabeled text. Train-
ing from these examples produced a classifier that
clearly exceeds the state-of-the-art in gender classi-
fication. We incorporated thousands of useful but
previously unexplored indicators of noun gender as
features in our classifier. By combining the pre-
dictions of this classifier with the original gender
counts, we were able to produce a gender predic-
tor that achieves 95.5% classification accuracy on
2596 test nouns, a 50% reduction in error over the
current state-of-the-art. A further name-matching
post-processor reduced error even further, resulting
in 96.7% accuracy on the test data. Our final system
is the broadest and most accurate gender model yet
created, and should be of value to many pronoun and
coreference resolution systems.
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Abstract

This paper presents novel improvements
to the induction of translation lexicons
from monolingual corpora using multilin-
gual dependency parses. We introduce a
dependency-based context model that in-
corporates long-range dependencies, vari-
able context sizes, and reordering. It pro-
vides a 16% relative improvement over
the baseline approach that uses a fixed
context window of adjacent words. Its
Top 10 accuracy for noun translation is
higher than that of a statistical translation
model trained on a Spanish-English par-
allel corpus containing 100,000 sentence
pairs. We generalize the evaluation to
other word-types, and show that the per-
formance can be increased to 18% rela-
tive by preserving part-of-speech equiva-
lencies during translation.

1 Introduction
Recent trends in machine translation illustrate that
highly accurate word and phrase translations can be
learned automatically given enough parallel training
data (Koehn et al., 2003; Chiang, 2007). However,
large parallel corpora exist for only a small frac-
tion of the world’s languages, leading to a bottleneck
for building translation systems in low-density lan-
guages such as Swahili, Uzbek or Punjabi. While
parallel training data is uncommon for such lan-
guages, more readily available resources include
small translation dictionaries, comparable corpora,
and large amounts of monolingual data.

The marked difference in the availability of
monolingual vs parallel corpora has led several

researchers to develop methods for automatically
learning bilingual lexicons, either by using mono-
lingual corpora (Rapp, 1999; Koehn and Knight,
2002; Schafer and Yarowsky, 2002; Haghighi et al.,
2008) or by exploiting the cross-language evidence
of closely related “bridge” languages that have more
resources (Mann and Yarowsky, 2001).

This paper investigates new ways of learning
translations from monolingual corpora. We extend
the Rapp (1999) model of context vector projection
using a seed lexicon. It is based on the intuition that
translations will have similar lexical context, even in
unrelated corpora. For example, in order to translate
the word “airplane”, the algorithm builds a context
vector which might contain terms such as “passen-
gers”, “runway”, “airport”, etc. and words in tar-
get language that have their translations (obtained
via seed lexicon) in surrounding context can be con-
sidered as likely translations. We extend the basic
approach by formulating a context model that uses
dependency trees. The use of dependencies has the
following advantages:

• Long distance dependencies allow associated
words to be included in the context vector even
if they fall outside of the fixed-window used in
the baseline model.

• Using relationships like parent and child in-
stead of absolute positions alleviates problems
when projecting vectors between languages
with different word orders.

• It achieves better performance than baseline
context models across the board, and better
performance than statistical translation models
on Top-10 accuracy for noun translation when
trained on identical data.
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We further show that an extension based on part-
of-speech clustering can give similar accuracy gains
for learning translations of all word-types, deepen-
ing the findings of previous literature which mainly
focused on translating nouns (Rapp, 1999; Koehn
and Knight, 2002; Haghighi et al., 2008).

2 Related Work
The literature on translation lexicon induction for
low-density languages falls in to two broad cate-
gories: 1) Effectively utilizing similarity between
languages by choosing a high-resource “bridge” lan-
guage for translation (Mann and Yarowsky, 2001;
Schafer and Yarowsky, 2002) and 2) Extracting
noisy clues (such as similar context) from mono-
lingual corpora with help of a seed lexicon (Rapp,
1999; Koehn and Knight, 2002; Schafer and
Yarowsky, 2002, Haghighi et al., 2008). The lat-
ter category is more relevant to this work and is ex-
plained in detail below.

The idea of words with similar meaning having
similar contexts in the same language comes from
the Distributional Hypothesis (Harris, 1985) and
Rapp (1999) was the first to propose using context of
a given word as a clue to its translation. Given a Ger-
man word with an unknown translation, a German
context vector is constructed by counting its sur-
rounding words in a monolingual German corpus.
Using an incomplete bilingual dictionary, the counts
of the German context words with known transla-
tions are projected onto an English vector. The pro-
jected vector for the German word is compared to
the vectors constructed for all English words using
a monolingual English corpus. The English words
with the highest vector similarity are treated as trans-
lation candidates. The original work employed a rel-
atively large bilingual dictionary containing approx-
imately 16,000 words and tested only on a small col-
lection of 100 manually selected nouns.

Koehn and Knight (2002) tested this idea on a
larger test set consisting of the 1000 most frequent
words from a German-English lexicon. They also
incorporated clues such as frequency and ortho-
graphic similarity in addition to context. Schafer
and Yarowsky, (2002) independently proposed us-
ing frequency, orthographic similarity and also
showed improvements using temporal and word-
burstiness similarity measures, in addition to con-

text. Haghighi et al., (2008) made use of contex-
tual and orthographic clues for learning a generative
model from monolingual corpora and a seed lexicon.

All of the aforementioned work defines context
similarity in terms of the adjacent words over a win-
dow of some arbitary size (usually 2 to 4 words), as
initially proposed by Rapp (1999). We show that the
model for surrounding context can be improved by
using dependency information rather than strictly re-
lying on adjacent words, based on the success of de-
pendency trees for monolingual clustering and dis-
ambiguation tasks (Lin and Pantel, 2002; Pado and
Lapata, 2007) and the recent developments in multi-
lingual dependency parsing literature (Buchholz and
Marsi, 2006; Nivre et al., 2007).

We further differentiate ourselves from previous
work by conducting a second evaluation which ex-
amines the accuracy of translating all word types,
rather than just nouns. While the straightforward ap-
plication of context-based model gives a lower over-
all accuracy than nouns alone, we show how learn-
ing a mapping of part-of-speech tagsets between the
source and target language can result in comparable
performance to that of noun translation.

3 Translation by Context Vector
Projection

This section details how translations are discovered
from monolingual corpora through context vector
projection. Section 3.1 defines alternative ways of
modeling context vectors, and including baseline
models and our dependency-based model.

The central idea of Rapp’s method for learning
translations is that of context vector projection and
vector similarity. The goodness of semantic “fit” of
candidate translations is measured as the vector sim-
ilarity between two words. Those vectors are drawn
from two different languages, so the vector for one
word must first be projected onto the language space
of the other. The algorithm for creating, projecting
and comparing vectors is described below, and illus-
trated in Figure 1.

Algorithm:
1. Extract context vectors:

Given a word in source language, say sw, create
a vector using the surrounding context words
and call this reference source vector rssw for
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Figure 1: Illustration of (Rapp, 1999) model for translating spanish word “crecimiento (growth)” via dependency context vectors
extracted from respective monolingual corpora as explained in Section 3.1.2

source word sw. The actual composition of this
vector varies depending on how the surround-
ing context is modeled. The context model is
independent of the algorithm, and various mod-
els are explained in later sections.

2. Project reference source vector:

Project all the source vector words contained in
the projection dictionary onto the vector space
for the target language, retaining the counts
from source corpus. This vector now exists in
the target language space and is called the ref-
erence target vector rtsw . This vector may be
sparse, depending on how complete the bilin-
gual dictionary is, because words without dic-
tionary entires will receive zero counts in the
reference target vector.

3. Rank candidates by vector similarity:

For each word twi in the target language a con-
text vector is created using the target language
monolingual corpora as in Step 1. Compute a
similarity score between the context vector of
twi = 〈ci1, ci2, ...., cin〉 and reference target vec-
tor rtsw = 〈r1, r2, ...., rn〉. The word with the
maximum similarity score t∗wi

is chosen as the
candidate translation of sw.

The vector similarity can be computed in a
number of ways. Our setup we used cosine
similarity:

t∗wi
= argmaxtwi

ci1·r1+ci2·r2+....+cin·rn√
c2i1+c2i2+...+c2in

√
r2
1+r2

2+...+r2
n

Rapp (1999) used l1-norm metric after nor-
malizing the vectors to unit length, Koehn and
Knight (2002) used Spearman rank order cor-
relation, and Schafer and Yarowsky (2002) use
cosine similarity. We found that cosine simi-
larity gave the best results in our experimental
conditions. Other similarity measures may be
used equally well.

3.1 Models of Context

We compared several context models. Empirical re-
sults for their ability to find accurate translations are
given in Section 5.

3.1.1 Baseline model
In the baseline model, the context is computed

using adjacent words as in (Rapp,1999; Koehn
and Knight, 2002; Schafer and Yarowsky, 2002;
Haghighi et al., 2008). Given a word in source lan-
guage, say sw, count all its immediate context words
appearing in a window of four words. The counts
are collected seperately for each position by keeping
track of four seperate vectors for positions -2, -1, +1
and +2. Thus each vector is a sparse vector, having
the # of dimensions as the size of source language
vocabulary. Each dimension is also reweighted by
multiplying the inverse document frequency (IDF)
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Figure 2: Illustration of using dependency trees to model richer contexts for projection

as in the standard TF.IDF weighting scheme1. These
vectors are then concatenated into a single vector,
having dimension four times the size of the vocabu-
lary. This vector is called the reference source vector
rssw for source word sw.

3.1.2 Modeling context using dependency trees
We use dependency parsing to extend the con-

text model. Our context vectors use contexts derived
from head-words linked by dependency trees instead
of using the immediate adjacent lexical words. The
use of dependency trees for modeling contexts has
been shown to help in monolingual clustering tasks
of finding words with similar meaning (Lin and Pan-
tel, 2002) and we show how they can be effectively
used for translation lexicon induction.

Position Adjacent Dependency
Context Context

-2 para camino
-1 el para
+1 y prosperidad, y, el
+2 la económica

Table 1: Contrasting context words derived from the adjacent
vs dependency models for the above example

The four vectors for positions -1, +1, -2 and +2
in the baseline model get mapped to immediate par-
ent (-1), immediate child (+1), grandparent (-2) and
grandchild (+2). An example of using the depen-
dency tree context is shown in Figure 2, and the de-
pendency context is shown in contrast with the ad-
jacent context in Table 1, showing the selection of
more salient words by using the dependencies.

Note that while we are limiting to four positions
in the tree, it does not imply that only a maximum of
four context words are selected since the word can
have multiple immediate children depending upon
the dependency parse of the sentence. Hence, this
approach allows for a dynamic context size, with the

1In order to compute the IDF, while there were no clear doc-
ument boundaries in our corpus, a virtual document boundary
was created by binning after every 1000 words.

number of context words varying with the number of
children and parents at the two levels.

Another advantage of this method is that it al-
leviates the reordering problem as we use tree po-
sitions (consisting of head-words) as compared to
the adjacent position in the baseline context model.
For example, if the source spanish word to be trans-
lated was “prosperidad”, then in the example shown
in Figure 2, in case of adjacent context, the con-
text word “económica” will show up in +1 position
in Spanish and -1 position in English (as adjectives
come before nouns in English) but in case of depen-
dency context, the adjective will be the child of noun
and hence will show up in +1 position in both lan-
guages. Thus, we do not need to use a bag of word
model as in Section 3 in order to avoid learning the
explicit mapping that adjectives and nouns in Span-
ish and English are reversed.

4 Experimental Design
For our initial set of experiments we compared sev-
eral different vector-based context models:
• Adjbow – A baseline model which used bag of

words model with a fixed window of 4 words,
two on either side of the word to be translated.
• Adjposn – A second baseline that used a fixed

window of 4 words but which took positional
into account.
• Depbow – A dependency model which did not

distinguish between grandparent, parent, child
and grandparent relations, analogous to the bag
of words model.
• Depposn – A dependency model which did in-

clude such relationships, and was analogous to
the position-based baseline.
• Depposn + rev – The above Depposn model ap-

plied in both directions (Spanish-to-English
and English-to-Spanish) using their sum as the
final translation score.

We contrasted the accuracy of the above methods,
which use monolingual corpora, with a statistical
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model trained on bilingual parallel corpora. We re-
fer to that model as Mosesen-es-100k, because it was
trained using the Moses toolkit (Koehn et al., 2007).

4.1 Training Data

All context models were trained on a Spanish cor-
pus containing 100,000 sentences with 2.13 million
words and an English corpus containing 100,000
sentences with 2.07 million words. The Spanish cor-
pus was parsed using the MST dependency parser
(McDonald et al., 2005) trained using dependency
trees generated from the the English Penn Treebank
(Marcus et al., 1993) and Spanish CoNLL-X data
(Buchholz and Marsi, 2006).

So that we could directly compare against sta-
tistical translation models, our Spanish and English
monolingual corpora were drawn from the Europarl
parallel corpus (Koehn, 2005). The fact that our
two monolingual corpora are taken from a parallel
corpus ensures that the assumption that similar con-
texts are a good indicator of translation holds. This
assumption underlies in all work of translation lex-
icon induction from comparable monolingual cor-
pora, and here we strongly bias toward that assump-
tion. Despite the bias, the comparison of different
context models holds, since all models are trained
on the same data.

4.2 Evaluation Criterion

The models were evaluated in terms of exact-match
translation accuracy of the 1000 most frequent
nouns in a English-Spanish dictionary. The accuracy
was calculated by counting how many mappings ex-
actly match one of the entries in the dictionary. This
evaluation criterion is similar to the setup used by
Koehn and Knight (2002). We compute the Top N
accuracy in the standard way as the number of Span-
ish test words whose Top N English translation can-
didates contain a lexicon translation entry out of the
total number of Spanish words that can be mapped
correctly using the lexicon entries. Thus if “crec-
imiento, growth” is the correct mapping based on the
lexicon entries, the translation for “crecimiento” will
be counted as correct if “growth” occurs in the Top
N English translation candidates for “crecimiento”.

Note that the exact-match accuracy is a conser-
vative estimate as it is possible that the algorithm
may propose a reasonable translation for the given

camino
Depposn Cntxt Model Adjbow Cntxt Model
way 0.124 intentions 0.22
solution 0.097 way 0.21
steps 0.094 idea 0.20
path 0.093 thing 0.20
debate 0.085 faith 0.18
account 0.082 steps 0.17
means 0.080 example 0.17
work 0.079 news 0.16
approach 0.074 work 0.16
issue 0.073 attitude 0.15

Table 2: Top 10 translation candidates for the spanish word
“camino (way)” for the best adjacent context model (Adjbow)
and best dependency context model (Depposn). The bold English
terms show the acceptable translations.

Figure 3: Precision/Recall curve showing superior perfor-
mance of dependency context model as compared to adjacent
context at different recall points. Precision is the fraction of
tested Spanish words with Top 1 translation correct and Recall
is fraction of the 1000 Spanish words tested upon.

Spanish word but is marked incorrect if it does not
exist in the lexicon. Because it would be intractable
to compare each projected vector against the vectors
for all possible English words, we limited ourselves
to comparing the projected vector from each Spanish
word against the vectors for the 1000 most frequent
English nouns, following along the lines of previ-
ous work (Koehn and Knight, 2002; Haghighi et al.,
2008).

5 Results
Table 3 gives the Top 1 and Top 10 accuracy for
each of the models on their ability to translate Span-
ish nouns into English. Examples of the top 10
translations using the best performing baseline and
dependency-based models are shown in Table 2. The
baseline models Adjposn and Adjbow differ in that the
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Model AccTop 1 AccTop 10
Adjbow 35.3% 59.8%
Adjposn 20.9% 46.9%
Depbow 41.0% 62.0%
Depposn 41.0% 64.1%
Depposn + rev 42.9% 65.5%
Mosesen-es-100k 56.4% 62.7%

Table 3: Performance of various context-based models
learned from monolingual corpora and phrase-table learned
from parallel corpora on Noun translation.

latter disregards the position information in the con-
text vector and simply uses a bag of words instead.
Table 3 shows that Adjbow gains using this simplifi-
cation. A bag of words vector approach pools counts
together, which helps to reduce data sparsity. In
the position based model the vector is four times as
long. Additionally, the bag of words model can help
when there is local re-ordering between the two lan-
guages. For instance, Spanish adjectives often fol-
low nouns whereas in English the the ordering is
reversed. Thus, one can either learn position map-
pings, that is, position +1 for adjectives in Spanish is
the same as position -1 in English or just add the the
word counts from different positions into one com-
mon vector as considered in the bag of words ap-
proach.

Using dependency trees also alleviates the prob-
lem of position mapping between source and target
language. Table 3 shows the performance using the
dependency based models outperforms the baseline
models substantially. Comparing Depbow to Depposn
shows that ignoring the tree depth and treating it as
a bag of words does not increase the performance.
This contrasts with the baseline models. The de-
pendency positions account for re-ordering automat-
ically. The precision-recall curve in Figure 3 shows
that the dependency-based context performs better
than adjancet context at almost all recall levels.

The Mosesen-es-100k model shows the performance
of the statistical translation model trained on a bilin-
gual parallel corpus. While the system performs best
in Top 1 accuracy, the dependency context-based
model that ignores the sentence alignments surpris-
ingly performs better in case of Top 10 accuracy,
showing substantial promise.

While computing the accuracy using the phrase-
table learned from parallel corpora (Mosesen-es-100k),
the translation probabilities from both directions
(p(es|en) and p(en|es)) were used to rank the can-

didates. We also apply the monolingual context-
based model in the reverse direction (from English
to Spanish) and the row with label Depposn + rev in
Table 3 shows further gains using both directions.

Spanish English Sim Is present
Score in lexicon

señores gentlemen 0.99 NO
xenofobia xenophobia 0.87 YES
diversidad diversity 0.73 YES
chipre cyprus 0.66 YES
mujeres women 0.65 YES
alemania germany 0.65 YES
explotación exploitation 0.63 YES
hombres men 0.62 YES
república republic 0.60 YES
racismo racism 0.59 YES
comercio commerce 0.58 YES
continente continent 0.53 YES
gobierno government 0.52 YES
israel israel 0.52 YES
francia france 0.52 YES
fundamento certainty 0.51 NO
suecia sweden 0.50 YES
tráfico space 0.49 NO
televisión tv 0.48 YES
francesa portuguese 0.48 NO

Table 4: List of 20 most confident mappings using the de-
pendency context based model for noun translation. Note that
although the first mapping is the correct one, it was not present
in the lexicon used for evaluation and hence is marked as incor-
rect.

6 Further Extensions: Generalizing to
other word types via tagset mapping

Most of the previous literature on this problem fo-
cuses on evaluating on nouns (Rapp, 1999; Koehn
and Knight 2002; Haghighi et al., 2008). However
the vector projection approach is general, and should
be applicable to other word-types as well. We eval-
uated the models with new test set containing 1000
most frequent words (not just nouns) in the English-
Spanish lexicon.

We used the dependency-based context model to
create translations for this new set. The row labeled
Depposn in Table 5 shows that the accuracy on this
set is lower when compared to evaluating only on
nouns. The main reason for lower accuracy is that
closed class words are often the most frequent and
tend to have a wide range of contexts resulting in
reasonable translation for most words include open
class words via the context model. For instance, the
English preposition “to” appears as the most confi-
dent translation for 147 out of the 1000 Spanish test
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Figure 4: Illustration of using part-of-speech tag mapping to
restrict candidate space of translations

words and in none (rightly so) after restricting the
translations by part-of-speech categories.

This problem can be greatly reduced by making
use of the intuition that part-of-speech is often pre-
served in translation, thus the space of possible can-
didate translation can be largely reduced based on
the part-of-speech restrictions. For example, a noun
in source language will usually be translated as noun
in target language, determiner will be translated as
determiner and so on. This idea is more clearly il-
lustrated in in Figure 4. We do not impose a hard
restriction but rather compute a ranking based on
the conditional probability of candidate translation’s
part-of-speech tag given source word’s tag.

An interesting problem in using part-of-speech re-
strictions is that corpora in different languages have
been tagged using widely different tagsets and the
following subsection explains this problem in detail:

6.1 Mapping Part-of-Speech tagsets in
different languages

The English tagset was derived from the Penn tree-
bank consisting of 53 tags (including punctuation
markers) and the Spanish tagset was derived from
the Cast3LB dataset consisting of 57 tags but there
is a large difference in the morphological and syn-
tactic features marked by the tagset. For example,
the Spanish tagset as different tags for masculine and
feminine nouns and also has a different tag for coor-
dinated nouns, all of which need to be mapped to the
singular or plural noun category available in English
tagset. Figure 5 shows an illustration of the mapping
problem between the Spanish and English POS tags.

Figure 5: Illustration of mapping Spanish part-of-speech
tagset to English tagset. The tagsets vary greatly in notation and
the morphological/syntactic constituents represented and need
to be mapped first, using the algorithm described in Section 6.1.

We now describe an empirical approach for learn-
ing the mapping between tagsets using the English-
Spanish projection dictionary used in the monolin-
gual context-based models for translation. Given a
small English-Spanish bilingual dictionary and a n-
best list of part-of-speech tags for each word in the
dictionary2, we compute conditional probability of
translating a source word with pos tag sposi to a tar-
get with pos tag tposj as follows:

p(tposj |sposi) =
c(sposi , tposj )

c(sposi)
=

∑
sw∈S, tw∈T p(sposi |sw) · p(tposj |tw) · Idict(sw, tw)∑

sw∈S p(sposi |sw)

where

• S and T are the source and target vocabulary in
the seed dictionary, with sw and tw being any
of the words in the respective sets.

• p(sposi |sw), p(tposj |tw) are obtained using rel-
ative frequencies in a part-of-speech tagged
corpus in the source/target languages respec-
tively, and are used as soft counts.

• Idict(sw, tw) is the indicator function with
value 1 if the pair (sw, tw) occurs in the seed
dictionary and 0 otherwise.

In essence, the mapping between tagsets is
learned using the known translations from a small
dictionary.

Given a source word sw to translate, its most
likely tag s∗pos, and the most likely mapping of this
tag into English t∗pos computed as above, the transla-
tion candidates with part-of-speech tag t∗pos are con-
sidered for comparison with vector similarity and

2The n-best part-of-speech tag list for any word in the dic-
tionary was derived using the relative frequencies in a part-of-
speech annotated corpora in the respective languages
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Figure 6: Precision/Recall curve showing superior perfor-
mance of using part-of-speech equivalences for translating all
word-types. Precision is the fraction of tested Spanish words
with Top 1 translation correct and Recall is fraction of the 1000
Spanish words tested upon.

the other candidates with tposj 6= t∗pos are discarded
from the candidate space. Figure 4 shows an exam-
ple of restricting the candidate space using POS tags.

Model AccTop 1 AccTop 10
Depposn 35.1% 62.9%
+ POS 41.3% 66.4%

Table 5: Performance of dependency context-based model
along with addition of part-of-speech mapping model on trans-
lating all word-types.

The row labeled +POS in Table 5 shows the part-
of-speech tags provides substantial gain as com-
pared to direct application of dependency context-
based model and is also comparable to the accuracy
obtained evaluating just on nouns in Table 3.

7 Conclusion
This paper presents a novel contribution to the stan-
dard context models used when learning transla-
tion lexicons from monolingual corpora by vector
projection. We show that using contexts based on
dependency parses can provide more salient con-
texts, allow for dynamic context size, and account
for word reordering in the source and target lan-
guage. An exact-match evaluation shows 16% rela-
tive improvement by using a dependency-based con-
text model over the standard approach. Furthermore,
we show that our model, which is trained only on
monolingual corpora, outperforms the standard sta-

Spanish English Sim Is present
Score in lexicon

señores gentlemen 0.99 NO
chipre cyprus 0.66 YES
mujeres women 0.65 YES
alemania germany 0.65 YES
hombres men 0.62 YES
expresar express 0.60 YES
racismo racism 0.59 YES
interior internal 0.55 YES
gobierno government 0.52 YES
francia france 0.52 YES
cultural cultural 0.51 YES
suecia sweden 0.50 YES
fundamento basis 0.48 YES
francesa french 0.48 YES
entre between 0.47 YES
origen origin 0.46 YES
tráfico traffic 0.45 YES
de of 0.44 YES
social social 0.43 YES
ruego thank 0.43 NO

Table 6: List of 20 most confident mappings using the depen-
dency context with the part-of-speech mapping model translat-
ing all word-types. Note that although the second best mapping
in Table4 for noun-translation is for xenofobia with score 0.87,
xenofobia is not among the 1000 most frequent words (of all
word-types) and thus is not in this test set.

tistical MT approach to learning phrase tables when
trained on the same amount of sentence-aligned par-
allel corpora, when evaluated on Top 10 accuracy.

As a second contribution, we go beyond previ-
ous literature which evaluated only on nouns. We
showed how preserving a word’s part-of-speech in
translation can improve performance. We further
proposed a solution to an interesting sub-problem
encountered on the way. Since part-of-speeech
tagsets are not identical across two languages, we
propose a way of learning their mapping automat-
ically. Restricting candidate space based on this
learned tagset mapping resulted in 18% improve-
ment over the direct application of context-based
model to all word-types.

Dependency trees help improve the context for
translation substantially and their use opens up the
question of how the context can be enriched further
making use of the hidden structure that may provide
clues for a word’s translation. We also believe that
the problem of learning the mapping between tagsets
in two different languages can be used in general for
other NLP tasks making use of projection of words
and its morphological/syntactic properties between
languages.
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Abstract

As supervised machine learning methods are
increasingly used in language technology, the
need for high-quality annotated language data
becomes imminent. Active learning (AL) is
a means to alleviate the burden of annotation.
This paper addresses the problem of knowing
when to stop the AL process without having
the human annotator make an explicit deci-
sion on the matter. We propose and evaluate
an intrinsic criterion for committee-based AL
of named entity recognizers.

1 Introduction

With the increasing popularity of supervised ma-
chine learning methods in language processing, the
need for high-quality labeled text becomes immi-
nent. On the one hand, the amount of readily avail-
able texts is huge, while on the other hand the la-
beling and creation of corpora based on such texts is
tedious, error prone and expensive.

Active learning (AL) is one way of approaching
the challenge of classifier creation and data annota-
tion. Examples of AL used in language engineering
include named entity recognition (Shen et al., 2004;
Tomanek et al., 2007), text categorization (Lewis
and Gale, 1994; Hoi et al., 2006), part-of-speech
tagging (Ringger et al., 2007), and parsing (Thomp-
son et al., 1999; Becker and Osborne, 2005).

AL is a supervised machine learning technique in
which the learner is in control of the data used for
learning – the control is used to query an oracle, typ-
ically a human, for the correct label of the unlabeled
training instances for which the classifier learned so
far makes unreliable predictions.

The AL process takes as input a set of labeled in-
stances and a larger set of unlabeled instances, and
produces a classifier and a relatively small set of
newly labeled data. The overall goal is to obtain
as good a classifier as possible, without having to
mark-up and supply the learner with more than nec-
essary data. The learning process aims at keeping
the human annotation effort to a minimum, only ask-
ing for advice where the training utility of the result
of such a query is high.

The approaches taken to AL in this paper are
based on committees of classifiers with access to
pools of data. Figure 1 outlines a prototypical
committee-based AL loop. In this paper we focus
on the question when AL-driven annotation should
be stopped (Item 7 in Figure 1).

Usually, the progress of AL is illustrated by
means of a learning curve which depicts how the
classifier’s performance changes as a result of in-
creasingly more labeled training data being avail-
able. A learning curve might be used to address
the issue of knowing when to stop the learning pro-
cess – once the curve has leveled out, that is, when
additional training data does not contribute (much)
to increase the performance of the classifier, the AL
process may be terminated. While in a random se-
lection scenario, classifier performance can be esti-
mated by cross-validation on the labeled data, AL
requires a held-out annotated reference corpus. In
AL, the performance of the classifier cannot be re-
liably estimated using the data labeled in the pro-
cess since sampling strategies for estimating per-
formance assume independently and identically dis-
tributed examples (Schütze et al., 2006). The whole
point in AL is to obtain a distribution of instances
that is skewed in favor of the base learner used.
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1. Initialize the process by applyingEnsembleGeneration-
Methodusing base learnerB on labeled training data set
DL to obtain a committee of classifiersC.

2. Have each classifier inC predict a label for every instance
in the unlabeled data setDU , obtain labeled setDU

′.

3. From DU
′, select the most informativen instances to

learn from, obtainingDU
′′.

4. Ask the teacher for classifications of the instancesI in
DU

′′.

5. MoveI , with supplied classifications, fromDU to DL.

6. Re-train usingEnsembleGenerationMethodand base
learnerB on the newly extendedDL to obtain a new com-
mittee,C.

7. Repeat steps 2 through 6 untilDU is empty or some stop-
ping criterion is met.

8. Output classifier learned usingEnsembleGeneration-
Methodand base learnerB onDL.

Figure 1: A prototypical query by committee algorithm.

In practice, however, an annotated reference cor-
pus is rarely available and its creation would be in-
consistent with the goal of creating a classifier with
as little human effort as possible. Thus, other ways
of deciding when to stop AL are needed. In this pa-
per, we propose an intrinsic stopping-criterion for
committee-based AL of named entity recognizers.
It is intrinsic in that it relies on the characteristics of
the data and the base learner1 rather than on exter-
nal parameters, i.e., the stopping criterion does not
require any pre-defined thresholds.

The paper is structured as follows. Section 2
sketches interpretations of ideal stopping points and
describes the idea behind our stopping criterion.
Section 3 outlines related work. Section 4 describes
the experiments we have conducted concerning a
named entity recognition scenario, while Section 5
presents the results which are then discussed in Sec-
tion 6. Section 7 concludes the paper.

2 A stopping criterion for active learning

What is the ideal stopping point for AL? Obviously,
annotation should be stopped at the latest when the

1The termbase learner (configuration)refers to the combi-
nation of base learner, parameter settings, and data representa-
tion.

bestclassifier for a scenario is yielded. However, de-
pending on the scenario at hand, the “best” classifier
could have different interpretations. In many papers
on AL and stopping criteria, the best (or optimal)
classifier is the one that yields the highest perfor-
mance on a test set. It is assumed that AL-based
annotation should be stopped as soon as this per-
formance is reached. This could be generalized as
stopping criteria based on maximal classifier perfor-
mance. In practice, the trade-off between annota-
tion effort and classifier performance is related to the
achievable performance given the learner configura-
tion and data under scrutiny: For instance, would we
invest many hours of additional annotation effort just
to possibly increase the classifier performance by a
fraction of a percent? In this context, a stopping cri-
terion may be based on classifier performance con-
vergence, and consequently, we can define the best
possible classifier to be one which cannot learn more
from the remaining pool of data.

The intrinsic stopping criterion (ISC) we propose
here focuses on the latter aspect of the ideal stop-
ping point described above – exhaustiveness of the
AL pool. We suggest to stop the annotation process
of the data from a given pool when the base learner
cannot learn (much) more from it. The definition of
our intrinsic stopping criterion for committee-based
AL builds on the notions of Selection Agreement
(Tomanek et al., 2007), and Validation Set Agree-
ment (Tomanek and Hahn, 2008).

The Selection Agreement (SA) is the agreement
among the members of a decision committee re-
garding the classification of themost informativein-
stance selected from the pool of unlabeled data in
each AL round. The intuition underlying the SA is
that the committee will agree more on the hard in-
stances selected from the remaining set of unlabeled
data as the AL process proceeds. When the mem-
bers of the committee are in complete agreement,
AL shouldbe aborted since it no longer contributes
to the overall learning process – in this case, AL is
but a computationally expensive counterpart of ran-
dom sampling. However, as pointed out by Tomanek
et al. (2007), the SA hardly ever signals complete
agreement and can thus not be used as the sole in-
dicator of AL having reached the point at which it
should be aborted.

The Validation Set Agreement (VSA) is the agree-
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ment among the members of the decision commit-
tee concerning the classification of a held-out, unan-
notated data set (the validation set). The validation
set stays the same throughout the entire AL process.
Thus, the VSA is mainly affected by the perfor-
mance of the committee, which in turn, is grounded
in the information contained in the most informative
instances in the pool of unlabeled data. Tomanek
and colleagues argue that the VSA is thus a good
approximation of the (progression of the) learning
curve and can be employed as decision support for
knowing when to stop annotating – from the slope of
the VSA curve one can read whether further annota-
tion will result in increased classifier performance.

We combine the SA and the VSA into a single
stopping criterion by relating the agreement of the
committee on a held-out validation set with that on
the (remaining) pool of unlabeled data. If the SA
is larger than the VSA, it is a signal that the deci-
sion committee is more in agreement concerning the
most informative instances in the (diminishing) un-
labeled pool than it is concerning the validation set.
This, in turn, implies that the committee would learn
more from a random sample2 from the validation set
(or from a data source exhibiting the same distribu-
tion of instances), than it would from the unlabeled
data pool. Based on this argument, a stopping crite-
rion for committee-based AL can be formulated as:

Active learning may be terminated when
the Selection Agreement is larger than, or
equal to, the Validation Set Agreement.

In relation to the stopping criterion based solely
on SA proposed by Tomanek et al. (2007), the above
defined criterion comes into effect earlier in the
AL process. Furthermore, while it was claimed in
(Tomanek and Hahn, 2008) that one can observe the
classifier convergence from the VSA curve (as it ap-
proximated the progression of the learning curve),
that requires a threshold to be specified for the ac-
tual stopping point. The ISC is completely intrinsic
and does thus not require any thresholds to be set.

3 Related work

Schohn and Cohn (2000) report on document clas-
sification using AL with Support Vector Machines.

2The sample has to be large enough to mimic the distribution
of instances in the original unlabeled pool.

If the most informative instance is no closer to the
decision hyperplane than any of the support vectors,
the margin has been exhausted and AL is terminated.

Vlachos (2008) suggests to use classifier confi-
dence to define a stopping criterion for uncertainty-
based sampling. The idea is to stop learning when
the confidence of the classifier, on an external, pos-
sibly unannotated test set, remains at the same level
or drops for a number of consecutive iterations dur-
ing the AL process. Vlachos shows that the criterion
indeed is applicable to the tasks he investigates.

Zhu and colleagues (Zhu and Hovy, 2007;
Zhu et al., 2008a; Zhu et al., 2008b) introduce
max-confidence, min-error, minimum expected er-
ror strategy, overall-uncertainty, andclassification-
changeas means to terminate AL. They primar-
ily use a single-classifier approach to word sense
disambiguation and text classification in their ex-
periments. Max-confidenceseeks to terminate AL
once the classifier is most confident in its predic-
tions. In themin-errorstrategy, the learning is halted
when there is no difference between the classifier’s
predictions and those labels provided by a human
annotator. Theminimum expected error strategy
involves estimating the classification error on fu-
ture unlabeled instances and stop the learning when
the expected error is as low as possible.Overall-
uncertaintyis similar to max-confidence, but unlike
the latter, overall-uncertainty takes into account all
data remaining in the unlabeled pool when estimat-
ing the uncertainty of the classifier.Classification-
changebuilds on the assumption that the most in-
formative instance is the one which causes the clas-
sifier to change the predicted label of the instance.
Classification-change-based stopping is realized by
Zhu and colleagues such that AL is terminated once
no predicted label of the instances in the unlabeled
pool change during two consecutive AL iterations.

Laws and Schütze (2008) investigate three ways
of terminating uncertainty-based AL for named en-
tity recognition –minimal absolute performance,
maximum possible performance, and convergence.
The minimal absolute performanceof the system
is set by the user prior to starting the AL process.
The classifier then estimates its own performance
using a held-out unlabeled data set. Once the per-
formance is reached, the learning is terminated. The
maximum possible performancestrategy refers to
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the optimal performance of the classifier given the
data. Once the optimal performance is achieved, the
process is aborted. Finally, theconvergencecrite-
rion aims to stop the learning process when the pool
of available data does not contribute to the classi-
fier’s performance. The convergence is calculated
as the gradient of the classifier’s estimated perfor-
mance or uncertainty. Laws and Schütze conclude
that both gradient-based approaches, that is, conver-
gence, can be used as stopping criteria relative to the
optimal performance achievable on a given pool of
data. They also show that while their method lends
itself to acceptable estimates of accuracy, it is much
harder to estimate the recall of the classifier. Thus,
the stopping criteria based on minimal absolute or
maximum possible performance are not reliable.

The work most related to ours is that of Tomanek
and colleagues (Tomanek et al., 2007; Tomanek and
Hahn, 2008) who define and evaluate theSelection
Agreement(SA) and theValidation Set Agreement
(VSA) already introduced in Section 2. Tomanek
and Hahn (2008) conclude that monitoring the
progress of AL should be based on a separate vali-
dation set instead of the data directly affected by the
learning process – thus, VSA is preferred over SA.
Further, they find that the VSA curve approximates
the progression of the learning curve and thus clas-
sifier performance convergence could be estimated.
However, to actually find where to stop the annota-
tion, a threshold needs to be set.

Our proposed intrinsic stopping criterion is
unique in several ways: The ISC is intrinsic, relying
only on the characteristics of the base learner and
the data at hand in order to decide when the AL pro-
cess may be terminated. The ISC does not require
the user to set any external parameters prior to ini-
tiating the AL process. Further, the ISC is designed
to work with committees of classifiers, and as such,
it is independent of how the disagreement between
the committee members is quantified. The ISC does
neither rely on a particular base learner, nor on a par-
ticular way of creating the decision committee.

4 Experiments

To challenge the definition of the ISC, we conducted
two types of experiments concerning named entity
recognition. The primary focus of the first type

of experiment is on creating classifiers (classifier-
centric), while the second type is concerned with the
creation of annotated documents (data-centric). In
all experiments, the agreement among the decision
committee members is quantified by the Vote En-
tropy measure (Engelson and Dagan, 1996):

V E(e) = − 1
log k

∑

l

V (l, e)
k

log
V (l, e)

k
(1)

wherek is the number of members in the committee,
andV (l, e) is the number of members assigning la-
bel l to instancee. If an instance obtains a low Vote
Entropy value, it means that the committee members
are in high agreement concerning its classification,
and thus also that it is less a informative one.

4.1 Classifier-centric experimental settings

In common AL scenarios, the main goal of us-
ing AL is to create a good classifier with min-
imal label complexity. To follow this idea, we
select sentences that are assumed to be useful
for classifier training. We decided to select
complete sentences – instead of, e.g., single to-
kens – as in practice annotators must see the
context of words to decide on their entity labels.

Our experimental setting is based on the AL ap-
proach described by Tomanek et al. (2007): The
committee consists ofk = 3 Maximum Entropy
(ME) classifiers (Berger et al., 1996). In each AL
iteration, each classifier is trained on a randomly
drawn (sampling without replacement) subsetL′ ⊂
L with |L′| = 2

3L, L being the set of all instances la-
beled so far (cf.EnsembleGenerationMethodin Fig-
ure 1). Usefulness of a sentence is estimated as the
average token Vote Entropy (cf. Equation 1). In each
AL iteration, the 20 most useful sentences are se-
lected (n = 20 in Step 3 in Figure 1). AL is started
from a randomly chosen seed of 20 sentences.

While we made use of ME classifiers during the
selection, we employed an NE tagger based on Con-
ditional Random Fields (CRF) (Lafferty et al., 2001)
during evaluation time to determine the learning
curves. CRFs have a significantly higher tagging
performance, so the final classifier we are aiming
at should be a CRF model. We have shown be-
fore (Tomanek et al., 2007) that MEs are well apt as
selectors with the advantage of much shorter train-
ing times than CRFs. For both MEs and CRFs the
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same features were employed which comprised or-
thographical (based mainly on regular expressions),
lexical and morphological (suffixed/prefixed, word
itself), syntactic (POS tags), as well as contextual
(features of neighboring tokens) ones.

The experiments on classifier-centric AL have
been performed on the English data set of cor-
pus used in the CoNLL-2003 shared task (Tjong
Kim Sang and Meulder, 2003). This corpus con-
sists of newspaper articles annotated with respect to
person, location, and organisation entities. As AL
pool we took the training set which consists of about
14,000 sentences (≈ 200, 000 tokens). As valida-
tion set and as gold standard for plotting the learn-
ing curve we used CoNLL’s evaluation corpus which
sums up to 3,453 sentences.

4.2 Data-centric experimental settings

While AL is commonly used to create as good
classifiers as possible, with the amount of human
effort kept to a minimum, it may result in frag-
mented and possibly non re-usable annotations (e.g.,
a collection of documents in which only some of
the names are marked up). This experiment con-
cerns a method of orchestrating AL in a way ben-
eficial for the bootstrapping of annotated data (Ols-
son, 2008). The bootstrapping proper is realized by
means of AL for selectingdocumentsto annotate, as
opposed tosentences. This way the annotated data
set is comprised of entire documents thus promot-
ing data creation. As in the classifier-centric setting,
the task is to recognize names – persons, organiza-
tions, locations, times, dates, monetary expressions,
and percentages – in news wire texts. The texts
used are part of the MUC-7 corpus (Linguistic Data
Consortium, 2001) and consists of 100 documents,
3,480 sentences, and 90,790 tokens. The task is ap-
proached using the IOB tagging scheme proposed
by, e.g., Ramshaw and Marcus (1995), turning the
original 7-class task into a 15-class task. Each to-
ken is represented using a fairly standard menagerie
of features, including such stemming from the sur-
face appearance of the token (e.g.,Contains dollar?
Length in characters), calculated based on linguis-
tic pre-processing made with the English Functional
Dependency Grammar (Tapanainen and Järvinen,
1997) (e.g.,Case, Part-of-speech), fetched from pre-
compiled lists of information (e.g.,Is first name?),

and features based on predictions concerning the
context of the token (e.g,Class of previous token).

The decision committee is made up from 10
boosted decision trees using MultiBoostAB (Webb,
2000) (cf.EnsembleGenerationMethodin Figure 1).
Each classifier is created by the REPTree decision
tree learner described by Witten and Frank (2005).
The informativeness of a document is calculated by
means of average token Vote Entropy (cf. Equa-
tion 1). The seed set of the AL process consists of
five randomly selected documents. In each AL iter-
ation, one document is selected for annotation from
the corpus (n = 1 in Step 3 in Figure 1).

5 Results

Two different scenarios were used to illustrate the
applicability of the proposed intrinsic stopping cri-
terion. In the first scenario, we assumed that the
pool of unlabeled data was static and fairly large.
In the second scenario, we assumed that the unla-
beled data would be collected in smaller batches as
it was made available on a stream, for instance, from
a news feed. Both the classifier-centric and the data-
centric experiments were carried out within the first
scenario. Only the classifier-centric experiment was
conducted in the stream-based scenario.

In the classifier-centric setting, the SA is defined
as (1− Vote Entropy) for the most informative in-
stances in the unlabeled pool, that is, the per-token
average Vote Entropy on the most informative sen-
tences. Analogously, in the data-centric setting, the
SA is defined as (1− Vote Entropy) for the most in-
formative document – here too, the informativeness
is calculated as the per-token average Vote Entropy.
In both settings, the VSA is the per-token average
Vote Entropy on the validation set.

5.1 AL on static pools

The intersection of the SA and VSA agreement
curves indicates a point at which the AL process
may be terminated without (a significant) loss in
classifier performance. For both AL scenarios (data-
and classifier-centric) we plot both the learning
curves for AL and random selection, as well as the
SA and VSA curve for AL. In both scenarios, these
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Figure 2: Classifier-centric AL experiments on the
CoNLL corpus. The intersection,C, corresponds to the
point where (almost) no further improvement in terms
of classifier performance can be expected. The baseline
learning curve shows the results of learning from ran-
domly sampled data.

curves are averages over several runs.3

The results from the classifier-centric experiment
on the CoNLL corpus are presented in Figure 2.
AL clearly outperforms random selection. The AL
curve converges at a maximum performance ofF ≈
84% after about 125,000 tokens. As expected, the
SA curve drops from high values in the beginning
down to very low values in the end where hardly
any interesting instances are left in the pool. The
intersection (C) with the VSA curve is very close to
the point (125,000 tokens) where no further increase
of performance can be reached by additional anno-
tation making it a good stopping point.

The results from the data-centric experiment are
available in Figure 3. The bottom part shows the
SA and VSA curves. The ISC occurs at the inter-
section of the SA and VSA curves (C), which corre-
sponds to a point well beyond the steepest part of the
learning curve. While stopping the learning atC re-
sults in a classifier with performance inferior what is
maximally achievable, stopping atC arguably corre-

3The classifier-centric experiments are averages over three
independent runs. The data-centric experiments are averages
over ten independent runs.
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Figure 3: Data-centric AL experiments on the MUC-7
corpus. The intersection,C, corresponds to a point at
which the AL curve has almost leveled out. The base-
line learning curve shows the results of learning from ran-
domly sampled data.

sponds to a plausible place to abort the learning. The
optimal performance isF ≈ 83.5%, while the ISC
corresponds toF ≈ 82%.

Keep in mind that the learning curves with which
the ISC are compared are not available in a practical
situation, they are included in Figures 2 and 3 for the
sake of clarity only.

5.2 AL on streamed data

One way of paraphrasing the ISC is: Once the in-
tersection between the SA and VSA curves has been
reached, the most informative instances remaining
in the pool of unlabeled data are less informative to
the classifier than the instances in the held-out, unla-
beled validation set are on average. This means that
the classifier would learn more from a sufficiently
large sample taken from the validation set than it
would if the AL process continued on the remain-
ing unlabeled pool.4

As an illustration of the practical applicability of
the ISC consider the following scenario. Assume

4Note however, that the classifier might still learn from the
instances in the unlabeled pool – applying the ISC only means
that the classifier would learn more from a validation set-like
distribution of instances.
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Figure 4: AL curves for the four partitions used in the ex-
periments on streamed data.Ci denotes a point at which
the AL is terminated for partitioni and a new partition is
employed instead.C1 corresponds to the ISC plotted in
the graph labeledPartition 1 in Figure 5,C2 to the ISC in
Partition 2, andC3 to the ISC inPartition 3.

that we are collecting data from a stream, for in-
stance items taken from a news feed. Thus, the data
is not available on the form of a closed set, but rather
an open one which grows over time. To make the
most of the human annotators in this scenario, we
want them to operate on batches of data instead of
annotating individual news items as they are pub-
lished. The purpose of the annotation is to mark up
names in the texts in order to train a named entity
recognizer. To do so, we wait until there has ap-
peared a given number of sentences on the stream,
and then collect those sentences. The problem is,
how do we know when the AL-based annotation
process for each such batch should be terminated?
We clearly do not want the annotators to annotate
all sentences, and we cannot have the annotators
set new thresholds pertaining to the absolute per-
formance of the named entity recognizer for each
new batch of data available. By using the ISC, we
are able to automatically issue a halting of the AL
process (and thus also the annotation process) and
proceed to the next batch of data without losing too
much in performance, and without having the anno-
tators mark up too much of the available data. To
this end, the ISC seems like a reasonable trade-off
between annotation effort and performance gain.

To carry out this experiment we took a sub sample
of 10% (1,400 sentences) from the original AL pool
of the CoNLL corpus as validation set.5 The rest of

5Note that the original CoNLL test set was not used in this
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Figure 5: The SA and VSA curves for the four data par-
titions used in the experiment on streamed data. Each
intersection – ISC – corresponds to a point where AL is
terminated.

this pool was split into batches of about 500 con-
secutive sentences. Classifier-centric AL was now
run taking the first batch as pool to select from. At
the point where the SA and VSA curve crossed, we
continued AL selection from the next batch and so
forth. Figure 4 shows the learning curve for a simu-
lation of the scenario described above. The inter-
section between the SA and VSA curves for par-
tition 1 as depicted in Figure 5 corresponds to the
first “step” (ending inC1) in the stair-like learning
curve in Figure 4. The step occurs after 4,641 to-
kens. Analogously, the other steps (ending inC2and
C3, respectively) in the learning curve corresponds
the intersection between the SA and VSA curves for
partitions 2 and 3 in Figure 5. The intersection for
partition 4 corresponds to the point were we would
have turned to the next partition. This experiment
was stopped after 4 partitions.

Table 1 shows the accumulated number of sen-
tences and tokens (center columns) that required an-
notation in order to reach the ISC for each partition.
In addition, the last column in the table shows the
number of sentences (of the 500 collected for inclu-

experiment, thus the F-score reported in Figure 4 cannot be
compared to that in Figure 2.
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Partition Sents Toks Sentences per partition
1 320 4,641 320
2 580 7,932 260
3 840 13,444 260
4 1070 16,751 230

Table 1: The number of tokens and sentences required to
reach the ISC for each partition.

sion in each partition) needed to reach the ISC – each
new partition contributes less to the increase in per-
formance than the preceding ones.

6 Discussion

We have argued that one interpretation of the ISC
is that it constitutes the point where the informa-
tiveness on the remaining part of the AL pool is
lower than the informativeness on a different and
independent data set with the same distribution. In
the first AL scenario where there is one static pool
to select from, reaching this point can be inter-
preted as an overall stopping point for annotation.
Here, the ISC represents a trade-off between the
amount of data annotated and the classifier perfor-
mance obtained such that the resulting classifier is
nearly optimal with respect to the data at hand. In
the second, stream-based AL scenario where several
smaller partitions are consecutively made available
to the learner, the ISC serves as an indicator that the
annotation of one batch should be terminated, and
that the mark-up should proceed with the next batch.

The ISC constitutes an intrinsic way of determin-
ing when to stop the learning process. It does not
require any external parameters such as pre-defined
thresholds to be set, and it depends only on the char-
acteristics of the data and base learner at hand. The
ISC can be utilized to relate the performance of the
classifier to the performance that is possible to ob-
tain by the data and learner at hand.

The ISC can not be used to estimate the perfor-
mance of the classifier. Consequently, it can not be
used to relate the classifier’s performance to an ex-
ternally set level, such as a particular F-score pro-
vided by the user. In this sense, the ISC may serve as
a complement to stopping criteria requiring the clas-
sifier to achieve absolute performance measures be-
fore the learning process is aborted, for instance the
max-confidenceproposed by Zhu and Hovy (2007),

and theminimal absolute performanceintroduced
by Laws and Schütze (2008).

7 Conclusions and Future Work

We have defined and empirically tested an intrinsic
stopping criterion (ISC) for committee-based AL.
The results of our experiments in two named en-
tity recognition scenarios show that the stopping cri-
terion is indeed a viable one, which represents a
fair trade-off between data use and classifier perfor-
mance. In a setting in which the unlabeled pool of
data used for learning is static, terminating the learn-
ing process by means of the ISC results in a nearly
optimal classifier. The ISC can also be used for de-
ciding when the pool of unlabeled data needs to be
refreshed.

We have focused on challenging the ISC with re-
spect to named entity recognition, approached in
two very different settings; future work includes ex-
periments using the ISC for other tasks. We be-
lieve that the ISC is likely to work in AL-based ap-
proaches to, e.g., part-of-speech tagging, and chunk-
ing as well. It should be kept in mind that while
the types of experiments conducted here concern
the same task, the ways they are realized differ in
many respects: the ways the decision committees
are formed, the data sets used, the representation of
instances, the relation between the sample size and
the instance size, as well as the pre-processing tools
used. Despite these differences, which outnumbers
the similarities, the ISC proves a viable stopping cri-
terion.

An assumption underlying the ISC is that the ini-
tial distribution of instances in the pool of unlabeled
data used for learning, and the distribution of in-
stances in the validation set are the same (or at least
very similar). Future work also includes investiga-
tions of automatic ways to ensure that this assump-
tion is met.
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Abstract

We analyze some of the fundamental design
challenges and misconceptions that underlie
the development of an efficient and robust
NER system. In particular, we address issues
such as the representation of text chunks, the
inference approach needed to combine local
NER decisions, the sources of prior knowl-
edge and how to use them within an NER
system. In the process of comparing several
solutions to these challenges we reach some
surprising conclusions, as well as develop an
NER system that achieves 90.8 F1 score on
the CoNLL-2003 NER shared task, the best
reported result for this dataset.

1 Introduction

Natural Language Processing applications are char-
acterized by making complex interdependent deci-
sions that require large amounts of prior knowledge.
In this paper we investigate one such application–
Named Entity Recognition (NER). Figure 1 illus-
trates the necessity of using prior knowledge and
non-local decisions in NER. In the absence of mixed
case information it is difficult to understand that

∗ The system and the Webpages dataset are available at:
http://l2r.cs.uiuc.edu/∼cogcomp/software.php

† This work was supported by NSF grant NSF SoD-HCER-
0613885, by MIAS, a DHS-IDS Center for Multimodal In-
formation Access and Synthesis at UIUC and by an NDIIPP
project from the National Library of Congress.

‡ We thank Nicholas Rizzolo for the baseline LBJ NER
system, Xavier Carreras for suggesting the word class models,
and multiple reviewers for insightful comments.

SOCCER - [PER BLINKER] BAN LIFTED .

[LOC LONDON] 1996-12-06 [MISC Dutch] forward

[PER Reggie Blinker] had his indefinite suspension

lifted by [ORG FIFA] on Friday and was set to make

his [ORG Sheffield Wednesday] comeback against

[ORG Liverpool] on Saturday . [PER Blinker] missed

his club’s last two games after [ORG FIFA] slapped a

worldwide ban on him for appearing to sign contracts for

both [ORG Wednesday] and [ORG Udinese] while he was

playing for [ORG Feyenoord].

Figure 1: Example illustrating challenges in NER.

“BLINKER” is a person. Likewise, it is not obvi-
ous that the last mention of “Wednesday” is an orga-
nization (in fact, the first mention of “Wednesday”
can also be understood as a “comeback” which hap-
pens on Wednesday). An NER system could take ad-
vantage of the fact that “blinker” is also mentioned
later in the text as the easily identifiable “Reggie
Blinker”. It is also useful to know that Udinese
is a soccer club (an entry about this club appears
in Wikipedia), and the expression “both Wednesday
and Udinese” implies that “Wednesday” and “Udi-
nese” should be assigned the same label.

The above discussion focuses on the need for ex-
ternal knowledge resources (for example, that Udi-
nese can be a soccer club) and the need for non-
local features to leverage the multiple occurrences
of named entities in the text. While these two needs
have motivated some of the research in NER in
the last decade, several other fundamental decisions
must be made. These include: what model to use for
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sequential inference, how to represent text chunks
and what inference (decoding) algorithm to use.

Despite the recent progress in NER, the effort has
been dispersed in several directions and there are no
published attempts to compare or combine the re-
cent advances, leading to some design misconcep-
tions and less than optimal performance. In this
paper we analyze some of the fundamental design
challenges and misconceptions that underlie the de-
velopment of an efficient and robust NER system.
We find that BILOU representation of text chunks
significantly outperforms the widely adopted BIO.
Surprisingly, naive greedy inference performs com-
parably to beamsearch or Viterbi, while being con-
siderably more computationally efficient. We ana-
lyze several approaches for modeling non-local de-
pendencies proposed in the literature and find that
none of them clearly outperforms the others across
several datasets. However, as we show, these contri-
butions are, to a large extent, independent and, as we
show, the approaches can be used together to yield
better results. Our experiments corroborate recently
published results indicating that word class models
learned on unlabeled text can significantly improve
the performance of the system and can be an al-
ternative to the traditional semi-supervised learning
paradigm. Combining recent advances, we develop
a publicly available NER system that achieves 90.8
F1 score on the CoNLL-2003 NER shared task, the
best reported result for this dataset. Our system is ro-
bust – it consistently outperforms all publicly avail-
able NER systems (e.g., the Stanford NER system)
on all three datasets.

2 Datasets and Evaluation Methodology

NER system should be robust across multiple do-
mains, as it is expected to be applied on a diverse set
of documents: historical texts, news articles, patent
applications, webpages etc. Therefore, we have con-
sidered three datasets: CoNLL03 shared task data,
MUC7 data and a set of Webpages we have anno-
tated manually. In the experiments throughout the
paper, we test the ability of the tagger to adapt to new
test domains. Throughout this work, we train on the
CoNLL03 data and test on the other datasets without
retraining. The differences in annotation schemes
across datasets created evaluation challenges. We

discuss the datasets and the evaluation methods be-
low.

The CoNLL03 shared task data is a subset of
Reuters 1996 news corpus annotated with 4 entity
types: PER,ORG, LOC, MISC. It is important to
notice that both the training and the development
datasets are news feeds from August 1996, while the
test set contains news feeds from December 1996.
The named entities mentioned in the test dataset are
considerably different from those that appear in the
training or the development set. As a result, the test
dataset is considerably harder than the development
set. Evaluation: Following the convention, we re-
port phrase-level F1 score.

The MUC7 dataset is a subset of the North
American News Text Corpora annotated with a wide
variety of entities including people, locations, or-
ganizations, temporal events, monetary units, and
so on. Since there was no direct mapping from
temporal events, monetary units, and other entities
from MUC7 and the MISC label in the CoNLL03
dataset, we measure performance only on PER,ORG
and LOC. Evaluation: There are several sources
of inconsistency in annotation between MUC7 and
CoNLL03. For example, since the MUC7 dataset
does not contain the MISC label, in the sentence
“balloon, called the Virgin Global Challenger” , the
expression Virgin Global Challenger should be la-
beled as MISC according to CoNLL03 guidelines.
However, the gold annotation in MUC7 is “balloon,
called the [ORG Virgin] Global Challenger”. These
and other annotation inconsistencies have prompted
us to relax the requirements of finding the exact
phrase boundaries and measure performance using
token-level F1.

Webpages - we have assembled and manually an-
notated a collection of 20 webpages, including per-
sonal, academic and computer-science conference
homepages. The dataset contains 783 entities (96-
loc, 223-org, 276-per, 188-misc). Evaluation: The
named entities in the webpages were highly am-
biguous and very different from the named entities
seen in the training data. For example, the data in-
cluded sentences such as : “Hear, O Israel, the Lord
our God, the Lord is one.” We could not agree on
whether “O Israel” should be labeled as ORG, LOC,
or PER. Similarly, we could not agree on whether
“God” and “Lord” is an ORG or PER. These issues
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led us to report token-level entity-identification F1

score for this dataset. That is, if a named entity to-
ken was identified as such, we counted it as a correct
prediction ignoring the named entity type.

3 Design Challenges in NER

In this section we introduce the baseline NER sys-
tem, and raise the fundamental questions underlying
robust and efficient design. These questions define
the outline of this paper. NER is typically viewed
as a sequential prediction problem, the typical mod-
els include HMM (Rabiner, 1989), CRF (Lafferty
et al., 2001), and sequential application of Per-
ceptron or Winnow (Collins, 2002). That is, let
x = (x1, . . . , xN ) be an input sequence and y =
(y1, . . . , yN ) be the output sequence. The sequential
prediction problem is to estimate the probabilities

P (yi|xi−k . . . xi+l, yi−m . . . yi−1),

where k, l and m are small numbers to allow
tractable inference and avoid overfitting. This con-
ditional probability distribution is estimated in NER
using the following baseline set of features (Zhang
and Johnson, 2003): (1) previous two predictions
yi−1 and yi−2 (2) current word xi (3) xi word type
(all-capitalized, is-capitalized, all-digits, alphanu-
meric, etc.) (4) prefixes and suffixes of xi (5) tokens
in the window c = (xi−2, xi−1, xi, xi+1, xi+2) (6)
capitalization pattern in the window c (7) conjunc-
tion of c and yi−1.

Most NER systems use additional features, such
as POS tags, shallow parsing information and
gazetteers. We discuss additional features in the fol-
lowing sections. We note that we normalize dates
and numbers, that is 12/3/2008 becomes *Date*,
1980 becomes *DDDD* and 212-325-4751 becomes
*DDD*-*DDD*-*DDDD*. This allows a degree of ab-
straction to years, phone numbers, etc.

Our baseline NER system uses a regularized aver-
aged perceptron (Freund and Schapire, 1999). Sys-
tems based on perceptron have been shown to be
competitive in NER and text chunking (Kazama and
Torisawa, 2007b; Punyakanok and Roth, 2001; Car-
reras et al., 2003) We specify the model and the fea-
tures with the LBJ (Rizzolo and Roth, 2007) mod-
eling language. We now state the four fundamental
design decisions in NER system which define the
structure of this paper.

Algorithm Baseline system Final System
Greedy 83.29 90.57
Beam size=10 83.38 90.67
Beam size=100 83.38 90.67
Viterbi 83.71 N/A

Table 1: Phrase-level F1 performance of different inference
methods on CoNLL03 test data. Viterbi cannot be used in the
end system due to non-local features.

Key design decisions in an NER system.
1) How to represent text chunks in NER system?

2) What inference algorithm to use?

3) How to model non-local dependencies?

4) How to use external knowledge resources in NER?

4 Inference & Chunk Representation

In this section we compare the performance of sev-
eral inference (decoding) algorithms: greedy left-
to-right decoding, Viterbi and beamsearch. It may
appear that beamsearch or Viterbi will perform
much better than naive greedy left-to-right decoding,
which can be seen as beamsearch of size one. The
Viterbi algorithm has the limitation that it does not
allow incorporating some of the non-local features
which will be discussed later, therefore, we cannot
use it in our end system. However, it has the appeal-
ing quality of finding the most likely assignment to
a second-order model, and since the baseline fea-
tures only have second order dependencies, we have
tested it on the baseline configuration.

Table 1 compares between the greedy decoding,
beamsearch with varying beam size, and Viterbi,
both for the system with baseline features and for the
end system (to be presented later). Surprisingly, the
greedy policy performs well, this phenmenon was
also observed in the POS tagging task (Toutanova
et al., 2003; Roth and Zelenko, 1998). The impli-
cations are subtle. First, due to the second-order of
the model, the greedy decoding is over 100 times
faster than Viterbi. The reason is that with the
BILOU encoding of four NE types, each token can
take 21 states (O, B-PER, I-PER , U-PER, etc.). To
tag a token, the greedy policy requires 21 compar-
isons, while the Viterbi requires 213, and this analy-
sis carries over to the number of classifier invoca-
tions. Furthermore, both beamsearch and Viterbi
require transforming the predictions of the classi-
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Rep. CoNLL03 MUC7
Scheme Test Dev Dev Test

BIO 89.15 93.61 86.76 85.15
BILOU 90.57 93.28 88.09 85.62

Table 2: End system performance with BILOU and BIO
schemes. BILOU outperforms the more widely used BIO.

fiers to probabilities as discussed in (Niculescu-
Mizil and Caruana, 2005), incurring additional time
overhead. Second, this result reinforces the intuition
that global inference over the second-order HMM
features does not capture the non-local properties
of the task. The reason is that the NEs tend to
be short chunks separated by multiple “outside” to-
kens. This separation “breaks” the Viterbi decision
process to independent maximization of assignment
over short chunks, where the greedy policy performs
well. On the other hand, dependencies between iso-
lated named entity chunks have longer-range depen-
dencies and are not captured by second-order tran-
sition features, therefore requiring separate mecha-
nisms, which we discuss in Section 5.

Another important question that has been stud-
ied extensively in the context of shallow parsing and
was somewhat overlooked in the NER literature is
the representation of text segments (Veenstra, 1999).
Related works include voting between several rep-
resentation schemes (Shen and Sarkar, 2005), lex-
icalizing the schemes (Molina and Pla, 2002) and
automatically searching for best encoding (Edward,
2007). However, we are not aware of similar work
in the NER settings. Due to space limitations, we do
not discuss all the representation schemes and com-
bining predictions by voting. We focus instead on
two most popular schemes– BIO and BILOU. The
BIO scheme suggests to learn classifiers that iden-
tify the Beginning, the Inside and the Outside of
the text segments. The BILOU scheme suggests
to learn classifiers that identify the Beginning, the
Inside and the Last tokens of multi-token chunks
as well as Unit-length chunks. The BILOU scheme
allows to learn a more expressive model with only
a small increase in the number of parameters to be
learned. Table 2 compares the end system’s perfor-
mance with BIO and BILOU. Examining the results,
we reach two conclusions: (1) choice of encod-
ing scheme has a big impact on the system perfor-

mance and (2) the less used BILOU formalism sig-
nificantly outperforms the widely adopted BIO tag-
ging scheme. We use the BILOU scheme throughout
the paper.

5 Non-Local Features

The key intuition behind non-local features in NER
has been that identical tokens should have identi-
cal label assignments. The sample text discussed
in the introduction shows one such example, where
all occurrences of “blinker” are assigned the PER
label. However, in general, this is not always the
case; for example we might see in the same doc-
ument the word sequences “Australia” and “The
bank of Australia”. The first instance should be la-
beled as LOC, and the second as ORG. We consider
three approaches proposed in the literature in the fol-
lowing sections. Before continuing the discussion,
we note that we found that adjacent documents in
the CoNLL03 and the MUC7 datasets often discuss
the same entities. Therefore, we ignore document
boundaries and analyze global dependencies in 200
and 1000 token windows. These constants were se-
lected by hand after trying a small number of val-
ues. We believe that this approach will also make
our system more robust in cases when the document
boundaries are not given.

5.1 Context aggregation

(Chieu and Ng, 2003) used features that aggre-
gate, for each document, the context tokens appear
in. Sample features are: the longest capitilized se-
quence of words in the document which contains
the current token and the token appears before a
company marker such as ltd. elsewhere in text.
In this work, we call this type of features con-
text aggregation features. Manually designed con-
text aggregation features clearly have low coverage,
therefore we used the following approach. Recall
that for each token instance xi, we use as features
the tokens in the window of size two around it:
ci = (xi−2, xi−1, xi, xi+1, xi+2). When the same
token type t appears in several locations in the text,
say xi1 , xi2 , . . . , xiN , for each instance xij , in ad-
dition to the context features cij , we also aggregate
the context across all instances within 200 tokens:
C = ∪j=N

j=1 cij .
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CoNLL03 CoNLL03 MUC7 MUC7 Web
Component Test data Dev data Dev Test pages

1) Baseline 83.65 89.25 74.72 71.28 71.41
2) (1) + Context Aggregation 85.40 89.99 79.16 71.53 70.76
3) (1) + Extended Prediction History 85.57 90.97 78.56 74.27 72.19
4) (1)+ Two-stage Prediction Aggregation 85.01 89.97 75.48 72.16 72.72
5) All Non-local Features (1-4) 86.53 90.69 81.41 73.61 71.21

Table 3: The utility of non-local features. The system was trained on CoNLL03 data and tested on CoNNL03, MUC7 and
Webpages. No single technique outperformed the rest on all domains. The combination of all techniques is the most robust.

5.2 Two-stage prediction aggregation

Context aggregation as done above can lead to ex-
cessive number of features. (Krishnan and Manning,
2006) used the intuition that some instances of a to-
ken appear in easily-identifiable contexts. Therefore
they apply a baseline NER system, and use the re-
sulting predictions as features in a second level of in-
ference. We call the technique two-stage prediction
aggregation. We implemented the token-majority
and the entity-majority features discussed in (Krish-
nan and Manning, 2006); however, instead of docu-
ment and corpus majority tags, we used relative fre-
quency of the tags in a 1000 token window.

5.3 Extended prediction history

Both context aggregation and two-stage prediction
aggregation treat all tokens in the text similarly.
However, we observed that the named entities in the
beginning of the documents tended to be more easily
identifiable and matched gazetteers more often. This
is due to the fact that when a named entity is intro-
duced for the first time in text, a canonical name is
used, while in the following discussion abbreviated
mentions, pronouns, and other references are used.
To break the symmetry, when using beamsearch or
greedy left-to-right decoding, we use the fact that
when we are making a prediction for token instance
xi, we have already made predictions y1, . . . , yi−1

for token instances x1, . . . , xi−1. When making the
prediction for token instance xi, we record the la-
bel assignment distribution for all token instances
for the same token type in the previous 1000 words.
That is, if the token instance is “Australia”, and in
the previous 1000 tokens, the token type “Australia”
was twice assigned the label L-ORG and three times
the label U-LOC, then the prediction history feature
will be: (L−ORG : 2

5 ; U − LOC : 3
5).

5.4 Utility of non-local features

Table 3 summarizes the results. Surprisingly, no
single technique outperformed the others on all
datasets. The extended prediction history method
was the best on CoNLL03 data and MUC7 test set.
Context aggregation was the best method for MUC7
development set and two-stage prediction was the
best for Webpages. Non-local features proved less
effective for MUC7 test set and the Webpages. Since
the named entities in Webpages have less context,
this result is expected for the Webpages. However,
we are unsure why MUC7 test set benefits from non-
local features much less than MUC7 development
set. Our key conclusion is that no single approach
is better than the rest and that the approaches are
complimentary- their combination is the most stable
and best performing.

6 External Knowledge

As we have illustrated in the introduction, NER is
a knowledge-intensive task. In this section, we dis-
cuss two important knowledge resources– gazetteers
and unlabeled text.

6.1 Unlabeled Text

Recent successful semi-supervised systems (Ando
and Zhang, 2005; Suzuki and Isozaki, 2008) have
illustrated that unlabeled text can be used to im-
prove the performance of NER systems. In this
work, we analyze a simple technique of using word
clusters generated from unlabeled text, which has
been shown to improve performance of dependency
parsing (Koo et al., 2008), Chinese word segmen-
tation (Liang, 2005) and NER (Miller et al., 2004).
The technique is based on word class models, pio-
neered by (Brown et al., 1992), which hierarchically
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CoNLL03 CoNLL03 MUC7 MUC7 Web
Component Test data Dev data Dev Test pages

1) Baseline 83.65 89.25 74.72 71.28 71.41
2) (1) + Gazetteer Match 87.22 91.61 85.83 80.43 74.46
3) (1) + Word Class Model 86.82 90.85 80.25 79.88 72.26
4) All External Knowledge 88.55 92.49 84.50 83.23 74.44

Table 4: Utility of external knowledge. The system was trained on CoNLL03 data and tested on CoNNL03, MUC7 and Webpages.

clusters words, producing a binary tree as in Fig-
ure 2.

Figure 2: An extract from word cluster hierarchy.

The approach is related, but not identical, to dis-
tributional similarity (for details, see (Brown et al.,
1992) and (Liang, 2005)). For example, since the
words Friday and Tuesday appear in similar con-
texts, the Brown algorithm will assign them to the
same cluster. Successful abstraction of both as a
day of the week, addresses the data sparsity prob-
lem common in NLP tasks. In this work, we use the
implementation and the clusters obtained in (Liang,
2005) from running the algorithm on the Reuters
1996 dataset, a superset of the CoNLL03 NER
dataset. Within the binary tree produced by the al-
gorithm, each word can be uniquely identified by
its path from the root, and this path can be com-
pactly represented with a bit string. Paths of dif-
ferent depths along the path from the root to the
word provide different levels of word abstraction.
For example, paths at depth 4 closely correspond
to POS tags. Since word class models use large
amounts of unlabeled data, they are essentially a
semi-supervised technique, which we use to consid-
erably improve the performance of our system.

In this work, we used path prefixes of length
4,6,10, and 20. When Brown clusters are used as
features in the following sections, it implies that all
features in the system which contain a word form
will be duplicated and a new set of features con-
taining the paths of varying length will be intro-
duced. For example, if the system contains the fea-
ture concatenation of the current token and the sys-

tem prediction on the previous word, four new fea-
tures will be introduced which are concatenations
of the previous prediction and the 4,6,10,20 length
path-representations of the current word.

6.2 Gazetteers
An important question at the inception of the NER
task was whether machine learning techniques are
necessary at all, and whether simple dictionary
lookup would be sufficient for good performance.
Indeed, the baseline for the CoNLL03 shared task
was essentially a dictionary lookup of the enti-
ties which appeared in the training data, and it
achieves 71.91 F1 score on the test set (Tjong and
De Meulder, 2003). It turns out that while prob-
lems of coverage and ambiguity prevent straightfor-
ward lookup, injection of gazetteer matches as fea-
tures in machine-learning based approaches is crit-
ical for good performance (Cohen, 2004; Kazama
and Torisawa, 2007a; Toral and Munoz, 2006; Flo-
rian et al., 2003). Given these findings, several ap-
proaches have been proposed to automatically ex-
tract comprehensive gazetteers from the web and
from large collections of unlabeled text (Etzioni
et al., 2005; Riloff and Jones, 1999) with lim-
ited impact on NER. Recently, (Toral and Munoz,
2006; Kazama and Torisawa, 2007a) have success-
fully constructed high quality and high coverage
gazetteers from Wikipedia.

In this work, we use a collection of 14 high-
precision, low-recall lists extracted from the web
that cover common names, countries, monetary
units, temporal expressions, etc. While these
gazetteers have excellent accuracy, they do not pro-
vide sufficient coverage. To further improve the
coverage, we have extracted 16 gazetteers from
Wikipedia, which collectively contain over 1.5M en-
tities. Overall, we have 30 gazetteers (available
for download with the system), and matches against
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CoNLL03 CoNLL03 MUC7 MUC7 Web
Component Test data Dev data Dev Test pages

1) Baseline 83.65 89.25 74.72 71.28 71.41
2) (1) + External Knowledge 88.55 92.49 84.50 83.23 74.44
3) (1) + Non-local 86.53 90.69 81.41 73.61 71.21
4) All Features 90.57 93.50 89.19 86.15 74.53
5) All Features (train with dev) 90.80 N/A 89.19 86.15 74.33

Table 5: End system performance by component. Results confirm that NER is a knowledge-intensive task.

each one are weighted as a separate feature in the
system (this allows us to trust each gazetteer to a dif-
ferent degree). We also note that we have developed
a technique for injecting non-exact string matching
to gazetteers, which has marginally improved the
performance, but is not covered in the paper due to
space limitations. In the rest of this section, we dis-
cuss the construction of gazetteers from Wikipedia.

Wikipedia is an open, collaborative encyclopedia
with several attractive properties. (1) It is kept up-
dated manually by it collaborators, hence new enti-
ties are constantly added to it. (2) Wikipedia con-
tains redirection pages, mapping several variations
of spelling of the same name to one canonical en-
try. For example, Suker is redirected to an entry
about Davor Šuker, the Croatian footballer (3) The
entries in Wikipedia are manually tagged with cate-
gories. For example, the entry about the Microsoft
in Wikipedia has the following categories: Companies

listed on NASDAQ; Cloud computing vendors; etc.

Both (Toral and Munoz, 2006) and (Kazama and
Torisawa, 2007a) used the free-text description of
the Wikipedia entity to reason about the entity type.
We use a simpler method to extract high coverage
and high quality gazetteers from Wikipedia. By
inspection of the CoNLL03 shared task annotation
guidelines and of the training set, we manually ag-
gregated several categories into a higher-level con-
cept (not necessarily NER type). When a Wikipedia
entry was tagged by one of the categories in the ta-
ble, it was added to the corresponding gazetteer.

6.3 Utility of External Knowledge

Table 4 summarizes the results of the techniques
for injecting external knowledge. It is important
to note that, although the world class model was
learned on the superset of CoNLL03 data, and al-
though the Wikipedia gazetteers were constructed

Dataset Stanford-NER LBJ-NER
MUC7 Test 80.62 85.71
MUC7 Dev 84.67 87.99
Webpages 72.50 74.89

Reuters2003 test 87.04 90.74
Reuters2003 dev 92.36 93.94

Table 6: Comparison: token-based F1 score of LBJ-NER and
Stanford NER tagger across several domains

based on CoNLL03 annotation guidelines, these fea-
tures proved extremely good on all datasets. Word
class models discussed in Section 6.1 are computed
offline, are available online1, and provide an alter-
native to traditional semi-supervised learning. It is
important to note that the word class models and the
gazetteers and independednt and accumulative. Fur-
thermore, despite the number and the gigantic size
of the extracted gazetteers, the gazeteers alone are
not sufficient for adequate performance. When we
modified the CoNLL03 baseline to include gazetteer
matches, the performance went up from 71.91 to
82.3 on the CoNLL03 test set, below our baseline
system’s result of 83.65. When we have injected the
gazetteers into our system, the performance went up
to 87.22. Word class model and nonlocal features
further improve the performance to 90.57 (see Ta-
ble 5), by more than 3 F1 points.

7 Final System Performance Analysis

As a final experiment, we have trained our system
both on the training and on the development set,
which gave us our best F1 score of 90.8 on the
CoNLL03 data, yet it failed to improve the perfor-
mance on other datasets. Table 5 summarizes the
performance of the system.

Next, we have compared the performance of our

1http://people.csail.mit.edu/maestro/papers/bllip-clusters.gz
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system to that of the Stanford NER tagger, across the
datasets discussed above. We have chosen to com-
pare against the Stanford tagger because to the best
of our knowledge, it is the best publicly available
system which is trained on the same data. We have
downloaded the Stanford NER tagger and used the
strongest provided model trained on the CoNLL03
data with distributional similarity features. The re-
sults we obtained on the CoNLL03 test set were
consistent with what was reported in (Finkel et al.,
2005). Our goal was to compare the performance of
the taggers across several datasets. For the most re-
alistic comparison, we have presented each system
with a raw text, and relied on the system’s sentence
splitter and tokenizer. When evaluating the systems,
we matched against the gold tokenization ignoring
punctuation marks. Table 6 summarizes the results.
Note that due to differences in sentence splitting, to-
kenization and evaluation, these results are not iden-
tical to those reported in Table 5. Also note that in
this experiment we have used token-level accuracy
on the CoNLL dataset as well. Finally, to complete
the comparison to other systems, in Table 7 we sum-
marize the best results reported for the CoNLL03
dataset in literature.

8 Conclusions

We have presented a simple model for NER that
uses expressive features to achieve new state of the
art performance on the Named Entity recognition
task. We explored four fundamental design deci-
sions: text chunks representation, inference algo-
rithm, using non-local features and external knowl-
edge. We showed that BILOU encoding scheme sig-
nificantly outperforms BIO and that, surprisingly, a
conditional model that does not take into account in-
teractions at the output level performs comparably
to beamsearch or Viterbi, while being considerably
more efficient computationally. We analyzed sev-
eral approaches for modeling non-local dependen-
cies and found that none of them clearly outperforms
the others across several datasets. Our experiments
corroborate recently published results indicating that
word class models learned on unlabeled text can
be an alternative to the traditional semi-supervised
learning paradigm. NER proves to be a knowledge-
intensive task, and it was reassuring to observe that

System Resources Used F1

+ LBJ-NER Wikipedia, Nonlocal Fea-
tures, Word-class Model

90.80

- (Suzuki and
Isozaki, 2008)

Semi-supervised on 1G-
word unlabeled data

89.92

- (Ando and
Zhang, 2005)

Semi-supervised on 27M-
word unlabeled data

89.31

- (Kazama and
Torisawa, 2007a)

Wikipedia 88.02

- (Krishnan and
Manning, 2006)

Non-local Features 87.24

- (Kazama and
Torisawa, 2007b)

Non-local Features 87.17

+ (Finkel et al.,
2005)

Non-local Features 86.86

Table 7: Results for CoNLL03 data reported in the literature.
publicly available systems marked by +.

knowledge-driven techniques adapt well across sev-
eral domains. We observed consistent performance
gains across several domains, most interestingly in
Webpages, where the named entities had less context
and were different in nature from the named entities
in the training set. Our system significantly outper-
forms the current state of the art and is available to
download under a research license.

Apendix– wikipedia gazetters & categories

1)People: people, births, deaths. Extracts 494,699 Wikipedia

titles and 382,336 redirect links. 2)Organizations: cooper-

atives, federations, teams, clubs, departments, organizations,

organisations, banks, legislatures, record labels, constructors,

manufacturers, ministries, ministers, military units, military

formations, universities, radio stations, newspapers, broad-

casters, political parties, television networks, companies, busi-

nesses, agencies. Extracts 124,403 titles and 130,588 redi-

rects. 3)Locations: airports, districts, regions, countries, ar-

eas, lakes, seas, oceans, towns, villages, parks, bays, bases,

cities, landmarks, rivers, valleys, deserts, locations, places,

neighborhoods. Extracts 211,872 titles and 194,049 redirects.

4)Named Objects: aircraft, spacecraft, tanks, rifles, weapons,

ships, firearms, automobiles, computers, boats. Extracts 28,739

titles and 31,389 redirects. 5)Art Work: novels, books, paint-

ings, operas, plays. Extracts 39,800 titles and 34037 redirects.

6)Films: films, telenovelas, shows, musicals. Extracts 50,454

titles and 49,252 redirects. 7)Songs: songs, singles, albums.

Extracts 109,645 titles and 67,473 redirects. 8)Events: playoffs,

championships, races, competitions, battles. Extracts 20,176 ti-

tles and 15,182 redirects.

154



References

R. K. Ando and T. Zhang. 2005. A high-performance
semi-supervised learning method for text chunking. In
ACL.

P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. D.
Pietra, and J. C. Lai. 1992. Class-based n-gram mod-
els of natural language. Computational Linguistics,
18(4):467–479.
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Abstract

The average results obtained by unsupervised
statistical parsers have greatly improved in the
last few years, but on many specific sentences
they are of rather low quality. The output of
such parsers is becoming valuable for vari-
ous applications, and it is radically less expen-
sive to create than manually annotated training
data. Hence, automatic selection of high qual-
ity parses created by unsupervised parsers is
an important problem.

In this paper we presentPUPA, a POS-based
Unsupervised Parse Assessment algorithm.
The algorithm assesses the quality of a parse
tree using POS sequence statistics collected
from a batch of parsed sentences. We eval-
uate the algorithm by using an unsupervised
POS tagger and an unsupervised parser, se-
lecting high quality parsed sentences from En-
glish (WSJ) and German (NEGRA) corpora.
We show thatPUPA outperforms the leading
previous parse assessment algorithm for su-
pervised parsers, as well as a strong unsuper-
vised baseline. Consequently,PUPA allows
obtaining high quality parses without any hu-
man involvement.

1 Introduction

In unsupervised parsing an algorithm should un-
cover the syntactic structure of an input sentence
without using any manually created structural train-
ing data. The last decade has seen significant
progress in this field of research (Klein and Man-
ning, 2002; Klein and Manning, 2004; Bod, 2006a;
Bod, 2006b; Smith and Eisner, 2006; Seginer,
2007).

Many NLP systems use the output of supervised
parsers (e.g., (Kwok et al., 2001) for QA, (Moldovan
et al., 2003) for IE, (Punyakanok et al., 2008) for
SRL, (Srikumar et al., 2008) for Textual Inference
and (Avramidis and Koehn, 2008) for MT). To
achieve good performance, these parsers should be
trained on large amounts of manually created train-
ing data from a domain similar to that of the sen-
tences they parse (Lease and Charniak, 2005; Mc-
Closky and Charniak, 2008). In the highly variable
Web, where many of these systems are used, it is
very difficult to create a representative corpus for
manual annotation. The high cost of manual annota-
tion of training data for supervised parsers imposes
a significant burden on their usage.

A possible answer to this problem can be pro-
vided by high quality parses produced by unsuper-
vised parsers that require little to no manual efforts
for their training. These parses can be used either
as input for applications, or as training material for
modern supervised parsers whose output will in turn
be used by applications.

Although unsupervised parser results improve,
the quality of many of the parses they produce is still
too low for such goals. For example, the Seginer
(2007) parser achieves an F-score of 75.9% on the
WSJ10 corpus and 59% on theNEGRA10 corpus,
but the percentage of individual sentences with an
F-score of 100% is 21.5% forWSJ10 and 11% for
NEGRA10. When requirements are relaxed, only
asking for an F-score higher than 85%, percentage
is still low, 42% forWSJ10 and 15% forNEGRA10.

In this paper we address the task of a fully un-
supervised assessment of high quality parses cre-
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ated by an unsupervised parser. The assessment
should be unsupervised in order to avoid the prob-
lems mentioned above with manually trained super-
vised parsers. Assessing the quality of a learning al-
gorithm’s output and selecting high quality instances
has been addressed for supervised algorithms (Caru-
ana and Niculescu-Mizil, 2006) and specifically for
supervised parsers (Yates et al., 2006; Reichart and
Rappoport, 2007; Kawahara and Uchimoto, 2008;
Ravi et al., 2008). Moreover, it has been shown
to be valuable for supervised parser adaptation be-
tween domains (Sagae and Tsujii, 2007; Kawahara
and Uchimoto, 2008; Chen et al., 2008). However,
as far as we know the present paper is the first to
address the task of unsupervised assessment of the
quality of parses created byunsupervised parsers.

Our POS-based Unsupervised Parse Assessment
(PUPA) algorithm uses statistics about POS tag se-
quences in a batch of parsed sentences1. The con-
stituents in the batch are represented using the POS
sequences of their yield and of the yields of neigh-
boring constituents. Constituents whose representa-
tion is frequent in the output of the parser are con-
sidered to be of a high quality. A score for each
range of constituent length is calculated, reflecting
the robustness of statistics used for the creation of
the constituents of that length. The final sentence
score is a weighted average of the scores calculated
for each constituent length. The score thus integrates
the quality of short and long constituents into one
score reflecting the quality of the whole parse tree.

PUPA provides a quality score for every sentence
in a parsed sentences set. An NLP application can
then decide if to use a parse or not, according to
its own definition of a high quality parse. For ex-
ample, it can select every sentence whose score is
above some threshold, or thek top scored sentences.
The selection strategy is application dependent and
is beyond the scope of this paper.

The unsupervised parser we use is the Seginer
(2007) incremental parser2, which achieves state-of-

1The algorithm can be used with supervised POS taggers
and parsers, but we focus here on the fully unsupervised sce-
nario, which is novel and more useful. For completeness of
analysis, we experimented withPUPA using a supervised POS
tagger (see Section 5). UsingPUPA with supervised parsers is
left for future work.

2www.seggu.net/ccl.

the-art results without using manually created POS
tags. The POS tags we use are induced by the un-
supervised tagger of (Clark, 2003)3. Since both tag-
ger and parser do not require any manual annotation,
PUPA identifies high quality parses without any hu-
man involvement.

The incremental parser of (Seginer, 2007) does
not give any prediction of its output quality, and
extracting such a prediction from its internal data
structures is not straightforward. Such a predic-
tion can be given by supervised parsers in terms
of the parse likelihood, but this was shown to be
of medium quality (Reichart and Rappoport, 2007).
While the algorithms of Yates et al. (2006), Kawa-
hara and Uchimoto (2008) and Ravi et al. (2008) are
supervised (Section 3), the ensemble basedSEPAal-
gorithm (Reichart and Rappoport, 2007) can be ap-
plied to unsupervised parsers in a way that preserves
the unsupervised nature of the selection task.

To compare between two algorithms, we use each
of them to assess the quality of the sentences in En-
glish and German corpora (WSJ and NEGRA)4. We
show that for every sentence length (up to 20) the
quality of the top scoredk sentences according to
PUPA is higher than the quality ofSEPA’s list (for
everyk). As in (Reichart and Rappoport, 2007), the
quality of a set selected from the parser’s output is
evaluated using two measures: constituent F-score5

and average sentence F-score.
Section 2 describes thePUPA algorithm, Sec-

tion 3 discusses previous work, and Sections 4 and
5 present the evaluation setup and results.

2 The POS-based Unsupervised Parse
Assessment (PUPA) Algorithm

In this section we detail our parse assessment algo-
rithm. Its input consists of a setI of parsed sen-
tences, which in our evaluation scenario are pro-
duced by an unsupervised parser. The algorithm
assigns each parsed sentence a score reflecting its
quality.

3www.cs.rhul.ac.uk/home/alexc/RHUL/Downloads.html,
the neyessenmorph model.

4This is in contrast to algorithms for selection from the re-
sults of supervised constituency parsers, which were evaluated
only for English (Yates et al., 2006; Reichart and Rappoport,
2007; Ravi et al., 2008).

5This is the traditional parsing F-score.
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The algorithm has three steps. First, the words in
I are POS tagged (in our case, using the fully unsu-
pervised POS induction algorithm of Clark (2003)).
Second, POS statistics about the constituents inI
are collected. Finally, a quality score is calculated
for each parsed sentence inI using the POS statis-
tics. In the following we detail the last two steps.

Collecting POS statistics. In its second step, the
algorithm collects statistics about the constituents in
the input setI. Recall that theyield of a constituent
is the set of words covered by it. ThePUPA con-
stituent representation (PCR) consists of three fea-
tures: (1) the ordered POS tag sequence of the con-
stituent’s yield, (2) the constituents’ right context,
and (3) the constituents’ left context.

We definecontext to be theleftmost and rightmost
POS tags in the yield of theneighbor of the con-
stituent (if there is only one POS tag in the neigh-
bor’s yield, this POS tag is the context). For the
right and left contexts we consider the right and left
neighbors respectively. A constituentC1 is the right
neighbor of a constituentC2 if C1 is the highest level
constituent such that the first word in the yield ofC1

comes immediately after the last word in the yield of
C2. A constituentC1 is the left neighbor of a con-
stituentC2 if C1 is the highest level constituent such
that the first word in the yield ofC2 comes immedi-
ately after the last word in the yield ofC1.

Figure 1 shows an example, an unlabeled tree for
the sentence ‘I will give you the ball’. The tree has
6 constituents (C0-C5). C3 and C4 have both right
and left neighbors. For C3, the POS sequence of its
yield isPOS2, POS3, the left neighbor is C1 and thus
the left context isPOS1, and the right neighbor is C4
and thus the right context isPOS4. Note that the
left and right neighbors of C3 have only one POS
tag in their yield and therefore this POS tag is the
context. For C4 the yield isPOS4, the left neighbor
is C3 (and thus the left context isPOS2,POS3), and
the right neighbor is C5 (and thus the right context
is POS5,POS6). C1, whose yield isPOS1, has only
a right neighbor, C2, and thus its right context is
POS2,POS6and its left context isNULL . C2 and C5
(whose yields arePOS2, POS3, POS4, POS5, POS6for
C2 andPOS5, POS6for C5) have only a left neigh-
bor. For C2, this is C1 (and the context isPOS1)
while for C5 this is C4 (with the contextPOS4).

0

1

POS1

I

2

3

POS2

will

POS3

give

4

POS4

you

5

POS5

the

POS6

ball

Figure 1: An example parse tree for contexts and neigh-
bors (see text).

The right context of both constituents isNULL . As
all sentence level constituents, C0 has no neighbors,
and thus both its left and right contexts areNULL .

We have also explored other representations of
left and right contexts based on the POS tags of their
yields. In these, we represented the left/right neigh-
bor using only the leftmost/rightmost POS tags of
its yield or other subsets of the yield’s POS tags.
These variations produced lower quality results than
the main variant above in our experiments, which
were for English and German. Exploring the suit-
ability of our representation for other languages is
left for future research.

Score computation. The third and last step of the
algorithm is a second pass overI for computing a
quality score for each parse tree.

Short constituents tend to be more frequent than
long ones. In order not to distort our score due to
parsing errors in short constituents,PUPA computes
the grade using a division into lengths, in three steps.
First, constituents are assigned to bins according to
their length, each bin containing the constituents of
a certain range of lengths. Denote this range by
W (for width), and the number of bins byN(W ).
For example, in our experiments the longest possible
constituent is of length 20, so we can takeW = 5,
resulting inN(W ) = 4: bin 1 for constituents of
length 1-5, bin2 for constituents of length 6-10, and
so on for bins 3, 4.

The score ofbini is given by

(1) BinScore(bini) =
∑t=X

t=2 (X − t + 2) · |Ci
t |

|Ci|

WhereX is the maximal number of occurrences
of constituents in the bin that we consider as impor-
tant for the score (see below for its selection),|Ci

t |
is the number of constituents in bini occurring at
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leastt times in the batch of parsed sentences, and
|Ci| is the number of constituents in bini. In words,
the score is a weighted average: the fraction of the
constituents in the bin occuring at least 2 times (with
weightX), plus the fraction of the constituents in the
bin occuring at least 3 times (with weightX − 1),
etc, until the fraction of the constituents in the bin
occuring at leastX times (with weight 2).

A score for the division intoN bins is given by

(2) Score(N(W )) =
∑N(W )

i=1
BinScore(bini)

Z·M

WhereZ is the maximum bin score (according to
(1)) andM is the number of bins containing at least
one constituent. If, for example,N(W ) = 4 and
there is no constituent whose length is between 11
and 15 then bin number 3 is empty. If every other
bin contains at least one constituent,M = 3.

To get a final score for the parse tree of sentence
S that is independent of a specific bin division, we
sum the scores of the various bin division:

(3) PupaScore(S) =
∑W=Y

W=1
Score(N(W ))

Y

whereY is the length ofS (which is also its max-
imum bin width). PupaScore thus takes values in
the[0, 1] range.

In equation (1), if, for example,X = 20 then
the weight of the fraction of the bin’s constituents
occurring at least 2 times is 20 while the weight of
the fraction of the constituents occurring at least 10
times is 12 and of the fraction of constituents occur-
ring at least 20 times is 2. We consider the number
of times a constituent appears in a batch to be an in-
dication of its correctness. The difference between 3
and 2 occurrences is therefore more indicative than
the difference between 20 and 19 occurrences. More
generally, the more times a constituent occurs, the
less indicative any additional appearance is.

In equation (2) we give all bins the same weight.
Short constituents are more frequent and are gener-
ally more likely to be correct. However, the cor-
rectness of long constituents is an indication that the
parser has a correct interpretation of the tree struc-
ture and that it is likely to create a high quality tree.
The usage of equal bin weights was done to balance
the tendency of parse trees to have more short con-
stituents.

Parameters. PUPA has two parameters:X, the
maximal number of occurrences considered in equa-
tion (1), andP , the number of POS tags induced by
the unsupervised POS tagger. In the following we
present the unsupervised technique we used to tune
these parameters.

Figure 2 showsnc(t), the number of constituents
appearing at leastt times in WSJ20 (left) andNE-
GRA20 (right). For both corpora, the pattern is
shown when using 5 POS tags (P = 5, solid line)
and 50 POS tags (P = 50, dashed line). The distri-
bution obeys Zipf’s law: many constituents appear a
small number of times while a few constituents ap-
pear a large number of times. We denote thet value
where the slope changes from steep to moderate by
telbow. Practically, we approximate the ‘real’ elbow
value and definetelbow to be the smallestt for which
nc(t + 1) − nc(t) = 1. WhenP = 5, telbow is 32
for WSJ and 19 for NEGRA. When P = 50,telbow is
15 for WSJ and 9 for NEGRA.

The number of constituents appearing more than
telbow times is considerably smaller than the number
of constituents appearingtelbow times or less. There-
fore, the fact that a constituent appearstelbow + S
times (for a positive integerS) is not a better indica-
tion of its quality than the fact that it appearstelbow

times. We thus selectX to betelbow.
The graphs also demonstrate that for both cor-

pora, telbow for P = 50 is smaller thantelbow for
P = 5. Generally,telbow is a monotonically decreas-
ing function ofP . Lower telbow values imply that
PUPA would be less distinctive between constituents
quality (see equation (1); recall thatX = telbow).
We thus want to select theP value that maximizes
telbow. We therefore minimizeP . telbow values for
P ∈ {3, . . . , 10} are very similar. Indeed,PUPA

achieves its best performance forP ∈ {3, . . . , 10}
and it is insensitive to the selection ofP in this
range. In Section 5 we report results withP = 5.

3 Related Work
Unsupervised parsing has been explored for several
decades (see (Klein, 2005) for a recent review). Re-
cently, unsupervised parsing algorithms have for the
first time outperformed the right branching heuristic
baseline for English. These include CCM (Klein and
Manning, 2002), the DMV and DMV+CCM models
(Klein and Manning, 2004), (U)DOP based mod-
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Figure 2: Number of constituents appearing at leastt
times (nc(t)) as a function oft. Shown are WSJ (left)
and NEGRA (right), where constituents are represented
according toPUPA’s PCR with 5 POS tags (P = 5, solid
line) or 50 POS tags (P = 50, dashed line).

els (Bod, 2006a; Bod, 2006b), an exemplar based
approach (Dennis, 2005), guiding EM using con-
trastive estimation (Smith and Eisner, 2006), and the
incremental parser of Seginer (2007) that we use in
this work. To obtain good results, manually created
POS tags are used as input in all of these algorithms
except Seginer’s, which uses plain text.

Quality assessment of a learning algorithm’s out-
put and selection of high quality instances have been
addressed for supervised algorithms (see (Caruana
and Niculescu-Mizil, 2006) for a survey) and specif-
ically for supervised constituency parsers (Yates et
al., 2006; Reichart and Rappoport, 2007; Ravi et al.,
2008). For dependency parsing in a corpus adapta-
tion scenario, (Kawahara and Uchimoto, 2008) built
a binary classifier that classifies each parse in the
parser’s output as reliable or not. To do that, they
selected 2500 sentences from the parser’s output,
compared them to their manually created gold stan-
dard, and used accurate (inaccurate) parses as posi-
tive (negative) examples for the classifier. Their ap-
proach is supervised and the features used by the
classifier are dependency motivated .

As far as we know, the present paper is the first to
address the task of selecting high quality parses from
the output of unsupervised parsers. The algorithms
of Yates et al. (2006), Kawahara and Uchimoto
(2008) and Ravi et al. (2008) are supervised, per-
forming semantic analysis of the parse tree and gold
standard-based calssification, respectively. How-
ever, theSEPAalgorithm of Reichart and Rappoport
(2007), an algorithm for supervised constituency
parsers, can be applied to unsupervised parsers in

a way that preserves the unsupervised nature of the
selection task. In Section 5 we provide a detailed
comparison betweenPUPA and SEPA showing the
first to be superior. Below is a brief description of
theSEPAalgorithm.

The input of theSEPA algorithm consists of a
parsing algorithmA, a training set, and a test set
(which in the unsupervised case might be the same
set). The algorithm provides, for each of the test
set’s parses generated byA when trained on the full
training set, a grade assessing the parse quality, on
a continuous scale between 0 to 100. The qual-
ity grade is calculated in the following way:N ran-
dom samples of sizeS are sampled from the train-
ing data and used for training the parsing algorithm
A. In that wayN committee members are created.
Then, each of the test sentences is parsed by each of
theN committee members and an agreement score
ranging from 0 to 100 between the committee mem-
bers is calculated. All unsupervised parsers men-
tioned above (including the Seginer parser), have a
training phase where parameter values are estimated
from unlabeled data.SEPAcan thus be applied to the
unsupervised case.

Automatic selection of high quality parses has
been shown to improve parser adaptation. Sagae and
Tsujii (2007) and Kawahara and Uchimoto (2008)
applied a self-training protocol to a parser adaptation
scenario but used only high quality parses to retrain
the parser. In the first work, high quality parses were
selected using an ensemble method, while in the sec-
ond a binary classifier was used (see above). The
first system achieved the highest score in the CoNLL
2007 shared task on domain adaptation of depen-
dency parsers, and the second system improved over
the basic self-training protocol. Chen et al. (2008)
parsed target domain sentences and used short de-
pendencies information, which is often accurate, to
adapt a dependency parser to the Chinese language.

Automatic quality assessment has been exten-
sively explored for machine translation (Ueffing and
Ney, 2007) and speech recognition (Koo et al.,
2001). Other NLP tasks where it has been explored
include semi-supervised relation extraction (Rosen-
feld and Feldman, 2007), IE (Culotta and McCal-
lum, 2004), QA (Chu-Carroll et al., 2003), and dia-
log systems (Lin and Weng, 2008).

The idea of representing a constituent by its yield
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and (a different definition of) context is used by the
CCM unsupervised parsing model (Klein and Man-
ning, 2002). As far as we know the current work is
the first to use unsupervised POS tags for the selec-
tion of high quality parses.

4 Evaluation Setup

We experiment with sentences of up to 20 words
from the English WSJ Penn Treebank (WSJ20,
25236 sentences, 225126 constituents) and the Ger-
man NEGRA corpus (Brants, 1997) (NEGRA20,
15610 sentences, 108540 constiteunts), both con-
taining newspaper texts.

The unsupervised parsers of the kind addressed
in this paper output unlabeled parse trees. To eval-
uate the quality of a single parse tree with respect
to another, we use the unlabeled F-score (UF =
2·UR·UP
UR+UP ), whereUR andUP are unlabeled recall
and unlabeled precision respectively.

Following the unsupervised parsing literature,
multiple brackets and brackets covering a single
word are not counted, but the sentence level bracket
is. We exclude punctuation and null elements ac-
cording to the scheme of (Klein, 2005).

The performance of unsupervised parsers
markedly degrades as sentence length increases.
For example, the Average sentence F–score for WSJ
sentences of length 10 is 71.4% compared to 58.5
for sentences of length 20 (the numbers for NEGRA
are 48.2% and 36.9%). We therefore evaluatePUPA

(and the baseline) for sentences of a given length.
We do this for every sentence of length 2-20 in
WSJ20 andNEGRA20.

For every sentence lengthL, we usePUPAand the
baseline algorithm (SEPA) to give a quality score to
each of the sentences of that length in the experi-
mental corpus. We then compare the quality of the
topk parsed sentences according to each algorithm.
We do this for everyk from 1 to the number of sen-
tences of lengthL.

Following Reichart and Rappoport (2007), we use
two measures to evaluate the quality of aset of
parses: theconstituent F-score (the traditional F-
score used in the parsing literature), and theaverage
F-score of the parses in the set. In the first mea-
sure we treat the whole set as a bag of constituents.
Each constituent is marked as correct (if it appears

in the gold standard parses of the set) or erroneous
(if it does not). Then, recall, precision and F-score
are calculated over these constituents. In the sec-
ond measure, the constituent F-score of each of the
parses in the set is computed, and then results are
averaged.

There are applications that use individual con-
stituents from the output of a parser while others
need the whole parse tree. For example, if the se-
lected set is used for training supervised parsers such
as the Collins parser (Collins, 1999), which collects
constituent statistics, the constituent F-score of the
selected set is the important measure. In applica-
tions such as the syntax based machine translation
model of (Yamada and Knight, 2001), a low qual-
ity tree might lead to errorenous translation of the
sentence. For such applications the average F-score
is more indicative. These measures thus represent
complementary aspects of a set quality and we con-
sider both of them.

The parser we use is the incremental parser of
(Seginer, 2007), POS tags are induced using the un-
supervised POS tagger of ((Clark, 2003), neyessen-
morph model). In each experiment, the tagger was
trained with the raw sentences of the experiment cor-
pus, and then the corpus words were POS tagged.

The output of the unsupervised POS tagger de-
pends on a random initialization. We ran the tagger
5 times, each time with a different random initializa-
tion, and then ranPUPA with its output. The results
we report forPUPAare the average over these 5 runs.
Random selection results (given for reference) were
also averages over 5 samples.

PUPA ’s parameter estimation is completely unsu-
pervised (see Section 2). No development data was
used to tune its parameters.

A 200 sentences development set from each cor-
pus was used for calibrating the parameters of the
SEPAalgorithm. Based on the analysis ofSEPAper-
formance with different assignments of its param-
eters given by Reichart and Rappoport (2007) (see
Section 3), we ran theSEPA algorithm with sam-
ple size (SEPA parameterS) of 30% and 80%, and
with 2 – 10 committee members (N )6. The optimal
parameters wereN = 10,S = 80 for WSJ20, and

6We tried higherN values but observed no improvements in
SEPA’s performance.
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(d) WSJ, length 20

0 200 400 600 800
50

55

60

65

70

75

80

Number of Sentneces

A
ve

ra
g

e
 F

 S
co

re

(e) NEGRA, length5
0 200 400 600 800 1000

40

45

50

55

60

65

Number of Sentences

A
ve

ra
g

e
 F

 S
co

re

(f) NEGRA, length 10
0 200 400 600 800

30

35

40

45

50

55

60

Number of Sentences

A
ve

ra
g

e
 F

 S
co

re

(g) NEGRA, length 15
0 200 400 600 800

50

55

60

65

70

75

80

Number of Sentneces

A
ve

ra
g

e
 F

 S
co

re

(h) NEGRA, length 20
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(l) WSJ, length 20
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(m) NEGRA, length5
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(o) NEGRA, length 15
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(p) NEGRA, length 20

Figure 3: In all graphs: PUPA: solid line. SEPA: line with triangles. MC: line with circles. Random selection is
presented for reference as a dotted line.Top two rows: Average F-score forPUPA, SEPAandMC for sentences from
WSJ (top row) and NEGRA (bottom row).Bottom two rows: Constituents F-score forPUPA, SEPA and MC for
sentences from WSJ (top row) and NEGRA (bottom row). Results are presented for sentence lengths of 5,10,15 and
20 (patterns for other sentence lengths between 2 and 20 are very similar). PUPA is superior in all cases. The graphs
for PUPAandSEPAshow a downward trend because parsed sentences were sorted according to score, which correlates
positively with F-score (unlikeMC). The graphs converge because on the extreme right all test sentences were selected.

N = 10, S = 30 for NEGRA20.

We also comparePUPA to a baseline selecting the
sentences with the lowest number of constituents.
Since the number of constituents is an indication of
the complexity of the syntactic structure of a sen-
tence, it is reasonable to assume that selecting the
sentences with the lowest number of constituents is
a good selection strategy. We denote this baseline by

MC (for minimum constituents).
The incremental parser does not give any predic-

tion of its output quality as supervised generative
parsers do. We are thus not able to compare to such
a score.

5 Results

Figure 3 shows Average F-score and Constituents F-
score results forPUPA SEPAandMC, for sentences
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of lengths 5,10,15 and 20 inWSJ20 andNEGRA20.
The top two rows are for Average F-score (top row:
WSJ, bottom row: NEGRA), while the bottom two
rows are for Constituents F-score (top row: WSJ,
bottom row: NEGRA).

PUPAandSEPAare both better than random selec-
tion for both corpora for every sentence length. The
MC baseline is better than random selection only for
NEGRA (in which case it outperformsSEPA). For
WSJ, however, random selection is a better strategy
thanMC.

It is clear from the graphs thatPUPA outperforms
SEPA and MC in all experimental conditions. We
observed very similar patterns in all other sentence
lengths inWSJ20 andNEGRA20 for both Average
F-score and Constituent F-score. In other words, for
every sentence length in both corpora,PUPA outper-
forms SEPA andMC in terms of both measures. we
present our results per sentence length to deprive the
possibility thatPUPA is useful only for short sen-
tences or that it prefers sentences whose syntactic
structure is not complex (i.e. with a small number of
constituents, likeMC).

Table 1 shows that the same pattern of results
holds when evaluating on the whole corpus (WSJ20
or NEGRA20) without any sentence length restric-
tion.

Note that whilePUPA is a fully unsupervised al-
gorithm,SEPA requires a few hundreds of sentences
for its parameters tuning.

The main result of this paper is for sentences
whose length is up to 20 words (note that most un-
supervised parser literature reports numbers for sen-
tences up to length 10). We have also ran the exper-
iments for the remaining length range, 20-40. For
NEGRA, PUPA is superior overMC up to length 36,
and both are much better thanSEPA. For WSJ,PUPA

andSEPAboth outperformMC, butSEPA is a bit bet-
ter thanPUPA. When evaluating on the whole corpus
(i.e. without sentence length restriction, like in Ta-
ble 1) PUPA is superior over bothSEPA andMC for
WSJ40 andNEGRA40.

For completeness of analysis we also experi-
mented in the condition wherePUPA uses gold stan-
dard POS tags as input. The number of these tags is
35 for WSJ and 57 for NEGRA. Interestingly,PUPA

achieves in this condition the same performance as
when using the same number of POS tags induced

by an unsupervised POS tagger. SincePUPA’s per-
formance for a smaller number of POS tags is better
(see our parameter tuning discussion above), the bot-
tom line is thatPUPA pefers using induced POS tags
over gold POS tags.

5% 10% 20% 30% 40% 50%
WSJ20

PUPA 82.75 79.34 75.77 73.46 71.68 70.3
SEPA 78.68 75.7 72.64 70.72 69.54 68.58
MC 76.75 74.6 72.1 70.35 68.97 67.77

NEGRA20
PUPA 70.66 67.06 61.89 58.75 56.6 54.73
SEPA 66.19 62.75 59.41 57.16 55.23 53.7
MC 69.41 65.79 60.87 58.08 55.9 54.36

Table 1: Average F–score for the top k% of constituents
selected fromWSJ20 (up) andNEGRA20 (down). No sen-
tence length restriction is imposed. Results presented for
PUPA , SEPA and MC. Average F–score of random se-
lection is 66.55 (WSJ20) and 47.05 (NEGRA20). PUPA is
superior over all methods.

6 Conclusions

We introducedPUPA, an algorithm for unsupervised
parse assessment that utilizes POS sequence statis-
tics. PUPA is a fully unsupervised algorithm whose
parameters can be tuned in an unsupervised man-
ner. Experimenting with the Seginer unsupervised
parser and Clark’s unsupervised POS tagger on En-
glish and German corpora,PUPA was shown to out-
perform both the leading parse assessment algorithm
for supervised parsers (SEPA, even when its param-
eters are tuned on manually annotated development
data) and a strong baseline (MC).

Using PUPA, we extracted high quality parses
from the output of a parser which requires raw text
as input, using POS tags induced by an unsupervised
tagger.PUPA thus provides a way of obtaining high
quality parses without any human involvement.

For future work, we intend to use parses selected
by PUPA from the output of unsupervised parsers
as training data for supervised parsers, and in NLP
applications that use parse trees. A challenge for
the first direction is the fact that state of the art su-
pervised parsers require labeled parse trees, while
modern unsupervised parsers create unlabeled trees.
CombiningPUPA with algorithms for labeled parse
trees induction (Haghighi and Klein, 2006; Reichart
and Rappoport, 2008) is a one direction to overcome
this challenge. We also intend to usePUPA to assess
the quality of parses created by supervised parsers.
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Abstract

Clustering is crucial for many NLP tasks and
applications. However, evaluating the results
of a clustering algorithm is hard. In this paper
we focus on the evaluation setting in which a
gold standard solution is available. We discuss
two existing information theory based mea-
sures,V and VI , and show that they are both
hard to use when comparing the performance
of different algorithms and different datasets.
TheV measure favors solutions having a large
number of clusters, while the range of scores
given byVI depends on the size of the dataset.
We present a new measure,NVI , which nor-
malizesVI to address the latter problem. We
demonstrate the superiority ofNVI in a large
experiment involving an important NLP appli-
cation, grammar induction, using real corpus
data in English, German and Chinese.

1 Introduction

Clustering is a major technique in machine learn-
ing and its application areas. It lies at the heart
of unsupervised learning, which has great potential
advantages over supervised learning. This is es-
pecially true for NLP, due to the high efforts and
costs incurred by the human annotations required for
training supervised algorithms. Recent NLP prob-
lems addressed by clustering include POS induction
(Clark, 2003; Goldwater and Griffiths, 2007), word
sense disambiguation (Shin and Choi, 2004), seman-
tic role labeling (Baldewein et al., 2004), pitch ac-
cent type disambiguation (Levow, 2006) and gram-
mar induction (Klein, 2005).

Evaluation of clustering results is a challenging
task. In this paper we address theexternal measures
setting, where a correct assignment of elements to
classesis available and is used for evaluating the
quality of another assignment of the elements into
clusters. Many NLP works have used external clus-
tering evaluation measures (see Section 2).

Recently, two measures have been proposed that
avoid many of the weaknesses of previous measures
and exhibit several attractive properties (see Sec-
tions 2 and 3): theVI measure (Meila, 2007) and
the V measure (Rosenberg and Hirschberg, 2007).
However, each of these has a serious drawback. The
possible values ofVI lie in [0, 2log N ], whereN is
the size of the clustered dataset. Hence it has lim-
ited use when comparing performance on different
datasets.V measure values lie in[0, 1] regardless of
the dataset, but the measure strongly favors a cluster-
ing having many small clusters. In addition,V does
not have many of the attractive properties ofVI .

This paper has two contributions. First, we pro-
pose theNVI measure, a normalization ofVI which
guarantees that the score of clusterings thatVI con-
siders good lies in [0,1], regardless of dataset size.
Most of VI ’s attractive properties are retained by
NVI .

Second, we compare the behavior ofV, VI and
NVI in various situations to the desired behavior and
to each other. In particular, we show thatV gives
high scores to clusterings with a large number of
clusters even when they are of low quality. We
demonstrate this both in a synthetic example (Sec-
tion 5) and in the evaluation (in three languages) of
a difficult NLP problem, labeled parse tree induc-

165



tion (Section 6). We show that in both cases,NVI

constitutes a better clustering evaluation measure.

2 Previous Evaluation Measures

A large number of clustering quality measures have
been proposed. Here we briefly survey the three
main types, mapping based measures, counting pairs
measures and information theory based measures.

We first review some terminology (Meila, 2007;
Rosenberg and Hirschberg, 2007). In ahomoge-
neous clustering, every cluster contains only ele-
ments from a single class. In acomplete cluster-
ing, all elements of each class are assigned to the
same cluster. Theperfect solution is the fully ho-
mogeneous and complete clustering. We will illus-
trate the behavior of some measures using three ex-
treme cases: thesingle cluster case, in which all
data elements are put in the same single cluster; the
singletonscase, in which each data element is put
in a cluster of its own; and theno knowledgecase,
in which the class distribution within each cluster
is identical to the class distribution in the entire
dataset. If the single cluster solution is not the per-
fect one, the no knowledge solution is the worst pos-
sible solution. Throughout the paper, the number of
data elements to be clustered is denoted byN.

Mapping based measuresare based on a post-
processing step in which each cluster is mapped to a
class. Among these are: L (Larsen, 1999), D (Van
Dongen, 2000), misclassification index (MI) (Zeng
et al., 2002), H (Meila, 2001), clustering F-measure
(Fung et al., 2003) and micro-averaged precision
and recall (Dhillon et al., 2003). As noted in (Rosen-
berg and Hirschberg, 2007), these measures evalu-
ate not only the quality of the proposed clustering
but also of the mapping scheme. Different mapping
schemes can lead to different quality scores for the
same clustering. Moreover, even when the mapping
scheme is fixed, it can lead to not evaluating the en-
tire membership of a cluster and not evaluating every
cluster (Meila, 2007).

Counting pairs measuresare based on a com-
binatorial approach which examines the number of
pairs of data elements that are clustered similarly in
the reference and proposed clustering. Among these
are Rand Index (Rand, 1971), Adjusted Rand In-
dex (Hubert and Arabie, 1985),Γ statistic (Hubert

and Schultz, 1976), Jaccard (Milligan et al., 1983),
Fowlkes-Mallows (Fowlkes and Mallows, 1983) and
Mirkin (Mirkin, 1996).

Meila (2007) described a number of problems
with such measures. The most acute one is that their
values are unbounded, making it hard to interpret
their results. The problem can be solved by transfor-
mations adjusting their values to lie in[0, 1], but the
adjusted measures suffer from severe distributional
problems, again limiting their usability in practice.

Information-theoretic (IT) based measuresare
those addressed in this work. The measures in this
family suffer neither from the problems associated
with mappings, since they evaluate the entire mem-
bership of each cluster and not just a mapped por-
tion, nor from the distributional problems of the
counting pairs measures.

Zhao and Karypis (2001) definePurity and En-
tropyas follows:
Purity =

∑k
r=1

1
N maxi(ni

r)

Entropy =
∑k

r=1
nr
N (− 1

logq

∑q
i=1

ni
r

nr
log(ni

r
nr

))
whereq is the number of classes,k the number of
clusters,nr clusterr’s size, andni

r is the number of
elements in classi assigned to clusterr.

Both measures are good measures for homogene-
ity (Purity increases and Entropy decreases when
homogeneity increases). However, they do not eval-
uate completeness at all. The singletons solution is
thus considered optimal even if in fact it is of very
low quality.

Dom (2001) proposed theQ measure, the sum of
a homogeneity termH(C|K) and a model cost term
calculated using a coding theory argument:
Q(C, K) = H(C|K) + 1

N

∑|k|
k=1 log

(h(k)+|C|−1
|C|−1

)

whereC are the correct classes,K are the induced
clusters andh(k) is the number of elements in clus-
ter k. Dom also presented a normalized version of
theQ measure (calledQ2) whose range is(0, 1] and
gives higher scores to clusterings that are preferable.
As noted by (Rosenberg and Hirschberg, 2007), the
Q measure does not explicitly address the complete-
ness of the suggested clustering. Due to the cost
term, if two clusterings have the sameH(C|K)
value, the model prefers the one with the lower num-
ber of clusters, but the trade-off between homogene-
ity and completeness is not explicitly addressed.

In the next section we describe theV andVI mea-
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sures, which are IT measures that explicitly assess
both the homogeneity and completeness of the clus-
tering solution.

BCubed (Bagga and Baldwin, 1998) is an attrac-
tive measure that addresses both completeness and
homogeneity. It does not explicitly use IT concepts
and avoids mapping. In this paper we focus onV

andVI ; a detailed comparison with BCubed is out of
our scope here and will be done in future work.

Several recent NLP papers used clustering tech-
niques and evaluation measures. Examples include
(Finkel and Manning, 2008), usingVI , Rand in-
dex and clustering F-score for evaluating corefer-
ence resolution; (Headden et al., 2008), usingVI , V,
greedy 1-to-1 and many-to-1 mapping for evaluating
unsupervised POS induction; (Walker and Ringger,
2008), using clustering F-score, the adjusted Rand
index, V, VI andQ2 for document clustering; and
(Reichart and Rappoport, 2008), using greedy 1-to-
1 and many-to-1 mappings for evaluating labeled
parse tree induction.

Schulte im Walde (2003) used clustering to in-
duce semantic verb classes and extensively dis-
cussed non-IT based clustering evaluation measures.
Pfitzner et al. (2008) presented a comparison of clus-
tering evaluation measures (IT based and others).
While their analysis is extensive, their experiments
were confined to artificial data. In this work, we
experiment with a complex NLP application using
large real datasets.

3 The V and VI Measures

The V (Rosenberg and Hirschberg, 2007) andVI

(Meila, 2007) measures are IT based measures. In
this section we give a detailed description of these
measures and analyze their properties.

Notations. The partition of theN data elements
into classes is denoted byC = {c1, . . . , c|C|}.
The clustering solution is denoted byK =
{k1, . . . , k|K|}. A = {aij} is a |C| × |K| contin-
gency matrix such thataij is the number of data ele-
ments that are members of classci and are assigned
by the algorithm to clusterkj .

As other IT measures,V and VI assume that the
elements in the dataset are taken from a known dis-
tribution (both assume the uniform distribution), and
thus the classes and clusters can be treated as ran-

dom variables. When assuming the uniform distri-
bution, the probability of an event (a class or a clus-
ter) is its relative size, sop(c) =

∑|K|
k=1

ack
N and

p(k) =
∑|C|

c=1
ack
N . Under this assumption we can

talk about the entropiesH(C) andH(K) and the
conditional entropiesH(C|K) andH(K|C):

H(C) = −∑|C|
c=1

P|K|
k=1 ack

N log
P|K|

k=1 ack

N

H(K) = −∑|K|
k=1

P|C|
c=1 ack

N log
P|C|

c=1 ack

N

H(C|K) = −∑|K|
k=1

∑|C|
c=1

ack
N log ack

P|C|
c=1 ack

H(K|C) = −∑|K|
k=1

∑|C|
c=1

ack
N log ack

P|K|
k=1 ack

In Section 2 we defined the concepts of homo-
geneity and completeness. In order to satisfy the ho-
mogeneity criterion, each cluster must be contained
in a certain class. This results in the minimization
of the conditional entropy of the classes given the
clusters,H(C|K) = 0. In the least homogeneous
solution, the conditional entropy is maximized, and
H(C|K) = H(C). Similarly, in order to satisfy the
completeness criterion, each class must be contained
in a certain cluster, which results in the minimiza-
tion of the conditional entropy of the clusters given
the classes,H(K|C) = 0. In the least complete
solution, the conditional entropy is maximized, and
H(K|C) = H(K).

The VI measure. Variation of information (VI ) is
defined as follows:

V I(C, K) = H(C|K) + H(K|C).

In the least homogeneous (complete) clustering, the
values ofH(C|K) (H(K|C)) are maximal. As
a clustering solution becomes more homogeneous
(complete), the values ofH(C|K) (H(K|C)) de-
crease to zero. Consequently,lower VI values im-
ply better clustering solutions. In the perfect so-
lution, bothH(C|K) = 0 andH(K|C) = 0 and
thusV I = 0. For the least homogeneous and com-
plete clustering solution, where knowing the cluster
tells nothing about the class and vise versa,V I =
H(C) + H(K).

As a result, the range of values thatVI takes is
dataset dependent, and the numbers themselves tell
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us nothing about the quality of the clustering solu-
tion (apart from a score of 0, which is given to the
best possible solution).

A bound forVI values is a function of the maxi-
mum number of clusters inC or K, denoted byk∗.
This is obtained when each cluster contains a sin-
gle element, andk∗ = N . Thus,V I ∈ [0, 2logN ].
Consequently, the range ofVI values is dataset de-
pendent and unbounded when datasets change. This
means that it is hard to useVI to compare the perfor-
mance of a clustering algorithm across datasets.

An apparent simple solution to this problem
would be to normalizeVI by 2logk∗ or 2logN , so
that its values would lie in[0, 1]. We discuss this at
the end of the next section.

VI has two useful properties. First, it satis-
fies the metric axioms, that is: V I(C, K) ≥
0, V I(C, K) = V I(K, C), V I(C1, C2) +
V I(C2, C3) ≥ V I(C1, C3). This gives an intuitive
understanding of the relation betweenVI values.

Second, it is convexly additive. This
means that if K is obtained from C by
splitting Cj into clusters K1

j , . . . , Km
j ,

Ĥ(Kj) = −∑m
i=1 P (Ki

j |Cj)logP (Ki
j |Cj),

then V I(C, K) = P (Cj)Ĥ(Kj). This property
guarantees that all changes toVI are local; the
impact of splitting or merging clusters is limited
only to those clusters involved, and its size is
relative to the size of these clusters.

The V measure. TheV measure uses homogeneity
(h) and completeness (c) terms as follows:

h =

{
1 H(C) = 0
1− H(C|K)

H(C) H(C) 6= 0

c =

{
1 H(K) = 0
1− H(K|C)

H(K) H(K) 6= 0

V =
2hc

h + c
In the least homogeneous clustering,H(C|K) is
maximal, atH(C|K) = H(C). In this caseh
reaches its minimum value, which is0. As homo-
geneity increasesH(C|K) values decrease. For the
most homogeneous clustering,H(C|K) = 0 and
h = 1. The same considerations hold forc, which
ranges between0 (for the least complete clustering)

and 1 (for a complete clustering). SinceV is de-
fined to be the harmonic mean ofh andc, V values
lie in [0, 1]. Consequently, it can be used to com-
pare the performance of clustering algorithms across
datasets. HigherV values imply better clusterings.

Unlike VI , V does not satisfy the metric axioms
and is not convexly additive. The range of values it
can get does not depend on dataset size.

Extreme cases for the two measures. In the
single cluster solutionH(C|K) = H(C) and
H(K|C) = 0, and thusV = 0 (the worst possi-
ble score) andV I = H(C). If there is indeed only
a single class, thenV I = 0, the best possible score,
which is the correct behavior.VI behaves better than
V here.

The singletons solution is a fully homogeneous
clustering in whichH(C|K) = 0. The score of each
measure depends on the completeness of the solu-
tion. The completeness of a singletons clustering in-
creases with the number of classes. In the extreme
case where every element is assigned to a unique
class (|C| = |K| = N ) singletons is also complete,
H(K|C) = 0, andV (C, K) = 1, V I(C, K) = 0.
Both measures exhibit the correct behavior.

If there are classes that contain many elements,
singletons is far from being complete and should be
treated as a low quality solution. Again, in the sin-
gletons solutionV I = H(K|C). Suppose that the
number of clusters is fixed. When the number of
classes increases, this value decreases, which is what
we want. When the number of classes decreases, the
score increases, which is again the correct behav-
ior. In Section 5 we show that this desired behavior
shown byVI is not shown byV.

Both measures treat the no knowledge solution as
the worst one possible:V = 0, andV I = H(C) +
H(K).

4 Normalized Variation of Information

In this section we defineNVI , a normalization of
VI . NVI is N -independent and its values for clus-
terings considered as good byVI lie in [0, 1]. Hence,
NVI can be used to compare clustering performance
across datasets. We show thatNVI keeps the convex
additivity property ofVI but not its metric axioms.
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Definition. We defineNVI to be:

NV I(C, K) =

{
H(C|K)+H(K|C)

H(C) H(C) 6= 0

H(K) H(C) = 0

We defineNVI to beH(K) whenH(C) = 0 to sat-
isfy the requirements thatNVI values decrease asC
andK become more similar and thatNVI would be
0 when they are identical1.

Range and extreme cases.Like VI , NVI decreases
as the clustering becomes more complete and more
homogeneous. For the perfect solution,NV I = 0.
In both the single cluster and the no knowledge so-
lutions,H(C|K) = H(C). Thus, in the former case
NV I = 1, and in the latterNV I = 1 + H(K)

HC ≥ 1.
For the singletons clustering case,NV I =

H(K|C)
H(C) . Suppose that the number of clusters is

fixed. When the number of classes increases, the
numerator decreases and the denominator increases,
and hence the score decreases. In other words, as the
real solution gets closer to the singletons solution,
the score decreases, which is the correct behavior.
When the number of classes decreases, the score in-
creases, which is again the correct behavior.

For any pair of clusteringsK1 and K2,
V I(C, K1) > V I(C, K2) iff NV I(C, K1) >
V I(C, K2). This implies that only clustering solu-
tions whoseVI scores are better (i.e., numerically
lower) than the score of the single cluster solution
will be scored lower than1 by NVI .

Note thatNVI is meant to be used when there is
a ‘correct’ reference solution. In this caseH(C) is
constant, so the property above holds. In this sense,
VI is more general, allowing us to compare any three
clustering solutions even when we do not have a cor-
rect reference one.

To summarize:

1. All clusterings considered byVI to be of high
quality (i.e., better than the single cluster solu-
tion) are scored byNVI in the range of[0, 1].

2. All clusterings considered byVI to be of lower
quality than the single cluster solution are
scored higher than1 by NVI .

1H(C) = 0 iff C consists of a single class, and therefore
H(C) = H(K) = 0 iff C (K) consists of a single class (clus-
ter).

3. The ordering of scores between solutions given
by VI is preserved byNVI .

4. The behavior ofNVI on the extreme cases is the
desired one.

Useful properties. In Section 3 we saw thatVI has
two useful properties, satisfying the metric axioms
and being convexly additive.NVI is not symmetric
since the term in its denominator isH(C), the en-
tropy of the correct class assignment. Thus, it does
not satisfy the metric axioms. Being convexly addi-
tive, however, is preserved. In the class splitting sce-
nario (see convex additivity definition in Section 3)

it holds thatNV I(C, K) = P (Cj)Ĥ(Kj)
H(C) . That is,

like for VI , the impact of splitting or merging a clus-
ter onNVI is limited only to those clusters involved,
and its size is relative to the size of these clusters.
Meila (2007) derived various interesting properties
of VI from the convex additivity property. These
properties generally hold forNVI as well.

H(K) normalization. Normalizing by H(C)
takes into consideration the complexity of the cor-
rect clustering. Another normalization option would
be to normalize byH(K), which represents the in-
duced clustering complexity. This normalization
does not guarantee that the scores of the ‘good’ clus-
terings lie in a data-independent range.

Let us define NVIK (C,K) to be V I(C,K)
H(K) if

H(K) > 0 andH(C) if H(K) = 0. Recall that
in order for NVIK to be0 iff C andK are identi-
cal, we must require thatNV IK = H(C) when
H(K) = 0. In the no knowledge case,NV IK =
H(C)+H(K)

H(K) = H(C)
H(K) + 1 > 1. In the single cluster

solution, however,NV IK = H(C) (since in this
caseH(K) = 0) which ranges in[0, logN ]. This is
a serious drawback ofNVIK . In Section 6 we empir-
ically show an additional drawback ofNVIK .

logN normalization. Another possible normal-
ization of VI is by 2logN (or 2logk∗), which is an
upper bound onVI values. However, this results in
the values of the measure being dependent on dataset
size, so results on datasets with different sizes again
cannot be compared. For example, take anyC and
K and split each element into two. All entropy val-
ues, and the quality of the solution, are preserved,
but the scores given to the twoK ’s (before and after
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7 1 1 1 0 0 0 0 0 0
0 7 1 1 1 0 0 0 0 0
0 0 7 1 1 1 0 0 0 0
0 0 0 7 1 1 1 0 0 0
0 0 0 0 7 1 1 1 0 0
0 0 0 0 0 7 1 1 1 0
0 0 0 0 0 0 7 1 1 1
1 0 0 0 0 0 0 7 1 1
1 1 0 0 0 0 0 0 7 1
1 1 1 0 0 0 0 0 0 7

V VI NVI NVIK

Singletons 0.667 2.303 1 0.5
Solution R 0.587 1.88 0.81 0.81

Table 1: The clustering matrix of solution R (top), and
the scores given to it and to the singletons solution by the
four measures (bottom). Although solution R is superior,
the score given byV to the singletons solution is much
higher. NVI exhibits the most preferable behavior (recall
that higherV values are better, as opposed to the other
three measures).

the split) by such a normalizedVI would be differ-
ent. SinceH(C) is preserved, the scores given by
NVI to the twoK ’s are identical.

5 Problematic V Behavior Example

In this section we provide a synthetic example that
demonstrates an undesireable behavior ofV (and
NVIK ) not manifested byVI and NVI . Specifically,
V favors solutions with a large number of clusters,
giving them higher scores than to solutions that are
evidently superior. In addition, the score given to the
singletons solution is high in absolute terms.

To present the example, we use the matrix repre-
sentationA of a clustering solution defined in Sec-
tion 3. The entries in rowi sum to the number of
elements in classi, while those in columnj sum to
the number of elements in clusterj.

Suppose that we have100 elements assigned to10
classes such that there are10 elements in each class.
We consider two clustering solutions: the singletons
solution, and solution R whose matrix is shown in
Table 1 (top). Like the real solution, solution R also
has10 clusters each having10 elements. Solution
R is not very far from the correct solution, since
each cluster has7 elements of the same class, and
the three other elements in a cluster are taken from

a different class each and can be viewed as ‘noise’.
Solution R is thus much better than the singletons
solution. In order not to rely on our own opinion,
we have performed a simple human judgment ex-
periment with 30 subjects (university graduates in
different fields), all of whom preferred solution R2.

The scores given byV, VI , NVI andNVIK to the
two solutions are shown in Table 1 (bottom).V
scores solution R as being worse than the single-
tons solution, and gives the latter a number that’s
relatively high in absolute terms (0.667). VI ex-
hibits qualitatively correct behavior, but the num-
bers it uses are hard to interpret since they are N-
dependent. NVI scores solution R as being better
than singletons, and its score is less than1, indicat-
ing that it might be a good solution.

6 Grammar Induction Experiment

In this section we analyse the behavior ofV, VI ,
NVI and NVIK using a highly non-trivial NLP ap-
plication with large real datasets, the unsupervised
labeled parse tree induction (LTI ) algorithm of (Re-
ichart and Rappoport, 2008). We focus on the label-
ing that the algorithm finds for parsing constituents,
which is a clustering of constituents.

Summary of result. We show thatV gives about
the same score to a labeling that uses thousands of
labels and to labelings in which the number of la-
bels (dozens) is identical or smaller than the number
of labels in the reference evaluation set (an anno-
tated corpus). Contrary toV, both NVI andVI give
much better scores to the solutions having a smaller
number of labels.

It could be argued that the total number of ‘real’
labels in the data is indeed large (e.g., because every
verb exhibits its own syntactic patterns) and that a
small number of labels is just an arbitrary decision of
the corpus annotators. However, most linguistic the-
ories agree that there is a prototypical level of gen-
eralization that uses concepts such as Noun Phrase
and Verb Phrase, a level which consists of at most
dozens of labels and is strongly manifested by real
language data. Under these accepted assumptions,
the scoring behavior ofV is unreasonable.

2We must rely on people’s expectations, since the whole
point in this area is that clustering quality cannot be formalized
in an objective, application-independent way.
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MDL+SC (T labels) MDL+SC (P labels) MDL labels
Corpus L = 1 < 10 < 102 ≥ 102 L = 1 < 10 < 102 ≥ 102 L = 1 < 10 < 102 ≥ 102

WSJ10 26 0 0 3 23 8 0 0 0 8 2916 2282 2774 2864 52
NEGRA10 22 0 2 12 10 6 0 0 1 5 1202 902 1114 1191 11
CTB10 24 1 4 11 13 9 1 2 4 5 1050 816 993 1044 6

Table 2: The number of elements (constituents) covered by the clusters (labels) produced by the MDL+SC (T or P
labels) and MDL clusterings.L is the total number of labels. Shown are the number of clusters having one element,
less than 10 elements, less than 100 elements, and more than 100 elements. It is evident that MDL induces a sparse
clustering with many clusters that annotate very few constituents.

V VI NVI NVIK

Corpus MDL T P MDL T P MDL T P MDL T P
WSJ10 0.4 0.44 0.41 3.83 2.32 1.9 2.21 1.34 1.1 0.81 0.86 1.2
NEGRA10 0.47 0.5 0.5 2.56 1.8 1.4 1.51 1.1 0.83 0.76 0.96 1.1
CTB10 0.42 0.42 0.45 3 2.22 1.85 1.72 1.26 1.1 0.87 1.1 1.25

Table 3: V, VI , NVI and NVIK values for MDL and MDL+SC withT or P labels. V gives the three clusterings
very similar scores.NVIK prefers MDL labeling.NVI andVI both show the expected qualitative behavior, favoring
MDL+SC clustering withP labels. The most preferable scores are those ofNVI , whose numbers are also the easiest
to interpret.

The experiment. The LTI algorithm has three
stages: bracketing, initial labeling, and label clus-
tering. Bracketing is done from raw text using
the unsupervised incremental parser of (Seginer,
2007). Initial labeling is done using theBMM model
(Borensztajn and Zuidema, 2007), which aims at
minimizing the grammar description length (MDL).
Finally, labels are clustered to a desired number of
labels using the k-means algorithm with syntactic
features extracted from the initially labeled trees.
We refer to this stage as MDL+SC (for ‘syntactic
clustering’). Using a mapping-based evaluation with
two different mapping functions, theLTI algorithm
was shown to outperform previous work on unsu-
pervised labeled parse tree induction.

The MDL clustering step induces several thou-
sand labels for corpora of several tens of thousands
of constituents. The role of the SC step is to gen-
eralize these labels using syntactic features. There
are two versions of the SC step. In one, the num-
ber of clusters is identical to the number of labels
in the gold standard annotation of the experimental
corpus. This set of labels is calledT (for target)
labels. In the other SC version, the number of la-
bels is the minimum number of labels required to
annotate more than 95% of the constituents in the
gold standard annotation of the corpus. This set of
labels is calledP (for prominent) labels. Since con-
stituent labels follow the Zipfian distribution,P is
much smaller thanT .

In this paper we run theLTI algorithm and evalu-
ate its labeling quality usingV, VI , NVI and NVIK .
We compare the quality of the clustering induced by
the first clustering step alone (the MDL clustering)
to the quality of the clustering induced by the full
algorithm (i.e., first applying MDL and then clus-
tering its output using the SC algorithm forT or P
labels)3.

We follow the experimental setup in (Reichart
and Rappoport, 2008), running the algorithm on En-
glish, German and Chinese corpora: the WSJ Penn
Treebank (English), the Negra corpus (Brants, 1997)
(German), and version 5.0 of the Chinese Penn Tree-
bank (Xue et al., 2002). In each corpus, we used
the sentences of length at most 10,4 numbering 7422
(WSJ10), 7542 (NEGRA10) and 4626 (CTB10).

The characteristics of the induced clusterings are
shown in Table 25. The table demonstrates the
fact that MDL labeling, while perhaps capturing the

3Note that our evaluation here has nothing to do with the
evaluation done in (Reichart and Rappoport, 2008), which pro-
vided a comparison of the full grammar induction results be-
tween different algorithms, using mapping-based measures. We
evaluate the labeling stages alone.

4Excluding punctuation and null elements, according to the
scheme of (Klein, 2005).

5The number of MDL labels in the table differs from their
numbers, since we report the number of unique MDL labels
used for annotating correct constituents in the parser’s output,
while they report the number of unique labels used for annotat-
ing all constituents in the parser’s output.
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salient level of generalization of the data in its lead-
ing clusters, is extremely noisy. For WSJ10, for ex-
ample, 2282 of the 2916 unique labels annotate only
one constituent, and 2774 labels label less than 10
constituents. These 2774 labels annotate 14.4% of
compared constituents, and the 2864 labels that an-
notate less than 100 constituents each, cover 30.7%
of the compared constituents (these percentages are
not shown in the table). In other words, MDL is not
a solution in which almost all of the mass is concen-
trated in the few leading clusters; its tail occupies a
large percentage of its mass.

MDL patterns for NEGRA10 and CTB10 are very
similar. For MDL+SC withT or P labels, most
of the induced labels annotate 100 constituents or
more. We thus expect MDL+SC to provide better
clustering than MDL; a good clustering evaluation
measure should reflect this expectation.

Table 3 showsV, VI , NVI and NVIK scores for
MDL and MDL+SC (with T or P labels). For all
three corpora,V values are almost identical for the
MDL and the MDL+SC schemes. This is in con-
trast to VI and NVI values that strongly prefer the
MDL+SC clusterings, fitting our expectations (re-
call that for these measures, the lower the score, the
better the clustering). Moreover,VI and NVI pre-
fer MDL+SC with P labels, which again accords
with our expectations, sinceP labels were defined
as those that are more salient in the data (see above).

The patterns ofNVI and VI are identical, since
NV I = V I

H(C) and H(C) is independent of the
induced clustering. However, the numbers given
by NVI are easier to interpret than those given by
VI . The latter are basically meaningless, convey-
ing nothing about clustering quality. The former are
quite close to1, telling us that clustering quality is
not that good but not horrible either. This makes
sense, because the overall quality of the labeling in-
duction algorithm is indeed not that high: using one-
to-one mapping (the more forgiving mapping), the
accuracy of the labels induced by MDL+SC is only
45–72% (Reichart and Rappoport, 2008).

NVIK , the normalization ofVI with H(K), is
worse even thanV. This measure (which also gives
lower scores to better clusterings) prefers the MDL
over MDL+SC labels. This is a further justification
of our decision to defineNVI by normalizingVI by
H(C) rather than byH(K).

Corpus H(C) H(K)
MDL T P

WSJ10 1.73 4.72 2.7 1.58
NEGRA10 1.69 3.36 1.87 1.29
CTB10 1.76 3.45 2.1 1.48

Table 4: Class (H(C)) and cluster (H(K)) entropy for
MDL and MDL+SC withT or P labels.H(C) is cluster
independent.H(K) increases with the number of clus-
ters.

Table 4 shows theH(C) andH(K) values in the
experiment. WhileH(C) is independent of the in-
duced clustering and is thus constant for a given
annotated corpus,H(K) monotonically increases
with the number of induced clusters. Since both
NVIK and the completeness term ofV are normalized
by H(K), these measures prefer clusterings with a
large number of clusters even when many of these
clusters provide useless information.

7 Conclusion

Unsupervised clustering evaluation is important for
various NLP tasks and applications. Recently, the
importance of the completeness and homogeneity as
evaluation criteria for such clusterings has been rec-
ognized. In this paper we addressed the two mea-
sures that address these criteria:VI (Meila, 2007)
andV (Rosenberg and Hirschberg, 2007).

While VI has many useful properties, the range of
values it can take is dataset dependent, which makes
it unsuitable for comparing clusterings of different
datasets. This imposes a serious restriction on the
measure usage. We presentedNVI , a normalized ver-
sion of VI , which does not have this restriction and
still retains some of its useful properties.

Using experiments with both synthetic data and
a complex NLP application, we showed that theV

measure prefers clusterings with many clusters even
when these are clearly of low quality.VI andNVI do
not exhibit such behavior, and the numbers given by
NVI are easier to interpret than those given byVI .

In future work we intend to explore more of the
properties ofNVI and use it in other real NLP appli-
cations.
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Abstract

We compare two different types of extraction
patterns for automatically deriving semantic
information from text: lexical patterns, built
from words and word class information, and
dependency patterns with syntactic informa-
tion obtained from a full parser. We are partic-
ularly interested in whether the richer linguis-
tic information provided by a parser allows for
a better performance of subsequent informa-
tion extraction work. We evaluate automatic
extraction of hypernym information from text
and conclude that the application of depen-
dency patterns does not lead to substantially
higher precision and recall scores than using
lexical patterns.

1 Introduction

For almost a decade, automatic sentence parsing
systems with a reasonable performance (90+% con-
stituent precision/recall) have been available for En-
glish (Charniak, 1999). In recent years there has
been an increase in linguistic applications which use
parsing as a preprocessing step, e.g. Snow et al.
(2006) and Surdeanu et al. (2008). One of the boosts
for these new applications was the increasing power
of desktop computers, which allows for an easier ac-
cess to the computing-intensive parsing results. An-
other is the increased popularity of dependency pars-
ing of which the results can easily be incorporated
into followup systems.

Although there is a consensus about the fact that
the richness of the dependency structures should, in
principle, enable better performance than lexical in-
formation or shallow parsing results, it is not clear if

these better results can also be obtained in practice.
A performance of 90% precision and recall at con-
stituent level still leaves an average of one error in
a medium-length sentence of ten words. These er-
rors could degrade the performance of any approach
which relies heavily on parser output.

The question of whether to include a full parser as
a preprocessor for natural language processing task,
has led to a heated discussion between the two au-
thors of the paper. One of us argues that full parsers
are slow and make too many errors, and relies on
shallow techniques like part-of-speech tagging for
preprocessing. The other points at the decreasing
costs of computing and improvements in the reliabil-
ity of parsers, and recommends dependency parsers
as preprocessing tools.

While no automatic text preprocessing method is
free of errors, it is indeed true that approaches other
than full parsing, like for example shallow parsing,
offer useful information at a considerably cheaper
processing cost. The choice between using a heavy
full parser or a light shallow language analyzer is
one that developers of language processing systems
frequently have to make. The expected performance
boost of parsed data could be an important motiva-
tion for choosing for full syntactic analysis. How-
ever, we do not know how big the difference be-
tween the two methods will be. In order to find this
out, we designed an experiment in which we com-
pared the effects of preprocessing with and without
using information generated by a full parser.

In this paper, we compare two text preprocess-
ing approaches for a single language processing
task. The first of the two methods is shallow lin-
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guistic processing, a robust and fast text analysis
method which only uses information from words,
like lemma information and part-of-speech classes.
The second method is dependency parsing which in-
cludes information about the syntactic relations be-
tween words. The natural language processing task
which we will use for assessing the usability of the
two processing methods is automatic extraction of
hypernym information from text. The language of
the text documents is Dutch. We expect that the find-
ings of this study would have been similar if any
other Germanic language (including English) was
used.

The contribution of this paper is a thorough and
fair comparison of the involved preprocessing tech-
niques. There have been earlier studies of hyper-
nym extraction with either lexical or dependency ex-
traction patterns. However, these studies applied the
techniques to a variety of different data sets and used
different evaluation techniques. We will apply the
two methods to the same data, evaluate the results in
a consistent manner and examine the differences.

After this introduction, we will describe the task,
the preprocessing methods and the evaluation setting
in more detail. In the third section, we will show
how our experiments were set up and present the re-
sults. Section four contains a detailed discussion of
the two methods and their effect on the extraction
task. In the final section of the paper, we will present
some concluding remarks.

2 Task and methods

We will apply two different preprocessing methods
to the task of extracting lexical information from
text. In the next sections we describe this task, dis-
cuss different methods for preprocessing the data
and outline the method used for evaluating the re-
sults.

2.1 Extracting hypernym relations

We will concentrate on extracting a single type of
lexical relation: hypernymy. Word A is a hypernym
of word B if the meaning of A both covers the mean-
ing of B and is broader. For example, color is a hy-
pernym of red which in turn is a hypernym of scar-
let. If A is a hypernym of B than B is a hyponym of
A.

There has been quite a lot of work on extracting
hypernymy pairs from text. The pioneering work
of Hearst (1992) applied fixed patterns like NP1 ,
especially NP2 to derive that NP1 is a hypernym
of NP2. Lately there has been a lot of interest in
acquiring such text patterns using a set of hyper-
nymy examples, e.g. Pantel et al. (2004) and Snow
(2006). Application of such techniques has not been
restricted to English but also involved other lan-
guages such as Dutch (Tjong Kim Sang and Hof-
mann, 2007). Recent work has also examined ex-
tracting hypernym information from structured data,
like Wikipedia (Sumida and Torisawa, 2008).

For our extraction work, we will closely follow
the approach described in Snow et al. (2006):

1. Collect from a text corpus phrases (consecutive
word sequences from a single sentence) that
contain a pair of nouns

2. Mark each phrase as containing a hypernym
pair or a non-hypernym pair according to a lex-
ical resource

3. Remove the noun pair from the phrases and
register how often each phrase is associated by
hypernym pairs and by non-hypernym pairs

4. Use this information for training a machine
learning system to predict whether two nouns
are a hypernym-hyponym pair based on the
phrases in which they occur in a text corpus

For example, we find two phrases: colors such as
cyan and colors such as birds, both of which contain
the basic phrase such as. We mark the first phrase
as a hypernym phrase (color is a hypernym of cyan)
while the second is marked as non-hypernym (color
is not a hypernym of bird). Thus the pattern such as
will receive a positive point and a negative point. A
machine learning algorithm can deduce from these
numbers that two other nouns occurring in the same
pattern will have an estimated probability of 50% of
being related according to hypernymy. The learner
can use information from other patterns to obtain a
better estimation of this probability.

2.2 Lexical patterns

We use two different text preprocessing methods
which automatically assign linguistic information to
sentences. The first preprocessing method has the
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advantage of offering a fast analysis of the data but
its results are less elaborate than those of the second
method. The first method consists of three steps:

• Tokenization: sentence boundaries are detected
and punctuation signs are separated from words
• Part-of-speech tagging: part-of-speech classes

like noun and verb are assigned to words
• Lemmatization: words are reduced to their ba-

sic form (lemma)

The analysis process would convert a phrase like
Large cities in northern England such as Liverpool
are beyond revival. to lemmas and their associated
part-of-speech tags: large/JJ city/NN in/IN north/JJ

England/NNP such/DT as/IN Liverpool/NNP be/VB

beyond/IN revival/NN ./.
Like in the work of Snow et al. (2005), the tar-

get phrases for hypernym extraction are two noun
phrases, with a maximum of three tokens in be-
tween and one or two optional extra tokens (a non-
head token of the first noun phrase and/or one of
the second noun phrase). The lexical preprocessing
method uses two basic regular expressions for find-
ing noun phrases: Determiner? Adjective* Noun+
and ProperNoun+. It assumes that the final token
of the matched phrase is the head. Here is one set of
four patterns which can be derived from the example
sentence:

1. NP in NP
2. large NP in NP
3. NP in north NP
4. large NP in north NP

The patterns contain the lemmas rather than the
words of the sentence in order to allow for general
patterns. For the same reason, the noun phrases have
been replaced by the token NP. Each of the four pat-
terns will be used as evidence for a possible hyper-
nymy relation between the two noun phrase heads
city and England. As a novel extension to the work
of Snow et al., we included two additional variants
of each pattern in which either the first NP or the
second NP was replaced by its head:

5. city in NP
6. NP in England

This enabled us to identify among others appositions
as patterns: president NP.

2.3 Dependency patterns

A dependency analysis contains the same three steps
used for finding lexical patterns: tokenization, part-
of-speech tagging and lemmatization. Additionally,
it includes a fourth step:

• Dependency parsing: find the syntactic depen-
dency relations between the words in each sen-
tence

The syntactic analysis is head-based which means
that for each word in the sentence it finds another
word that dominates it. Here is a possible analysis
of the previous example sentence:

large:JJ:MOD:NN:city
city:NN:SUBJ:VBD:be
in:IN:MOD:NN:city
north:JJ:MOD:NNP:England
England:NNP:OBJ1:IN:in
such:DT:MOD:IN:as
as:IN:MOD:NN:city
Liverpool:NNP:OBJ1:IN:as
be:VB:–:–:–
beyond:IN:MOD:VB:be
revival:NN::OBJ1:IN:beyond

Each line contains a lemma, its part-of-speech tag,
the relation between the word and its head, the part-
of-speech tag of its head and the lemma of the head
word. Our work with dependency patterns closely
follows the work of Snow et al. (2005). Patterns are
defined as dependency paths with at most three in-
termediate nodes between the two focus nouns. Ad-
ditional satellite nodes can be present next to the two
nouns. The dependency patterns contain more infor-
mation than the lexical patterns. Here is one of the
patterns that can be derived for the two noun phrases
large cities and northern England in the example
sentence:

NP1:NN:SUBJ:VBD:
in:IN:MOD:NN:NP1

NP2:NNP:OBJ1:IN:in

The pattern defines a path from the head lemma city
via in, to England. Note that lemma information
linking outside this pattern (be at the end of the first
line) has been removed and that lemma information
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from the target noun phrases has been replaced by
the name of the noun phrase (NP1 at the end of the
second line). For each dependency pattern, we build
six variants similar to the six variants of the lexical
patterns: four with additional information from the
two noun phrases and two more with head informa-
tion of one of the two target NPs.

Both preprocessing methods can identify phrases
like N such as N1 , N2 and N3 as well. Such phrases
produce evidence for each of the pairs (N,N1),
(N,N2) and (N,N3). These three noun pairs will be
included in the data collected for the patterns that
can be derived from the phrase.

We expect that an important advantage of using
dependency patterns over lexical patterns will be
that the former offer a wider coverage. In the ex-
ample sentence, no lexical pattern will associate city
with Liverpool because there are too many words in
between. However, a dependency pattern will cre-
ate a link between these two words, via the word
as. This will enable the dependency patterns to find
out that city is a hypernym of Liverpool, where the
lexical patterns are not able to do this based on the
available information.

The two preprocessing methods generate a large
number of noun pairs associated by patterns. Like
Snow et al. (2005), we keep only noun pairs which
are associated by at least five different patterns. The
same constraint is enforced on the extraction pat-
terns: we keep only the patterns which are associ-
ated by at least five different noun pairs. The data
is converted to binary feature vectors representing
noun pairs. These are training data for a Bayesian
Logistic Regression system, BBRtrain (Genkin et
al., 2004). We use the default settings of the learn-
ing system and test its prediction capability in a bi-
nary classification task: whether two nouns are re-
lated according to hypernymy or not. Evaluation is
performed by 10-fold cross validation.

2.4 Evaluation
For parameter optimization we need an automatic
evaluation procedure, since repeated manual checks
of results generated by different versions of the
learner require too much time. We have adopted the
evaluation method of Snow et al (2006): compare
the generated hypernyms with hypernyms present in
a lexical resource, in our case the Dutch part of Eu-

roWordNet (1998).
This choice results in two restrictions. First, we

will only consider pairs of known words (words that
are present in the lexical resource) for evaluation.
We have no information about other words so we
make no assumptions about them. Second, if two
words appear in the lexical resource but not in the
hypernym relation of that same resource then we
will assume that they are unrelated. In other words,
we assume the hypernymy relation specified in the
lexical resource as complete (like in the work of
Snow et al. (2006)).

We use standard evaluation scores. We will com-
pute precision and recall for the candidate hyper-
nyms, as well as the related Fβ=1 rate, the harmonic
mean between precision and recall. Precision will be
computed against all chosen candidate hypernyms.
However, recall will only be computed against the
positive noun pairs which occur in the phrases se-
lected by the examined method. The different pre-
processing methods may cause different numbers of
positive pairs to be selected. Only these pairs will
be used for computing recall scores. Others will be
ignored. For this reason we will report the selected
number of positive target pairs in the result tables as
well1.

3 Experiments and results

We have applied the extraction techniques to two
different Dutch corpora. The first is a collection of
texts from the news domain. It consists of texts from
five different Dutch news papers from the Twente
News Corpus collection. Two versions of this cor-
pus exist. We have worked with the version which
contains the years 1997-2005 (26 million sentences
and 450 million tokens). The second corpus is the
Dutch Wikipedia. Here we used a version of Octo-
ber 2006 (5 million sentences and 58 million words).

Syntactic preprocessing of the material was done
with the Alpino parser, the best available parser for
Dutch with a labeled dependency accuracy of 89%
(Van Noord, 2006). Rather than performing the
parsing task ourselves, we have relied on an avail-
able parsed treebank which included the text corpora

1In a seperate study we have shown that the observed differ-
ences between the two methods remain the same when recall is
computed over sets of similar sizes (Tjong Kim Sang, 2009).
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that we wanted to use (Van Noord, 2009).
The parser also performs part-of-speech tagging

and lemmatization, tasks which are useful for the
lexical preprocessing methods. However, taking fu-
ture real-time applications in mind, we did not want
the lexical processing to be dependent on the parser.
Therefore we have developed an in-house part-of-
speech tagger and lemmatizer based on the material
created in the Corpus Spoken Dutch project (Eynde,
2005). The tagger achieved an accuracy of 96% on
test data from the same project while the lemmatizer
achieved 98%.

We used the Dutch part of EuroWordNet (Vossen,
1998) as the gold standard lexical resource, both for
training and testing. In the lexicon, many nouns have
different senses. This can cause problems for the
pattern extraction process. For example, if a noun
N1 with sense X is related to another noun N2 then
the appearance of N1 with sense Y with N2 in the
text may be completely accidental and say nothing
about the relation between the two words. In that
case it would be wrong to regard the context of the
two words as an interesting extraction pattern.

There are several ways to deal with this prob-
lem. One is to automatically assign senses to words.
However we do not have a reliable sense tagger for
Dutch at our disposal. Another method was pro-
posed by Snow et al (2005): assume that every word
bears its most frequent sense. But this is also in-
formation which we lack for Dutch: our lexical re-
source does not contain frequency information for
word senses. We have chosen the approach sug-
gested by Hofmann and Tjong Kim Sang (2007):
remove all nouns with multiple senses from the data
set and use only the monosemous words for find-
ing good extraction patterns. This restriction is only
imposed in the training phase. We consider both
monosemous words and polysemous words in the
evaluation process.

We imposed two additional restrictions on the lex-
ical resource. First, we removed the top noun of
the hypernymy hierarchy (iets) from the list of valid
hypernyms. This word is a valid hypernym of any
other noun. It is not an interesting suggestion for
the extraction procedure to put forward. Second, we
restricted the extraction procedure to propose only
known hypernyms as candidate hypernyms. Nouns
that appeared in the lexical resources only as hy-

lexical patterns
Data source Targ. Prec. Recall Fβ=1

AD 620 55.8% 27.9% 37.2
NRC 882 50.4% 23.8% 32.3
Parool 462 51.8% 21.9% 30.8
Trouw 607 54.1% 25.9% 35.0
Volkskrant 970 49.7% 24.1% 32.5
Newspapers 3307 43.1% 26.7% 33.0
Wikipedia 1288 63.4% 44.3% 52.1

dependency patterns
Data source Targ. Prec. Recall Fβ=1

AD 706 42.9% 30.2% 35.4
NRC 1224 26.2% 25.3% 25.7
Parool 584 31.2% 23.8% 27.0
Trouw 760 35.3% 29.0% 31.8
Volkskrant 1204 29.2% 25.5% 27.2
Newspapers 3806 20.7% 29.1% 24.2
Wikipedia 1580 61.9% 47.0% 53.4

Table 1: Hypernym extraction scores for the five news-
papers in the Twente News Corpus (AD, NRC, Parool,
Trouw and Volkskrant) and for the Dutch Wikipedia.
The Targets column shows the number of unique posi-
tive word pairs in each data set. The Dutch Wikipedia
contains about as much data as one of the newspaper sec-
tions.

ponyms (leaf nodes of the hypernymy tree) were
never proposed as candidate hypernyms. This made
sense for our evaluation procedure which is only
aimed at finding known hypernym-hyponym pairs.

We performed two hypernym extraction experi-
ments, one which used lexical extraction patterns
and one which used dependency patterns2. The re-
sults from the experiments can be found in Table
1. The newspaper F-scores obtained with lexical
patterns are similar to those reported for English
(Snow et al., 2005, 32.0) but the dependency pat-
terns perform worse. Both approaches perform well
on Wikipedia data, most likely because of the more
repeated sentence structures and the presence of
many definition sentences. For newspaper data, lex-
ical patterns outperform dependency patterns both
for precision and Fβ=1. For Wikipedia data the dif-
ferences are smaller and in fact the dependency pat-

2The software used in these experiment has been made avail-
able at http://www.let.rug.nl/erikt/cornetto/D08.zip
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terns obtain the best F-score. For all data sets, the
dependency patterns suggest more related pairs than
the lexical patterns (column Targets). The differ-
ences between the two pattern types are significant
(p < 0.05) for all evaluation measures for Newspa-
pers and for positive targets and recall for Wikipedia.

4 Result analysis

In this section, we take a closer look at the results de-
scribed in the previous section. We start with look-
ing for an explanation for the differences between
the scores obtained with lexical patterns and depen-
dency patterns. First we examine the results for
Wikipedia data and then the results for newspaper
data. Finally, we perform an error analysis to find
out the strengths and weaknesses of each of the two
methods.

4.1 Wikipedia data
The most important difference between the two pat-
tern types for Wikipedia data is the number of posi-
tive targets (Table 1). Dependency patterns find 23%
more related pairs in the Wikipedia data than lexi-
cal patterns (1580 vs. 1288). This effect can also
be simulated by changing the size of the corpus. If
we restrict the data set of the dependency patterns
to 70% of its current size then the patterns retrieve a
similar number of positive targets as the lexical pat-
terns, 1289, with comparable precision, recall and
Fβ=1 scores (62.5%, 46.6% and 53.4). So we expect
that the effect of applying the dependency patterns
is the same as applying the lexical patterns to 43%
more data.

4.2 Newspaper data
Performance-wise there seems to be only a small
difference between the two preprocessing methods
when applied to the Wikipedia data set. However,
when we examine the scores obtained on the news-
paper data (Table 1) then we find larger differences.
Dependency patterns remain finding more positive
targets and obtaining a larger recall score but their
precision score is disappointing. However, when we
examine the precision-recall plots of the two meth-
ods (Figure 1, obtained by varying the acceptance
threshold of the machine learner), they are almost
indistinguishable. The performance line for lexical
patterns extends further to the left than the one of

Figure 1: Performance of individual hypernym extraction
patterns applied to the combination of five newspapers
and Wikipedia. Each + in the graphs represent a differ-
ent extraction pattern. The precision-recall graphs for the
machine learner (lines) are identical for each data source
except for the extended part of the performance line for
lexical patterns.
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lexical patterns applied to Newspapers
Key Phrase Targ. Prec. Recall Fβ=1

N and other N 376 22.0% 11.4% 15.0
N such as N 222 25.1% 6.7% 10.6
N like N 579 7.6% 17.5% 10.6
N , such as N 263 15.6% 8.0% 10.5
N ( N 323 7.5% 9.8% 8.5

dependency patterns applied to Newspapers
Key Phrase Targ. Prec. Recall Fβ=1

N and other N 420 21.1% 11.0% 14.5
N be a N 451 8.2% 11.8% 9.7
N like N 205 27.3% 5.4% 9.0
N be N 766 5.7% 20.1% 8.8
N such as N 199 22.4% 5.2% 8.5

lexical patterns applied to Wikipedia
Key Phrase Targ. Prec. Recall Fβ=1

N be a N 294 40.8% 22.8% 29.3
N be N 418 22.9% 32.5% 26.9
a N be N 185 53.3% 14.4% 22.6
N such as N 161 57.5% 12.5% 20.5
N ( N 188 21.2% 14.6% 17.3

dependency patterns applied to Wikipedia
Key Phrase Targ. Prec. Recall Fβ=1

N be N 609 33.6% 38.5% 35.9
N be a N 452 44.3% 28.6% 34.8
the N be N 258 34.0% 16.3% 22.1
a N be N 184 44.7% 11.6% 18.5
N N 234 16.6% 14.8% 15.6

Table 2: Best performing extraction patterns according to
F-scores.

the dependency patterns but the remainder of the two
graphs overlap. The measured performances in Ta-
ble 1 are different because the machine learner put
the acceptance level for extracted pairs at different
points of the graph: the performance lines in both
newspaper graphs contain (recall,precision) points
(26.7%,43.1%) and (29.1%,20.7%).

We are unable to find major differences in the re-
sults of the two approaches. We conclude that, apart
from an effect which can be simulated with some
extra data, there is no difference between prepro-
cessing text with shallow methods and with a full

56 — covered by other patterns
12 48% required full parsing
6 24% lemmatization errors
3 12% omitted for lack of support
3 12% pos tagging errors
1 4% extraction pattern error

81 100%

45 — covered by other patterns
38 64% parsing errors
10 17% lemmatization errors
7 12% extraction pattern errors
3 5% omitted for lack of support
1 2% pos tagging error

104 100%

Table 3: Primary causes of recall errors made by the lex-
ical pattern N such as N (top) and the best performing
corresponding dependency pattern (bottom).

dependency parser.

4.3 Error analysis

Despite the lack of performance differences between
the two preprocessing methods, there are still inter-
nal differences which cause one method to generate
different related word pairs than the other. We will
now examine in detail two extraction patterns and
specify their distinct effects on the output results.
We hope that by carefully examining their output we
can learn about the strengths and weaknesses of the
two approaches.

We take a closer look at extraction pattern N such
as N for Newspaper data (second best for lexical pat-
terns and fifth best for dependency patterns, see Ta-
ble 2). The lexical pattern found 222 related word
pairs while the dependency pattern discovered 199.
118 of these pairs were found by both patterns which
means that the lexical pattern missed 81 of the pairs
while the dependency pattern missed 104.

An overview of the cause of the recall errors can
be found in Table 3. The two extraction patterns
do not overlap completely. The dependency parser
ignored punctuation signs and therefore the depen-
dency pattern covers both phrases with and without
punctuation. However, these phrase variants result
in different lexical patterns. This is the cause for
56 hypernyms being missed by the lexical pattern.
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Meanwhile there is a difference between a depen-
dency pattern without the conjunction and and one
with the conjunction, while there is a unified lexi-
cal pattern processing both phrases with and without
conjunctions. This caused the dependency pattern to
miss 45 hypernyms. However, all of these ‘missed’
hypernyms are handled by other patterns.

The main cause of the recall differences between
the two extraction patterns was the parser. The de-
pendency pattern found twelve hypernyms which
the lexical pattern missed because they required an
analysis which was beyond part-of-speech tagging
and the basic noun phrase identifier used by the lex-
ical preprocessor. Six hypernyms required extend-
ing a noun phrase with a prepositional phrase, five
needed noun phrase extension with a relative clause
and one involved appositions. An example of such
a phrase is illnesses caused by vitamin deficits, like
scurvy and beriberi.

However, the syntactic information that was avail-
able to the dependency pattern did also have a neg-
ative effect on its recall. 38 of the hypernyms de-
tected by the lexical pattern were missed by the de-
pendency pattern because there was a parsing error
in the relevant phrase. In more than half of the cases,
this involved attaching the phrase starting with such
as at an incorrect position. We found that a phrase
like N1 such as N2 , N3 and N4 could have been split
at any position. We even found some cases of prepo-
sitional phrases and relative clauses incorrectly be-
ing moved from other positions in the sentence into
the target phrase.

Other recall error causes appear less frequently.
The two preprocessing methods used different
lemmatization algorithms which also made different
errors. The effects of this were visible in the errors
made by the two patterns. Some hypernyms that
were found by both patterns but were not present
in both results because of insufficient support from
other patterns (candidate hypernyms should be sup-
ported by at least five different patterns). The ef-
fect of errors in part-of-speech tags was small. Our
data analysis also revealed some inconsistencies in
the extraction patterns which should be examined.

5 Concluding remarks

We have evaluated the effects of two different pre-
processing methods for a natural language process-
ing task: automatically identifying hypernymy in-
formation. The first method used lexical patterns
and relied on shallow processing techniques like
part-of-speech tagging and lemmatization. The sec-
ond method used dependency patterns which re-
lied on additional information obtained from depen-
dency parsing.

In earlier work, McCarthy et al. (2007) found
that for word sense disambiguation using the-
sauri generated from dependency relations perform
only slightly better than thesauri generated from
proximity-based relations. Jijkoun et al. (2004)
showed that information obtained from dependency
patterns significantly improved the performance of a
question answering system. Li and Roth (2001) re-
port that preprocessing by shallow parsing allows for
a more accurate post-processing of ill-formed sen-
tences than preprocessing with full parsing.

Our study supports the findings of McCarthy et
al. (2007). We found only minor differences in per-
formances between the two preprocessing methods.
The most important difference: about 20% extra
positive cases that were identified by the dependency
patterns applied to Wikipedia data, can be overcome
by increasing the data set of the lexical patterns by
half. We believe that obtaining more data may often
be easier than dealing with the extra computing time
required for parsing the data. For example, in the
course of writing this paper, we had to refrain from
using a recent version of Wikipedia because pars-
ing the data would have taken 296 days on a single
processor machine compared with a single hour for
tagging the data.
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Abstract

Experimenting with different mathematical
objects for text representation is an important
step of building text classification models. In
order to be efficient, such objects of a for-
mal model, like vectors, have to reasonably re-
produce language-related phenomena such as
word meaning inherent in index terms. We in-
troduce an algorithm for sense-based seman-
tic ordering of index terms which approxi-
mates Cruse’s description of a sense spectrum.
Following semantic ordering, text classifica-
tion by support vector machines can benefit
from semantic smoothing kernels that regard
semantic relations among index terms while
computing document similarity. Adding ex-
pansion terms to the vector representation can
also improve effectiveness. This paper pro-
poses a new kernel which discounts less im-
portant expansion terms based on lexical re-
latedness.

1 Introduction

Generally, building an automated text classification
system consists of two key subtasks. The first task
is text representation which converts the content of
documents into compact format so that they can be
further processed by the text classifiers. Another
task is to learn the model of a text classifier which
is used to classify the unlabeled documents. This
paper proposes a substantially new model for text
representation to improve effectiveness of text clas-
sification by semantic ordering.

Our motivation for the research presented here
came from (Dorrer et al., 2001) who demonstrated

the viability of database searching by visible light
using a quantum algorithm, albeit on meaningless
items. The question was, what kind of document
representation would be necessary to extend their
in-principle results to include semantics, one that
has been leading us to test both periodic and non-
periodic functions for this purpose. Since represen-
tation and retrieval by colors was implied in their
method, we speculated that the following compo-
nents could be useful in a rephrased model: (a)
a metaphorically presented spectral expression of
lexical semantic phenomena, (b) a ranked one-
dimensional condensate of multidimensional sense
structure, and (c) representation of documents and
queries by functions in L2 space with a similarity
measure. Our anticipation was that by matching
these components, a new model could demonstrate
new capacities in general, and contribute to comput-
ing meaning by waves in particular.

Semantic ordering (component b) is an approxi-
mation of what (Cruse, 1986) referred to as a sense
spectrum, i.e. a series of points - called local senses
and constituting lexical units -, in a one-dimensional
semantic continuum (component a). Apart from dif-
ferentiating between the conceptual content of the
same word in terms of its senses in word pairs, i.e.
their semantic relatedness, it also compresses the
result in spectral form. The scalar values of this
spectrum have the double potential of being a con-
densed measure for semantic weighting, and, ten-
tatively, they can play the role of mass in experi-
ments where gravity is called in as a metaphor for
text categorization and information retrieval (Paij-
mans, 1997; Shi et al., 2005; Wittek et al., 2009).
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This paper addresses text categorization by means
of non-periodical functions only.

In support of Cruse’s point, recently it has been
demonstrated by measurements that sense classifi-
cation errors made by their maximum entropy based
word sense disambiguation system were partly
remedied once instead of a fine-grained view, a more
coarse-grained view of senses was adopted (Palmer
et al., 2006). Improvement of sense classification ac-
curacy linked with “zooming out” in terms of obser-
vation granularity indicates, in our eyes, the “fluid”,
perhaps spectral nature of sense inasmuch as it is
impossible to precisely distinguish between the bor-
derlines and some fuzziness is implied both in the
phenomenon and its perception. This “fluidity of
language”, as Palmer et al. call it, is in accord
with the theory of shared semantic representations in
psycholinguistics (Rodd et al., 2002), according to
which related senses share a portion of their mean-
ing representation in the mental lexicon; it also sup-
ports an earlier observation of two of the present au-
thors based on the same methodology as outlined in
this paper, namely that using continuous functions
for information retrieval leads to content representa-
tion without exact term or document locations, one
which is regional in its nature and subject to a math-
ematical uncertainty principle (Wittek and Darányi,
2007).

We approach our problem in three steps: (1)
whether distributional semantics alone is enough for
the representation of word meaning, (2) whether se-
mantic relatedness between word pairs can be ex-
pressed in an ordered form while preserving lexical
field structure, and if (3) the uniqueness of entries in
such an order can be expressed by functions rather
than scalars such as distance. As we will show, this
line of thought leads to performance improvement
in text classification by using kernel-based feature
weighting.

Since the early days of the vector space model,
it has been debated whether it is a proper carrier
of meaning of texts (Raghavan and Wong, 1986),
arguing if distributional similarity is an adequate
proxy for lexical semantic relatedness (Budanitsky
and Hirst, 2006). We argue for the need to enrich
distributional semantics-based text representation by
other components because with the statistical, i.e.
devoid of word semantics approaches there is gen-

erally no way to improve both precision and recall
at the same time, increasing one is done at the ex-
pense of the other. For example, casting a wider net
of search terms to improve recall of relevant items
will also bring in an even greater proportion of ir-
relevant items, lowering precision. In the mean-
time, practical approaches have been proliferating,
especially with developments in kernel methods in
the last decade (Joachims, 1998; Cristianini et al.,
2002). Some researchers suggested a more general
mathematical framework to accommodate the needs
that the vector space model cannot satisfy (van Rijs-
bergen, 2004). This paper explores the opportunities
of this representation in the domain of text classifi-
cation by introducing it as a new nonlinear semantic
kernel.

Another aspect of the same problem is term ex-
pansion for document classification and retrieval.
By automatically selecting expansion terms for a
text classification system to expand a document vec-
tor by adding terms that are related to the terms
already in the document, performance can be im-
proved (Hu et al., 2008). Such new terms can ei-
ther be statistically related to the original terms or
chosen from lexical resources such as thesauri, con-
trolled vocabularies, ontologies and the like.

However, in doing so the fundamental question
often overlooked is whether the expansion terms ex-
tracted are equally related to the document and are
useful for text classification. In what follows we
propose a form of term expansion with decreasing
importance of those terms that are less related, as
contrasted with rigid term expansion. This can be
carried out by a combination of semantic ordering
and using function space for classification.

This paper is organized as follows. Section 2
overviews text classification by support vector ma-
chines, expanding on traditional text similarity mea-
sures (Section 2.1), semantic smoothing kernels
(Section 2.2), term expansion strategies (Section
2.3), and finally introduces our semantic kernels in
the L2 space (Section 2.4). Section 3 discusses ex-
perimental results and Section 4 concludes the pa-
per.
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2 Text Classification with Support Vector
Machines

Text categorization is the task of assigning unlabeled
documents into predefined categories. Given a col-
lection of {d1, d2, . . . , dN} documents, and a C =
{c1, c2, ..., c|C|} set of predefined categories, the
task is, for each document dj (j ∈ {1, 2, . . . , N}),
to assign a decision to file dj under ci or a deci-
sion not to file dj under ci (ci ∈ C) by virtue of
a function Φ, where the function Φ is also referred
to as the classifier, or model, or hypothesis, or rule.
Supervised text classification is a machine learning
technique for creating the function Φ from training
data. The training data consist of pairs of input doc-
uments, and desired outputs (i.e., classes).

Support vector machines have been found the
most effective by several authors (Joachims, 1998).
The proposed semantic text classification method is
grounded in the kernel methods underlying support
vector machines.

A support vector machine is a kind of supervised
learning algorithm. In its simplest, linear form, a
support vector machine is a hyperplane that sepa-
rates a set of positive examples from a set of nega-
tive examples with maximum margin (Shawe-Taylor
and Cristianini, 2004). The strength of kernel meth-
ods is that they allow a mapping φ(.) of x to a higher
dimensional space. In the dual formulation of the
mathematical programming problem, only the ker-
nel matrix K(xi,xj) = φ(xi)′φ(xi) is needed in
the calculations.

2.1 Traditional Text Similarity Measure

Intuitively, if a text fragment of two documents ad-
dress similar topics, it is highly possible that they
share lots of substantive terms. After having re-
moved the stopwords and stemmed the rest, the
stemmed terms construct a vector representation for
each text document. Let aj be a document vector in
the vector space model, that is, aj =

∑M
k=1 akjek,

where M is the number of index terms, akj is some
weighting (e.g., term frequency), and ek is a basis
vector of the M -dimensional Euclidean space. This
representation is also referred to as the bag-of-words
(BOW) model.

Given this representation, semantic relatedness of
a pair of text fragments is computed as the cosine

similarity of their corresponding term vectors which
is defined as:

S(ai,aj) =
aiaj

|ai||a|j
. (1)

2.2 Linear Semantic Kernels
One enrichment strategy is to use a semantic
smoothing kernel while calculating the similarity
between two documents. Any linear kernel for texts
is characterized by K(ai,aj) = a′iS

′Saj , where
S is an appropriately shaped matrix commonly re-
ferred to as semantic smoothing matrix (Siolas and
d’Alché Buc, 2000; Shawe-Taylor and Cristianini,
2004; Basili et al., 2005; Mavroeidis et al., 2005;
Bloehdorn et al., 2006). The presence of S changes
the orthogonality of the vector space model, as this
mapping should introduce term dependence. A re-
cent attempt tried to manually construct S with the
help of a lexical resource (Siolas and d’Alché Buc,
2000). The entries in the symmetric matrix S ex-
press the semantic similarity between the terms i and
j. Entries in this matrix are inversely proportional
to the length of the WordNet hierarchy path linking
the two terms. The performance, measured over the
20NewsGroups corpus, showed an improvement of
2 % over the the basic vector space method. More-
over, the semantic matrix S is almost fully dense,
hence computational issues arise. In a similar con-
struction, (Bloehdorn et al., 2006) defined the ma-
trix entries as weights of superconcepts of the two
terms in the WordNet hierarchy. Focusing on special
subcategories of Reuters-21578 and on the TREC
Question Answering Dataset, they showed consis-
tent improvement over the baseline. As (Mavroei-
dis et al., 2005) pointed out, polysemy will remain
a problem in semantic smoothing kernels. A more
complex way of calculating the semantic similarity
as the matrix entries was also proposed (Basili et al.,
2005). For a more general discussion on semantic
similarity see Section 2.4.1.

An early attempt to overcome the untenable or-
thogonality assumption of the vector space model
was proposed under the name of generalized vec-
tor space model (Wong et al., 1985). The article
which proposed the model did not provide empiri-
cal results, and since then the model has been re-
garded of large theoretical importance with less im-
pact on actual applications. The model takes a distri-
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butional approach, focusing on term co-occurrences.
The underlying assumption is that term correlations
are captured by the co-occurrence information. That
is, two terms are semantically related if they co-
occur often in the same documents. By eliminat-
ing orthogonality, documents can be seen as similar
even if they do not share any terms. The term co-
occurrence matrix is AA′, hence the model takes A′

as the semantic similarity matrix S. A major draw-
back of the generalized vector space model is that it
replaces the orthogonality assumption with another
questionable assumption. The computational needs
are tremendous too, if the dimensions of A are con-
sidered. Moreover, the co-occurrence matrix is not
sparse anymore.

Latent semantic indexing (or latent semantic anal-
ysis) was another attempt to bring more linguis-
tic and psychological aspects to language process-
ing via a kernel. Conceptually, latent semantic in-
dexing is similar to the generalized vector space
model, it measures semantic information through
co-occurrence analysis in the corpus. From the al-
gorithmic perspective it is an enormous problem that
textual data have a large number of relevant fea-
tures. This results in huge computational needs and
the classification models may overfit the data. The
number of features can be reduced by multivariate
feature extraction methods. In latent semantic in-
dexing, the dimension of the vector space is reduced
by singular value decomposition (Deerwester et al.,
1990).

Using rank reduction, terms that occur together
very often in the same documents are merged into
a single dimension of the feature space. The di-
mensions of the reduced space correspond to the
axes of greatest variance. For latent semantic in-
dexing, by dual representation the kernel matrix is
K = V Σ2

kV
′, where Σk is a diagonal matrix con-

taining the k largest singular values of the singu-
lar value decomposition of the vector space, and V
holds the right singular vectors of the decomposi-
tion. The new kernel matrix can be obtained directly
from K by applying an eigenvalue decomposition
of K (Cristianini et al., 2002). The computational
complexity of performing an eigenvalue decompo-
sition on the kernel matrix is a major drawback of
latent semantic indexing.

2.3 Text Representation Enrichment Strategies
by Term Expansion

In order to eliminate the bottleneck of the traditional
BOW representation, previous approaches in term
expansion enriched this convention by external lexi-
cal resources such as WordNet.

As a first step, these methods generate new fea-
tures for each document in the dataset. These new
features can be synonyms or homonyms of docu-
ment terms as in (Hotho et al., 2003; Rodriguez
and Hidalgo, 1997), or expanded features for terms,
sentences and documents as in (Gabrilovich and
Markovitch, 2005), or term context information for
word sense disambiguation such as topic signatures
(Agirre and De Lacalle, 2003; Agirre et al., 2004).

Then, the generated new features replace the old
ones or are appended to the document representa-
tion, and construct a new vector representation âi

for each text document. The similarity measure of
document pairs is defined as:

S(âi, âj) =
âiâj

|âi||âj |
. (2)

2.4 Our Framework

The basic assumption of our framework is that terms
can be arranged in an order such that consecutive
terms are semantically related. Hence each term ac-
quires a unique position, and this position ties the
term to its semantically related neighbors. However,
given a BOW representation with a cosine similarity
measure, this position would not improve classifica-
tion performance. Therefore we suggest to associate
a mathematical function with each term, thus map-
ping terms and documents to theL2 space, and using
the inner product of this space to express similar-
ity. The choice of function will determine to which
extent neighboring terms, i.e., the enriching terms,
are considered in calculating the similarity between
two documents. This section first introduces an al-
gorithm that produces the aforementioned semantic
order, then the semantic kernels in the L2 space are
discussed.

2.4.1 An Algorithm for a Semantic Ordering of
Terms

The proposed kernels assume that there is a se-
mantic order between terms. Let V denote a set of
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terms {t1, t2, . . . , tn} and let d(ti, tj) denote the se-
mantic distance between the terms ti and tj . The
initial order of the terms is not relevant, though it is
assumed to be alphabetic. Let G = (V,E) denote
a weighted undirected graph, where the weights in
the set E are defined by the distances between the
terms.

Various lexical resource-based (Budanitsky and
Hirst, 2006) and distributional measures (Moham-
mad and Hirst, 2005) have been proposed to mea-
sure semantic relatedness and distance between
terms. Terms can be corpus- or genre-specific. Man-
ually constructed general-purpose lexical resources
include many usages that are infrequent in a partic-
ular corpus or genre of documents. For example,
one of the 8 senses of company in WordNet is a
visitor/visitant, which is a hyponym of person (Lin,
1998). This sense of the term is practically never
used in newspaper articles, hence distributional at-
tributes should be taken into consideration. Com-
posite measures that combine the advantages of both
approaches have also been developed (Resnik, 1995;
Jiang and Conrath, 1997). This paper relies on the
Jiang-Conrath composite measure (Jiang and Con-
rath, 1997), which has been shown to be superior
to other measures (Budanitsky and Hirst, 2006), and
we also found that this measure works the best for
the purpose. The Jiang-Conrath metric measures
the distance between two senses by using the hier-
archy of WordNet. By denoting the lowest super-
ordinate of two senses s1 and s2 in the hierarchy
with LSuper(s1,s2), the metric is calculated as fol-
lows:

d(s1, s2) = IC(s1)+IC(s2)−2IC(LSuper(s1, s2)),

where IC(s) is the information content of a sense
s based on a corpus. Distance between two terms
is calculated according to the following equation:
d(t1, t2) = maxs1∈sen(t1),s2∈sen(t2) d(s1, s2), where
t1 and t2 are two terms, and sen(ti) is the set of
senses of ti. The distance between two terms is
usually defined as the minimum of the sense dis-
tances. We chose maximum because it ensures that
only closely related terms will be placed to adjacent
positions by the algorithm below.

Finding a semantic ordering of terms can be trans-
lated to a graph problem: a minimum-weight Hamil-
tonian path G′ of G gives the ordering by reading

the nodes from one of the paths to the other. G is
a complete graph, therefore such a path always ex-
ists, but finding it is an NP-complete problem. The
following greedy algorithm is similar to the nearest
neighbor heuristic for the solution of the traveling
salesman problem. It creates a graph G′ = (V ′, E′),
where V ′ = V and E′ ⊂ E. This G′ graph is a
spanning tree of G in which the maximum degree of
a node is two, that is, the minimum spanning tree is
a path between two nodes.

Step 1 Find the term at the highest stage of the hi-
erarchy in a lexical resource.

ts = argminti∈V depth(ti).

This seed term is the first element of V ′, V ′ =
{ts}. Remove it from the set V :

V := V \{ts}.

Using WordNet, this seed term is entity, if the
vocabulary of the text collection contains it.

Step 2 Let tl denote the leftmost term of the order-
ing and tr the rightmost one. Find the next two
elements of the ordering:

t′l = argminti∈V d(ti, tl),

t′r = argminti∈V \{t′
l
}d(ti, tr).

Step 3 If d(tl, t′l) < d(tr, t′r) then add t′l to V ′,
E′ := E′ ∪ {e(tl, t′l)}, and V := V \{t′l}.
Else add t′r to V ′, E′ := E′ ∪ {e(tr, t′r)} and
V := V \{t′r}.

Step 4 Repeat from Step 2 until V = ∅.

The above algorithm can be thought of as a modi-
fied Prim’s algorithm, but it does not find the optimal
minimum-weight spanning tree.

2.4.2 Semantic Kernels in the L2 Space
The L2 space shares resemblance with a real

vector space. Real-valued vectors are replaced by
square-integrable functions, and the dot product is
replaced by the following inner product: (fi, fj) =∫
fifjdx, for some fi, fj in the given L2 space.
Lately, Hoenkamp has also pointed out that the

L2 space can be used for information retrieval when
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he introduced a Haar basis for the document space
(Hoenkamp, 2003). He utilized a signal processing
framework within the context of latent semantic in-
dexing. In order to apply an L2 representation for
text classification, the problem is approached from a
different angle than by Hoenkamp, taking discount-
ing expansion terms as our point of departure.

Assigning a function w(x − k) to the term in the
kth position in a semantic order, a document j can
be expressed as follows:

fj(x) =
M∑

k=1

akjw(x− k), (3)

where x is in [1,M ], and it is the variable of inte-
gration in calculating the inner product of the L2;
x can be regarded as a “dummy” variable carrying
no meaning in itself. The above formula will be re-
ferred to as a document function. In the experiments,
the function exp(−bx2) was used as w(x), with b as
a free parameter reflecting the width of the function
expressing how many neighboring expansion terms
are considered.

The inner product of theL2[1,M ] space is applied
to express similarity between two documents in sim-
ilar vein as the dot product does in a real-valued vec-
tor space:

(fi, fj) =
∫

[1,M ]
fi(x)fj(x)dx, (4)

where fi and fj are the representations of the docu-
ments in the L2 space (fi, fj ∈ L2([1,M ])).
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Figure 1: Two documents with matching term brand
name. Dotted line: Document-1. Dashed line:
Document-2. Solid line: Their product.

With the above formula, a matching term in two
documents will be counted to its full term frequency
or tfidf score, while semantically related terms will
be counted less and less according their semantic
similarity to the matching term. Assuming that the
terms brand, brand name, and trade name follow
each other in the semantic order, consider the fol-
lowing example. The first document has the term
brand name, and so does the second document. In
Figure 1, it can be seen brand name is counted the
same way as it would be in a BOW model with its
full term frequency score, brand and trade name are
counted to a lesser extent, while other related terms
are considered even less.
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Figure 2: Two documents with no matching term but
with related terms brand and trade name. Dotted line:
Document-1. Dashed line: Document-2. Solid line:
Their product.

Now if the two documents do not share the exact
term, only related terms occur, for instance, trade
name and brand, respectively, then the term brand
name, placed between trade name and brand in the
s semantic order, will be considered only to some
extent for the calculation of similarity (see Figure
2).

3 Experimental Results

The most widely used benchmark corpus is the
Reuters-21578 collection. For benchmarking pur-
poses, the ModApte split was adopted. 9603 doc-
uments were used as the training set and 3299 as the
test set in the experiments. Only those ninety text
categories which had at least one positive example
in the training set were included in the benchmark.
Another benchmark data corpus we used was the 20
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Newsgroups corpus, which is a collection of approx-
imate 20,000 newsgroup documents nearly evenly
divided among 20 discussion groups and each doc-
ument is labeled as one of the 20 categories corre-
sponding to the name of the newsgroup that the doc-
ument was posted to.

In preparing the index terms, we restricted the vo-
cabulary to the terms of WordNet 3.0 in order to be
able to calculate the similarity score between any
two terms. Stop words were removed in advance.
Multiple word expressions were used to fully utilize
WordNet. We used the built-in stemmer of WordNet,
which is able to distinguish between different parts-
of-speeches if the form of the word is unambiguous.
For example, {accommodates, accommodated, ac-
commodation} was stemmed to {accommodate, ac-
commodate, accommodation}. We used term fre-
quency as term weighting.

Prior to the semantic ordering, terms were as-
sumed to be in alphabetic order. Measuring the
Jiang-Conrath distance between adjacent terms, the
average distance was 1.68 on the Reuters corpus.
Note that the Jiang-Conrath distance was normal-
ized to the interval [0, 2]. There were few terms with
zero or little distance between them. This is due to
terms which are related and start with the same word
or stem. For example, account, account executive,
account for, accountable.

The same average distance after reordering the
terms with the proposed algorithm and the Jiang-
Conrath distance was 0.56 on the same corpus.
About one third of the terms had very little distance
between each other. Nevertheless, over 10 % of the
total terms still had the maximum distance. This is
due to the non-optimal nature of the proposed term-
ordering algorithm. These terms add noise to the
classification. The noisy terms occur typically at the
two sides of the scale, that is, the leftmost terms and
the rightmost terms. While it is easy to find close
terms in the beginning, as the algorithm proceeds,
fewer terms remain in the pool to be chosen. For in-
stance, brand, brand name, trade name, label are in
the 33rd, 34th, 35th and 36th position on the left side
counting from the seed respectively, while windy,
widespread, willingly, whatsoever, worried, worth-
while close the left side, apparently sharing little in
common. The noise can be reduced by the appropri-
ate choice of the parameter b in exp(−bx2), so that

Kernel Reuters Reuters 20News 20News
Micro Macro Micro Macro

Linear 0.900 0.826 0.801 0.791
Poly 0.903 0.824 0.796 0.788
L2 0.911 0.835 0.813 0.799

Table 1: Micro- and macro-average F1 results

the impact of adjacent but distantly related terms can
be minimized.

Table 1 shows the results on the two benchmark
corpora with the baseline linear kernel. Precision
and recall with regard to a class ck, the F1 score
shown is their average. For all the kernels, the results
with the best parameter settings are shown. Polyno-
mial kernels were benchmarked between degrees 2
and 5. L2 kernels were benchmarked with width b
between 1 and 8, the performance peaking at 4 in
all cases. The model is able to outperform the base-
line kernels, and the differences in micro-averaged
results are statistically significant. In all cases of the
L2 kernel, the increase of F1 was due the increase in
both precision and recall.

4 Conclusions

Information systems are in great need of automated
intelligent tools, but existing algorithms and meth-
ods cannot be pushed much further. Most tech-
niques in current use are impaired by the semanti-
cally poor but widespread representation of informa-
tion and knowledge. For this reason, we propose a
new formalism that combines Cruse’s idea about a
sense spectrum, approximated by semantic ordering,
and its calculation by functions.

The suggested model combines term expansion
with the semantic relations and semantic relatedness
used in semantic smoothing kernels. This slightly
unusual approach needs to transform the real vector
representation to the L2 space, and the experimen-
tal results show that this new representation can im-
prove text classification effectiveness.

Our new model also blends insights from differ-
ent approaches to lexical semantics theory at its dif-
ferent levels. First, during the semantic ordering
of terms the distributional hypothesis meets hand-
crafted lexical resources of word meaning that relate
to term occurrences as if they were their referents,
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a component external to term context. While high-
quality lexical resources enable such an ordering in
themselves, the procedure can benefit from data de-
rived from the specific corpora in study – seman-
tic relatedness measures such as the Jiang-Conrath
similarity operate this way. Secondly, once the or-
dering is done and a sense spectrum is constructed,
weights expressing statistical relationships between
terms and documents are borrowed from the vector
space model to form the basis for constructing hypo-
thetical signals of content, documents as continuous
functions.

5 Future research

Figure 3: A hypothetical spectrum of terms.

As we have shown, a spectral interpretation of
sense granularity can lead to improved text catego-
rization results by utilizing L2 space for informa-
tion representation. Whether non-periodic functions
other than the variant tested in this paper can be ap-
plied to the same end needs to be explored.

Turning back to the use of the spectrum of visi-
ble light for representing meaning, this raises new
research questions. On the one hand, translat-
ing one-dimensional semantic ordering into colors
is straightforward. Consider the following map-
ping. Assume that a language has a finite N num-
ber of terms, so the 1-dimensional result is an or-
dered list o1, o2, . . . , oN . Calculate the following:
∆ =

∑N−1
i=1 d(oi, oi+1), where ∆ is the sum of

distances between consecutive words. Further let
F : [0,∆] → [400, 700] be the following map-
ping: F (x) = 400 + x300

∆ . The visible spectrum
is between 400 and 700 nm, F maps the cumulative
distances of terms from [0,∆] to the visible spec-

trum congruently, i.e. without distorting the dis-
tances. With this bijective (one-to-one) mapping,
each term is assigned a physical wavelength and fre-
quency. Figure 3 shows an example of such a term
spectrum.

On the other hand, we have only begun to test the
applicability of periodic functions in L2 space (Wit-
tek and Darányi, 2007), hence a well-established
link to semantic computing by waves is missing for
the time being. A possible compromise between the
non-periodic vs. periodic approaches can be to ap-
ply wavelets instead of waves, a direction where our
ongoing research shows promising results. These
will be reported elsewhere. In a broader frame of
thought, we are also working on the optical equiv-
alents of the vector space model and the general-
ized vector space model as a first step toward coding
more semantics in mathematical objects, and putting
them to work in novel computing environments.
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dering of terms based on semantic relatedness. In
H. Bunt, editor, Proceedings of IWCS-09, 8th Inter-
national Conference on Computational Semantics.

S.K.M. Wong, W. Ziarko, and P.C.N. Wong. 1985. Gen-
eralized vector space model in information retrieval.
In Proceedings of SIGIR-85, 8th ACM International
Conference on Research and Development in Informa-
tion Retrieval, pages 18–25.

191



Proceedings of the Thirteenth Conference on Computational Natural Language Learning (CoNLL), pages 192–200,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

A simple feature-copying approach 
for long-distance dependencies 

Marc Vilain, Jonathan Huggins, and Ben Wellner 
The MITRE Corporation 

202 Burlington Rd 
Bedford, MA 01730 (USA) 

{mbv,jhuggins,wellner}@mitre.org 

 

 

Abstract 

This paper is concerned with statistical meth-
ods for treating long-distance dependencies.  
We focus in particular on a case of substantial 
recent interest: that of long-distance depend-
ency effects in entity extraction.  We intro-
duce a new approach to capturing these effects 
through a simple feature copying preprocess, 
and demonstrate substantial performance 
gains on several entity extraction tasks. 

1 Long-distance dependencies 

The linguistic phenomena known as long-distance 
dependencies have a long history in computational 
linguistics.  Originally arising in phrase-structure 
grammar, the term aptly describes phenomena that 
are not strictly grammatical, and has thus gained 
currency in other endeavors, including that of con-
cern to us here: entity extraction.  The common 
thread, however, is simply that the treatment of a 
linguistic constituent α might be influenced by the 
treatment of a non-local constituent β. 

In phrase-structure grammar, dependencies 
arise between matrix phrases and the gapped 
phrases that they dominate, as in “the cake that I 
hope you’ll serve ε”.  The idea that these are long-
distance dependencies arises from the fact that the 
separation between linked constituents can be arbi-
trarily increased while their dependency continues 
to hold (as in “the cake that I hope you’ll ask Fred 
to tell Joan to beg Maryanne to serve ε”). 

With entity extraction, long-distance dependen-
cies typically occur between mentions of the same 
entity.  Consider, for example, the italicized refer-
ences to Thomas White in this newswire excerpt:  

Bank of America on Friday named Thomas 
White head of global markets.  White has 
been global head of credit products. 

The fact that the first of these mentions is easily 
understood as person-denoting has substantial 
bearing on interpreting the second mention as per-
son-denoting as well.  But while local evidence for 
personhood is abundant for the first instance (e.g., 
the given name “Thomas” or the verb “named”), 
the evidence local to the second instance is weak, 
and it is highly unlikely that a learning procedure 
would on its own acquire the relevant 5-gram con-
text (α has been βJJ γtitle).  The dependency between 
these instances of White is thus a significant factor 
in interpreting both as names. 

It is well known that capturing this kind of de-
pendency can dramatically improve the perform-
ance of entity extraction systems.  In this paper, we 
pursue a very simple method that enables statistical 
models to exploit these long-distance dependencies 
for entity extraction.  The method obtains compa-
rable or better results than those achieved by more 
elaborate techniques, and while we focus here on 
the specific case of entity extraction, we believe 
that the method is simple and reliable enough to 
apply generally to other long-distance phenomena.  

2 Approaches to name dependencies 

The problem of capturing long-distance dependen-
cies between names has a traditional heuristic solu-
tion.  This method, which goes back to systems 
participating in the original MUC-6 evaluation 
(Sundheim, 1995), is based on a found names list.  
The method requires two passes through the input.  
A first pass captures named entities based on local 
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evidence, and enters these names into a found 
names registry.  A second pass identifies candidate 
entities that were missed by the first pass, and 
compares them to entries in the registry.  Where 
there is string overlap between the candidate and a 
previously found name, the entity type assigned to 
the existing entry is copied to the candidate. 

Overall, this is an effective strategy, and we 
used it ourselves in a rule-based name tagger from 
the MUC-6 era (Vilain and Day, 1996).  The strat-
egy’s Achilles heel, however, is what happens 
when erroneous entries are added to the found 
names list.  These can get copied willy-nilly, 
thereby drastically increasing the scope of what 
may originally have started as a single local error.  
Clearly, the approach is begging to be given a 
firmer evidence-weighing foundation. 

2.1 A statistical hybrid 

An early such attempt at reformulating the ap-
proach is due to Minkheev et al (1999).   As with 
previous approaches, Mikheev and his colleagues 
use a rule-based first pass to populate a found-
names list.  The second pass, however, is based on 
a maximum entropy classifier that labels non-first-
passed candidates based on evidence accrued from 
matching entries on the found-names list.  The sta-
tistical nature of the decision eliminates some of 
the failure modes of the heuristic found-names 
strategy, and in particular, prevents the copying of 
single errors committed in the first pass.  The ma-
jor weakness of the approach, however, is the heu-
ristic first pass.  Minkheev et al note that their 
method is most effective with a high-precision 
found-names list, implemented as a tightly con-
trolled (but incomplete) rule-based first pass. 

2.2 Fully-statistical models 

Several more recent efforts have attempted to re-
move the need for a heuristic first-pass tagger, and 
have thus cast the problem as one-pass statistical 
models (Bunescu and Mooney, 2004; Sutton and 
McCallum, 2004; Finkel et al, 2005).  While the 
technical details differ, all three methods approach 
the problem through conditional random fields 
(CRFs).  In order to capture the long-distance de-
pendencies between name instances, these ap-
proaches extend the linear-chain sequence models 
that are typically used for extracting entities with a 
CRF (Sha and Pereira, 2003).  The resulting models 

consist of sentence-length sequences interlinked on 
those words that might potentially have long-
distance interactions.  Because of the graph-like 
nature of these models, the simplifying assump-
tions of linear-chain CRFs no longer hold.  Since 
complete parameter estimation is intractable under 
these conditions, these three approaches introduce 
approximate methods for parameter estimation or 
decoding (Perceptron training for the first, loopy 
belief propagation for the first two, Gibbs sampling 
and simulated annealing for the third). 

Krishnan and Manning (2006) provide a lucid 
critique of these extended models and of their 
computational ramifications.  In a nutshell, their 
critique centers on the complexity of constructing 
the linked graphs (which they deemed high), the 
stability of Perceptron training (potentially unsta-
ble), and the run-time cost of simulated annealing 
(undesirably high).  Since these undesirable prop-
erties are directly due to the treatment of long-
distance dependencies through graphical models, it 
is natural to ask whether graphical models are ac-
tually required to capture these dependencies. 

2.3 Avoiding non-sequential dependencies 

In point of fact, Krishnan and Manning (2006) pre-
sent an alternative to these graph-based methods.  
In particular, they break the explicit links that mu-
tually condition non-adjacent lexemes, and instead 
rely on separate passes in a way that is reminiscent 
of earlier methods.  A first-pass CRF is used to 
identify entities based solely on local information.  
The entity labels assigned by this first CRF are 
summarized in terms of lexeme-by-lexeme major-
ity counts; these counts are then passed to a second 
CRF in the form of lexical features. 

Consider, for example, a financial news source, 
where we would expect that a term like “Bank” 
might be assigned a preponderance of ORG labels 
by the first-pass CRF.  This would be signaled to 
the second-pass CRF through a token majority fea-
ture that would take on the value ORG for all in-
stances of the lexeme “Bank”. This effectively 
aggregates local first-pass labeling decisions that 
apply to this lexeme, and makes the second-pass 
CRF sensitive to these first-pass decisions.  Further 
refinements capture cases where a lexeme’s label 
diverges from the token majority, for example: 
“Left Bank,” where “Bank” will be assigned a 
LOC-valued entity majority feature whenever it ap-
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pears in that particular word sequence. By captur-
ing long-distance dependencies through lexical 
features, Krishnan and Manning avoid the need for 
graphical models, thus regaining tractability. 

How well does this work?  Returning to our 
earlier example, the idea behind these majority 
count features is that a term like “White” might be 
assigned the PER label by the first CRF when it ap-
pears in the context “Thomas White.”  Say, for the 
sake of argument, that sufficiently many instances 
of “White” are labeled PER by the first pass to sum 
to a majority.  The second-stage CRF might then be 
expected to exploit the majority count features for 
“White” to PER-label any instances of White that 
were left unlabeled in the first pass (or that were 
given erroneous first-pass labels). 

The method would be expected to fail, how-
ever, in cases where the first pass yields a majority 
of erroneous labels.  Krishnan and Manning sug-
gest that this is a fairly unlikely scenario, and dem-
onstrate that their approach effectively captures 
long-distance name dependencies for the CoNLL 
English name-tagging task.  They measured a best-
in-class error reduction of 13.3% between their 
two-pass method and a single-stage CRF equipped 
with comparable features.  

3 A contradictory data set 

Just how unlikely, however, is the majority-error 
scenario that Krishnan and Manning discount?  As 
it turns out, we encountered precisely this scenario 
while working with a corpus that is closely related 
to the CoNLL data used by Krishnan and Manning. 

The corpus in question was drawn from the on-
line edition of Reuters business news.  The articles 
cover a range of business topics: mergers and ac-
quisitions (M+A), stock valuations, management 
change, and so forth.  This corpus is highly perti-
nent to this discussion, as the CoNLL English data 
are also Reuters news stories, drawn from the gen-
eral news distribution.  Our business data thus rep-
resent a natural branch of the overall CoNLL data. 

A characteristic of these Reuters business sto-
ries that distinguishes them from general news is 
the prevalence of organization names, in particular 
company names.  In these data, instances of com-
pany names significantly outnumber the next-
most-common entities (money, dates, and the like).  
Even state-of-the-art CRFs trained on these data 
therefore err on the side of generating companies, 

meaning that in the absence of countermanding 
evidence (such as the presence of a person’s given 
name), an entity will tend to be labeled ORG by 
default.  Our earlier “Thomas White” example is a 
case in point: where the full name would typically 
be labeled PER, last-name-only instances (“White”) 
might go unlabeled or be marked ORGs. 

Table 1, above, shows a qualitative analysis of 
this phenomenon for PER entities in our M+A test 
set.  The table considers person-denoting entities 
with three or more instances in the test set (n=35), 
and summarizes the majority accuracy of the labels 
assigned to them by a feature-rich 1-pass CRF.  Of 
these thirty-five cases, we eliminate from consid-
eration six trivial test cases that are present unam-
biguously in the training data (e.g., “Carl Icahn”), 
since the CRF will effectively memorizes these 
cases during training.  Of the remaining twenty-
nine non-trivial cases, not quite half of them (45%) 
were accurately labeled by the CRF for the majority 
of their instances.  A larger number of entities ei-
ther received an incorrect majority label (38%) or 
were equivocally labeled, receiving an equal num-
ber of correct and incorrect tags (17%). 

For this data set then, majority count features 
are poor models of the long-distance dependencies 
between person names, as they are just about as 
likely to predict the wrong label as the correct one. 

4 A feature-copying alternative 

A further analysis of our business news test sample 
revealed an intriguing fact.  While in the absence 
of compelling evidence, the CRF might label a 
mention of a person entity as an org (or leave it 
unlabeled), for those mentions where compelling 
evidence existed, the CRF generally got it right.  By 
compelling evidence, we mean such linguistic cues 
as the presence of a given name, contextual prox-
imity to agentive verbs (e.g. “said”), and so forth. 

This suggests an alternative approach to captur-
ing these kinds of long-distance dependencies be-

Label accuracy count % test cases 
Trivially correct (present in 
both test and training) 

6 — 

Majority correct, test only 13 45% 
Majority incorrect, test only 11 38% 
Equivocal, test only 5 17% 

Table 1: effectiveness of majority counts as predictors 
of entity type, Reuters business news sample 
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tween names.  In contrast to previous approaches, 
what is needed is not so much a way of coordinat-
ing non-local decisions about an entity’s label, as a 
way of coordinating non-local evidence pertinent 
to the labeling decision.  That is, instead of condi-
tioning the labeling decision of a lexeme on the 
labeling decisions for that lexeme elsewhere in the 
corpus, we ought to condition the decision on the 
key evidence supporting those decisions. 

4.1 Displaced features 

Our approach operates by identifying those fea-
tures of a CRF that are most predictive over a cor-
pus.  Each of those features is then duplicated: for 
a given token α, one version of the feature applies 
directly to α, while the other version applies to all 
other instances where α’s word form appears in the 
current document.  In particular, what we duplicate 
is the indicator function for a feature.  The local 
version of an indicator Φ signals true if it applies 
locally to α, while the displaced version Φd signals 
true if it applies to any token α’ that is an instance 
of the same word from as α. 

To make this concrete, consider our opening 
example, now indexed with word positions: 

Thomas7 White8 … White13 has14 been15 … 

Say that Φ is a feature indicator that is true of a 
token αi just in case the token to its left, αi-1, is a 
given name.  In this instance, Φ(White8) is true and 
Φ(White13) is false.  Then Φd, the displaced version 
of Φ, will be true of αi just in case there is some 
token αj with the same word form such that Φ(αj) is 
true.  In this instance Φd(White8) and Φd(White13) 
are both true by virtue of Φ being true of White8. 

This feature displacement scheme introduces 
non-local evidence into labeling decisions, effec-
tively capturing the long-distance dependencies 
exhibited by name-tagging tasks.  The method dif-
fers from previous approaches in that the models 
are not made conditional on non-local decisions (as 
in the case of graphical models), nor are they made 
conditional on aggregated first-pass decisions (as 
in Krishnan & Manning), but rather are made con-
ditional on non-local evidence (displaced features). 

4.2 Identifying features to displace 

Because a typical entity extraction model can use 
tens or hundreds of thousands of features, it is not 
practical to displace every one of them.  Though 

technically this only doubles the number of fea-
tures under consideration, the lexical indexing rap-
idly gets out of hand.  In addition, training and run 
times increase and, in our experience, a risk of 
over-fitting emerges.  In point of fact, however, 
capturing long-distance name dependencies does 
not require us to replicate every last bit of feature-
borne evidence.  Instead, we only need to displace 
the evidence that is most reliably predictive. 

To select predictive features to displace, we’ve 
had most success with a method based on informa-
tion gain.  Specifically, we use a one-time pre-
process that measures feature gain relative to a 
corpus.  The pre-process considers the same com-
plement of feature schemas as are used by the ac-
tual CRF, and grounds the schemas on a training 
corpus to instantiate free lexical and P-O-S parame-
ters.  Gain for the instantiated features is measured 
through K-L divergence, and the n features with 
highest gain are then selected for displacement 
(with n typically ranging from 1,000 to 10,000). 

As in (Schneider, 2004), gain for a given fea-
ture Φ, is found through a variant of the familiar 
Kullback-Leibler divergence formula, 

€ 

DKL (P ||Q) = p(xi)log2
p(xi)
q(xi)i

∑  

For our purposes, the xi are the non-null entity 
labels defined for the training set (PER, ORG, etc.), 
P is the probability distribution of the labels over 
the training set, Q is the distribution of the labels 
over tokens for which Φ applies, and p and q are 
their respective smoothed probability estimates 
(Laplace smoothing).  Note in particular that this 
formulation excludes the null label (“not an en-
tity”).  This effectively means that K-L divergence 
is giving us a measure of the degree to which a 
feature predicts one or more non-null entity labels.  
Because the null label is generally the dominant 
label in named-entity tasks, including the null label 
in the calculation of K-L divergence tends to 
overwhelm the statistics, and leads to the selection 
of uninformative features that predict non-entities. 

Figure 1 demonstrates the effectiveness of this 
feature selection method, along with sensitivity to 
the threshold parameter.  The figure charts F-score 
on a Reuters business news task (M+A) as a func-
tion of the number of displaced features.  From a 
baseline of F=89.3, performance improves rapidly 
with the addition of displaced features to the CRF 
model, reaching a maximum of F=91.4 with the 

195



addition of 1,000 displaced features.  Performance 
then fluctuates asymptotically around this level. 

The chart also shows comparable growth curves 
for two alternative feature selection methods.  The 
feature count method is similar to feature gain, but 
instead of ranking features with K-L divergence, it 
ranks them according to the number of times they 
match against the corpus.  Feature weight does not 
use a schema-grounding first pass to generate can-
didate features, but trains a CRF model on the cor-
pus, and then ranks features according to the 
weight assigned to them in the model.  In prelimi-
nary experiments, neither of these methods yielded 
as high-performing a set of displaced features as 
feature gain.  Additionally their growth curves ex-
hibit sensitivity to parameter setting, which sug-
gests a risk of over-fitting.  For these reasons, we 
did not pursue these approaches further. 

Note finally that the feature schemas we con-
sider for displacement only encode local evidence 
(see Table 2 below).  In particular, they do not en-
code the assigned label of a word form, as this 
would effectively introduce the kind of graphical 
conditional dependencies that lie outside the scope 
of linear-chain CRF methods. 

4.3 Training and decoding 

Aside from two pre-processing steps, training or 
decoding a CRF with displaced features is no dif-
ferent from training or decoding one with only 
conventional features.  As to the pre-processing 
steps, the first applies to the corpus overall, as we 
must initially select a collection of locally predic-
tive features to displace.  The second step applies 
on a per-document basis and consists of the crea-
tion of the inverted lexical indices that are used to 
trigger indicator functions for displaced features. 

While these additional steps complicate training 
and decoding somewhat, they have little effect on 
actual decoding run times.  Most importantly, they 
retain the linear-chain properties of the CRF, and 
therefore do not require the graphical modeling 
and involved parameter estimation called for by 
most previous approaches.  In addition, the training 
logistics are of a lesser magnitude than those re-
quired by Krishnan and Manning’s approach, since 
training their second-stage model first requires 
round-robin training of one-fold-left-out classifiers 
that estimate first-stage majority counts. 

5 Experimental design 

To evaluate the effectiveness of feature copying 
with long-distance dependencies, we undertook a 
number of information extraction experiments.  
We focused on the traditional name-tagging task, 
relying on both current and archival data sets.  For 
each data set, we trained entity-extraction models 
that corresponded to three different strategies for 
capturing long-distance dependencies. 

• Baseline model: a feature-rich CRF trained 
with only local features and no long-distance 
dependency features; 

• Feature-copying model: a CRF trained with 
the same local features, along with displaced 
versions of high-gain features; 

• Majority model: a re-implementation of the 
Krishnan and Manning strategy, using the 
same feature set as the baseline CRF as well 
as their majority count features. 

We used held-out development test sets to tune 
the selection of displaced features, in particular, 
the number of features to displace. 

5.1 CRF configurations 

We used the Carafe open-source implementation of 
sequence-based conditional random fields.1  Carafe 
has achieved competitive results for standard se-
quence modeling tasks (Wellner & Vilain, 2006, 
Wellner et al, 2007), and allows for flexible feature 
design.  Carafe provides several learning methods, 
including a fast gradient descent method using pe-
riodic step-size adjustment (Huang et al, 2007).  
Preliminary trials, however, produced better results 

                                                        
1 http://sourceforge.net/projects/carafe 

Figure 1: F score on the Reuters M+A task, as a 
 function of number of displaced features 
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with conditional log-likelihood learning (L-BFGS 
optimization).  We used this latter method here, 
L2-regularized by a spherical Gaussian prior with 
variance set to 10.0 (based on preliminary trials). 

Our baseline CRF was given a feature set that 
has proven its mettle in the literature (see Table 2).  
Along with contextual n-grams and the like, these 
features capture linguistic regularities through 
membership in vocabulary lists, e.g., first names, 
major geographical names, honorifics, etc.  They 
also include hand-engineered lists from our legacy 
rule-based tagger, e.g., head word lists for organi-
zation names, lists of agentive verbs that reliably 
apply to persons, date atoms, and more.  For part-
of-speech features, we either accepted the parts of 
speech provided with a data set, or generated them 
with our implementation of Brill’s method (Brill, 
1994).  For the majority count features, we used 
document and corpus versions the token and entity 
features described by Krishnan and Manning, but 
did not re-implement their super-entity feature. 

5.2 Experimental data 

We evaluated our approach on five different data 
sets: our current corpus of Web-harvested Reuters 
business news, as well as four archival data sets 
that have been reported on by other researchers.  
The business news data consist of a training corpus 
of mergers and acquisition stories (M+A), devel-
opment and evaluation test sets for M+A and test 
sets for three additional topics: hot stocks (HS), 
new initiatives (NI), and general business news 
(BN).   Table 3 provides an overview of our data 
sets and of some salient distinctions between them. 

All five extraction tasks require the reporting of 
three core entity types: persons, organizations, and 
locations; additional required types are noted in the 
table.  The reporting guidelines for the first four 
tasks are closely related: Reuters business and 
MUC-6 were annotated to the same original MUC-6 

standard, while MUC-7 and MNET extend the MUC-
6 standard slightly.  The CoNLL standard alone 
calls for a catch-all (and troublesome) MISC entity. 

5.3 Scoring metrics 

Previous results on these data sets have been re-
ported using one of two scoring methods: strict 
match (CoNLL) or match with partial credit, as cal-
culated by the MUC scorer (MUC-6, MUC-7, and 
MNET).  To enable comparisons to previously pub-
lished work, we report our results with the metric 
appropriate to each data set (we use the MUC scorer 
for Reuters).  These scoring distinctions are perti-
nent only to comparisons of absolute performance.  
In this paper, the interest is with relative compari-
sons across approaches to long-distance dependen-
cies, for which the scorers are kept constant. 

6 Experimental results 

Table 4 summarizes our experimental results for 
the seven test sets annotated to the MUC-6 standard 
or its close variants (we will consider the CoNLL 
task separately).  Along with F scores for our base-
line CRF, the table presents F scores and baseline-
relative error reduction (ΔE) for two approaches to 
long-distance name dependencies: feature dis-
placement (disp) and the Krishnan and Manning 
strategy (K+M).  We were pleased to see that fea-
ture displacement proved effective for all of the 
extraction tasks.  As the table shows, the addition 
of displaced features consistently reduced the re-
sidual error term left by the baseline CRF trained 
only with local features.  For the English-language 
corpora, the error reduction ranged from a low of 
11 % for the Reuters NI task to a high of 39% for 
the MUC-6 task.  The error reduction for the Span-
ish-language MNET task was lowest of all, at 8.9%. 

For all the English tasks, we consistently 
achieved better results with feature displacement 

lexical unigrams w-2 … w+2 
lexical bigrams w-2,w-1 … w+1,w+2 
P-O-S unigrams p-2 … p+2 
P-O-S bigrams p-2,p-1 … p+1,p+2 
substrings .*s or s.* ||s||≤4 
linguistic word lists gazetteers, date atoms, … 
regular expressions caps., digits, … 
“corp.” nearby also “ltd.” … 

Table 2: Baseline features; wi and pi respectively de-
note lexeme and P-O-S in relative position i. 

Corpus Language NU TM MI  Topics 
MUC-6 English ✓ ✓  mostly politics 
MUC-7 English ✓ ✓r  mostly politics 
MNET Spanish ✓ ✓r  mostly politics 
Reuters English ✓ ✓  business 
CoNLL English   ✓ all news 

Table 3: Data set characteristics.  All include persons, 
organizations, and locations; some have nu-
meric forms (NU), dates and times (TM) 
where r indicates relative dates, or misc (MI). 
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than with our version of Krishnan and Manning’s 
approach (we were not able to obtain Spanish K+M 
results by publication time).  In each case, dis-
placement produced a greater reduction in baseline 
error than did majority counts.  Furthermore, be-
cause both approaches start from the same baseline 
CRF, the resulting raw performance was conse-
quently also higher for displacement.  Note in par-
ticular the Reuters M+A test set: these are the data 
for which Table 1 suggests that majority counts 
would be poor predictors of long-distance effects.  
This prediction is in fact borne out by our results. 

6.1 Effects of linguistic engineering 

 We were interested to note that the feature dis-
placement method achieved both highest perform-
ance and highest error reduction for the MUC-6 
corpus (F=92.8, ∆E=39.3%) and for two of the 
Reuters test sets: M+A (F=91.4, ∆E=20.0%) and BN 
(F=91.8, ∆E=21.6%).  The MUC-6 F-score, in par-
ticular, is comparable to those of hand-built MUC-
era systems; in fact, it exceeds the score of our own 
hand-built MUC-6 system (Aberdeen et al, 1995). 

What is apparently happening is that these three 
data sets are well matched to a group of linguisti-
cally inspired lexical features with which we 
trained our baseline CRF.  In particular, our base-
line features include gazetteers and word lists 
hand-selected for identifying entities based on lo-
cal context: first names, agentive verbs, date at-
oms, etc.  This played out in two significant ways.  
First, these linguistic features tended to elevate 
baseline performance (see Table 4).  Second, these 
same features also proved effective when dis-
placed, as demonstrated by the substantial error 
reduction with displacement. Feature displacement 
thus further rewards sound feature engineering. 

6.2 Other MUC-related results 

The MUC-7 and Reuters hot stocks data (HS) pro-
vide informative contrasts.  For these data, feature 
displacement provided error reduction of 
∆E=13.9% and 13.4% respectively, which is less 

than for the top three data sets.  It is interesting to 
note that in both cases, the baseline score is also 
lower, suggesting again that the performance of 
feature copying follows the performance of base-
line tagging.  In the case of Reuters HS, the evalua-
tion data contained many out-of-training references 
to stock indices, which depressed baseline scores.  
Similar development-to-evaluation divergences 
have also been noted with the MUC-7 corpus. 

6.3 The CoNLL task 

Our results for the CoNLL task, reported in Table 5 
below, provide a different point of contrast.  The 
middle two rows of the table present the same ex-
perimental configurations as have been discussed 
so far.  For this data set, we note that feature dis-
placement does not perform as well as our re-
implementation of Krishnan and Manning’s strat-
egy in terms of both absolute score and error re-
duction.  Likewise, published results for other 
approaches mostly outperform displacement (see 
the first three rows in Table 5). 

One possible explanation lies with the linguistic 
features with which we approached CoNLL: these 
are the same ones we originally developed for 
MUC-6.  As noted earlier the CoNLL standard di-
verges in several ways from MUC-6.  In particular, 
CoNLL calls for a MISC entity that covers a range of 
name-like entities, e.g., events. MISC also, how-
ever, captures names that are trapped by tokeniza-
tion (“London-based”), as well as some MUC 
organizations (sports leagues).  This suggests that 
adapting our features to the CONLL task might help. 

MUC-6 MUC-7 MNET Reuters M+A Reuters BN Reuters HS Reuters NI  
F ΔE F ΔE F ΔE F ΔE F ΔE F ΔE F ΔE 

baseline 88.2 — 84.0 — 88.9 — 89.3 — 89.5 — 85.4 — 88.8 — 
disp. 92.8 39% 86.2 14% 89.9 8.9% 91.4 20% 91.8 22% 87.3 13% 90.1 11% 
K+M 91.5 28% 85.2 7.4% — — 90.4 11% 91.0 14% 86.3 6.2% 89.2 2.8% 

 
Table 4: Performance on seven test sets annotated to variants of the MUC-6 standard (MUC scorer). 

 
 base F LDD F ΔE 
Bunescu + Mooney 2004 80.09 82.30 11.1% 
Finkel et al 2005 85.51 86.86 9.3% 
Krishnan + Manning 2006 85.29 87.34 13.3% 
K+M (re-impl, MUC feats.) 84.3 86.0 10.7% 
displacement (MUC feats.) 84.3 85.8 9.6% 
displ. (CoNLL feats.) 85.24 86.55 8.9% 
displ. (CoNLL feats. + DS) 86.57 87.39 6.1% 

Table 5: Performance on the CoNLL task; LDD designates 
 use of long-distance dependency method. 
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The final two rows in Table 5 present attempts 
to tune our features to CoNLL.  This includes some 
features (the “CoNLL feats” in Table 5) indicating 
story topic, all-caps headline contexts, presence in 
a sporting result table, and similar idiosyncrasies.  
In addition, we also used features based on dis-
tributional similarity word lists (DS in the table) 
provided with the Stanford NER package.2 

While these feature engineering efforts proved 
effective, what we found surprised us.  As Table 5 
shows, the CoNLL features do substantially raise 
baseline performance, with the full set of new fea-
tures producing a baseline (F=86.6) that outper-
forms previously published baselines by over a 
point of F score.  In keeping with our observations 
for the MUC-annotated text, we would then have 
expected to see a comparable increase in the per-
formance of displaced features, i.e., a jump in error 
reduction relative to the baseline.  Instead, we 
found just the reverse.  Whereas displacement ac-
counts for a 1.5 point gain in F (∆E=9.6%) with the 
MUC baseline features, with the beter CoNLL fea-
tures, the gain due to displacement falls to 0.82 
points of F (∆E=6.1%).  While the final result with 
displacement (F=87.39) slightly edges out the pre-
vious high water mark of F=87.35 (Krishnan and 
Manning, 2005), the pattern is puzzling and not in 
keeping with our seven other data sets. 

One possible explanations lies again with the 
CoNLL standard.  The standard calls explicitly for 
inconsistent annotation of the same entity when 
used in different contexts.  Along with place names 
being called MISC in hyphenated contexts (noted 
above), some places must be called ORG when used 
to refer to sports teams – except in results tables, 
where they are sometimes LOC.  Such inconsisten-
cies subvert the notion of long-distance dependen-
cies by making these dependencies contradictory, 
thereby reducing the potential value of displace-
ment as a means for improving performance. 

7 Conclusions 

Earlier in this paper, we introduced the notion of 
long-distance dependencies through their original 
codification in the context of phrase-structure 
grammars.  By an interesting historical twist, the 
original solution to these grammatical long-
distance effects, known as gap threading (Pereira, 

                                                        
2 http://nlp.stanford.edu/software/CRF-NER.shtml 

1981), involved what is essentially a feature-
copying operation, namely unification of constitu-
ent features.  It is gratifying to note that the method 
presented here has illustrious predecessors. 

Regarding the particular task of interest here, 
entity extraction, this paper conclusively shows 
that a simple feature-copying method provides an 
effective method for capturing long-distance de-
pendencies between names.  For the MUC-6 task, in 
particular, this error reduction is enough to lift a 
middle-of-the-pack performance from our baseline 
CRF to a level that would have placed it among the 
handful of top performers at the MUC-6 evaluation. 

As noted, the method is also substantially more 
manageable than earlier approaches.  It avoids the 
intractability of graphical models and also avoids 
the approximations required by methods that rely 
on these models.  It also adds only minimal proc-
essing time at training and run times.  This pro-
vides a practical alternative to the method of 
Krishnan and Manning, who require twelve sepa-
rate training runs to create their models, and fur-
ther require a time-consuming run-time process to 
mediate between their first and second stage CRFs. 

We intend to take this work in two directions.  
First, we would like to get to the bottom of why the 
method did not do better with the CoNLL and MNET 
tasks.  As noted earlier, our hypothesis is that we 
would expect greater exploitation of long-distance 
dependencies if we first improved the performance 
of the baseline CRF, especially by improving the 
acuity of task-related features.  While it is not a 
key interest of ours to achieve best-in-class per-
formance on historical evaluations, it is the case 
that we seek a better understanding of the range of 
application of the feature copying method. 

Another direction of interest is to consider other 
problems that exhibit long-distance dependencies 
that might be addressed by feature copying.  Word 
sense disambiguation is one such case, especially 
given Yarowsky’s maxim regarding one sense per 
discourse, a consistency notion that seems tailor-
made for treatment as long-distance dependencies 
(Yarowsky, 1995).  Likewise, we are curious about 
the applicability of the method to reference resolu-
tion, another key task with long-distance effects. 

Meanwhile, we believe that this method pro-
vides a practical approach for capturing long-
distance effects in one of the most practical and 
useful application of human language technologies, 
entity extraction. 
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Abstract

We present a kernel-based approach for fine-
grained classification of named entities. The
only training data for our algorithm is a few
manually annotated entities for each class. We
defined kernel functions that implicitly map
entities, represented by aggregating all con-
texts in which they occur, into a latent seman-
tic space derived from Wikipedia. Our method
achieves a significant improvement over the
state of the art for the task of populating an
ontology of people, although requiring con-
siderably less training instances than previous
approaches.

1 Introduction

Populating an ontology with relevant entities ex-
tracted from unstructured textual documents is a
crucial step in Semantic Web and knowledge man-
agement systems. As the concepts in an ontology
are generally arranged in deep class/subclass hierar-
chies, the problem of populating ontologies is typi-
cally solved top-down, firstly identifying and classi-
fying entities in the most general concepts, and then
refining the classification process.

Recent advances have made supervised ap-
proaches very successful in entity identification and
classification. However, to achieve satisfactory per-
formance, supervised systems must be supplied with
a sufficiently large amount of training data, usually
consisting of hand tagged texts. As domain specific
ontologies generally contains hundreds of subcate-
gories, such approaches are not directly applicable
for a more fine-grained categorization because the

number of documents required to find sufficient pos-
itive examples for all subclasses becomes too large,
making the manual annotation very expensive.

Consequently, in the literature, supervised ap-
proaches are confined to classify entities into broad
categories, such as persons, locations, and or-
ganizations, while the fine-grained classification
has been approached with minimally supervised
(e.g., Tanev and Magnini (2006) and Giuliano and
Gliozzo (2008)) and unsupervised learning algo-
rithms (e.g., Cimiano and Völker (2005) and Giu-
liano and Gliozzo (2007)).

Following this trend, we present a minimally su-
pervised approach to fine-grained categorization of
named entities previously recognized into coarse-
grained categories, e.g., by a named-entity recog-
nizer. The only training data for our algorithm is a
few manually annotated entities for each class. For
example, Niels Bohr, Albert Einstein, and Enrico
Fermi might be used as examples for the class physi-
cists. In some cases, training entities can be acquired
(semi-) automatically from existing ontologies al-
lowing us to automatically derive training entities
for use with our machine learning algorithm. For
instance, we may easily obtain tens of training en-
tities for very specific classes, such as astronomers,
materials scientists, nuclear physicists, by querying
the Yago ontology (Suchanek et al., 2008).

We represent the entities using features extracted
from the textual contexts in which they occur.
Specifically, we use a search engine to collect such
contexts from the Web. Throughout this paper, we
will refer to such a representation as multi-context
representation, in contrast to the single-context rep-
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resentation in which an entity is categorized using
solely features extracted from the local context sur-
rounding it, usually a window of a few words around
the entity occurrence. Single-context features are
commonly used in named-entity recognition, how-
ever to assign very specific categories the local con-
text might not provide sufficient information. For
example, in the sentence “Prof. Enrico Fermi dis-
covered a way to induce artificial radiation in heavy
elements by shooting neutrons into their atomic nu-
clei,” single-context features such as, the prefix Prof.
and the capital letters, provides enough evidence that
Enrico Fermi is a person and a professor. However,
to discover that he is a physicist we need to analyze
a wider context, or alternatively multiple ones. Re-
cently, Ganti et al. (2008) has shown that exploiting
multi-context information can greatly improve the
fine-grained classification of named entities, when
compared to methods using single context only.

In order to effectively represent entities’ multi-
contexts, we extend the traditional vector space
model (VSM), offering a way to integrate external
semantic information in the classification process by
means of latent semantic kernels (Shawe-Taylor and
Cristianini, 2004). As a result, we obtain a general-
ized similarity function between multi-contexts that
incorporates semantic relations between terms, auto-
matically learned from unlabeled data. In particular,
we use Wikipedia to build the latent semantic space.
The underlying idea is that similar named entities
tend to have a similar description in Wikipedia. As
Wikipedia provides reliable information and it ex-
ceeds all other encyclopedias in coverage, it should
be a valuable resource for the task of populating an
ontology. To validate this hypothesis, we compare
this model with one built from a news corpus.

Our approach achieves a significant improvement
over the state of the art for the task of populating the
People Ontology (Giuliano and Gliozzo, 2008), al-
though requiring considerably less training instances
than previous approaches. The task consists in clas-
sifying person names into a multi-level taxonomy
composed of 21 categories derived from WordNet,
making very fine-grained distinctions (e.g., physi-
cists vs. mathematicians). It provides a more real-
istic and challenging benchmark than the ones pre-
viously available (e.g., Tanev and Magnini (2006)
and Fleischman and Hovy (2002)), that consider a

smaller number of categories arranged in a one-level
taxonomy.

2 Entity Representation

The goal of our research is to determine the fine-
grained categories of named entities requiring a min-
imal amount of human supervision.

Our method is based on the common assump-
tion that named entities co-occurring with the same
(domain-specific) terms are highly probable to refer
to the same categories. For example, quantum me-
chanics, atomic physics, and Nobel Prize in physics
are all terms that bound Niels Bohr and Enrico Fermi
to the concept of physics.

To automatically derive features for the training
and testing entities we proceed as follows. We pair
each entity i with a multi-context mi obtained by
querying a search engine with the entity “i” and
merging the first M snippets si,j returned (1 6 j 6
M ). A multi-context is therefore a fictitious doc-
ument obtained by aggregating snippets, i.e., sum-
mary texts of the search engine result. Formally,
mi = ∪M

j=1si,j , where the operator ∪ denotes the
concatenation of strings. For example, Figure 1 (a)
and (b) show some snippets retrieved for “Enrico
Fermi” and “Albert Einstein,” while s1∪ s2∪ s3 and
s4 ∪ s5 ∪ s6 represent their multi-contexts, respec-
tively.

The following section describes how entities’
multi-contexts are embedded into the feature space
in order to train a kernel-based classifier.

3 Kernels for Fine-Grained Classification
of Entities

The strategy adopted by kernel methods (Shawe-
Taylor and Cristianini, 2004; Schölkopf and Smola,
2002) consists of splitting the learning problem in
two parts. They first embed the input data in a suit-
able feature space, and then use a linear algorithm
(e.g., the perceptron) to discover nonlinear pattern in
the input space. Typically, the mapping is performed
implicitly by a so-called kernel function. The ker-
nel function is a similarity measure between the in-
put data that depends exclusively on the specific data
type and domain. A typical similarity function is the
inner product between feature vectors. Characteriz-
ing the similarity of the inputs plays a crucial role in
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s1: [Enrico Fermi]PER discovered that many nuclear transformations could be conducted by using neutrons.
s2: [Enrico Fermi]PER led the manhattan project’s effort to create the first man-made and self-sustaining nuclear chain.
s3: [Enrico Fermi]PER was most noted for his work on the development of the first nuclear reactor.

(a)
s4: [Albert Einstein]PER did not directly participate in the invention of the atomic bomb.
s5: [Albert Einstein]PER is one of the most recognized and well-known scientists of the century.
s6: [Albert Einstein]PER was born at Ulm, in Württemberg, Germany, on March 14, 1879.

(b)

Figure 1: Examples of snippets retrieved for Enrico Fermi (a) and Albert Einstein (b).

determining the success or failure of the learning al-
gorithm, and it is one of the central questions in the
field of machine learning.

Formally, the kernel is a function k : X×X → R
that takes as input two data objects (e.g., vectors,
texts, parse trees) and outputs a real number charac-
terizing their similarity, with the property that the
function is symmetric and positive semi-definite.
That is, for all xi, xj ∈ X , it satisfies

k(xi, xj) = 〈φ(xi), φ(xj)〉 (1)

where φ is an explicit mapping from X to an (inner
product) feature space F .

In the next sections, we define and combine differ-
ent kernel functions that calculate the pairwise sim-
ilarly between multi-contexts. They are the only do-
main specific element of our classification system,
while the learning algorithm is a general purpose
component. Many classifiers can be used with ker-
nels. The most popular ones are perceptron, sup-
port vector machines (SVM), and k-nearest neighbor
(KNN).

3.1 Bag-of-Words Kernel
The simplest method to estimate the similarity be-
tween two multi-contexts is to compute the inner
product of their vector representations in the VSM.
Formally, we define a space of dimensionality N in
which each dimension is associated with one word
from the dictionary, and the multi-context m is rep-
resented by a row vector

φ(m) = (f(t1,m), f(t2,m), . . . , f(tN ,m)), (2)

where the function f(ti,m) records whether a par-
ticular token ti is used in m. Using this representa-
tion we define bag-of-words kernel between multi-
contexts as

KBOW (m1,m2) = 〈φ(m1), φ(m2)〉 (3)

However, the bag-of-words representation does
not deal well with lexical variability. To significantly
reduce the training set size, we need to map contexts
containing semantically equivalent terms into simi-
lar feature vectors. To this aim, in the next section,
we introduce the class of semantic kernels and show
how to define an effective semantic VSM using (un-
labeled) external knowledge.

3.2 Semantic Kernels

It has been shown that semantic information is fun-
damental for improving the accuracy and reducing
the amount of training data in many natural language
tasks, including fine-grained classification of named
entities (Fleischman and Hovy, 2002), question clas-
sification (Li and Roth, 2005), text categorization
(Giozzo and Strapparava, 2005), word sense disam-
biguation (Gliozzo et al., 2005).

In the context of kernel methods, semantic infor-
mation can be integrated considering linear trans-
formations of the type φ̃(cj) = φ(cj)S, where S
is a N × k matrix (Shawe-Taylor and Cristianini,
2004). The matrix S can be rewritten as S = WP,
where W is a diagonal matrix determining the word
weights, while P is the word proximity matrix cap-
turing the semantic relations between words. The
proximity matrix P can be defined by setting non-
zero entries between those words whose semantic
relation is inferred from an external source of do-
main knowledge. The semantic kernel takes the gen-
eral form

k̃(mi,mj) = φ(mi)SS′φ(mj)′ = φ̃(mi)φ̃(mj)′. (4)

It follows directly from the explicit construction that
Equation 4 defines a valid kernel.

WordNet and manually constructed lists of se-
mantically related words typically provide a sim-
ple way to introduce semantic information into the
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kernel. To define a semantic kernel from such re-
sources, we could explicitly construct the proximity
matrix P by setting its entries to reflect the semantic
proximity between the words i and j in the specific
lexical resource. However, we prefer an approach
that exploits unlabeled data to automatically build
the proximity matrix, defining a language and do-
main independent approach.

3.2.1 Latent Semantic Kernel
To define a proximity matrix, we look at co-

occurrence information in a (large) corpus. Two
words are considered semantically related if they
frequently co-occur in the same texts. We use sin-
gular valued decomposition (SVD) to automatically
derive the proximity matrix Π from a corpus, rep-
resented by its term-by-document matrix D, where
the Di,j entry gives the frequency of term ti in doc-
ument dj .1 SVD decomposes the term-by-document
matrix D into three matrixes D = UΣV′, where U
and V are orthogonal matrices (i.e., U′U = I and
V′V = I) whose columns are the eigenvectors of
DD′ and D′D respectively, and Σ is the diagonal
matrix containing the singular values of D.

Under this setting, we define the proximity matrix
Π as follows:

Π = UkΣk, (5)

where Uk is the matrix containing the first k
columns of U and k is the dimensionality of the la-
tent semantic space and can be fixed in advance. By
using a small number of dimensions, we can define a
very compact representation of the proximity matrix
and, consequently, reduce the memory requirements
while preserving most of the information.

The matrix Π is used to define a linear transfor-
mation π : RN → Rk, that maps the vector φ(mj),
represented in the standard VSM, into the vector
φ̃(mj) in the latent semantic space. Formally, π is
defined as follows

π(φ(mj)) = φ(mj)(WΠ) = φ̃(mj), (6)

where φ(mj) is a row vector, W is a N × N diag-
onal matrix determining the word weights such that
Wi,i = log(idf(wi)), where idf(wi) is the inverse
document frequency of wi.

1SVD has been first applied to perform latent semantic anal-
ysis of terms and latent semantic indexing of documents in large
corpora by Deerwester et al. (1990).

Finally, the latent semantic kernel is explicitly de-
fined as follows

KLS(mi,mj) = 〈π(φ(mi)), π(φ(mj))〉, (7)

where φ is the mapping defined in Equation 2 and
π is the linear transformation defined in Equation 6.
Note that we have used a series of successive map-
pings each of which adds some further improvement
to the multi-context representation.

3.3 Composite Kernel
Finally, to combine the two representations of multi-
contexts, we define the composite kernel as follows

KBOW (m1,m2) +KLS(m1,m2). (8)

It follows directly from the explicit construction of
the feature space and from closure properties of ker-
nels that it is a valid kernel.

4 Experiments

In this section, we compare performance of different
kernel setups and previous approaches on an ontol-
ogy population task.

4.1 Benchmark
Experiments were carried out on the People Ontol-
ogy (Giuliano and Gliozzo, 2008). An ontology
extracted from WordNet, containing 1,657 distinct
person instances arranged in a multi-level taxonomy
having 21 fine-grained categories (Figure 2). To pro-
vide a formal distinction between classes and in-
stances, required to assign instances to classes, the
authors followed the directives defined by Gangemi
et al. (2003) for OntoWordNet, in which the infor-
mal WordNet semantics is re-engineered in terms of
a description logic.

In order to have a fair comparison, we reproduced
the same experimental settings used in Giuliano and
Gliozzo (2008). The population task is cast as a cate-
gorization problem, trying to assign person instances
to the most specific category. For each class, the in-
stances were randomly split into two equally sized
subsets. One is used for training and the other for
test, and vice versa. The reported results are the av-
erage performance over these two subsets. When an
instance is assigned to a sub-class it is also implic-
itly assigned to all its super-classes. For instance,
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Figure 2: The People Ontology defined by Giuliano and Gliozzo (2008). Numbers in brackets are the total numbers
of person instances per category. Concepts with less than 40 instances were removed.

classifying Salvador Dali as painter we implicitly
classify him as artist and creator. The evaluation
is performed as proposed by Melamed and Resnik
(2000) for a similar hierarchical categorization task.
For instance, classifying John Lennon as painter, we
obtain a false positive for the spurious classification
painter, a false negative for missing class musician,
and two true positives for the correct assignment to
the super-classes artist and creator.

4.2 Experimental Settings

We built two proximity matrices ΠW and ΠNY T .
The former is derived from the 200,000 most visited
Wikipedia articles, while the latter from 200,000 ar-
ticles published by the New York Times between
June 1, 1998 and January 01, 2000. After remov-
ing terms that occur less than 5 times, the result-
ing dictionaries contain about 300,000 and 150,000
terms respectively. We used the SVDLIBC pack-
age2 to compute the SVD, truncated to 400 dimen-
sions. To derive the multi-context representation, we
collected 100 english snippets for each person in-
stance by querying GoogleTM. To classify each per-
son instance into one of the fine-grained categories,
we used a KNN classifier (K = 1). No parameter
optimization was performed.

2http://tedlab.mit.edu/˜dr/svdlibc/

4.3 Results

Table 1 shows micro- and macro-averaged results
for KBOW , KW , KBOW +KW , KNY T , KBOW +
KNY T , the IBOP method (Giuliano and Gliozzo,
2008), the random baseline, and most frequent base-
line.3 Where KW and KNY T are instances of the
latent semantic kernel, KLS , using the proximity
matrices ΠW and ΠNY T , derived from Wikipedia
and the New York Times corpus, respectively. Ta-
ble 2 shows detailed results for each sub- and super-
category for KBOW +KW . Table 3 shows the con-
fusion matrix of KBOW + KW , in which the rows
are ground truth classes and the columns are predic-
tions. The matrix has been calculated for the finer-
grained categories and, then, grouped according to
their super-class. To be compared with the IBOP
method, all experiments were conducted using only
20 training examples per category. Finally, figure
3 shows the learning curves for KBOW + KW ob-
tained varying the number of snippets (12, 25, 50,
and 100) used to derive the multi-contexts.

4.4 Discussion

On the one hand, the results (Table 2) show that
learning the semantic model from Wikipedia gives
no significant improvement. Therefore, we reject the
hypothesis that encyclopedic knowledge can provide

3The most frequent category has been estimated on the train-
ing data.
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Figure 3: Learning curves for KBOW +KW obtained varying the number of snippets used to derive the training and
test sets. From top-left to bottom right: 12, 25, 50, and 100.

Method Micro-F1 Macro-F1

KBOW 75.6 70.6
KW 78.1 73.1
KBOW + KW 80.0 75.4
KNY T 77.6 72.9
KBOW + KNY T 79.7 75.1
IBOP 70.1 62.3
Random 15.4 15.5
Most Frequent 20.7 3.3

Table 1: Comparison among the kernel-based ap-
proaches, the IBOP method (Giuliano and Gliozzo,
2008), the random baseline, and most frequent baseline.

more accurate semantic models than general pur-
pose corpora. Moreover, further experiments have
shown that even a larger number of Wikipedia ar-
ticles (600,000) does not help. On the other hand,
the latent semantic kernels outperform all the other
methods, and their composite (KBOW + KW and
KBOW + KNY T ) perform the best on every con-
figuration, demonstrating the effectiveness of la-
tent semantic kernels in fine-grained classification
of named entities. As in text categorization and
word sense disambiguation, they have proven effec-
tive tools to overcome the limitation of the VSM by
introducing semantic similarity among words.

An important characteristic of the approach is the
small number of training examples required per cat-

egory. This affects both the prediction accuracy and
the computation time (this is generally a common
property of instance-based algorithms). The learn-
ing curves (Figure 3) show that the composite ker-
nel (KBOW +KLS) obtained the same performance
of the bag-of-word kernel (KBOW ) using less than
half of the training examples per category. The
difference is much more pronounced when using
less snippets. The composite kernel KBOW + KW

reaches a plateau around 10 examples, and after 20
examples adding more examples does not signifi-
cantly improve the classification performance.

As most of entities in the People Ontol-
ogy are celebrities, all the snippets retrieved by
GoogleTMgenerally refer to them, alleviating the
problem of ambiguity of proper names. However,
person names are highly ambiguous. In a more real-
istic scenario, the result of a search engine for a per-
son name is usually a mix of contexts about different
entities sharing the same name. In this case, our ap-
proach have to be combined with a system that clus-
ters the search engine result, where each cluster is
assumed to contain all (and only those) contexts that
refer to the same entity. The WePS evaluation cam-
paign on disambiguation of person names (Artiles et
al., 2007; Artiles et al., 2009) has shown that the best
clustering systems achieve a precision of about 90%
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Scientist Performer Creator Communicator Business Health
Phy Mat Che Bio Soc Act Mus Fil Pai Mus Poe Dra Rep man prof

Phy 118 24 10 4 2 0 0 0 0 0 0 0 0 7 2
Mat 2 33 0 0 1 0 0 0 0 0 1 0 0 3 0
Che 13 2 68 9 2 0 0 0 0 0 0 0 0 5 2
Bio 3 0 7 52 0 0 0 0 1 0 0 0 1 6 6
Soc 0 4 1 1 55 0 0 0 0 0 3 1 1 4 2
Act 0 0 0 0 0 98 5 27 0 0 2 14 0 3 0

Mus 0 0 0 0 0 17 67 0 0 32 1 0 1 2 1
Fil 0 0 0 0 0 13 0 45 0 0 1 4 0 2 0
Pai 0 0 0 1 1 2 0 1 100 0 1 0 0 1 0

Mus 0 0 0 0 0 4 29 0 0 139 0 1 0 0 0
Poe 0 2 0 0 0 0 0 0 7 3 98 26 1 2 3
Dra 0 0 0 1 1 9 0 1 0 1 12 61 1 4 1
Rep 0 0 0 0 0 1 1 0 2 0 0 0 197 22 0
Bus 1 0 1 0 1 0 0 1 0 1 0 0 1 36 0
Hea 0 0 0 8 4 0 1 0 0 0 0 1 1 2 31

Table 3: Confusion matrix of KBOW +KW for the more fine-grained categories grouped according to their top-level
concepts of the People Ontology.

Category Prec. Recall F1

Scientist 95.1 90.1 92.6
Physicist 86.1 70.7 77.6
Mathematician 50.8 82.5 62.9
Chemist 78.2 67.3 72.3
Biologist 68.4 68.4 68.4
Social scientist 82.1 76.4 79.1

Performer 75.7 69.3 72.3
Actor 68.1 65.8 66.9
Musician 65.0 55.4 59.8

Creator 78.9 82.6 80.7
Film Maker 60.0 69.2 64.3
Artist 83.6 85.4 84.5

Painter 90.9 93.5 92.2
Musician 79.0 80.3 79.7

Communicator 91.9 86.7 89.2
Representative 96.6 88.3 92.3
Writer 86.8 84.2 85.5

Poet 82.4 69.0 75.1
Dramatist 56.5 66.3 61.0

Business man 36.4 85.7 51.1
Health professional 64.6 64.6 64.6
micro 80.9 79.6 80.2
macro 75.1 76.3 75.7

Table 2: Results for each category using KBOW +KW .

and a recall of about 70% and that, in the major-
ity of the cases, the number of contexts per entity is
less than 20. This shows that latent semantic kernels
are an effective tool for fine-grained classification of
person names.

Finally, table 3 shows that misclassification er-
rors are largely distributed among categories belong-
ing to the same super-class (i.e., the blocks on the
main diagonal are more densely populated than oth-
ers). As expected, the algorithm is much more accu-

rate for the top-level concepts (i.e., Scientist, Com-
municator, etc.), where the category distinctions are
clearer, while a further fine-grained classification, in
some cases, is even difficult for human annotators.

5 Related Work

Fleischman and Hovy (2002) approach the fine-
grained classification of person instances using su-
pervised learning, where the training set is gener-
ated semi-automatically, bootstrapping from a small
training set. They compare different machine learn-
ing algorithms, providing local features as well as
global semantic information derived from topic sig-
nature and WordNet. Person instances were classi-
fied into one of eight categories.

Cimiano and Völker (2005) present an approach
for the fine-grained classification of entities relying
on the Harris’ distributional hypothesis and the vec-
tor space model. They assign a particular instance
to the most similar concept representing both with
lexical-syntactic features extracted from the context
of the instance and the lexicalization of the concept,
respectively. Experiments were performed using a
large ontology with 682 concepts (unfortunately not
yet available).

Tanev and Magnini (2006) proposed a weakly-
supervised method that requires as training data a
list of named entities, without context, for each cat-
egory under consideration. Given a generic syntacti-
cally parsed corpus containing at least each training
entity twice, the algorithm learns, for each category,

207



a feature vector describing the contexts where those
entities occur. Then, it compares the new (unknown)
entity with the so obtained feature vectors, assigning
it to the most similar category. Experiments are per-
formed on a benchmark of 5 sub-classes of location
and 5 sub-classes of person.

Giuliano and Gliozzo (2007) propose an unsuper-
vised approach based on lexical entailment, consist-
ing in assigning an entity to the category whose lex-
icalization can be replaced with its occurrences in
a corpus preserving the meaning. Using unsuper-
vised learning, they obtained slightly worst results
than Tanev and Magnini (2006) on the same bench-
mark.

Picca et al. (2007) present an approach for on-
tology learning from open domain text collections,
based on the combination of Super Sense Tagging
and Domain Modeling techniques. The system rec-
ognizes terms pertinent to the domain and assigns
them the correct ontological type.

Giuliano and Gliozzo (2008) present an instance-
based learning algorithm for fine-grained named en-
tity classification based on syntactic features (word-
order, case-marking, agreement, verb tenses, etc.).
Their method can handle much finer distinctions
than previous methods, and it is evaluated on a hi-
erarchical taxonomy of 21 ancestors of people that
was induced from WordNet. One contribution is to
create this richer People Ontology. Another is to
make effective use of the Web 1T 5-gram corpus
(Brants and Franz, 2006) to represent syntactic in-
formation. The main difference between the two ap-
proaches lies primarily in the use of syntactic and
semantic information. Our experiments show that
semantic features do provide richer information than
syntactic ones for a more fine-grained classification
of named entities. In fact, the accuracy improve-
ment achieved by our approach is more evident for
the more specific classes. For example, the improve-
ment in accuracy is about 14% for the class scientist,
while it ranges from 25% to 46% for its sub-classes
(physicist, mathematician, etc.).

Kozareva et al. (2008) propose an approach for
person name categorization based on the domain
distribution. They use the information provided by
WordNet Domains to generated lists of words rele-
vant for a given domain, by mapping and ranking the
words from the WordNet glosses to their WordNet

Domains. A named entity is then classified accord-
ing the similarity between the word-domain lists and
the global context in which the entity appears. How-
ever, the evaluation was performed only on 6 person
names using two categories.

Ganti et al. (2008) present a method that considers
an entity’s context across multiple documents con-
taining it, and exploiting word n-grams and existing
large list of related entities as features. They gener-
ated training and test data using Wikipedia articles
that contain list of instances. They compare their
system with a single-context classifier, showing that
their approach based on aggregate context perform
better.

Finally, Talukdar et al. (2008) propose a graph-
based semi-supervised label propagation algorithm
for acquiring open-domain labeled classes and their
instances from a combination of unstructured and
structured text.

6 Conclusions

We presented an approach to automatic fine-grained
categorization of named entities based on kernel
methods. Entities are represented by aggregating all
contexts in which they occur. We employed latent
semantic kernels to extend the bag-of-words repre-
sentation. The latent semantic models were derived
from Wikipedia and a news corpus We evaluated our
approach on the People Ontology, a multi-level on-
tology of people derived from WordNet. Although
this benchmark is still far from being “large”, it al-
lows drawing more valid conclusions than past ones.
We significantly outperformed the previous results
on both coarse- and fine-grained classification, al-
though requiring much less training instances. From
this preliminary analysis, it appears that semantic in-
formation is much more effective that syntactic one
for this task, and deriving the semantic model from
Wikipedia gives no significant improvement, as well
as, using a larger number of Wikipedia articles.
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Abstract

This paper presents a method for automatic
topic identification using an encyclopedic
graph derived from Wikipedia. The sys-
tem is found to exceed the performance of
previously proposed machine learning algo-
rithms for topic identification, with an annota-
tion consistency comparable to human anno-
tations.

1 Introduction

With exponentially increasing amounts of text be-
ing generated, it is important to find methods that
can annotate and organize documents in meaning-
ful ways. In addition to the content of the document
itself, other relevant information about a document
such as related topics can often enable a faster and
more effective search or classification. Document
topics have been used for a long time by librarians to
improve the retrieval of a document, and to provide
background or associated information for browsing
by human users. They can also assist search, back-
ground information gathering and contextualization
tasks, and enhanced relevancy measures.

The goal of the work described in this paper is to
automatically find topics that are relevant to an input
document. We refer to this task as “topic identifica-
tion” (Medelyan and Witten, 2008). For instance,
starting with a document on “United States in the
Cold War,” we want to identify relevant topics such
as “history,” “Global Conflicts,” “Soviet Union,” and
so forth. We propose an unsupervised method for
topic identification, based on a biased graph cen-
trality algorithm applied to a large knowledge graph
built from Wikipedia.

The task of topic identification goes beyond key-
word extraction (Mihalcea and Csomai, 2007), since

relevant topics may not be necessarily mentioned in
the document, and instead have to be obtained from
some repositories of external knowledge. The task
is also different from text classification (Gabrilovich
and Markovitch, 2006), since the topics are either
not known in advance or are provided in the form of
a controlled vocabulary with thousands of entries,
and thus no classification can be performed. In-
stead, with topic identification, we aim to find topics
(or categories1) that are relevant to the document at
hand, which can be used to enrich the content of the
document with relevant external knowledge.

2 Dynamic Ranking of Topic Relevance

Our method is based on the premise that external
encyclopedic knowledge can be used to identify rel-
evant topics for a given document.

The method consists of two main steps. In the first
step, we build a knowledge graph of encyclopedic
concepts based on Wikipedia, where the nodes in the
graph are represented by the entities and categories
that are defined in this encyclopedia. The edges be-
tween the nodes are represented by their relation of
proximity inside the Wikipedia articles. The graph
is built once and then it is stored offline, so that it
can be efficiently use for the identification of topics
in new documents.

In the second step, for each input document, we
first identify the important encyclopedic concepts in
the text, and thus create links between the content of
the document and the external encyclopedic graph.
Next, we run a biased graph centrality algorithm on
the entire graph, so that all the nodes in the exter-
nal knowledge repository are ranked based on their
relevance to the input document. We use a variation

1Throughout the paper, we use the terms “topic” and “cate-
gory” interchangeably.

210



of the PageRank (Brin and Page, 1998) algorithm,
which accounts for both the relation between the
nodes in the document and the encyclopedic graph,
as well as the relation between the nodes in the en-
cyclopedic graph itself.

In the following, we first describe the structure
of Wikipedia, followed by a brief description of the
Wikify! system that automatically identifies the en-
cyclopedic concepts in a text, and finally a descrip-
tion of the dynamic ranking process on the encyclo-
pedic graph.

2.1 Wikipedia

Wikipedia (http://wikipedia.org) is a free online en-
cyclopedia, representing the outcome of a continu-
ous collaborative effort of a large number of vol-
unteer contributors. Virtually any Internet user can
create or edit a Wikipedia webpage, and this “free-
dom of contribution” has a positive impact on both
the quantity (fast-growing number of articles) and
the quality (potential mistakes are quickly corrected
within the collaborative environment) of this re-
source.

Wikipedia has grown to become one of the largest
online repositories of encyclopedic knowledge, with
millions of articles available for a large number of
languages. In fact, Wikipedia editions are available
for more than 250 languages, with a number of en-
tries varying from a few pages to close to three mil-
lion articles per language.

The basic entry in Wikipedia is anarticle (or
page), which defines an entity or an event, and con-
sists of a hypertext document with hyperlinks to
other pages within or outside Wikipedia. The role
of the hyperlinks is to guide the reader to pages
that provide additional information about the enti-
ties or events mentioned in an article. Each article
in Wikipedia is uniquely referenced by an identifier,
which consists of one or more words separated by
spaces or underscores, and occasionally a parenthet-
ical explanation. The current version of the English
Wikipedia consists of about 2.75 million articles.

In addition to articles, Wikipedia also includes a
large number of categories, which represent topics
that are relevant to a given article (the July 2008 ver-
sion of Wikipedia includes about 390,000 such cate-
gories). The category links are organized hierarchi-
cally, and vary from broad topics such as “history”
or “games” to highly focused topics such as “mili-
tary history of South Africa during World War II” or

Figure 1: A snapshot from the encyclopedic graph.

“role-playing game publishing companies.”
We use the entire English Wikipedia to build an

encyclopedic graph for use in the topic identifica-
tion process. The nodes in the graph are represented
by all the article and category pages in Wikipedia,
and the edges between the nodes are represented by
their relation of proximity inside the articles. The
graph contains 5.8 million nodes, and 65.5 million
edges. Figure 1 shows a small section of the knowl-
edge graph, as built starting with the article on “Cor-
pus Linguistics”.

2.2 Wikify!

In order to automatically identify the important en-
cyclopedic concepts in an input text, we use the un-
supervised system Wikify! (Mihalcea and Csomai,
2007), which identifies the concepts in the text that
are likely to be highly relevant (i.e., “keywords”)
for the input document, and links them to Wikipedia
concepts.

Wikify! works in three steps, namely: (1) candi-
date extraction, (2) keyword ranking, and (3) word
sense disambiguation. The candidate extraction step
parses the input document and extracts all the pos-
sible n-grams that are also present in the vocabulary
used in the encyclopedic graph (i.e., anchor texts for
links inside Wikipedia or article or category titles).

Next, the ranking step assigns a numeric value to
each candidate, reflecting the likelihood that a given
candidate is a valuable keyword. Wikify! uses a
“keyphraseness” measure to estimate the probabil-
ity of a term W to be selected as a keyword in a
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document, by counting the number of documents
where the term was already selected as a keyword
count(Dkey) divided by the total number of docu-
ments where the term appearedcount(DW ). These
counts are collected from all the Wikipedia articles.

P (keyword|W ) ≈
count(Dkey)

count(DW )
(1)

This probability can be interpreted as “the more
often a term was selected as a keyword among its
total number of occurrences, the more likely it is that
it will be selected again.”

Finally, a simple word sense disambiguation
method is applied, which identifies the most likely
article in Wikipedia to which a concept should
be linked to. This step is trivial for words or
phrases that have only one corresponding article in
Wikipedia, but it requires an explicit disambiguation
step for those words or phrases that have multiple
meanings (e.g., “plant”) and thus multiple candidate
pages to link to. The algorithm is based on statistical
methods that identify the frequency of meanings in
text, combined with symbolic methods that attempt
to maximize the overlap between the current docu-
ment and the candidate Wikipedia articles. See (Mi-
halcea and Csomai, 2007) for more details.

2.3 Biased Ranking of the Wikipedia Graph

Starting with the graph of encyclopedic knowledge,
and knowing the nodes that belong to the input doc-
ument, we want to rank all the nodes in the graph
so that we obtain a score that indicates their impor-
tance relative to the given document. We can do this
by using a graph-ranking algorithmbiasedtoward
the nodes belonging to the input document.

Graph-based ranking algorithms such as PageR-
ank are a way of deciding the importance of a vertex
within a graph, based on global information recur-
sively drawn from the entire graph. One formula-
tion is in terms of a random walk through a directed
graph. A “random surfer” visits nodes of the graph,
and has some probability of jumping to some other
random node of the graph, and the remaining proba-
bility of continuing their walk from the current node
to one in its outdegree list. The rank of a node is an
indication of the probability that the surfer would be
found at that node at any given time.

Formally, letG = (V, E) be a directed graph with
the set of verticesV and set of edgesE, whereE is
a subset ofV × V . For a given vertexVi, let In(Vi)
be the set of vertices that point to it (predecessors),

and letOut(Vi) be the set of vertices that vertexVi

points to (successors). The score of a vertexVi is
defined as follows (Brin and Page, 1998):

S(Vi) = (1 − d) + d ∗
∑

j∈In(Vi)

1

|Out(Vj)|
S(Vj) (2)

where d is a damping factor usually set to 0.85.
Given the ”random surfer” interpretation of the

ranking process, the(1 − d) portion represents the
probability that a surfer will jump to a given node
from any other node at random, and the summation
portion indicates that the process will enter the node
via edges directly connected to it.

We introduce a bias in this graph-based rank-
ing algorithm by extending the framework of per-
sonalization of PageRank proposed by (Haveliwala,
2002). We modify the formula so that the(1 − d)
component also accounts for the importance of the
concepts found in the input document, and it is sup-
pressed for all the nodes that are not found in the
input document.

S(Vi) = (1−d)∗Bias(Vi)+d∗
∑

j∈In(Vi)

1

|Out(Vj)|
S(Vj)

(3)

whereBias(Vi) is only defined for those nodes ini-
tially identified in the input document:

Bias(Vi) = f(Vi)∑
j∈InitalNodeSet

f(Vj)

and 0 for all other nodes in the graph.
InitalNodeSet is the set of nodes belonging
to the input document.

Note thatf(Vi) can vary in complexity from a de-
fault value of 1 to a complex knowledge-based es-
timation. In our implementation, we use a combi-
nation of the “keyphraseness” score assigned to the
nodeVi and its distance from the “Fundamental”
category in Wikipedia.

The use of theBias assigned to each node means
the surfer random jumps will be limited to only those
nodes connected to the original query. Thus the
graph-ranking process becomes biased and focused
on those topics directly related to the input. It also
accumulates activation at those nodes not directly
found in the input text, but linked through indirect
means, thus reinforcing the nodes where patterns of
activation intersect and creating a constructive in-
terference pattern in the network. These reinforced
nodes are the “implied related topics” of the text.
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3 Illustration

To illustrate the ranking process, consider as an ex-
ample the following sentence “The United States
was involved in the Cold War.”

First the text is passed through the Wikify! sys-
tem, which returns the articles “United States” and
“Cold War.” Taking into account their “keyphrase-
ness” as calculated by Wikify!, the selections are
given an initial bias of 0.5492 (“United States”) and
0.4508 (“Cold War”).

After the first iteration the initial activation
spreads out into the encyclopedic graph, the nodes
find a direct connection to one another, and cor-
respondingly their scores are changed to 0.3786
(“United States”) and 0.3107 (“Cold War”). After
the second iteration, new nodes are identified from
the encyclopedic graph, a subset of which is shown
in Figure2. The process will eventually continue for
several iterations until the scores of the nodes do not
change. The nodes with the highest scores in the
final graph are considered to be the most closely re-
lated to the input sentence, and thus selected as rel-
evant topics.

Figure 2: Sub-graph between ”United States” and ”Cold
War”

In order to see the effect of the initial bias, con-
sider as an example the ranking of the nodes in
the encyclopedic graph when biased with the sen-
tence “The United States was involved in the Cold

War,” versus the sentence “Microsoft applies Com-
puter Science.” A comparison between the scores of
the nodes when activated by each of these sentences
is shown in Table 1.

Wikipedia entry US/CW MS/CS Diff.
A: United States 0.393636 0.006578 0.387058
C: Computer Science 0.000004 0.003576 -0.003571
A: World War II 0.007102 0.003674 0.003428
A: United Kingdom 0.005346 0.002670 0.002676
C: Microsoft 0.000001 0.001839 -0.001837
C: Cold War 0.001695 0.000006 0.001689
C: Living People 0.000835 0.002223 -0.001387
C: Mathematics 0.000029 0.001337 -0.001307
C: Computing 0.000008 0.001289 -0.001280
C: Computer Pioneers 0.000002 0.001238 -0.001235

Table 1: Node ranking differences when the encyclo-
pedic graph is biased with different inputs: (1) “United
States” and “Cold War” (US/CW) vs. (2) “Microsoft”
and “Computer Science” (MS/CS). The nodes are either
article pages (A) or category pages (C).

4 Experiments

In order to measure the effectiveness of the topic
ranking process, we run three sets of experiments,
aimed at measuring the relevancy of the automati-
cally identified topics with respect to manually an-
notated gold standard data sets.

In the first experiment, the identification of the
important concepts in the input text (used to bias the
topic ranking process) is performed manually, by the
Wikipedia users. In the second and third experiment,
the identification of these important concepts is done
automatically, by the Wikify! system. In all the ex-
periments, the ranking of the concepts from the en-
cyclopedic graph is done automatically by using the
dynamic ranking process described in Section 2.

In the first two experiments, we use a data set
consisting of 150 articles from Wikipedia, which
have been explicitly removed from the encyclope-
dic graph. All the articles in this data set include
manual annotations of the relevant categories, as as-
signed by the Wikipedia users, against which we
can measure the quality of the automatic topic as-
signments. The 150 articles have been randomly se-
lected while following the constraint that they each
contain at least three article links and at least three
category links. Our task is to rediscover the relevant
categories for each page. Note that the task is non-
trivial, since there are approximately 390,000 cate-
gories to choose from. We evaluate the quality of
our system through the standard measures of preci-
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sion and recall.

4.1 Manual Annotation of the Input Text

In this first experiment, the articles in the gold stan-
dard data set also include manual annotations of the
important concepts in the text, i.e., the links to other
Wikipedia articles as created by the Wikipedia users.
Thus, in this experiment we only measure the accu-
racy of the dynamic topic ranking process, without
interference from the Wikify! system.

There are two main parameters that can be set dur-
ing a system run. First, the set of initial nodes used
as bias in the ranking can include: (1) the initial set
of articles linked to by the original document (via
the Wikipedia links); (2) the categories listed in the
articles linked to by the original document2; and (3)
both. Second, the dynamic ranking process can be
run through propagation on an encyclopedic graph
that includes (1) all the articles from Wikipedia; (2)
all the categories from Wikipedia; or (3) all the arti-
cles and the categories from Wikipedia.

Figures 3, 4 and 5 show the precision, recall and
F-measure obtained for the various settings. In the
plots, Bias andPropagate indicate the selections
made for the two parameters, which can be each set
to Articles, Categories, or Both. Each of these
correspond to the options listed before.
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Figure 3: Precision for manual input text annotations.

As seen in the figures, the best results are obtained
for a setting where both the initial bias and the prop-
agation include all the available nodes, i.e., both ar-
ticles and categories. Although the primary task is

2These should not be confused with the categories included
in the document itself, which represent the gold standard anno-
tations and are not used at any point.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  20  40  60  80  100

R
e

c
a

ll

Top N topics returned

BiasArticles- PropCategories
BiasCategories- PropArticles PropCategories
BiasArticles BiasCategories- PropCategories

BiasArticles- PropArticles PropCategories
BiasArticles BiasCategories- PropArticles

BiasCategories- PropArticles
BiasArticles- PropArticles

BiasArticles BiasCategories- PropArticles PropCategories
BiasCategories- PropCategories

Baseline

Figure 4: Recall for manual input text annotations.
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Figure 5: F-measure when using Wikipedia article anno-
tations.

the identification of the categories, the addition of
the article links improves the system performance.

To place results in perspective, we also calculate a
baseline (labeled as “Baseline” in the plots), which
selects by default all the categories listed in the arti-
cles linked to by the original document. Each base-
line article assigns1/N to each of itsN possible
categories, with categories pointed to by multiple ar-
ticles receiving the summation.

4.2 Automatic Annotation of the Input Text

The second experiment is similar to the first one, ex-
cept that rather than using the manual annotations
of the important concepts in the input document,
we use instead the Wikify! system that automat-
ically identifies these important concepts by using
the method briefly described in Section 2.2. The ar-
ticle links identified by Wikify! are treated in the
same way as the human anchor annotations from the
previous experiment. In this experiment, we have
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an additional parameter, which consists of the per-
centage of links selected by Wikify! out of the total
number of words in the document. We refer to this
parameter as keyRatio. The higher the keyRatio, the
more terms are added, but also the higher the poten-
tial of noise due to mis-disambiguation.

Figures 6, 7 and 8 show the effect of varying the
value of the keyRatio parameter used by Wikify! has
on the precision, recall and F-measure of the system.
Note that in this experiment, we only use the best
setting for the other two parameters as identified in
the previous experiment, namely an initial bias and
a propagation step that include all available nodes,
i.e., both articles and categories.
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Figure 6: Precision for automatic input text annotations
(Wikipedia data set)
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Figure 7: Recall for automatic input text annotations
(Wikipedia data set)

The system’s best performance occurs for a
keyRatio of 0.04 to 0.06, which coincides with the
ratio found optimal in previous experiments using
the Wikify! system (Mihalcea and Csomai, 2007).
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Figure 8: F-measure for automatic input text annotations
(Wikipedia data set)

As before, we also calculate a baseline, which se-
lects by default all the categories listed in the articles
linked to by the original document, with the links
being automatically identified with the Wikify! sys-
tem. The baseline is calculated for a keyRatio of
0.04, which is one of the values that were found to
work well for the ranking system itself and in previ-
ous Wikify! experiments.

Overall, the system manages to find many relevant
topics for the documents in the evaluation data set,
despite the large number of candidate topics (close
to 390,000). Our system exceeds the baseline by a
large margin, demonstrating the usefulness of using
the biased ranking on the encyclopedic graph.

4.3 Article Selection for Computer Science
Texts

In the third experiment, we use again the Wikify!
system to annotate the input documents, but this
time we run the evaluations on a data set consist-
ing of computer science documents. We use the data
set introduced in previous work on topic identifica-
tion (Medelyan and Witten, 2008), where 20 doc-
uments in the field of computer science were inde-
pendently annotated by 15 teams of two computer
science undergraduates. The teams were asked to
read the texts and assign to each of them the title
of the five Wikipedia articles they thought were the
most relevantand the other groups would also se-
lect. Thus, the consistency of the annotations was
an important measure for this data set. (Medelyan
and Witten, 2008) define consistency as a measure
of agreement:

Consistency = 2C
A+B
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whereA andB are the number of terms assigned
by two indexing teams, andC is the number of
terms they have in common. In the annotations ex-
periments reported in (Medelyan and Witten, 2008),
the human teams consistency ranged from 21.4% to
37.1%, with 30.5% being the average.3
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Figure 9: Precision for automatic input text annotations
(Waikato data set)
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Figure 10: Recall for automatic input text annotations
(Waikato data set)

Figures 10, 9, 11 and 12 show the performance
of our system on this data set, by using the Wikify!
annotations for the initial bias, and then propagat-
ing to both articles and categories. The plots also
show a baseline that selects all the articles automat-
ically identified in the original document by using
the Wikify! system with a keyRatio set to 0.04.

3The consistency for one team is measured as the average of
the consistencies with the remaining 14 teams.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  20  40  60  80  100

F
-M

e
a

s
u

re

Top N topics returned

keyRatio= 0.02
keyRatio= 0.04
keyRatio= 0.08
keyRatio= 0.16

Baseline keyRatio= 0.04

Figure 11: F-measure for automatic input text annota-
tions (Waikato data set)
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Figure 12: Consistency for automatic input text annota-
tions (Waikato data set)

When selecting the top five topics returned by our
system (the same number of topics as provided by
the human teams), the average consistency with re-
spect to the 15 human teams was measured at 34.5%,
placing it between the 86% and 93% percentile of
the human participants, with only two human teams
doing better. We can compare this result with the
one reported in previous work for the same data
set. Using a machine learning system, (Medelyan
and Witten, 2008) reported a consistency of 30.5%.
Thus, our result of 34.5% is significantly better, de-
spite the fact that our method is unsupervised.

In a second evaluation, we also considered the
union of all the terms assigned by the 15 teams. On
average, each document was assigned 35.5 differ-
ent terms by the human teams. If allowed to pro-
vide more annotations, our system peaks with a con-
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sistency of 66.6% for the top 25 topics returned.
The system has the ability to identify possible rele-
vant alternative topics using the comprehensive cata-
log of Wikipedia computer science articles and their
possible associations. A human team may not nec-
essarily consider all of the possibilities or even be
aware that some of the articles, possibly known and
used by the other teams, exist.

5 Related Work

The work closest to ours is perhaps the one de-
scribed in (Medelyan and Witten, 2008), where top-
ics relevant to a given document are automatically
selected by using a machine learning system. Unlike
our unsupervised approach, (Medelyan and Witten,
2008) learn what makes a good topic by training on
previously annotated data.

Also related is the Wikify! system concerned
with the automatic annotation of documents with
Wikipedia links (Mihalcea and Csomai, 2007).
However, Wikify! is purely extractive, and thus it
cannot identify important topics or articles that are
not explicitly mentioned in the input text.

Explicit semantic analysis (Gabrilovich and
Markovitch, 2006) was also introduced as a way to
determine the relevancy of the Wikipedia articles
with respect to a given input text. The resulting
vector however is extremely large, and while it was
found useful for the task of text classification with a
relatively small number of categories, it would be
difficult to adapt for topic identification when the
number of possible topics grows beyond the approx-
imately 390,000 under consideration. In a similar
line of work, (Bodo et al., 2007) examined the use
of Wikipedia and latent semantic analysis for the
purposes of text categorization, but reported nega-
tive results when used for the categorization of the
Reuters-21578 dataset.

Others are exploring the use of graph propagation
for deriving semantic information. (Hughes and Ra-
mage, 2007) described the use of a biased PageRank
over the WordNet graph to compute word pair se-
mantic relatedness using the divergence of the prob-
ability values over the graph created by each word.
(Ollivier and Senellart, 2007) describes a method to
determine related Wikipedia article using a Markov
chain derived value called the green measure. Dif-
ferences exist between the PageRank based meth-
ods used as a baseline in their work and the method
proposed here, since our system can use the content

of the article, multiple starting points, and tighter
control of the random jump probability via the bias
value. Finally, (Syed et al., 2008) reported positive
results by using various methods for topic prediction
including the use of text similarity and spreading ac-
tivation. The method was tested by using randomly
selected Wikipedia articles, where in addition to the
categories listed on a Wikipedia page, nearby sub-
suming categories were also included as acceptable.

6 Conclusions and Future Work

In this paper, we introduced a system for automatic
topic identification, which relies on a biased graph
centrality algorithm applied on a richly intercon-
nected encyclopedic graph built from Wikipedia.
Experiments showed that the integration of ency-
clopedic knowledge consistently adds useful infor-
mation when compared to baselines that rely exclu-
sively on the text at hand. In particular, when tested
on a data set consisting of documents manually an-
notated with categories by Wikipedia users, the top-
ics identified by our system were found useful as
compared to the manual annotations. Moreover, in
a second evaluation on a computer science data set,
the system exceeded the performance of previously
proposed machine learning algorithms, which is re-
markable given the fact that our system is unsuper-
vised. In terms of consistency with manual anno-
tations, our system’s performance was found to be
comparable to human annotations, with only two out
of 15 teams scoring better than our system.

The system provides a means to generate a dy-
namic ranking of topics in Wikipedia within a
framework that has the potential to utilize knowl-
edge or heuristics through additional resources (like
ontologies) converted to graph form. This capabil-
ity is not present in resources like search engines
that provide access to a static ranking of Wikipedia.
Future work will examine the integration of addi-
tional knowledge sources and the application of the
method for metadata document annotations.
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Abstract

Many applications in the context of natural
language processing or information retrieval
may be largely improved if they were able to
fully exploit the rich semantic information an-
notated in high-quality, publicly available re-
sources such as the FrameNet and the Word-
Net databases. Nevertheless, the practical use
of similar resources is often biased by the
limited coverage of semantic phenomena that
they provide.

A natural solution to this problem would be to
automatically establish anchors between these
resources that would allow us 1) to jointly use
the encoded information, thus possibly over-
coming limitations of the individual corpora,
and 2) to extend each resource coverage by ex-
ploiting the information encoded in the others.

In this paper, we present a supervised learn-
ing framework for the mapping of FrameNet
lexical units onto WordNet synsets based on
a reduced set of novel and semantically rich
features. The automatically learnt mapping,
which we call MapNet, can be used 1) to ex-
tend frame sets in the English FrameNet, 2)
to populate frame sets in the Italian FrameNet
via MultiWordNet and 3) to add frame labels
to the MultiSemCor corpus. Our evaluation on
these tasks shows that the proposed approach
is viable and can result in accurate automatic
annotations.

1 Introduction

In recent years, the integration of manually-built
lexical resources into NLP systems has received

growing interest. In particular, resources annotated
with the surface realization of semantic roles, like
FrameNet (Baker et al., 1998) or PropBank (Palmer
et al., 2005) have shown to convey an improve-
ment in several NLP tasks, from question answer-
ing (Shen and Lapata, 2007) to textual entailment
(Burchardt et al., 2007) and shallow semantic pars-
ing (Giuglea and Moschitti, 2006). Nonetheless, the
main limitation of such resources is their poor cov-
erage, particularly as regards FrameNet. Indeed, the
latest FrameNet release (v. 1.3) contains 10,195 lex-
ical units (LUs), 3,380 of which are described only
by a lexicographic definition without any example
sentence. In order to cope with this lack of data, it
would be useful to map frame information onto other
lexical resources with a broader coverage. We be-
lieve that WordNet (Fellbaum, 1998), with 210,000
entries in version 3.0, can represent a suitable re-
source for this task. In fact, both FrameNet and
WordNet group together semantically similar words,
and provide a hierarchical representation of the lex-
ical knowledge (in WordNet the relations between
synsets, in FrameNet between frames, see Ruppen-
hofer et al. (2006)). On the other hand, WordNet
provides a more extensive coverage particularly for
adjectives and nouns denoting artifacts and natural
kinds, that are mostly neglected in FrameNet.

In this paper, we present an approach using Sup-
port Vector Machines (SVM) to map FrameNet lex-
ical units to WordNet synsets. The proposed ap-
proach addresses some of the limitations of previous
works on the same task (see for example De Cao
et al. (2008) and Johansson and Nugues (2007)).
Most notably, as we do not train the SVM on a per-
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frame basis, our model is able to cope also with
those frames that have little or no annotated sen-
tences to support the frame description. After learn-
ing a very fast model on a small set of annotated
lexical unit-synset pairs, we can automatically es-
tablish new mappings in never-seen-before pairs and
use them for our applications. We will evaluate the
effect of the induced mappings on two tasks: the au-
tomatic enrichment of lexical unit sets in the English
and Italian FrameNet via MultiWordNet (Pianta et
al., 2002), and the annotation of the MultiSemCor
corpus (Bentivogli and Pianta, 2005) with frame la-
bels.

The discussion is structured as follows: in
Section 2 we review the main characteristics of
FrameNet and WordNet; in Section 3 we discuss
previous attempts to establish a mapping between
them; in Section 4 we describe our supervised ap-
proach to map lexical units onto synsets; Section 5
details the dataset that we employed for our experi-
ments; Section 6 describes the novel features that we
used to characterize the mapping; Section 7 details
the results of our experiments; in Section 8 we ap-
ply the mapping to three resource annotation tasks;
finally, in Section 9 we draw our conclusions.

2 FrameNet and WordNet

The FrameNet database (Baker et al. (1998), Fill-
more et al. (2003)) is an English lexical resource
based on the description of some prototypical sit-
uations, the frames, and the frame-evoking words
or expressions associated to them, the lexical units
(LU). Every frame corresponds to a scenario involv-
ing a set of participants, the frame elements (FEs),
that are typically the semantic arguments shared by
all LUs in a frame.

We report in Table 1 the information recorded
in FrameNet for the CAUSE TO WAKE frame. In
the first row there is the frame definition with the
relevant frame elements, namely AGENT, CAUSE,
SLEEPER and SLEEP STATE. Then there is the list
of all lexical units evoking the frame and the corre-
sponding part of speech. Note that, differently from
WordNet synsets, a frame can contain LUs with dif-
ferent PoS as well as antonymous words. In the
last row, an example for each frame element is re-
ported. The lexical unit is underlined, while the con-

Frame: CAUSE TO WAKE

D
ef

. An AGENT or CAUSE causes a SLEEPER to
transition from the SLEEP STATE to wakeful
consciousness.

L
U

s awaken.v, get up.v, rouse.v, wake.v, wake up.v
singe.v, sizzle.v, stew.v

FE
s AGENT We tried to rouse Peter.

CAUSE The rain woke the children.
SLEEPER Neighbors were awakened by screams.
SL STATE He woke Constance from her doze.

Table 1: Frame CAUSE TO WAKE

stituent bearing the FE label is written in italics. The
FrameNet resource is corpus-based, i.e. every lexi-
cal unit should be instantiated by at least one ex-
ample sentence. Besides, every lexical unit comes
with a manual lexicographic definition. The latest
database release contains 795 frame definitions and
10,195 lexical units, instantiated through approxi-
mately 140.000 example sentences. Despite this, the
database shows coverage problems when exploited
for NLP tasks, and is still being extended by the
Berkeley group at ICSI.

WordNet (Fellbaum, 1998) is a lexical resource
for English based on psycholinguistics principles
and developed at Princeton University. It has been
conceived as a computational resource aimed at im-
proving some drawbacks of traditional dictionaries
such as the circularity of definitions and the ambigu-
ity of sense references. At present, it covers the ma-
jority of nouns, verbs, adjectives and adverbs in the
English language, organized in synonym sets called
synsets, which correspond to concepts. WordNet
also includes a rich set of semantic relations across
concepts, such as hyponymy, entailment, antonymy,
similar-to, etc. Each synset is encoded as a set of
synomyms having the same part of speech and de-
scribed by a definition or gloss. In some cases, one
or more example sentences may also be reported.
The Princeton English WordNet has also been aug-
mented with domain labels (Magnini and Cavaglià,
2000) that group synsets into homogeneous clusters
in order to reduce polysemy in the database.

We believe that mapping FrameNet LUs to Word-
Net synsets would have at least three different ad-
vantages: 1) for the English FrameNet, it would au-
tomatically increase the number of LUs for frame by
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importing all synonyms from the mapped synset(s),
and would allow to exploit the semantic and lex-
ical relations in WordNet to enrich the informa-
tion encoded in FrameNet. This would help cop-
ing with coverage problems and disambiguating the
LU senses. 2) For WordNet, it would be possible
to add a semantic layer between the synset level
and the domain level represented by frame rela-
tions, and to enrich the synsets with a computa-
tional description of the situation they refer to to-
gether with the semantic roles involved. 3) Since
frames are mostly defined at conceptual level, the
FrameNet model is particularly suitable for cross-
lingual induction (Boas, 2005). In this framework,
the FrameNet-WordNet mapping could help mod-
elling frame-based resources for new languages us-
ing minimal supervision. In fact, the availability of
multilingual resources like MultiWordNet (Pianta et
al., 2002) and EuroWordNet (Vossen, 1998) allows
to easily populate frame sets for new languages with
reduced human effort and near-manual quality by
importing all lemmas from the mapped synsets.

3 Related work

Several experiments have been carried out to de-
velop a FrameNet-WordNet mapping and test its
applications. Shi and Mihalcea (2005) described
a semi-automatic approach to exploit VerbNet as a
bridge between FrameNet and WordNet for verbs,
using synonym and hyponym relations and simi-
larity between Levin’s verb classes and FrameNet
frames. Their mapping was used to develop a rule-
based semantic parser (Shi and Mihalcea, 2004) as
well as to detect target words and assign frames for
verbs in an open text (Honnibal and Hawker, 2005).

Burchardt et al. (2005) presented a rule-based
system for the assignment of FrameNet frames by
way of a “detour via WordNet”. They applied
a WordNet-based WSD system to annotate lexical
units in unseen texts with their contextually de-
termined WordNet synsets and then exploited syn-
onyms and hypernyms information to assign the best
frame to the lexical units. The system was inte-
grated into the SALSA RTE system for textual en-
tailment (Burchardt et al., 2007) to cope with sparse-
data problems in the automatic assignment of frame
labels.

Johansson and Nugues (2007) created a feature
representation for every WordNet lemma and used
it to train an SVM classifier for each frame that tells
whether a lemma belongs to the frame or not. The
best-performing feature representation was built us-
ing the sequence of unique identifiers for each synset
in its hypernym tree and weigthing the synsets ac-
cording to their relative frequency in the SemCor
corpus. They used the mapping in the Semeval-2007
task on frame-semantic structure extraction (Baker
et al., 2007) in order to find target words in open
text and assign frames.

Crespo and Buitelaar (2008) carried out an auto-
matic mapping of medical-oriented frames to Word-
Net synsets applying a Statistical Hypothesis Test-
ing to select synsets attached to a lexical unit that
were statistically significant using a given refer-
ence corpus. The mapping obtained was used
to expand Spanish FrameNet using EuroWordNet
(Vossen, 1998) and evaluation was carried out on the
Spanish lexical units obtained after mapping.

Given a set of lexical units, De Cao et al. (2008)
propose a method to detect the set of suitable Word-
Net senses able to evoke a frame by applying a simi-
larity function that exploits different WordNet infor-
mation, namely conceptual density for nouns, syn-
onymy and co-hyponymy for verbs and synonymy
for adjectives. The mapping approach was applied
also to LU induction for the English FrameNet and
for Italian frames via MultiWordNet.

4 Problem formulation

Our objective is to be able to assign to every lex-
ical unit l, belonging to a frame Fi defined in the
FrameNet database, one or more WordNet senses
that best express the meaning of l. More specifically,
for every l ∈ Fi, we consider the set of all WordNet
senses where l appears, CandSet, and then find the
best WordNet sense(s) bests ⊂ CandSet that express
the meaning of l.

For example, the lexical unit rouse.v belonging to
the CAUSE TO WAKE frame, is defined in FrameNet
as “bring out of sleep; awaken”. Its CandSet com-
prises 4 senses1: 1# bestir, rouse (become active);
2# rout out, drive out, force out, rouse (force or
drive out); #3 agitate, rouse, turn on, charge, com-

1The gloss is reported between parenthesis
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move, excite, charge up (cause to be agitated, ex-
cited or roused); #4 awaken, wake, waken, rouse,
wake up, arouse (cause to become awake or con-
scious). In this example, bests = {#4} for rouse.v
in CAUSE TO WAKE.

We aim at creating a mapping system that
can achieve a good accuracy also with poorly-
documented lexical units and frames. In fact, we be-
lieve that under real-usage conditions, the automatic
induction of LUs is typically required for frames
with a smaller LU set, especially for those with only
one element. In the FrameNet database (v. 1.3), 33
frames out of 720 are described only by one lex-
ical unit, and 63 are described by two. Further-
more, more than 3,000 lexical units are character-
ized only by the lexicographic definition and are
not provided with example sentences. For this rea-
son, we suggest an approach that makes also use
of usually unexploited information in the FrameNet
database, namely the definition associated to every
lexical unit, and disregards example sentences.

This is the main point of difference between
our and some previous works, e.g. Johansson and
Nugues (2007) and De Cao et al. (2008), where un-
supervised approaches are proposed which strongly
rely either on the number of lexical units in a frame
or on the example sentences available for l in the
FrameNet corpus. We claim that the relative short
time necessary to annotate a small dataset of frame-
synset pairs will result in a more reliable mapping
system and, as a consequence, in consistent time
savings when we actually try to use the mappings
for some tasks. The ability to cope with different
cases while retaining a good accuracy will allow to
bootstrap the mapping process in many cases where
other approaches would have failed due to lack of
training data.

To this end, we can train a binary classifier
that, given l and CandSet, for each pair 〈l, s〉,
s ∈ CandSet, delivers a positive answer if s ∈
bests, and a negative one otherwise. To follow on
the previous example, for rouse.v we would have
4 classifier examples, i.e. the pairs 〈rouse.v,#1〉,
〈rouse.v,#2〉, 〈rouse.v,#3〉 and 〈rouse.v,#4〉. Of
these, only the last would be considered a positive
instance. As a learning framework, we decided to
use SVMs due to their classification accuracy and
robustness to noisy data (Vapnik, 1998).

5 Dataset description

In order to train and test the classifier, we created
a gold standard by manually annotating 2,158 LU-
synset pairs as positive or negative examples. We
don’t have data about inter-annotator agreement be-
cause the dataset was developed only by one annota-
tor, but De Cao et al. (2008) report 0.90 as Cohen’s
Kappa computed over 192 LU-synset pairs for the
same mapping task. This confirms that senses and
lexical units are highly correlated and that the map-
ping is semantically motivated.

The annotation process can be carried out in rea-
sonable time. It took approximately two work days
to an expert annotator to manually annotate the
2,158 pairs that make up our gold standard. The lexi-
cal units were randomly selected from the FrameNet
database regardless of their part of speech or amount
of annotated data in the FrameNet database. For
each lexical unit, we extracted from WordNet the
synsets where the LU appears, and for each of them
we assigned a positive label in case the LU-synset
pairs share the same meaning, and a negative label
otherwise. Statistics about the dataset are reported
in Table 2.

N. of LU-synset pairs 2,158
N. of lexical units 617
Verbal lexical units 39%
Nominal lexical units 51%
Adjectival lexical units 9%
Adverbial lexical units <1%
Targeted frames 386
Pairs annotated as positive 32%
Pairs annotated as negative 68%
Average polysemy 3.49
LUs with one candidate synset 204
LUs with 10 or more cand. synsets 32

Table 2: Statistics on the dataset

The 386 frames that are present in the dataset rep-
resent about one half of all lexicalized frames in
the FrameNet database. This proves that, despite
the limited size of the dataset, it is well representa-
tive of FrameNet characteristics. This is confirmed
by the distribution of the part of speech. In fact,
in the FrameNet database about 41% of the LUs
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are nouns, 40% are verbs, 17% are adjectives and
<1% are adverbs (the rest are prepositions, which
are not included in our experiment because they are
not present in WordNet). In our dataset, the per-
centage of nouns is higher, but the PoS ranking by
frequency is the same, with nouns being the most
frequent PoS and adverbs the less represented. The
average polysemy corresponds to the average num-
ber of candidate synsets for every LU in the dataset.
Note that the high number of lexical units with only
one candidate does not imply a more straightforward
mapping, because in some cases the only candidate
represents a negative example. In fact, a LU could
be encoded in a frame that does not correspond to
the sense expressed by the synset.

6 Feature description

For every LU-synset pair in the gold standard, we
extracted a set of features that characterize different
aspects of the mapping. In the remainder, we detail
the meaning as well as the feature extraction proce-
dure of each of them.

Stem overlap Both WordNet glosses and LU def-
initions in FrameNet are manually written by lex-
icographers. We noticed that when they share the
same sense, they show high similarity, and some-
times are even identical. For example, the defini-
tion of thicken in the Change of consistency frame
is “become thick or thicker”, which is identical to
the WordNet gloss of synset n. v#00300319. The
thicken lemma occurs in three WordNet synsets, and
in each of them it is the only lemma available, so no
other information could be exploited for the sense
disambiguation.

We believe that this information could help in the
choice of the best candidate synset, so we stemmed
all the words in the synset gloss and in the lexical
unit definition and measured their overlap. As fea-
tures, we use the ratio between the number of over-
lapping words and the number of words in the defi-
nition, both for the gloss and the LU description.

Prevalent Domain and Synset Since a frame rep-
resents a prototypical situation evoked by the set
of its lexical units, our intuition is that it should
be possible to assign it to a WordNet domain, that
groups homogeneous clusters of semantically simi-

lar synsets (see Section 2).
Given the LU-synset pair 〈l, s〉, l ∈ Fi, s ∈

CandSet, we extract all the lexical units in Fi and
then build a set AllCandSet of pairs 〈sj , cj〉, where
sj is a synset in which at least one li ∈ Fi appears,
and cj is the count of lexical units that are found in
sj .

We exploit the information conveyed by AllCan-
dSet in two ways: i) if there is a prevalent Word-
Net domain that characterizes the majority of the
synsets in AllCandSet, and s ∈ CandSet belongs
to that same domain, we add a boolean feature to
the feature vector representing 〈l, s〉; ii) if s is the
synset with the highest count in AllCandSet, i.e. if
s = sj and cj > ci∀〈sj , cj〉 ∈ AllCandSet, i 6= j,
then we add another boolean feature to encode this
information.

Cross-lingual parallelism Our idea is that, if an
English lexical unit and its Italian translation belong
to the same frame, they are likely to appear also in
the same MultiWordNet synset, and the latter would
be a good candidate for mapping. In fact, in Multi-
WordNet the Italian WordNet is strictly aligned with
the Princeton WordNet 1.6, with synsets having the
same id for both languages, and also semantic re-
lations are preserved in the multilingual hierarchy.
Since no Italian FrameNet is available yet, we ex-
tended the parallel English-Italian corpus annotated
on both sides with frame information described in
Tonelli and Pianta (2008) by adding and annotating
400 new parallel sentences. The final corpus con-
tains about 1,000 pairs of parallel sentences where
the English and the Italian lexical unit belong to the
same frame.

Given a pair 〈l, s〉, we check if l appears also in
the corpus with the frame label Fi and extract its
Italian translation lit. If lit appears also in the Italian
version of synset s in MultiWordNet, we consider s
as a good candidate for the mapping of l and encode
this information as a binary feature.

Simple synset-frame overlap Intuitively, the
more lemmas a frame and a synset have in common,
the more semantically similar they are. In order to
take into account this similarity in our feature vec-
tor, given the pair 〈l, s〉, l ∈ Fi, we extract all lexical
units in Fi and all lemmas in s and we compute the
number of overlapping elements. Then we divide
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the value by the number of synsets where the same
overlapping element(s) occur.

As an example, the words tank and tank car in
the Vehicle frame, occur together only in the fourth
synset related to tank, which therefore will have a
higher value for this feature.

Extended synset-frame overlap This feature is a
generalization of overlapping value described above.
In fact, we noticed that the hypernym information
in WordNet can help disambiguating the synsets.
Therefore, we take into account not only the over-
laps according to the previous criterion, but also the
number of overlapping words between the lexical
units in a frame and the hypernyms of a synset. For
example, the party.n lexical unit in the AGGREGATE

frame has 5 senses in WordNet. According to the
previous criterion, there is no overlap between the
LUs in the frame and the lemmas in any of the five
synsets. Instead, if we look at the direct hypernym
relation of party, we find that sense #3 is also de-
scribed as set, circle, band, that are also lexical units
of AGGREGATE.

In those cases where the hypernym relation is not
defined, e.g. adjectives, we used the similar-to rela-
tion.

7 Experimental setup and evaluation

To evaluate our methodology we carried out a 10-
fold cross validation using the available data, split-
ting them in 10 non-overlapping sets. For each itera-
tion, 70% of the data was used for training, 30% for
testing. All the splits were generated so as to main-
tain a balance between positive and negative exam-
ples in the training and test sets.

We used the SVM optimizer SVM-
Light2 (Joachims, 1999), and applied polynomial
kernels (poly) of different degrees (i.e. 1 through
4) in order to select the configuration with the best
generalization capabilities. The accuracy is mea-
sured in terms of Precision, Recall and F1 measure,
i.e. the harmonic average between Precision and
Recall. For the sake of annotation, it is important
that an automatic system be very precise, thus not
producing wrong annotations. On the other hand,
the higher the recall, the larger the amount of data
that the system will be able to annotate.

2Available at http://svmlight.joachims.org/

The macro-average of the classifier accuracy for
the different configurations is shown in Table 3. We
report results for linear kernel (i.e. poly 1), maxi-
mizing recall and f-measure, and for polynomial ker-
nel of degree 2 (i.e. poly 2), scoring the highest pre-
cision. In general , we notice that all our models
have a higher precision than recall, but overall are
quite balanced. Different polynomial kernels (i.e.
conjunction of features) do not produce very rele-
vant differences in the results, suggesting that the
features that we employed encode significant infor-
mation and have a relevance if considered indepen-
dently.

As a comparison, we also carried out the same
evaluation by setting a manual threshold and con-
sidering a LU-synset pair as a positive example if
the sum of the feature values was above the thresh-
old. We chose two different threshold values, the
first (Row 1 in Table 3) selected so as to have com-
parable precision with the most precise SVM model
(i.e. poly2), the second (Row 2) selected to have
recall comparable with poly1, i.e. the SVM model
with highest recall. In the former case, the model has
a recall that is less than half than poly2, i.e. 0.214
vs. 0.569, meaning that such model would establish
a half of the mappings while making the same per-
centage of mistakes. In the latter, the precision of
the SVM classifier is 0.114 points higher, i.e. 0.794
vs. 0.680, meaning the SVM can retrieve as many
mappings but making 15% less errors.

In order to investigate the impact of different fea-
tures on the classifier performance, we also consid-
ered three different groups of features separately:
the ones based on stem overlap, those computed
for prevalent domain and synset, and the features
for simple and extended frame – synset overlap.
We did not take into account cross-lingual paral-
lelism because it is one single feature whose cover-
age strongly relies on the parallel corpus available.
As a consequence, it is not possible to test the fea-
ture in isolation due to data sparseness.

Results are shown in Table 3, in the second group
of rows. Also in this case, we carried out a 10-
fold cross validation using a polynomial kernel of
degree 2. The stem overlap features, which to our
best knowledge are an original contribution of our
approach, score the highest recall among the three
groups. This confirms our intuition that LU defini-
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tions and WordNet glosses can help extending the
number of mapped LUs, including those that are
poorly annotated. For instance, if we consider the
KNOT CREATION frame, having only tie.v as LU,
the features about prevalent domain & synset and
about synset-frame overlap would hardly be infor-
mative, while stem overlap generally achieves a con-
sistent performance regardless of the LU set. In
fact, tie.v is correctly mapped to synset v#00095054
based on their similar definition (respectively “to
form a knot” and “form a knot or bow in”). Best
precision was scored by the feature group consider-
ing prevalent domain & synset, which are also new
features introduced by our approach. The positive
effect of combining all features is clearly shown by
comparing the results obtained with individual fea-
ture groups against the figures in the row labeled
poly2.

Prec. Recall F1
Man. thresh. (P) 0.789 0.214 0.337
Man. thresh. (F1) 0.680 0.662 0.671
Stem Overlap 0.679 0.487 0.567
Prev.Dom.& Syn. 0.756 0.434 0.551
Syn.- Frame Overlap 0.717 0.388 0.504
poly1 0.761 0.613 0.679
poly2 0.794 0.569 0.663

Table 3: Mapping evaluation

8 MapNet and its applications

Since we aim at assigning at least one synset to ev-
ery lexical unit in FrameNet, we considered all the
frames and for every LU in the database we created
a list of LU-synset pairs. We re-trained the clas-
sifier using the whole annotated gold standard and
classified all the candidate pairs. The mapping pro-
duced between the two resources, that we call Map-
Net, comprises 5,162 pairs. Statistics on MapNet are
reported in table 4.

About one thousand lexical units in FrameNet
have no candidate synsets because the lemma is not
present in WordNet. The remaining LUs have 3.69
candidate synsets each on average, similarly to the
average polysemy reported for the gold standard (see
Table 2). This confirms our hypothesis that the data
used for training are well representative of the char-

N. of LUs in FrameNet 10,100
N. of LUs with at least one syn.cand. 9,120
N. of LU-synset candidate pairs 33,698
N. of mapped pairs 5,162

Table 4: Statistics on the mapping

acteristics of the whole resource. We expect about
80% of these mappings to be correct, i.e. in line
with the precision of the classifier.

8.1 Automatic FrameNet extension

MapNet can be easily exploited to automatically ex-
tend FrameNet coverage, in particular to extend the
set of lexical units for each frame. In fact, we can
assume that all lemmas in the mapped synsets have
the same meaning of the LUs in the corresponding
frames. We use MapNet to extract from WordNet
the lemmas in the mapped synsets and add them to
the frames.

For English FrameNet, we can acquire 4,265 new
lexical units for 521 frames. In this way, we would
extend FrameNet size by almost 42%. In the ran-
dom evaluation of 100 newly acquired LUs belong-
ing to 100 different frames, we assessed a precision
of 78%. For the Italian side, we extract 6,429 lexi-
cal units for 561 frames. Since no Italian FrameNet
has been developed yet, this would represent a first
attempt to create this resource by automatically pop-
ulating the frames. We evaluate the content of 15
complete frames containing 191 Italian LUs. The
assigned LUs are correct in 88% of the considered
cases, which represent a promising result w.r.t. the
unsupervised creation of Italian FrameNet.

The difference in the evaluation for the two lan-
guages most likely lies in the smaller number of
synsets on the Italian side of MultiWordNet if com-
pared to the English, which results in less ambigu-
ity. Furthermore, we should consider that the task
for Italian is easier than for English, since in the for-
mer case we are building a resource from scratch,
while in the latter we are extending an already exist-
ing resource with lexical units which are most likely
peripheral with respect to those already present in
the database.
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8.2 Frame annotation of MultiSemCor

MultiSemCor (Bentivogli and Pianta, 2005) is an
English/Italian parallel corpus, aligned at word
level and annotated with PoS, lemma and Word-
Net synsets. The parallel corpus was created start-
ing from the SemCor corpus, which is a subset of
the English Brown corpus containing about 700,000
running words. The corpus was first manually trans-
lated into Italian. Then, the procedure of transferring
word sense annotations from English to Italian was
carried out automatically.

We apply MapNet to enrich the corpus with frame
information. We believe that this procedure would
be interesting from different point of views. Not
only we would enrich the resource with a new anno-
tation layer, but we would also automatically acquire
a large set of English and Italian sentences having a
lexical unit with a frame label. For the English side,
it is a good solution to automatically extract a dataset
with frame information and train, for example, a ma-
chine learning system for frame identification. For
the Italian side, it represents a good starting point for
the creation of a large annotated corpus with frame
information, the base for a future Italian FrameNet.

MultiSemCor contains 12,843 parallel sentences.
If we apply MapNet to the corpus, we produce
27,793 annotated instances in English and 23,872 in
Italian, i.e. about two lexical units per sentence. The
different amount of annotated sentences depends on
the fact that in MultiSemCor some synset annota-
tions have not been transferred from English to Ital-
ian. From both sides of the resulting corpus, we
randomly selected 200 sentences labeled with 200
different frames, and evaluated the annotation qual-
ity. As for the English corpus, 75% of the sen-
tences was annotated with the correct frame label,
while on the Italian side they were 70%. This re-
sult is in line with the expectations, since Map-
Net was developed with 0.79 precision. Besides,
synset annotation on the English side of MultiSem-
Cor was carried out by hand, while annotation in
Italian was automatically acquired by transferring
the information from the English corpus (precision
0.86). This explains why the resulting annotation
for English is slightly better than for Italian. In some
cases, the wrongly annotated frame was strictly con-
nected to the right one, i.e. APPLY HEAT instead

of COOKING CREATION and ATTACHING instead
of INCHOATIVE ATTACHING.

9 Conclusions

We proposed a new method to map FrameNet LUs
to WordNet synsets using SVM with minimal super-
vision effort.

To our best knowledge, this is the only approach
to the task that exploits features based on stem over-
lap between LU definition and synset gloss and
that makes use of information about WordNet do-
mains. Differently from other models, the SVM
is not trained on a per-frame basis and we do not
rely on the number of the annotated sentences for a
LU in the FrameNet corpus, thus our mapping al-
gorithm performs well also with poorly-annotated
LUs. After creating MapNet, the mapping be-
tween FrameNet and WordNet, we applied it to three
tasks: the automatic induction of new LUs for En-
glish FrameNet, the population of frames for Italian
FrameNet and the annotation of the MultiSemCor
corpus with frame information. A preliminary eval-
uation shows that the mapping can significantly re-
duce the manual effort for the development and the
extension of FrameNet-like resources, both in the
phase of corpus annotation and of frame population.

In the future, we plan to improve the algorithm
by introducing syntactic features for assessing simi-
larity between LU definitions and WordNet glosses.
We also want to merge all information extracted and
collected for Italian FrameNet and deliver a seed
version of the resource to be validated. Finally, we
plan to extend the mapping to all languages included
in MultiWordNet, i.e. Spanish, Portuguese, Hebrew
and Romanian.
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