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Abstract

In this paper, we attempt to explain the
emergence of the linguistic diversity that
exists across the consonant inventories of
some of the major language families of the
world through a complex network based
growth model. There is only a single pa-
rameter for this model that is meant to
introduce a small amount of randomness
in the otherwise preferential attachment
based growth process. The experiments
with this model parameter indicates that
the choice of consonants among the lan-
guages within a family are far more pref-
erential than it is across the families. Fur-
thermore, our observations indicate that
this parameter might bear a correlation
with the period of existence of the lan-
guage families under investigation. These
findings lead us to argue that preferential
attachement seems to be an appropriate
high level abstraction for language acqui-
sition and change.

1 Introduction

In one of their seminal papers (Hauser et al.,
2002), Noam Chomsky and his co-authors re-
marked that if a Martian ever graced our planet
then it would be awe-struck by the unique abil-
ity of the humans to communicate among them-
selves through the medium of language. How-
ever, if our Martian naturalist were meticulous
then it might also note the surprising co-existence
of 6700 such mutually unintelligible languages
across the world. Till date, the terrestrial scientists
have no definitive answer as to why this linguistic
diversity exists (Pinker, 1994). Previous work in

the area of language evolution has tried to explain
the emergence of this diversity through two differ-
ent background models. The first one assumes that
there is a set of predefined language configurations
and the movement of a particular language on this
landscape is no more than a random walk (Tom-
lin, 1986; Dryer, 1992). The second line of re-
search attempts to relate the ecological, cultural
and demographic parameters with the linguistic
parameters responsible for this diversity (Arita and
Taylor, 1996; Kirby, 1998; Livingstone and Fyfe,
1999; Nettle, 1999). From the above studies, it
turns out that linguistic diversity is an outcome of
the language dynamics in terms of its evolution,
acquisition and change.

In this work, we attempt to investigate the di-
versity that exists across the consonant inventories
of the world’s languages through an evolutionary
framework based on network growth. The use of
a network based model is motivated from the fact
that in the recent years, complex networks have
proved to be an extremely suitable framework for
modeling and studying the structure and dynam-
ics of linguistic systems (Cancho and Solé, 2001;
Dorogovtsev and Mendes, 2001; Cancho and Solé,
2004; Solé et al., 2005).

Along the lines of the study presented
in (Choudhury et al., 2006), we model the struc-
ture of the inventories through a bipartite network,
which has two different sets of nodes, one la-
beled by the languages and the other by the con-
sonants. Edges run in between these two sets
depending on whether a particular consonant is
found in a particular language. This network
is termed the Phoneme–Language Network or
PlaNet in (Choudhury et al., 2006). We construct
five such networks that respectively represent the
consonant inventories belonging to the five ma-
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jor language families namely, the Indo-European
(IE-PlaNet), the Afro-Asiatic (AA-PlaNet), the
Niger-Congo (NC-PlaNet), the Austronesian (AN-
PlaNet) and the Sino-Tibetan (ST-PlaNet).

The emergence of the distribution of occurrence
of the consonants across the languages of a fam-
ily can be explained through a growth model for
the PlaNet representing the family. We employ the
preferential attachment based growth model intro-
duced in (Choudhury et al., 2006) and later ana-
lytically solved in (Peruani et al., 2007) to explain
this emergence for each of the five families. The
model involves a single parameter that is essen-
tially meant to introduce randomness in the oth-
erwise predominantly preferential growth process.
We observe that if we combine the inventories for
all the families together and then attempt to fit this
new data with our model, the value of the param-
eter is significantly different from that of the in-
dividual families. This indicates that the dynam-
ics within the families is quite different from that
across them. There are possibly two factors that
regulate this dynamics: the innate preference of
the speakers towards acquiring certain linguistic
structures over others and shared ancestry of the
languages within a family.

The prime contribution of this paper lies in the
mathematical model that naturally captures and
quantifies the diversification process of the lan-
guage inventories. This diversification, which is
arguably an effect of language acquisition and
change, can be viewed as a manifestation of the
process of preferential attachment at a higher level
of abstraction.

The rest of the paper is laid out as follows. Sec-
tion 2 states the definition of PlaNet, briefly de-
scribes the data source and outlines the construc-
tion procedure for the five networks. In section 3
we review the growth model for the networks. The
experiments and the results are explained in the
next section. Section 5 concludes the paper by ex-
plaining how preferential attachment could possi-
bly model the phenomena of language acquisition,
change and evolution.

2 Definition and Construction of the
Networks

In this section, we revisit the definition of PlaNet,
discuss briefly about the data source, and explain
how we constructed the networks for each of the
families.

Figure 1: Illustration of the nodes and edges of
PlaNet.

2.1 Definition of PlaNet

PlaNet is a bipartite graph G = 〈 VL,VC ,Epl 〉 con-
sisting of two sets of nodes namely, VL (labeled
by the languages) and VC (labeled by the conso-
nants); Epl is the set of edges running between VL

and VC . There is an edge e ∈ Epl from a node
vl ∈ VL to a node vc ∈ VC iff the consonant c is
present in the inventory of the language l. Figure 1
illustrates the nodes and edges of PlaNet.

2.2 Data Source

We use the UCLA Phonological Segment Inven-
tory Database (UPSID) (Maddieson, 1984) as the
source of data for this work. The choice of this
database is motivated by a large number of typo-
logical studies (Lindblom and Maddieson, 1988;
Ladefoged and Maddieson, 1996; de Boer, 2000;
Hinskens and Weijer, 2003) that have been car-
ried out on it by earlier researchers. It is a well
known fact that UPSID suffers from several prob-
lems, especially those involving representational
issues (Vaux and Samuels, 2005). Therefore,
any analysis carried on UPSID and the inferences
drawn from them are subject to questions. How-
ever, the current analysis requires a large amount
of segment inventory data and to the best of our
knowledge UPSID is the biggest database of this
kind. Moreover, we would like to emphasize that
the prime contribution of this work lies in the
mathematical modeling of the data rather than the
results obtained, which, as we shall see shortly, are
not very surprising or novel. The current model
applied to a different database of segment inven-
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tories may lead to different results, though we be-
lieve that the basic trends will remain similar. In
essence, the results described here should be taken
as indicative and not sacrosanct.

There are 317 languages in the database with
541 consonants found across them. From these
data we manually sort the languages into five
groups representing the five families. Note that we
included a language in any group if and only if we
could find a direct evidence of its presence in the
corresponding family. A brief description of each
of these groups and languages found within them
are listed below (Haspelmath et al., 2005; Gordon,
2005).
Indo-European: This family includes most of the
major languages of Europe and south, central and
south-west Asia. Currently, it has around 3 bil-
lion native speakers, which is largest among all
the recognized families of languages in the world.
The total number of languages appearing in this
family is 449. The earliest evidences of the Indo-
European languages have been found to date 4000
years back.
Languages – Albanian, Lithuanian, Breton, Irish,
German, Norwegian, Greek, Bengali, Hindi-
Urdu, Kashmiri, Sinhalese, Farsi, Kurdish, Pashto,
French, Romanian, Spanish, Russian, Bulgarian.
Afro-Asiatic: Afro-Asiatic languages have about
200 million native speakers spread over north,
east, west, central and south-west Africa. This
family is divided into five subgroups with a total of
375 languages. The proto-language of this family
began to diverge into separate branches approxi-
mately 6000 years ago.
Languages – Shilha, Margi, Angas, Dera, Hausa,
Kanakuru, Ngizim, Awiya, Somali, Iraqw, Dizi,
Kefa, Kullo, Hamer, Arabic, Amharic, Socotri.
Niger-Congo: The majority of the languages that
belong to this family are found in the sub-Saharan
parts of Africa. The number of native speakers
is around 300 million and the total number of
languages is 1514. This family descends from a
proto-language, which dates back 5000 years.
Languages – Diola, Temne, Wolof, Akan, Amo,
Bariba, Beembe, Birom, Cham, Dagbani, Doayo,
Efik, Ga, Gbeya, Igbo, Ik, Koma, Lelemi, Senadi,
Tampulma, Tarok, Teke, Zande, Zulu, Kadugli,
Moro, Bisa, Dan, Bambara, Kpelle.
Austronesian: The languages of the Austronesian
family are widely dispersed throughout the islands
of south-east Asia and the Pacific. There are 1268

Networks |VL| |VC | |Epl|
IE-PlaNet 19 148 534

AA-PlaNet 17 123 453
NC-PlaNet 30 135 692
AN-PlaNet 12 82 221
ST-PlaNet 9 71 201

Table 1: Number of nodes and edges in the five
bipartite networks corresponding to the five fami-
lies.

languages in this family, which are spoken by a
population of 6 million native speakers. Around
4000 years back it separated out from its ancestral
branch.
Languages – Rukai, Tsou, Hawaiian, Iai, Adz-
era, Kaliai, Roro, Malagasy, Chamorro, Tagalog,
Batak, Javanese.
Sino-Tibetan: Most of the languages in this fam-
ily are distributed over the entire east Asia. With
a population of around 2 billion native speakers it
ranks second after Indo-European. The total num-
ber of languages in this family is 403. Some of the
first evidences of this family can be traced 6000
years back.
Languages – Hakka, Mandarin, Taishan, Jingpho,
Ao, Karen, Burmese, Lahu, Dafla.

2.3 Construction of the Networks

We use the consonant inventories of the languages
enlisted above to construct the five bipartite net-
works – IE-PlaNet, AA-PlaNet, NC-PlaNet, AN-
PlaNet and ST-PlaNet. The number of nodes and
edges in each of these networks are noted in Ta-
ble 1.

3 The Growth Model for the Networks

As mentioned earlier, we employ the growth
model introduced in (Choudhury et al., 2006) and
later (approximately) solved in (Peruani et al.,
2007) to explain the emergence of the degree dis-
tribution of the consonant nodes for the five bipar-
tite networks. For the purpose of readability, we
briefly summarize the idea below.
Degree Distribution: The degree of a node v, de-
noted by k, is the number of edges incident on
v. The degree distribution is the fraction of nodes
pk that have a degree equal to k (Newman, 2003).
The cumulative degree distribution Pk is the frac-
tion of nodes having degree greater than or equal
to k. Therefore, if there are N nodes in a network
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then,

Pk =
N∑

k=k′
pk′ (1)

Model Description: The model assumes that the
size of the consonant inventories (i.e., the degree
of the language nodes in PlaNet) are known a pri-
ori.

Let the degree of a language node Li ∈ VL

be denoted by di (i.e., di refers to the inventory
size of the language Li in UPSID). The conso-
nant nodes in VC are assumed to be unlabeled, i.e,
they are not marked by the articulatory/acoustic
features (see (Trubetzkoy, 1931) for further refer-
ence) that characterize them. In other words, the
model does not take into account the phonetic sim-
ilarity among the segments. The nodes L1 through
L317 are sorted in the ascending order of their de-
grees. At each time step a node Lj , chosen in
order, preferentially gets connected to dj distinct
nodes (call each such node C) of the set VC . The
probability Pr(C) with which the node Lj gets
connected to the node C is given by,

Pr(C) =
k + ε∑

∀C′ (k
′ + ε)

(2)

where k is the current degree of the node C, C
′

represents the nodes in VC that are not already
connected to Lj and ε is the model parameter that
is meant to introduce a small amount of random-
ness into the growth process. The above steps are
repeated until all the language nodes Lj ∈ VL get
connected to dj consonant nodes.

Intuitively, the model works as follows: If a
consonant is very frequently found in the invento-
ries of the languages, then there is a higher chance
of that consonant being included in the inventory
of a “new language”. Here the term “new lan-
guage” can be interpreted either as a new and hith-
erto unseen sample from the universal set of lan-
guages, or the formation of a new language due
to some form of language change. The param-
eter ε on the other hand ensures that the conso-
nants which are found in none of the languages
from the current sample also have a chance of be-
ing included in the new language. It is similar to
the add-α smoothing used to avoid zero probabil-
ities while estimating probability distributions. It
is easy to see that for very large values of ε the fre-
quency factor will play a very minor role and the
consonants will be chosen randomly by the new
language, irrespective of its present prevalence. It

is natural to ask why and how this particular pro-
cess would model the growth of the language in-
ventories. We defer this question until the last sec-
tion of the paper, and instead focus on some empir-
ical studies to see if the model can really explain
the observed data.

Peruani et al. (2007) analytically derived an ap-
proximate expression for the degree distribution of
the consonant nodes for this model. Let the aver-
age consonant inventory size be denoted by µ and
the number of consonant nodes be N. The solu-
tion obtained in (Peruani et al., 2007) is based on
the assumption that at each time step t, a language
node gets attached to µ consonant nodes, follow-
ing the distribution Pr(C). Under the above as-
sumptions, the degree distribution pk,t for the con-
sonant nodes, obtained by solving the model, is a
β-distribution as follows

pk,t ' A

(
k

t

)ε−1 (
1− k

t

)Nε
µ
−ε−1

(3)

where A is a constant term. Using equations 1
and 3 one can easily compute the value of Pk,t.

There is a subtle point that needs a mention
here. The concept of a time step is very crucial
for a growing network. It might refer to the addi-
tion of an edge or a node to the network. While
these two concepts coincide when every new node
has exactly one edge, there are obvious differences
when the new node has degree greater than one.
The analysis presented in Peruani et al. (2007)
holds good for the case when only one edge is
added per time step. However, if the degree of the
new node being introduced to the system is much
less than N , then Eq. 3 is a good approximation of
the emergent degree distribution for the case when
a node with more than one edge is added per time
step. Therefore, the experiments presented in the
next section attempt to fit the degree distribution
of the real networks with Eq. 3 by tuning the pa-
rameter ε.

4 Experiments and Results

In this section, we attempt to fit the degree dis-
tribution of the five empirical networks with the
expression for Pk,t described in the previous sec-
tion. For all the experiments we set N = 541, t =
number of languages in the family under investi-
gation and µ = average degree of the language
nodes of the PlaNet representing the family under
investigation, that is, the average inventory size for
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Network ε for least LSE Value of LSE

IE-PlaNet 0.055 0.16
AA-PlaNet 0.040 0.24
NC-PlaNet 0.035 0.19
AN-PlaNet 0.030 0.17
ST-PlaNet 0.035 0.03

Combined-PlaNet 0.070 1.47

Table 2: The values of ε and the least LSE for the
different networks. Combined-PlaNet refers to the
network constructed after mixing all the languages
from all the families. For all the experiments

the family. Therefore, given the value of k we
can compute pk,t using Eq. 3 if ε is known, and
from pk,t we can further compute Pk,t. In order to
find the best fitting theoretical degree distribution,
we vary the value of ε in steps of 0.005 within the
range of 0 to 1 and choose that ε for which the log-
arithmic standard error1 (LSE) between the the-
oretical degree distribution and the epirically ob-
served degree distribution of the real network and
the equation is least. LSE is defined as the sum of
the square of the difference between the logarithm
of the ordinate pairs (say y and y

′
) for which the

abscissas are equal. The best fits obtained for each
of the five networks are shown in Figure 2. The
values of ε and the corresponding least LSE for
each of them are noted in Table 2. We make the
following significant and interesting observations.
Observation I: The very low value of the parame-
ter ε indicates that the choice of consonants within
the languages of a family is strongly preferential.
In this context, ε may be thought of as modeling
the (accidental) errors or drifts that can occur dur-
ing language transmission. The fact that the val-
ues of ε across the four major language families,
namely Afro-Asiatic,Niger-Congo, Sino-Tibetan
and Austronesian, are comparable indicates that
the rate of error propagation is a universal factor
that is largely constant across the families. The
value of ε for IE-PlaNet is slightly higher than
the other four families, which might be an effect
of higher diversification within the family due to
geographical or socio-political factors. Neverthe-
less, it is still smaller than the ε of the Combined-

1LSE = (log y − log y′)2. We use LSE as the good-
ness of the fit because the degree distributions of PlaNets are
highly skewed. There are very few high degree nodes and a
large number of low degree nodes. The logarithmic error en-
sures that even very small errors made while fitting the high
degrees are penalized equally as compared to that of the low
degrees. Standard error would not capture this fact and de-
clare a fit as good if it is able to replicate the distribution for
low degrees, but fits the high degrees poorly .

PlaNet.
The optimal ε obtained for Combined-PlaNet is

higher than that of all the families (see Table 2),
though it is comparable to the Indo-European
PlaNet. This points to the fact that the choice
of consonants within the languages of a family is
far more preferential than it is across the families;
this fact is possibly an outcome of shared ances-
try. In other words, the inventories of genetically
related languages are similar (i.e., they share a lot
of consonants) because they have evolved from the
same parent language through a series of linguis-
tic changes, and the chances that they use a large
number of consonants used by the parent language
is naturally high.
Observation II: We observe a very interesting
relationship between the approximate age of the
language family and the values of ε obtained in
each case (see Table 3). The only anomaly is the
Indo-European branch, which possibly indicates
that this might be much older than it is believed
to be. In fact, a recent study (Balter, 2003) has
shown that the age of this family dates back to
8000 years. If this last argument is assumed to
be true then the values of ε have a one-to-one cor-
respondence with the approximate period of ex-
istence of the language families. As a matter of
fact, this correlation can be intuitively justified –
the higher is the period of existence of a family, the
higher are the chances of transmission errors lead-
ing to its diversification into smaller subgroups,
and hence, the values of ε comes out to be more
for the older families. It should be noted that the
difference between the values of ε for the language
families are not significant2. Therefore, the afore-
mentioned observation should be interpreted only
as an interesting possibility; more experimentation
is required for making any stronger claim.

4.1 Control Experiment

How could one be sure that the aforementioned
observations are not an obvious outcome of the
construction of the PlaNet or some spurious cor-
relations? To this end, we conduct a control ex-
periment where a set of inventories is randomly
selected from UPSID to represent a family. The

2Note that in order to obtain the best fit for the cumulative
distribution, ε has been varied in steps of 0.005. Therefore,
the values of ε in Table 2 cannot be more accurate than ε ±
0.005. However, in many cases the difference between the
best-fit ε for two language families is exactly 0.005, which
indicates that the difference is not significant.
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Figure 2: The degree distribution of the different real networks (black dots) along with the fits obtained
from the equation for the optimal values of ε (grey lines).

Families Age (in years) ε

Austronasean 4000 0.030
Niger-Congo 5000 0.035
Sino-Tibetan 6000 0.035
Afro-Asiatic 6000 0.040

Indo-European 4000 (or 8000) 0.055

Table 3: Table showing the relationship between
the age of a family and the value of ε.

number of languages chosen is the same as that of
the PlaNets of the various language families. We
observe that the average value of ε for these ran-
domly constructed PlaNets is 0.068, which, as one
would expect, is close to that of the Combined-
PlaNet. This reinforces the fact that the inherent
proximity among the languages of a real family is
not due to chance.

4.2 Correlation between Families

It can be shown theoretically that if we merge two
PlaNets (say PlaNet1 and PlaNet2) synthesized us-
ing the growth model described here using param-
eters ε1 and ε2, then the ε of the combined PlaNet
can be much greater than both ε1 and ε2 when
there is a low correlation between the degrees of
the consonant nodes between the two PlaNets.
This can be understood as follows. Suppose that
the consonant /k/ is very frequent (i.e., has a high
degree) in PlaNet1, but the consonant /m/ is not.
On the other hand suppose that /m/ is very fre-
quenct in PlaNeT2, but /k/ is not. In the combined

PlaNet the degrees of /m/ and /k/ will even out and
the degree distribution will therefore, be much less
skewed than the original degree distributions of
PlaNet1 and PlaNet2. This is equivalent to the fact
that while ε1 and ε2 were very small, the ε of the
combined PlaNet is quite high. By the same logic
it follows that if the degrees of the consonants are
highly correlated in PlaNet1 and PlaNet2, then the
combined PlaNet will have an ε that is compara-
ble in magnitude to ε1 and ε2. The fact that the
ε for the Combined-PlaNet is higher than that of
family-specific PlaNets, therefore, implies that the
correlation between the frequencies of the conso-
nants across language families is not very high.

In order to verify the above observation we esti-
mate the correlation between the frequency of oc-
currence of the consonants for the different lan-
guage family pairs (i.e., how the frequencies of
the consonants /p/, /t/, /k/, /m/, /n/ . . . are corre-
lated across the different families). Table 4 notes
the value of this correlation among the five fami-
lies. The values in Table 4 indicate that, in general,
the families are somewhat weakly correlated with
each other, the average correlation being ∼ 0.47.

Note that, the correlation between the Afro-
Asiatic and the Niger-Congo families is high not
only because they share the same African origin,
but also due to higher chances of language con-
tacts among their groups of speakers. On the other
hand, the Indo-European and the Sino-Tibetan
families show least correlation because it is usu-
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Families IE AA NC AN ST
IE – 0.49 0.48 0.42 0.25
AA 0.49 – 0.66 0.53 0.43
NC 0.48 0.66 – 0.55 0.37
AN 0.42 0.53 0.55 – 0.50
ST 0.25 0.43 0.37 0.50 –

Table 4: The Pearson’s correlation between the
frequency distributions obtained for the family
pairs. IE: Indo-European, AA: Afro-Asiatic,
NC: Niger-Congo, AN: Austronesian, ST: Sino-
Tibetan.

ally believed that they share absolutely no genetic
connections. Interestingly, similar trends are ob-
served for the values of the parameter ε. If we
combine the languages of the Afro-Asiatic and the
Niger-Congo families and try to fit the new data
then ε turns out to be 0.035 while if we do the same
for the Indo-European and the Sino-Tibetan fam-
ilies then ε is 0.058. For many of the other com-
binations the value of ε and the correlation coeffi-
cient have a one-to-one correspondence. However,
there are clear exceptions also. For instance, if we
combine the Afro-Asiatic and the Indo-European
families then the value of ε is very low (close to
0.04) although the correlation between them is not
very high. The reasons for these exceptions should
be interesting and we plan to further explore this
issue in future.

5 Conclusion

In this paper, we presented a method of network
evolution to capture the emergence of linguistic
diversity that manifests in the five major language
families of the world. How does the growth model,
if at all, captures the process of language dynam-
ics? We argue that preferential attachment is a
high level abstraction of language acquisition as
well as language change. We sketch out two pos-
sible explanations for this fact, both of which are
merely speculations at this point and call for de-
tailed experimentation.

It is a well known fact that the process of lan-
guage acquisition by an individual largely gov-
erns the course of language change in a linguis-
tic community. In the initial years of language
development every child passes through a stage
called babbling during which he/she learns to pro-
duce non-meaningful sequences of consonants and
vowels, some of which are not even used in the
language to which they are exposed (Jakobson,
1968; Locke, 1983). Clear preferences can be

observed for learning certain sounds such as plo-
sives and nasals, whereas fricatives and liquids are
avoided. In fact, this hierarchy of preference dur-
ing the babbling stage follows the cross-linguistic
frequency distribution of the consonants. This in-
nate frequency dependent preference towards cer-
tain phonemes might be because of phonetic rea-
sons (i.e., for articulatory/perceptual benefits). It
can be argued that in the current model, this in-
nate preference gets captured through the process
of preferential attachment.

An alternative explanation could be conceived
of based on the phenomenon of language trans-
mission. Let there be a community of N speak-
ers communicating among themselves by means
of only two consonants say /k/ and /g/. Let the
number of /k/ speakers be m and that of /g/ speak-
ers be n. If we assume that each speaker has l de-
scendants and that language inventories are trans-
mitted with high fidelity then after i generations,
the number of /k/ speakers should be mli and that
of /g/ speakers should be nli. Now if m > n
and l > 1 then for sufficiently large values of i
we have mli À nli. Stated differently, the /k/
speakers by far outnumbers the /g/ speakers after a
few generations even though the initial difference
between them is quite small. This phenomenon
is similar to that of preferential attachment where
language communities get attached to, i.e., select
consonants that are already highly preferred. In
this context ε can be thought to model the acciden-
tal errors during transmission. Since these errors
accumulate over time, this can intuitively explain
why older language families have a higher value
of ε than the younger ones.

In fact, preferential attachment (PA) is a uni-
versally observed evolutionary mechanism that
is known to shape several physical, biological
and socio-economic systems (Newman, 2003).
This phenomenon has also been called for to ex-
plain various linguistic phenomena (Choudhury
and Mukherjee, to appear). We believe that PA
also provides a suitable abstraction for the mech-
anism of language acquisition. Acquisition of vo-
cabulary and growth of the mental lexicon are few
examples of PA in language acquisition. This
work illustrates another variant of PA applied to
explain the structure of consonant inventories and
their diversification across the language families.

57



References
T. Arita and C. E. Taylor. 1996. A simple model

for the evolution of communication. In L. J. Fo-
gel, P. J. Angeline and T. Bäck, editors, The Fifth
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José J. Ramasco, S. N. Dorogovtsev, and Romualdo
Pastor-Satorras. 2004. Self-organization of collabo-
ration networks. Physical Review E, 70, 036106.
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