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Preface

This volume contains the papers accepted for presentation at the EACL 2009 Workshop on Cognitive
Aspects of Computational Language Acquisition, held in Athens, Greece on the 31st of March, 2009.
This workshop is the second of a series which was initiated during ACL 2007, held in Prague. The first
edition of the workshop was organised by Anna Korhonen, Paula Buttery and Aline Villavicencio.

The past decades have seen a massive expansion in the application of statistical and machine learning
methods to natural language processing (NLP). This work has yielded impressive results in numerous
speech and language processing tasks including speech recognition, morphological analysis, parsing,
lexical acquisition, semantic interpretation, and dialogue management. Advances in these areas are
generally viewed as engineering achievements, but recently researchers have begun to investigate the
relevance of computational learning techniques to research on human language acquisition. These
investigations have double significance since an improved understanding of human language acquisition
will not only benefit cognitive sciences in general, but may also feed back to the NLP community, placing
researchers in a better position to develop new language models and/or techniques.

Success in this type of research requires close collaboration between NLP and cognitive scientists. The
aim of this workshop is thus to bring together researchers from the diverse fields of NLP, machine
learning, artificial intelligence, linguistics, psycho-linguistics, etc. who are interested in the relevance
of computational techniques for understanding human language learning. The workshop is intended to
bridge the gap between the computational and cognitive communities, promote knowledge and resource
sharing, and help initiate interdisciplinary research projects.

In the call for papers we solicited papers describing cognitive aspects of computational language
acquisition. The programme committee has selected 7 papers for publication that are representative of the
state-of-the-art in this interdisciplinary area. Each full-length submission was independently reviewed
by three members of the program committee, who then collectively faced the difficult task of selecting a
subset of papers for publication from a very strong field.

We would like to thank our two invited speakers, Massimo Poesio and Robert Berwick, all the authors
who submitted papers, as well as the members of the programme committee for the time and effort they
contributed in reviewing the papers. Our thanks go also to the organisers of the main conference, the
publication chairs, and the conference workshop committee headed by Miriam Butt and Stephen Clark.

Afra Alishahi, Thierry Poibeau and Aline Villavicencio
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Towards a formal view of corrective feedback

Staffan Larsson and Robin Cooper
Department of Philosophy, Linguistics and Theory of Science

University of Gothenburg
{sl,cooper}@ling.gu.se

Abstract

This paper introduces a formal view of
the semantics and pragmatics of corrective
feedback in dialogues between adults and
children. The goal of this research is to
give a formal account of language coor-
dination in dialogue, and semantic coor-
dination in particular. Accounting for se-
mantic coordination requires (1) a seman-
tics, i.e. an architecture allowing for dy-
namic meanings and meaning updates as
results of dialogue moves, and (2) a prag-
matics, describing the dialogue moves in-
volved in semantic coordination. We illus-
trate the general approach by applying it
to some examples from the literature on
corrective feedback, and provide a fairly
detailed discussion of one example using
TTR (Type Theory with Records) to for-
malize concepts. TTR provides an analy-
sis of linguistic content which is structured
in order to allow modification and similar-
ity metrics, and a framework for describ-
ing dialogue moves and resulting updates
to linguistic resources.

1 Introduction

Here are a few examples of corrective feedback:

A: That’s a nice bear.
B: Yes, it’s a nice panda.

Abe: I’m trying to tip this over, can you tip it
over? Can you tip it over?

Mother: Okay I’ll turn it over for you.

Adam: Mommy, where my plate?
Mother: You mean your saucer?

Naomi: Birdie birdie.

Mother: Not a birdie, a seal.

Naomi: mittens.
Father: gloves.

The first one is made up, the others are quoted
from various sources in (Clark and Wong, 2002)
and (Clark, 2007). In general, corrective feedback
can be regarded as offering an alternative form to
the one that the speaker used. We are interested
in interactions such as these since we believe that
dialogue interaction plays an important role in es-
tablishing a shared language, not only in first (or
second) language acquisition but also in the coor-
dination of meaning in adult language, in histori-
cal language change, and in language evolution.

Two agents do not need to share exactly the
same linguistic resources (grammar, lexicon etc.)
in order to be able to communicate, and an agent’s
linguistic resources can change during the course
of a dialogue when she is confronted with a (for
her) innovative use. For example, research on
alignment shows that agents negotiate domain-
specific microlanguages for the purposes of dis-
cussing the particular domain at hand (Clark and
Wilkes-Gibbs, 1986; Garrod and Anderson, 1987;
Pickering and Garrod, 2004; Brennan and Clark,
1996; Healey, 1997; Larsson, 2007). We will use
the term semantic coordination to refer to the pro-
cess of interactively coordinating the meanings of
linguistic expressions.

This paper presents work towards a formal the-
ory of corrective feedback, and semantic coordina-
tion in general. It takes a view of natural languages
as toolboxes for constructing domain-specific mi-
crolanguages, and provides an analysis of linguis-
tic content which is structured in order to allow
modification of, and similarity metrics over, mean-
ings.

According to (Cooper and Ranta, 2008), a
“language” such as Swedish or English is to be
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regarded as a collection of resources (a “tool-
box”) which can be used to construct local micro-
languages. We take the view that speakers of natu-
ral languages are constantly in the process of cre-
ating new language to meet the needs of novel sit-
uations in which they find themselves.

Accounting for corrective feedback requires (1)
dynamic representations of concepts which can be
modified in various ways, in a process of seman-
tic coordination, and (2) a description of dialogue
strategies involved in semantic coordination.

Accordingly, the research effort which the work
presented here is part of aims towards an account
of semantic coordination in dialogue, consisting of
two parts:

1. semantics: an account of how meanings (and
concepts) can be updated

2. pragmatics: an account of how meanings
(and concepts) are coordinated in dialogue
and how dialogue moves governing coordi-
nation are related to semantic updates

These parts will be presented below, starting
with the pragmatics. At the end of the paper, we
will step back and consider the implications of our
tentative results.

2 The pragmatics of corrective feedback

To get a handle on the pragmatic processes in-
volved in corrective feedback, we will show how
such interactions can be analysed in terms of di-
alogue moves related to semantic updates. This
approach builds on, and extends, the Information
State Update approach to dialogue management
(Traum and Larsson, 2003).

2.1 A taxonomy of corrective feedback
Below, we classify our examples into four kinds of
corrective feedback.

• Example 1: “In-repair”

– Abe: I’m trying to tip this over, can you
tip it over? Can you tip it over?

– Mother: Okay I’ll turn it over for you.

• Example 2: Clarification request

– Adam: Mommy, where my plate?
– Mother: You mean your saucer?

• Example 3: “Explicit replace”

– Naomi: Birdie birdie.
– Mother: Not a birdie, a seal.

• Example 4: “Bare” correction

– Naomi: mittens.
– Father: gloves.

2.2 Dialogue moves for corrective feedback
We will now introduce a representation of dia-
logue moves used in corrective feedback. The gen-
eral format we will use is

• offer-form: TYPE(ARGS)

where ARGS may include one or several of the
following:

• proposed form (P below)

• replaced form (R below)

• sentence frame (F below)

In the representation above, TYPE is one of the
following, corresponding to the kinds of corrective
feedback distinguished above:

• in-repair

• cr

• explicit-replace

• bare

In-repair The in-repair type of corrective feed-
back takes two arguments, the proposed form and
a sentence frame. It is generally preceded by an
utterance containing the sentence frame applied to
the replaced form.

• offer-form:in-repair(P , F )

For illustration, let’s look again at our example,
now with typography indicating PROPOSED

FORM, replaced form and sentence frame:

A(be): Can you tip it over?
M(other): Okay I’ll TURN it over for you.

In relation to A’s utterance, M ’s utterance
contains the same sentence frame F , roughly
“[Mother] it over”. However, they differ in that
whereas M ’s utterance has the proposed word P
= “TURN”, A’s utterance has R = “tip”. If we
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say that sentence frames can be applied to ex-
pressions, resulting in the “ ” in the frame being
replaced with the expression (much as in lambda
reduction), we can say that A’s utterance has the
form “F (R)” = “[Mother] it over”(“turn”) =
“[Mother] turn it over” whereas M ’s utterance
has the form “F (R)”. M ’s utterance corresponds
to the dialogue move:

offer-form:in-repair(“turn”, “[M] [it] over”)

Note that the syntactic parallelism is not com-
plete; we have ignored the complication that one
utterance contains “can” and the other “will” (in
reduced form). The notion of sentence frame used
here is a simplification of a more complex relation
of syntactic and semantic parallelism which needs
to be further explored.

Note also that in addition to providing correc-
tive feedback, M ’s utterance also accepts the con-
tent of the previous contribution. Note that M
might instead have said something like “No, but
I’ll turn it over for you”.

Clarification requests As in the case of in-
repair offers, offers involving clarification requests
also provide the proposed form together with a
sentence frame linking the move to a previous ut-
terance by the child; presuming that the latter has
the form ”... F (R)”, the offer can be represented
as

offer-form:cr(P , F )
Let’s revisit our example, making explicit the

P , F and R parameters:

A(dam): Mommy, where my plate?
M(other): You mean your SAUCER?

Here, we have F = “[Adam’s] ”, R = “plate”
and P = “SAUCER”. Accordingly, we can de-
scribe M ’s utterance as a dialogue move:

offer-form:cr(“saucer”, “[A’s] ”)

Typically, CRs have the interpretation “you
mean/want F (P )?”. In addition to offering an al-
ternative form P of expression, a clarification re-
quest also explicitly raises the issue whether the
offer of P is accepted, and is typically followed
by a positive (or negative) answer by the child.

Note that CRs, as well as some other types
of offers, may not be intended as corrections by

the adult, but simply as attempts at understanding
what the child wants to communicate. The cru-
cial point for our purposes here is the effect these
moves have on the addressee, rather than the un-
derlying intention. In general, if I learn something
from someone else, it may not be of great impor-
tance for my learning if they intended for me to
learn it or not.

Explicit replace In contrast to in-repairs and
clarification requests, explicit offers of replace-
ments need not rely on sentence frames to figure
out the replaced form, as it is (as the name
indicates) explicitly mentioned in the offer.

N(aomi): Birdie birdie
M(other): Not a birdie, a SEAL

We represent this kind of dialogue move thus:

offer-form:explicit-replace(P , R)

In the example, the move is offer-
form:explicit-replace(“seal”, “birdie”). Explicit
replace offers are preceded by an utterance
consisting of or containing the replaced form R,
and typically have the form “(that’s) not DET R,
(that’s) DET P ” or similar.

Explicit replace offers differ from in-repairs and
clarification requests by clearly signalling that the
replaced form is not appropriate, and by being
clearly intended as providing corrections rather
than (just) figuring out what the child is trying to
communicate.

Bare offers Bare offers are the formally sim-
plest kind of corrective feedback, consisting
simply of the proposed form.

Naomi: Mittens
Father: GLOVES.

The dialogue move representation is

offer-form:bare(P )

In the example, the move is offer-
form:bare(“gloves”). Since neither sentence
frame or replaced form is provided, the replaced
form must be figured out from the conversational
situation as a whole. Just as explicit replace offers,
bare offers are primarily intended as providing
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corrections.

2.3 Generalising the dialogue move
representation

The different variants for corrective feedback all
do basically the same work; they indicate that
the child needs to modify his or her take on the
meaning of the proposed term, and perhaps also
the replaced term. A possible difference is that
some forms more clearly provide evidence that the
replaced form is not appropriate, whereas others
leave this open. Ignoring this complication for the
moment, we can provide a general form for the
various types of offers of new forms, with the pro-
posed form and the replaced form as arguments:

offer-form(P , R)
Using this representation, the dialogue move

analyses above can be reformulated as, in the order
they appear above:

• offer-form(“turn”, “tip”)

• offer-form(“saucer”, “plate”)

• offer-form(“seal”, “birdie”)

• offer-form(“gloves”, “mittens”)

In moves which do not explicitly indicate the re-
placed form R, contextual interpretation involves
chart alignment and reasoning about active edges
(represented here by the sentence frame) to locate
an expression R parallel to P in the previous ut-
terance.

2.4 Agents that coordinate resources

As in the information state update approach in
general, dialogue moves are associated with in-
formation state updates. For semantic coordina-
tion, the kind of update is rather different from
the one associated with dialogue moves for coor-
dinating on task-related information, and involves
updating the linguistic resources available to the
agent (grammar, lexicon, semantic interpretation
rules etc.), rather than e.g. the conversational
scoreboard as such. Our view is that agents do
not just have monolithic linguistic resources as is
standardly assumed. Rather they have generic re-
sources which they modify to construct local re-
sources for sublanguages for use in specific sit-
uations. Thus an agent A may associate a lin-
guistic expression c with a particular concept (or
collection of concepts if c is ambiguous) [c]A in

its generic resource. In a particular domain α c
may be associated with a modified version of [c]A,
[c]Aα . In some cases [c]Aα may contain a smaller
number of concepts than [c]A, representing a de-
crease in ambiguity. Particular concepts in [c]Aα
may be a refinement of one in [c]A, that is, the do-
main related concepts have an extension which is
a proper subset of the extension of the correspond-
ing generic concept. This will, however, not be the
case in general. For example, a black hole in the
physics domain is not normally regarded as an ob-
ject described by the generic or standard meaning
of black hole provided by our linguistic resources
outside the physical domain. Similarly a variable
in the domain of logic is a syntactic expression
whereas a variable in experimental psychology is
not and quite possibly the word variable is not
even a noun in generic linguistic resources.

Our idea is that the motor for generating new
such local resources in an agent lies in coordinat-
ing resources with another agent in a particular
communicative situation s. The event s might be
a turn in a dialogue, as in the examples we are dis-
cussing in this paper, or, might, for example, be
a reading event. In a communicative situation s,
an agent A may be confronted with an innovative
utterance c, that is, an utterance which either uses
linguistic expressions not already present in A’s
resources or linguistic expressions known by A
but associated with an interpretation distinct from
that provided by A’s resources. At this point, A
has to accommodate an interpretation for c which
is specific to s, [c]As , and which may be anchored
to the specific objects under discussion in s.

Whereas in a view of semantics inherited from
formal logic there is a pairing between a linguis-
tic expression c and an interpretation c′ (or a set of
several interpretations if c is ambiguous), we want
to see c as related to several interpretations: [c]As
for communicative situations s, [c]Aα for domains
α (where we imagine that the domains are col-
lected into a complex hierarchy or more and less
general domains) and ultimately a general linguis-
tic resource which is domain independent, [c]A.
We think of the acquisition of a pairing of an ex-
pression c with an interpretation c′ as a progres-
sion from an instance where c′ is [c]As for some
particular communicative situation s, through po-
tentially a series of increasingly general domains
αwhere c′ is regarded as being one of the interpre-
tations in [c]Aα and finally arriving at a state where
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c′ is associated with c as part of a domain indepen-
dent generic resource, that is, c′ is in [c]A. There
is no guarantee that any expression-interpretation
pair will survive even beyond the particular com-
municative situation in which A first encountered
it. For example, the kind of ad hoc coinages
described in (Garrod and Anderson, 1987) us-
ing words like leg to describe part of an oddly
shaped maze in the maze game probably do not
survive beyond the particular dialogue in which
they occur. The factors involved in determin-
ing how a particular expression-interpretation pair
progresses we see as inherently stochastic with pa-
rameters including the degree to which A regards
their interlocutor as an expert, how many times the
pairing has been observed in other communicative
situations and with different interlocutors, the util-
ity of the interpretation in different communicative
situations, and positive or negative feedback ob-
tained when using the pairing in a communicative
situation. For example, an agent may only allow a
pairing to progress when it has been observed in at
least n different communicative situations at least
m of which were with an interlocutor considered
to be an expert, and so on. We do not yet have a
precise proposal for a theory of these stochastic as-
pects but rather are seeking to lay the groundwork
of a semantic treatment on which such a theory
could be built.

3 The semantics of corrective feedback

3.1 Representing concepts using TTR

We shall make use of type theory with records
(TTR) as characterized in Cooper (2005; 2008)
and elsewhere. The advantage of TTR is that it
integrates logical techniques such as binding and
the lambda-calculus into feature-structure like
objects called record types. Thus we get more
structure than in a traditional formal semantics
and more logic than is available in traditional
unification-based systems. The feature structure
like properties are important for developing
similarity metrics on meanings and for the
straightforward definition of meanings modifi-
cations involving refinement and generalization.
The logical aspects are important for relating
our semantics to the model and proof theoretic
tradition associated with compositional semantics.
Below is an example of a record type:

[
REF : Ind
SIZE : size(REF, MuchBiggerThanMe)
SHAPE : shape(REF, BearShape)

]
A record of this type has to have fields with

the same labels as those in the type. (It may also
include additional fields not required by the type.)
In place of the types which occur to the right of
‘:’ in the record type, the record must contain an
object of that type. Here is an example of a record
of the above type: REF = obj123

SIZE = sizesensorreading85
SHAPE = shapesensorreading62
COLOUR = coloursensorreadning78


Thus, for example, what occurs to the right of

the ‘=’ in the REF field of the record is an object
of type Ind, that is, an individual. Types which
are constructed with predicates like size and shape
are sometimes referred to as “types of proof”. The
idea is that something of this type would be a proof
that a given individual (the first argument) has a
certain size or shape (the second argument). One
can have different ideas of what kind of objects
count as proofs. Here we are assuming that the
proof-objects are readings from sensors. This is a
second way (in addition to the progression of lo-
cal resources towards general resources) that our
theory interfaces with a statistical non-categorical
world. We imagine that the mapping from sensor
readings to types involves sampling of analogue
data in a way that is not unsimilar to the digiti-
zation process involved, for example, in speech
recognition. Again we have nothing detailed to
say about this at the moment, although we regard
it as an important part of our theory that it is able
to make a connection between the realm of feature
vectors and the realm of model-theoretic seman-
tics.

Types constructed with predicates may also be
dependent. This is represented by the fact that ar-
guments to the predicate may be represented by
labels used on the left of the ‘:’ elsewhere in the
record type. This means, for example, that in con-
sidering whether a record is of the record type, you
will need to find a proof that the object which is in
the REF-field of the record has the size represented
by MuchBiggerThanMe. That is, this type depends
on the value for the REF-field.

Some of our types will contain manifest fields
(Coquand et al., 2004) like the REF-field in the
following type:
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[
REF=obj123 : Ind
SIZE : size(REF, MuchBiggerThanMe)
SHAPE : shape(REF, BearShape)

]
[

REF=obj123:Ind
]

is a convenient notation for[
REF : Indobj123

]
where Indobj123 is a singleton

type. If a : T , then Ta is a singleton type and
b : Ta (i.e. b is of type Ta) iff b = a. Manifest
fields allow us to progressively specify what val-
ues are required for the fields in a type.

An important notion in this kind of type theory
is that of subtype. For example,[

REF : Ind
SIZE : size(REF, MuchBiggerThanMe)

]
is a subtype of

[
REF : Ind

]
as is also

[
REF=obj123 : Ind

]
The subtype relation corresponds to that of sub-
sumption in typed feature structures. This gives us
the ability to create type hierarchies corresponding
to ontologies (in the sense, for example, of OWL).
Such ontologies (coded in terms of record types)
play an important role in our notion of resources
available to an agent. In fact, modelling concepts
in terms of record types commits us to a view of
concepts which is very closely related to work on
ontologies. But our view of the creation of lo-
cal situation specific and domain related resources
in addition to generic resources means that agents
have access not to a single generic ontology but
also situation specific and domain related ontolo-
gies. And, perhaps most important of all, the pro-
cess of semantic coordination with an interlocutor
can involve local ad hoc adjustment to an ontol-
ogy. This plays an important role in characteriz-
ing the options open to an agent when confronted
with an innovative utterance. We attempt to illus-
trate this below by working in more detail through
a specific example.

3.2 “Panda” as an example of innovative use

We provide an analysis ofB’s utterance in our ini-
tial example as a move of offering “panda” as an
alternative for “bear”, and as potentially triggering
an update onA’s concepts for “bear” and “panda”.

A: That’s a nice bear
B: Yes, it’s a nice panda

The dialogue move analysis of this example is
offer-form:in-repair(“panda”, “[it] is a nice ”),
or in the generalised format offer-form(“panda”,
“bear”).

We assume that, before B’s utterance, A has
a single concept of “bear” in a domain called
“zoo”, that is, a unique member of the collection
[bear]Azoo. We represent it in Figure 1. A’s take on
the communicative situation where B’s utterance
takes place (that is,A’s dialogue information state,
much simplified for expository reasons) is shown
in Figure 2. This is intended to describe a situation
at a zoo, where a bear-shaped object much bigger
than A is in focus (FOO here stands for “Focused
Object”).

What happens after B’s utterance? First, we as-
sume that B correctly understands A’s utterance
as offering “panda” as an alternative for “bear”.
Now, assuming that B has not observed the word
“panda” before,A needs to create a panda-concept
[panda]As , local to the communicative situation s
resulting from B’s utterance. Since “panda” has
been aligned with “bear”, it is natural to base
the new panda concept on the bear concept, as-
sociated with the domain. Here A is confronted
with a fundamental choice. Should a condition
‘panda(REF)’ be added to the concept in addition
to the condition ‘bear(REF)’ making the panda
concept be a subtype of the bear concept or should
the panda condition replace the bear condition,
making panda and bear sisters in the ontology?
There is not enough evidence in this simple ex-
change to determine this.1 We will choose to re-
place the bear condition with the panda condition.
But there is more that must happen.
A has observed that the use of “panda” in s

refers to the focused object obj123. Following
the principle of contrast (Clark and Wong, 2002)
which states that “(s)peakers take every difference
in form to mark a difference in meaning”, B takes
“panda” to have a different meaning than “bear”
in some respect other than that it is a panda as
opposed to a bear, and looks for something about
obj123 which might distinguish it from previously
observed bears. For example, the child might de-
cide that it is the colour (black and white) that

1And indeed many people can reach adulthood, the
present authors included, without being sure whether pandas
are a kind of bear or not.
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REF : Ind
PHYS : phys-obj(REF)
ANIM : animate(REF)
SIZE : size(REF, MuchBiggerThanMe)
SHAPE : shape(REF, BearShape)
BEAR : bear(REF)


Figure 1: A’s “bear” concept in the domain “zoo” before the interaction

DOMAIN : zoo

SHARED :

 FOO=obj123 : Ind

COM=

[
C1 : nice(FOO)
C2 : bear(FOO)

]
: RecType




Figure 2: A’s take on s

distinguishes it from previously observed bears
(which have all been brown)2. A now creates a
situated interpretation [panda]As of “panda”, based
on [bear]Azoo, as shown in Figure 3.

But now if colour is being used to distin-
guish between bears and pandas in situation s, A
should create a refined bear concept for s, namely
Figure 4 reflecting the hypothesis that bears are
brown. If A is optimistic, possibly influenced
by the degree of expertise which A assigns to B
(“Mummy knows about zoos”), A might imme-
diately associate the concept in Figure 4 with the
zoo domain, that is, make it be a new value for
[bear]Azoo and similarly for a dereferenced version
of Figure 3, that is a version in which the manifest
field is replaced by

[
REF : Ind

]
. Finally, A’s new

take on s is shown in Figure 5; A has accepted that
the focused object is a panda.

4 Conclusion

We have sketched an account of how concepts
can be updated as a result of language use in
interaction. Such processes enable coordination
of domain-specific microlanguages, involving a
domain-specific grammar and lexicon, an ontol-
ogy, and a mapping between lexicon and ontology.

There are many mechanisms for semantic coor-
dination, some of which can be described as cor-
rective feedback: clarification requests, explicit
corrections, meaning accommodation (observing
instances of language use and silently adapting to
successful instances) and explicit negotiation. Se-
mantic coordination, in turn, is a kind of language
coordination (other kinds include e.g. phonetic co-

2This account relies on A having a memory of previously
observed instances of a concept, in addition to the concept it-
self (which in the case of “bear” does not contain information
about colour).

ordination). Finally, language coordination coex-
ists with information coordination, the exchang-
ing and sharing of information (agreeing on rele-
vant information and future action; maintaining a
shared view on current topics of discussion, rele-
vant questions etc.). Arguably, the main point of
language coordination is to enable information co-
ordination.

Semantic coordination happens in dialogue; it
is part of language coordination; and it is a pre-
requisite for information coordination. If we say
that a linguistic expression c has meaning only
if it is possible to exchange information using c,
then semantic coordination is essential to mean-
ing. A linguistic expression c has meaning in a
language community when the community mem-
bers are sufficiently coordinated with respect to
the meaning of c to allow them to use c to ex-
change information. In other words: meaning
emerges from a process of semantic coordination
in dialogue.
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REF=obj123 : Ind
PHYS : phys-obj(REF)
ANIM : animate(REF)
SIZE : size(REF, MuchBiggerThanMe)
SHAPE : shape(REF, BearShape)
COLOUR : colour(REF, BlackAndWhite)
PANDA : panda(REF)


Figure 3: A’s situated interpretation of “panda” in situation s.


REF : Ind
PHYS : phys-obj(REF)
ANIM : animate(REF)
SIZE : size(REF, MuchBiggerThanMe)
SHAPE : shape(REF, BearShape)
COLOUR : colour(REF, Brown)
BEAR : bear (REF)


Figure 4: A’s local “bear” concept after integrating B’s utterance


DOMAIN : zoo

SHARED :

 FOO=obj123 : Ind

COM=

[
C1 : nice(FOO)
C2 : panda(FOO)

]
: RecType




Figure 5: A’s revised take on s
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Abstract

A   large   number   of   computational   language 
learners have been proposed for modelling the 
process  of child language acquisition.    Com
paring them, however, can be difficult due to 
the different  assumptions that  they make,  the 
diverse test results presented, and the different 
linguistic behaviours investigated.   This paper 
introduces  a  toolkit   that  allows different   lan
guage  learners   to  be  trained,   tested and  ana
lysed under standardised conditions.   The res
ults can be easily compared with one another 
and  with  typical  child   language development 
to highlight the relative advantages and disad
vantages of learners.

1 Introduction

The computational modelling of language acquis
ition   can  help   in  understanding   the   acquisition 
process by estimating the problem faced by chil
dren and designing algorithms that solve it in a 
similar way as they do.  Many such models have 
been produced in recent  years,   tackling various 
linguistic behaviours.  Like in any relatively new 
domain  of   research,   however,   the   treatment   of 
one problem often reveals the presence of several 
more that in turn require new solutions of their 
own.  This has led to the design and implementa
tion   of   numerous   learners   that   differ   in   either 
subtle or fundamental ways.  Given such variety, 
it is not yet clear which kind of model, or com
bination of models, can best account for the over
all behaviour witnessed during child language de
velopment.

When   surveying   the   computational   language 
acquisition literature, the relative advantages and 

disadvantages   of   language   learners   are   not   al
ways clear.   As such, it can be very difficult to 
compare different learners with one another.  The 
main problem is the lack of standardisation in the 
field.     Language   learners   are   constructed   with 
different underlying assumptions, largely due to 
the   lack   of   consensus   in   linguistic   theory,   are 
trained using different data (that can vary from 
miniature   languages   to   full   blown   natural   lan
guages)   and   are   tested   using   different   testing 
measures   (some   of   which   include   the   'Looks 
good to me' approach).

In   this   paper,   a   toolkit   for   investigating   the 
computational   modelling   of   child   language   ac
quisition is proposed.  The Language Acquisition 
Toolkit (LAT) allows researchers to work collab
oratively in solving the modelling task, while ad
dressing   the  problems  introduced.     It   is  an  at
tempt   to  bring   the   field   forward  by   creating  a 
standardised  way   for   testing  and   implementing 
language   acquisition   learners.     The   issues   ad
dressed in this paper are largely driven by engin
eering   concerns   although   the   choices   that   are 
made by   the modeller  will   impact  not  only  on 
their learner but also on the associated language 
theory.   The driving motivation behind the LAT 
is that the best way to compare different language 
learners  is   to compare  the behaviours  that   they 
produce.   The closer a learner's behaviour is to 
the behaviour witnessed in children, the better the 
model.

The LAT is  a computational  framework that 
can train, test and analyse the linguistic perform
ance of a computational language learner in order 
to   chart   developmental   linguistic   trajectories. 
The  motivation   for   the   LAT  shall   first   be   ex
plored before describing it in detail, discussing its 
features and considering future directions.
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2 Background

The process of modelling child language acquisi
tion   is   very   complex,   as  many  of   the   first   at
tempts confirmed (Feldman et al., 1990; Suppes, 
Liang & Bottner, 1991).   Rather than modelling 
the process in entirety, an undoubtedly daunting 
task,  modellers  took the simplified approach of 
focusing   upon   individual   linguistic   behaviours, 
leading   to   much   research   into   relatively   con
strained   problems   such   as  understanding   over 
and undergeneralisation errors (Plunkett, Sinha, 
Moller & Strandsby, 1992), single word learning 
(Regier,   2005),   syntactic   category   acquisition 
(Redington,   Chater   &   Finch,   1988)   and   past
tense learning (Rumelhart & Mcclelland, 1986). 
While such models have led to valuable insights 
in the domain, it can be difficult to see how each 
of them is related to one another given the lack of 
standardised learning, testing and analysis.

Often,   the   variety   found   in   computational 
models  reflects   the  divisions  between  linguistic 
theories pertaining to child language acquisition 
(Kaplan, Oudeyer & Bergen, 2008).   Given that 
linguists remain divided about how children learn 
language, it is not surprising to find a similar di
vision   in   the   computational   modelling   com
munity as well.   One of the fundamental issues 
that separates modellers is the kind of data that 
the learner learns.  This can range from the use of 
plain   textual   data   (Elman,   1993),   to   grounded 
sensorbased   input   (Roy,  2008).    Standardising 
the type of learning data would thus be useful for 
comparing language learners.

Typical computational models are often tested 
under different circumstances and using different 
techniques.  For example, while some papers of
fer a general analysis of the model's behaviour, 
others   focus  on  particular   features,  while  some 
test   language   comprehension,   others   test   lan
guage production, and while some consider de
velopmental   growth,   others   consider   only   the 
start and end points of training.  Although this is 
often   justifiable   in   the   context   of   the   research 
problem, it makes it difficult to directly compare 
two models.  It would be useful to put all models 
through the same set of rigorous tests in order to 
find out how they are similar and how they differ 
from one another.  Such standardised testing will 
often reveal important differences that may have 
previously been hidden.

Practically,  however,  not  all  models   that  are 
described in the literature are made available for 

download.  As a result, researchers often have to 
spend time recreating models.   This assumes, of 
course,   that   the   model   has   been   described   in 
enough detail that it can be  faithfully  recreated. 
Much time could be saved if such models were 
available for download, from a common reposit
ory, such as the Weka makes machine learning 
algorithms freely available  in  a software work
bench (http://www.cs.waikato.ac.nz/~ml/).

A good language learner should not just solve 
language learning problems, but should do so in a 
similar way as is witnessed in children.  Based on 
psycholinguistic   evidence,   several   linguistic 
timetables have been derived containing import
ant linguistic milestones  (Brown, 1973; Ingram, 
1989; Pinker, 1994; Tomasello, 2005).  The char
acter   of   language   development   is   a   significant 
feature in child language acquisition and model
lers should be encouraged to model  it   to better 
understand the process.   A language learner that 
demonstrates a good use of  syntax at   the same 
time as producing its first words is not very real
istic.  Instead, there should be a prolonged period 
in which words are learned followed by the emer
gence of syntax.  Unfortunately, a language mod
el   can  often  produce  behaviours  at   unexpected 
times,   signalling   a   problem   with   the   linguistic 
theory that it embodies.  A standardised approach 
to analysing the linguistic development of a lan
guage learner would be an advantage.

3 The Language Acquisition Toolkit

3.1 Introduction

The   Language   Acquisition   Toolkit   (LAT)   is   a 
piece of software that allows researchers to de
velop  and   test   computational   language   learners 
within a standardised environment.   The LAT's 
target users are researchers who have basic skills 
in software development and are comfortable us
ing the programming language Java.   It assumes 
that the language learner operates under the re
strictions   imposed   in   the   miniature   language 
paradigm (Feldman  et al., 1990).   The LAT can 
be obtained from www.langac.com and is avail
able  under  a  GNU public   license meaning  that 
the code can be reproduced and modified without 
obtaining permission.

The LAT is an attempt to standardise the train
ing,   testing  and  analysing  of   language   learners 
within an open an accessible environment (Figure 
1).   In training, the language learner observes a 
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simulated world in which actionbased events oc
cur.  Both simulated descriptions and visual data 
are sent to the language learner for analysis.  The 
LAT then tests both the language learner's com
prehension and production capacities.    Compre
hension is tested by sending a description to the 
language learner and scoring the visual data that 
are produced.   Similarly, production is tested by 
sending visual data to language learner and scor
ing   the  descriptions  produced.    The  LAT  then 
analyses the results obtained from testing and de
velops data describing the learner's development.

Figure 1: LAT Overview.  A language learner is 
placed in the LAT's simulated world where it 

learns from simulated audio and visual data.  The 
LAT tests the learner  and the results are used to 

produce data describing its development.

3.2 Training

The LAT can be configured to train different 
language learners by generating a simulated en
vironment   in  which   actionbased   events   occur. 
The   simulated  environment  operates  within   the 
miniature   language  acquisition  paradigm  (Feld
man  et al., 1990), a simplified simulation of the 
realworld.  A simulation is employed rather than 
grounding the model in the realworld in order to 
better control the number and type of problems 
that are being investigated in a single experiment. 
While the miniature language paradigm imposes 
a number of constraints, the proposed simulation 
contains enough complexity to justify its use.

The   learner   is   trained  by  watching  an  event 
that is simulated in the blocks world in which a 
number   of   geometric   objects   can   be   found. 
When an event occurs, a symbolic representation 
of the description and visual data are generated. 

More concretely, an event is the pairing of a sim
ulated   description   and   a   action,   e=〈d , a〉 . 
Events are represented following evidence from 
child studies.  First, it is assumed that the learner 
can   establish   a   triadic   relationship   between   an 
object, a speaker and themselves in order to asso
ciate a description with an action.   This kind of 
relationship is typically called jointattention and 
does   not   appear   in   children   until   around   12 
monthsold   (Tomasello,   1995).     As   such,   the 
symbolic content present in descriptions and ac
tions are limited to those found in child literature 
during the first year of life.

An   infant's   acoustic   sensitivity   is   so  attuned 
that   from   fourdaysold   she   demonstrates   the 
ability   to  differentiate between native and non
native speech (Mehler  et  al.,  1988).    Such dis
crimination lies in rhythmic properties that differ 
over   language   groups   (DehaeneLambertz   & 
Houston,  1998;  Mehler,  Dupoux,  Nazzi  & De
haeneLambertz,  1996)  and   is   likely  to  be  syl
lablebased since infants detect change in syllable 
quantity,   but   not   in   phoneme   quantity   over 
samples of speech (BijeljacBabic, Bertoncini & 
Mehler, 1993).  Infants also detect vowel change, 
a syllable covariant, more readily than consonant 
change (Bertoncini et al., 1988), further support
ing a syllabic base.  A description is thus repres
ented  as  a  nonzero   length  ordered   list  of   syl
lables in the LAT.   Word segmentations are not 
included as there is no acoustic equivalent of the 
blank space in written language.

In   terms   of   visual   sensitivity,   infants   can 
identify  objects   through   retinal   and  object   dis
placement  during motion from four monthsold 
(Kellman, Gleitman & Spelke, 1987), and make 
relative   spacial   distinctions   between   left   and 
right,   and  above   and  below,   from  three   to   ten 
months old (Quinn & Schyns, 2003).  Infants can 
also make use of shape and colour to differentiate 
between objects in the first year of life (Landau, 
Smith & Jones, 1988).   The LAT thus describes 
the physical properties of objects that inhabit the 
blocks world (e.g. shape, colour, size and posi
tion), referred to as features.  An action is defined 
as a nonzero length ordered list of feature sets, 
where each feature set is associated with a unique 
time interval.  A set of features describes all ob
jects that can be seen in an event.   Note that ac
tions in this terminology do not relate to actions 
in terms of verbs in natural language, but to a list 
of   descriptions   of   scenes.     Properties   such   as 
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push and pull are thus not explicitly represented 
as symbolic features.

Two types of events can occur in the blocks 
world: actionbased; and descriptive.  In the case 
of an actionbased event, an object performs an 
action while  in  the case of  a descriptive event, 
objects do not change.   As a result, actionbased 
events  contain different  feature  sets,  giving  the 
impression  of   change,  while   descriptive   events 
contain   the   same   feature   sets,   indicating   no 
change.  The description in an actionbased event 
describes the action while the description in a de
scriptive event  describes an object   in  the  static 
scene.    Objects can perform several  actions  in
cluding moving, flashing, growing, shrinking, ap
pearing, disappearing, destroying another object, 
hitting another object, pushing another object and 
pulling another object.

The LAT randomly generate events that can be 
used as training data.  It can create objects, make 
them perform actions, and describe the events by 
instantiating appropriate grammar fragments.  To 
encourage the use of standardised sets of training 
data,   a  number  of   sets  of  data  have  been   ran
domly generated that each contain 10,000 events. 
These  data  have  been  generated   from different 
parameters (e.g. amount of noise, probability that 
an   object   will   perform   an   action   in   an   event, 
probabilities for each action to occur, number of 
time   intervals   for   an   event,   number   of 
colours/shapes/sizes/actions possible) with differ
ent   language  properties   (e.g.   recursion  present/ 
not present, number of rules, language in use).

To provide concrete examples of typical LAT 
training data, one data set, called the Appearance 
data set will be presented in detail.   The appear
ance data set is inspired from a study with real 
participants.   Participants sat in front of a com
puter screen that initially showed a blank white 
screen.  They were asked to describe all changes 
that were made to the screen in enough detail that 
a   stranger   could   recreate   the   scene   using   only 
their descriptions.  By pressing a key on the key
board,  a new geometric object  appeared on the 
screen and the change was described by the parti
cipant.  While the addition of an object to a scene 
appears to be a trivial change, participants pro
duced   complex   linguistic   descriptions   that   re
vealed a deep knowledge of their language.   For 
example, descriptions such as “a blue circle ap
peared to the upper right of the green square at 
the bottom” and “a red circle appeared between 

the   four   squares  making   the   shape  of   a   cross” 
(Jack, 2005).

Given   the   complexity   of   the   language   pro
duced, a simplified version the task was construc
ted in which only the appearance of one object 
next   to  another  object  was considered.    By re
stricting the context,  there is less demand for a 
computational language learner to have a rich se
mantic representation of scenes.  This served as a 
reasonable starting point from which to conduct 
the investigation.  The actions in the Appearance 
data set were constructed by randomly generating 
one object and placing it in the middle of a 3x3 
grid   scene   and   then   adding   a   second   object, 
which was also randomly generated, in a differ
ent position.  Eight colours and shapes were used. 
Each action was also accompanied by an appro
priate   description   that   was   generated   using   a 
grammar fragment (Figure 2).

E   NP→ 1 PAR 2

PAR1   NP→ 1 PART PAR2   REL NP→ 2

RELT   REL Det→ 2  REL   REL→ 1 | REL2

REL1   → a bove | be low | 
to the REL4

REL2   → REL3 REL4

REL3   to the low er→  | to 
the u pper

REL4   → left of | right of

NP1   Det→ 1 Nbar NP2   Det→ 2 Nbar

Nbar   SHP COL→

Det1   a→ Det2   the→

COL   black | blue | grey→  
| green | pink | black | red 
| ye low

SHP   cir cle | cross | dia→  
mond | heart | rec tang gle 
| star |square | tri ang gle

Figure 2: Miniature Language from Appearance 
Data Set.  All strings are syllable segmented rather 

than word segmented.

Events from this data set have actions that are 
described  using  a  2frame  time  interval,  where 
the first set of features describes the state of the 
scene before the action occurs and the second set 
of features describes the scene after the action oc
curs (Figure 3).   Note that it is assumed that the 
learner   can   identify   concepts   such   as   colour, 
shape   and  position   and   that   such   symbolic   in
formation is associated with a particular object. 
The notion of objecthood, where the first object 
in the scene is O1 and the second object is O2, is 
carried across time intervals with O1 being recog
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nised as the same object before and after an ac
tion occurs.

Before action (t=1) After action (t=2)

O1: square
O1: blue
O1: x2
O1: y2

O1: square
O1: blue
O1: x2
O1: y2

O2: circle
O2: yellow
O2: x3
O2: y3

a ye low cir cle to the u pper right of the blue 
square

Figure 3: Sample Event from Appearance Data 
Set.  Two time frames represented graphically and 

as feature sets.  The accompanying syllable seg
mented description of the event is also shown.

The remaining data sets contain more complex 
events   in  which  more  actions  and   richer  mini
ature languages are employed.   Actions are ran
domly generated, with respect to the constraints 
imposed on the data set (e.g. number of colours, 
shapes, and actions) and appropriate descriptions 
are generated.   These descriptions are produced 
by following a heuristic that minimises the num
ber of  syllables  that  can appear in a single de
scription.   This reduces the production of unnat
ural sentences.  For example, take the case where 
an object appears in a scene amongst 10 other ob
jects.    A description could be generated  to  de
scribe the action with respect to one other object, 
two other objects or as many as 10 other objects. 
While   such  descriptions  are  all  valid,  many of 
them would sound unnatural if  employed.   The 
algorithm selects descriptions by favouring those 
that have fewer syllables.   A parser is then em
ployed   that   eliminates   invalid  descriptions   that 
can be misinterpreted.   By making a parsimoni
ous  use  of   syllables,  more  natural   descriptions 
tend to be produced.  More abstract language can 
also be found such as the use of the word 'bully
ing' to describe pushing, pulling and hitting.

3.3 Testing

The LAT monitors the linguistic development 
of a language leaner by testing its comprehension 
and production capacities.  The learner's compre
hension and production are tested at every round 
of training.

For each set of training data, there is an associ
ated set of testing data, ensuring a standardised 
test procedure for language learners.  Test data is 
produced using grammar rules for producing de
scriptions   and  heuristics   for   producing   actions. 
The tests are constructed to reflect the properties 
found in  the  training data's  miniature  language. 
As such, the learner is only tested on the kind of 
descriptions and actions that it has the opportun
ity   to   learn   through   observing   events.     Con
cretely, a testing set is a set of events where each 
event relates one or more descriptions to one or 
more actions.   The set of testing data associated 
with the Appearance training data set can be used 
to   test   the   learner's   vocabulary,   certain   multi
word combinations and full sentences.  Using the 
terminology   found   in   Appearance's   grammar 
fragment (Figure  2), the LAT tests for the com
prehension of shapes (SHP), colours (COL), ob
jects (Nbar), indefinite objects (NP1), definite ob
jects (NP2) and events (E).

In   testing   the   learner's   comprehension,   the 
LAT sends a description as input and receives a 
set of actions as output.  The output is automatic
ally   scored  by   comparing   it  with   the   expected 
output   that   is   associated   with   the   description. 
Actions are compared based on the feature values 
that are relevant to the given description.  Given 
the description “a  ye  low cir  cle   to  the  u pper 
right of the blue square” (Figure  3), the colours, 
shapes  and relative positions  of   the objects  are 
relevant   whereas   their   exact   positions   are   not. 
The LAT equally accepts a yellow circle that ap
pears higher or further right than its idealised po
sition with respect to the blue square, as long as 
the relative positions remain correct.

Borrowing from research in child language ac
quisition   studies,   four   kinds   of   incorrect   re
sponses are identified:  overextended; underex
tended; mismatched; or incorrect.   For example, 
the meaning of the description “square” is under
extended if the learner only uses it to refer to red 
squares, blue squares and green squares, but not 
to squares of other colours.  Similarly, the mean
ing of the description “red square” is overexten
ded if it refers to red squares, blue squares and 
red circles.   A mismatch is found if the descrip
tion “square” is used to refer to objects other than 
squares,   for  examples  circles  and  triangles,  but 
never to squares themselves.  Results that deviate 
from these cases are simply considered incorrect. 
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The   LAT   can   score   both   single   words   and 
phrases based on these categories.

In addition, the output produced by the learner 
can also be described using the standard informa
tion retrieval  measures  of  precision,   recall,  and 
the emeasure which is a weighted combination 
of the two former values (van Rijsbergen, 1979).

The process of testing the learner's production 
is   similar   to   that   of   testing   comprehension. 
Rather than the LAT sending a description as in
put, however, it sends an action.  The learner then 
produces a set of descriptions as output.  Results 
from production are scored using the same prin
ciples as applied during comprehension.  That is, 
the learner's output is compared to the expected 
output and it is scored as either correct, overex
tended, underextended, mismatched or incorrect.

3.4 Analysing

Both   the  comprehension  and  production   res
ults   that  are  produced  from testing are  used to 
evaluate the learner's linguistic stage of develop
ment.    Several  types of  analysis  have been de
signed to ease learner comparisons: roundbased; 
trialbased; and learnerbased.  Roundbased ana
lyses analyse the results produced from a single 
round   of   testing.     Trialbased   analyses   take 
roundbased   statistics   and   compare   them   with 
previous   rounds   in   order   to   find   behavioural 
trends   in   the  data.    Finally,   learnerbased   ana
lyses compare trialbased data for several trials in 
order to extract general behavioural trends.   By 
performing analyses at all three levels of detail, a 
more complete account of the learner's behaviour 
is produced.

The LAT is currently able to perform a num
ber of roundbased analyses that are often found 
in the literature: summary of test results in terms 
of correct results and errors; chart the linguistic 
generativity of the learner; and present evidence 
of syntactic activity.

Roundbased analyses produce results that are 
then used to determine the model's stage of lin
guistic  development  using  data   from child   lan
guage studies: prelinguistic; holophrastic; early 
multiword; late multiword; and abstract stages.

A   number   of   trialbased   analyses   are   per
formed using these data, in order to identify par
ticular   linguistic behaviours:   linguistic develop
ment;   vocabulary   acquisition;   comprehension/ 
production imbalance.  With the creation of a lin
guistic development timetable, all  data can also 

be presented in terms of stages.  For example, the 
number of  words  that are correctly comprehen
ded and the rate of vocabulary acquisition can be 
shown by stage.

Modelbased analyses can performed when the 
results from several trials are available.  Each of 
the results, such as the rate of vocabulary acquisi
tion during a stage, are compared across trials to 
identify general behavioural trends.

The LAT thus offers a standardised platform 
for training, testing and analysing language mod
els.   The results from all  analyses can be auto
matically compared to determine the differences 
between learners and which learner best fits child 
language data.

4 Discussion

The LAT is a freely available tool that offers a 
standardised  environment   from which   language 
modellers can develop their language learners.  It 
is an attempt to advance the domain by offering a 
platform where common goals can be focussed 
upon in a collaborative environment.   It aims to 
standardise the training, testing and analysing of 
language learners by understanding the needs of 
language modellers through collaboration.

By using the LAT, the language modeller ac
cepts the need to work with standardised training 
data.  Such standardisation is widespread in com
putational linguistics.   For example, in the field 
of automatic text classification, there are several 
databases of preclassified documents (e.g. Reu
ters21578,   Reuters   Corpus   Volume   1   and   20 
Newsgroups) that researchers can use to evaluate 
different algorithms and to compare their results. 
The LAT offers different sets of training data that 
are   constrained   by   principles   of   the   miniature 
language paradigm.  In using such data, the mod
elling task differs from the task that a child faces 
in a number of ways.   In particular, the learning 
problem is simplified in that the realworld con
tains   many   more   objects   and   that   natural   lan
guage   has   far   more   linguistic   structures   and 
words   than   the   language   fragments.     It   is   for 
these reasons, however, that such a paradigm is 
attractive.  Many language learning problems can 
be   effectively   investigated   by   first   simplifying 
the   problem   and   then   developing   solutions. 
When such problems in  the miniature  language 
paradigm have been adequately solved, it is en
visaged that the LAT can be grounded in a real 
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environment   where   vast   volumes   of   data   are 
available for processing.

The  results  from learning can then be  tested 
using a standardised set of tests.   The learner is 
treated   as   a   black  box,  meaning   that   the  LAT 
evaluates  its  output  alone without  entering  into 
its inner workings.  This helps to keep the LAT's 
functionality independent from the learner by fo
cussing  on   the way  in  which   it  behaves   rather 
than how it produces particular behaviours, simil
ar to the relationship found between the linguist 
and child in the real world.  By testing both com
prehension and production on a large set of de
scriptions and actions, a complete picture of the 
learner's   linguistic   state   can   be   derived.     The 
LAT   also   checks   for   language   errors   such   as 
overextensions,   underextensions   and   mis
matches.  Individual results are made available to 
the   researcher   in   a   tabular   format   as   well   as 
providing overall recall, precision and emeasure 
scores.

By standardising the test results, different lan
guage learners can be easily compared with one 
another.    The LAT can analyse these results to 
discover behavioural trends in the data with can 
be used in further comparisons.   It is also inter
esting to note that the LAT makes an attempt to 
compare the behaviour produced by a language 
learner with that of children.   Inspired by child 
language development timetables, a set of mile
stones has been derived that are used to charac
terise the learner's behaviour in terms of stages. 
The  LAT attempts   to   encourage   researchers   to 
consider   the   developmental   behaviour   of   their 
language learners over time.

It is important to note that the LAT is a work 
in progress.   This disclaimer is likely to remain 
true for many years.  Developing a gold standard 
is a difficult task and one that risks to evolve over 
time.  The LAT should be regarded as a proposal 
for   standardisation.    Being  a  collaborative pro
ject, any contributor can challenge this proposal 
by offering their own solutions.  Contributors are 
encouraged   to   create   their   own   data   and   al
gorithms and to upload them to the LAT.  A gold 
standard can only emerge from the selections that 
are made by other modellers, who vote by using 
certain data and algorithms in their  own model
ling tasks.   In this sense, the proposed instanti
ation of the LAT described in this article is less 
important than the idea behind the LAT itself.

5 Future Considerations

In  designing  the  LAT,   it  quickly became clear 
that the task was not straightforward.  Designing 
a   tool   that   can   make   useful   and   standardised 
comparisons between language learners is a com
plex task.  A balancing act between not excluding 
certain   types   of   learners   and   creating   a   con
strained, manageable environment is not without 
its difficulties.   As such, it is worth considering 
future developments for the LAT.  While still in a 
preliminary state of development, it is hoped that 
a collaborative approach to the task will allow it 
to be steered in the directions that are best adap
ted to its potential users.  A number of these dir
ections are now considered.

The   miniature   language   paradigm   is   at   the 
heart of the LAT.  This language can be extended 
to include more complex linguistic constructions 
and a  larger vocabulary.    It   is suggested that  a 
systematic   approach   is   followed   in   which   the 
learning task is made progressively complex by 
adding   linguistic   features   that   tend   to   be   wit
nessed in children during development.  It seems 
reasonable to follow a   longitudinal approach to 
development.   Contributors are also encouraged 
to create and submit new training data sets in or
der to explore how complex a miniature language 
can become.

The type of information that is available to the 
learner could also be changed.    At present,   the 
descriptions   lack   acoustic   information   such   as 
tone.  Such data is indispensable in investigating 
certain languages such as Mandarin and Swahili. 
Similarly, the symbolic representations of visual 
objects can be refined to better represent reality. 
Colours can be represented by RGB values rather 
than   linguisticallyrelated   symbols,   as   it   is   un
likely that children start with such predefined se
mantic categories from the outset of learning.

It   is  also worthwhile  considering more com
plex testing and analysis algorithms.   It is likely 
that they will be developed in step with new lin
guistic phenomena that are investigated, building 
a useful catalogue of tools.  In addition, it may be 
useful   to   develop   learnerdependant   analysis 
tools in order to demonstrate how the inner work
ings are related to the outward behaviour.

Finally, it is hoped that the LAT will become a 
useful   resource  not   just   for  modellers  who  are 
comfortable with coding but  also nonprogram
mers.  They should be able to implement and ex
periment with different kinds of models with the 
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flexibility of  looking at different  aspects of ac
quisition under different settings and with differ
ent types of data.  They can then inform language 
modellers directly about how particular language 
models perform well and poorly in certain cases. 
The collaborative aspect of the LAT encourages 
not just programmers to share their code, but for 
everyone to share their ideas.

6 Conclusion

This   article   proposes   a   tool   that   facilitates   the 
consolidation of research into the computational 
modelling of child language acquisition under the 
miniature language paradigm.   The workshop is 
being used to launch a first version of the LAT, 
that   is   hoped   to   help   language   modellers   and 
child language experts to communicate and share 
their knowledge.
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Abstract

In this paper we present the first step in a larger
series of experiments for the induction of pred-
icate/argument structures. The structures that
we are inducing are very similar to the con-
ceptual structures that are used in Frame Se-
mantics (such as FrameNet). Those structures
are called messages and they were previously
used in the context of a multi-document sum-
marization system of evolving events. The se-
ries of experiments that we are proposing are
essentially composed from two stages. In the
first stage we are trying to extract a represen-
tative vocabulary of words. This vocabulary
is later used in the second stage, during which
we apply to it various clustering approaches in
order to identify the clusters of predicates and
arguments—or frames and semantic roles, to
use the jargon of Frame Semantics. This paper
presents in detail and evaluates the first stage.

1 Introduction
Take a sentence, any sentence for that matter; step back
for a while and try to perceive that sentence in its most
abstract form. What you will notice is that once you
try to abstract away sentences, several regularities be-
tween them will start to emerge. To start with, there is
almost always an action that is performed.1 Then, there
is most of the times an agent that is performing this ac-
tion and a patient or a benefactor that is receiving this
action, and it could be the case that this action is per-
formed with the aid of a certain instrument. In other
words, within a sentence—and in respect to its action-
denoting word, or predicate in linguistic terms—there
will be several entities that are associated with the pred-
icate, playing each time a specific semantic role.

The notion of semantic roles can be traced back to
Fillmore’s (1976) theory of Frame Semantics. Accord-
ing to this theory then, a frame is a conceptual structure
which tries to describe a stereotypical situation, event
or object along with its participants and props. Each
frame takes a name (e.g. COMMERCIAL TRANSAC-
TION) and contains a list of Lexical Units (LUs) which

1In linguistic terms, an action-denoting word is also
known as a predicate.

actually evoke this frame. An LU is nothing else than
a specific word or a specific meaning of a word in the
case of polysemous words. To continue the previous
example, some LUs that evoke the frame of COMMER-
CIAL TRANSACTION could be the verbs buy, sell,
etc. Finally, the frames contain several frame elements
or semantic roles which actually denote the abstract
conceptual entities that are involved with the particu-
lar frame.

Research in semantic roles can be distinguished into
two major branches. The first branch of research con-
sists in defining an ontology of semantic roles, the
frames in which the semantic roles are found as well as
defining the LUs that evoke those frames. The second
branch of research, on the other hand, stipulates the
existence of a set of frames, including semantic roles
and LUs; its goal then, is the creation of an algorithm
that given such a set of frames containing the semantic
roles, will be able to label the appropriate portions of
a sentence with the corresponding semantic roles. This
second branch of research is known as semantic role
labeling.

Most of the research concerning the definition of the
semantic roles has been carried out by linguists who are
manually examining a certain amount of frames before
finally defining the semantic roles and the frames that
contain those semantic roles. Two such projects that
are widely known are the FrameNet (Baker et al., 1998;
Ruppenhofer et al., 2006) and PropBank/NomBank 2

(Palmer et al., 2005; Meyers et al., 2004). Due to the
fact that the aforementioned projects are accompanied
by a large amount of annotated data, computer scien-
tists have started creating algorithms, mostly based on
statistics (Gildea and Jurafsky, 2002; Xue, 2008) in or-
der to automatically label the semantic roles in a sen-
tence. Those algorithms take as input the frame that

2We would like to note here that although the two ap-
proaches (FrameNet and PropBank/NomBank) share many
common elements, they have several differences as well.
Two major differences, for example, are the fact that the
Linguistic Units (FrameNet) are referred to as Relations
(PropBank/NomBank), and that for the definition of the se-
mantic roles in the case of PropBank/NomBank there is no
reference ontology. A detailed analysis of the differences be-
tween FrameNet and PropBank/NomBank would be out of
the scope of this paper.
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contains the roles as well as the predicate3 of the sen-
tence.

Despite the fact that during the last years we have
seen an increasing interest concerning semantic role
labeling,4 we have not seen many advancements con-
cerning the issue of automatically inducing semantic
roles from raw textual corpora. Such a process of in-
duction would involve, firstly the identification of the
words that would serve as predicates and secondly the
creation of the appropriate clusters of word sequences,
within the limits of a sentence, that behave similarly
in relation to the given predicates. Although those
clusters of word sequences could not actually be said
to serve in themselves as the semantic roles,5 they
can nevertheless be viewed as containing characteris-
tic word sequences of specific semantic roles. The last
point has the implication that if one is looking for a
human intuitive naming of the semantic role that is im-
plied by the cluster then one should look elsewhere.
This is actually reminiscent of the approach that is car-
ried out by PropBank/NomBank in which each seman-
tic role is labeled as Arg1 through Arg5 with the se-
mantics given aside in a human readable natural lan-
guage sentence.

Our goal in this paper is to contribute to the research
problem of frame induction, that is of the creation of
frames, including their associated semantic roles, given
as input only a set of textual documents. More specifi-
cally we propose a general methodology to accomplish
this task, and we test its first stage which includes the
use of corpus statistics for the creation of a subset of
words, from the initial universe of initial words that are
present in the corpus. This subset will later be used
for the identification of the predicates as well as the
semantic roles. Knowing that the problem of frame in-
duction is very difficult in the general case, we limit
ourselves to a specific genre and domain trying to ex-
ploit the characteristics that exist in that domain. The
domain that we have chosen is that of the terroristic in-
cidents which involve hostages. Nevertheless, the same
methodology could be applied to other domains.

The rest of the paper is structured as follows. In sec-
tion 2 we describe the data on which we have applied
our methodology, which itself is described in detail in
section 3. Section 4 describes the actual experiments
that we have performed and the results obtained, while
a discussion of those results follows in section 5. Fi-
nally, section 6 contains a description of the related
work while we present our future work and conclusions
in section 7.

3In the case of FrameNet the predicate corresponds to a
“Linguistic Unit”, while in the case of PropBank/NomBank
it corresponds to what is named “Relation”.

4Cf, for example, the August 2008 issue of the journal
Computational Linguistics (34:2).

5At least as the notion of semantic roles is proposed and
used by FrameNet.

2 The Annotated Data

The annotated data that we have used in order to
perform our experiments come from a previous work
on automatic multi-document summarization of events
that evolve through time (Afantenos et al., 2008; Afan-
tenos et al., 2005; Afantenos et al., 2004). The method-
ology that is followed is based on the identification of
similarities and differences—between documents that
describe the evolution of an event—synchronically as
well as diachronically. In order to do so, the notion of
Synchronic and Diachronic cross document Relations
(SDRs),6 was introduced. SDRs connect not the doc-
uments themselves but some semantic structures that
were called messages. The connection of the messages
with the SDRs resulted in the creation of a semantic
graph that was then fed to a Natural Language Gener-
ation (NLG) system in order to produce the final sum-
mary. Although the notion of messages was originally
inspired by the notion of messages as used in the area of
NLG, for example during the stage of Content Determi-
nation as described in (Reiter and Dale, 1997), and in
general they do follow the spirit of the initial definition
by Reiter & Dale, in the following section we would
like to make it clear what the notion of messages rep-
resents for us. In the rest of the paper, when we refer to
the notion of messages, it will be in the context of the
discussion that follows.

2.1 Messages

The intuition behind messages, is the fact that during
the evolution of an event we have several activities that
take place and each activity is further decomposed into
a series of actions. Messages were created in order to
capture this abstract notion of actions. Of course, ac-
tions usually implicate several entities. In this case, en-
tities were represented with the aid of a domain ontol-
ogy. Thus, in more formal terms a message m can be
defined as follows:

m = message_type (arg1, . . . , argn)
where argi ∈ Topic Ontology, i ∈ {1, . . . , n}

In order to give a simple example, let us take for in-
stance the case of the hijacking of an airplane by ter-
rorists. In such a case, we are interested in knowing
if the airplane has arrived to its destination, or even to
another place. This action can be captured by a mes-
sage of type arrive whose arguments can be the en-
tity that arrives (the airplane in our case, or a vehicle,
in general) and the location that it arrives. The specifi-
cations of such a message can be expressed as follows:

6Although a full analysis of the notion of Synchronic and
Diachronic Relations is out of the scope of this paper, we
would like simply to mention that the premises on which
those relations are defined are similar to the ones which gov-
ern the notion of Rhetorical Structure Relations in Rhetorical
Structure Theory (RST) (Taboada and Mann, 2006), with the
difference that in the case of SDRs the relations hold across
documents, while in the case of RSTs the relation hold inside
a document.
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arrive (what, place)
what : Vehicle

place : Location

The concepts Vehicle and Location belong to the
ontology of the topic; the concept Airplane is a sub-
concept of the Vehicle. A sentence that might in-
stantiate this message is the following:

The Boeing 747 arrived at the airport of
Stanstend.

The above sentence instantiates the following message:

arrive ("Boeing 747", "airport of
Stanstend")

The domain which was chosen was that of terroris-
tic incidents that involve hostages. An empirical study,
by three people, of 163 journalistic articles—written in
Greek—that fell in the above category, resulted in the
definition of 48 different message types that represent
the most important information in the domain. At this
point we would like to stress that what we mean by
“most important information” is the information that
one would normally expect to see in a typical summary
of such kinds of events. Some of the messages that
have been created are shown in Table 1; figure 1 pro-
vides full specifications for two messages.

free explode
kill kidnap
enter arrest
negotiate encircle
escape_from block_the_way
give_deadline

Table 1: Some of the message types defined.

negotiate (who, with_whom, about)
who : Person
with_whom : Person
about : Activity

free (who, whom, from)
who : Person
whom : Person
from : Place ∨ Vehicle

Figure 1: An example of message specifications

Although in an abstract way the notion of messages,
as presented in this paper approaches the notion of
frame semantics—after all, both messages and frame
semantics are concerned with “who did what, to whom,
when, where and how”—it is our hope that our ap-
proach could ultimately be used for the problem of
frame induction. Nevertheless, the two structures have
several points in which they differ. In the following
section we would like to clarify those points in which
the two differ.

2.2 How Messages differ from Frame Semantics

As it might have been evident until now, the notions
of messages and frame semantics are quite similar, at
least from an abstract point of view. In practical terms
though, the two notions exhibit several differences.

To start with, the notion of messages has been used
until now only in the context of automatic text summa-
rization of multiple documents. Thus, the aim of mes-
sages is to capture the essential information that one
would expect to see in a typical summary of this do-
main.7 In contrast, semantic roles and the frames in
which they exist do not have this limitation.

Another differentiating characteristic of frame se-
mantics and messages is the fact that semantic roles al-
ways get instantiated within the boundaries of the sen-
tence in which the predicate exists. By contrast, in mes-
sages although in the vast majority of the cases there is
a one-to-one mapping from sentences to messages, in
some of the cases the arguments of a message, which
correspond to the semantic roles, are found in neigh-
boring sentences. The overwhelming majority of those
cases (which in any case were but a few) concern re-
ferring expressions. Due to the nature of the machine
learning experiments that were performed, the actual
entities were annotated as arguments of the messages,
instead of the referring expressions that might exist in
the sentence in which the message’s predicate resided.

A final difference that exists between messages and
frame semantics is the fact that messages were meant
to exist within a certain domain, while the definition of
semantic roles is usually independent of a domain.8

3 The Approach Followed

A schematic representation of our approach is shown
in Figure 2. As it can be seen from this figure, our ap-
proach comprises two stages. The first stage concerns
the creation of a lexicon which will contain as most as
possible—and, of course, as accurately as possible—
candidates that are characteristic either of the predi-
cates (message types) or of the semantic roles (argu-
ments of the messages). This stage can be thought of
as a filtering stage. The second stage involves the use
of unsupervised clustering techniques in order to create
the final clusters of words that are characteristic either
of the predicates or of the semantic roles that are asso-

7In this sense then, the notion of messages is reminiscent
of Schank & Abelson’s (1977) notion of scripts, with the dif-
ference that messages are not meant to exist inside a struc-
ture similar to Schank & Abelson’s “scenario”. We would
like also to note that the notion of messages shares certain
similarities with the notion of templates of Information Ex-
traction, as those structures are used in conferences such as
MUC. Incidentally, it is not by chance that the “M” in MUC
stands for Message (Understanding Conference).

8We would like to note at this point that this does not ex-
clude of course the fact that the notion of messages could be
used in a more general, domain independent way. Neverthe-
less, the notion of messages has for the moment been applied
in two specific domains (Afantenos et al., 2008).
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ciated with those predicates. The focus of this paper is
on the first stage.

As we have said, our aim in this paper is the use
of statistical measures in order to extract from a given
corpus a set of words that are most characteristic of
the messages that exist in this corpus. In the context
of this paper, a word will be considered as being char-
acteristic of a message if this word is employed in a
sentence that has been annotated with that message. If
a particular word does not appear in any message an-
notated sentence, then this word will not be considered
as being characteristic of this message. In more formal
terms then, we can define our task as follows. If by U
we designate the set of all the words that exist in our
corpus, then we are looking for a setM such that:

M⊂ U ∧
w ∈M⇔ m appears at least once

in a message instance (1)

In order to extract the set M we have employed the
following four statistical measures:

Collection Frequency: The set that results from the
union of the n% most frequent words that appear
in the corpus.

Document Frequency: The set that results from the
union of the n% most frequent words of each doc-
ument in the corpus.

tf.idf: For each word in the corpus we calculate its
tf.idf . Then we create a set which is the union of
words with the highest n% tf.idf score in each
document.

Inter-document Frequency: A word has inter-docu-
ment frequency n if it appears in at least n docu-
ments in the corpus. The set with inter-document
frequency n is the set that results from the union
of all the words that have inter-document fre-
quency n.

As we have previously said in this paper, our goal is
the exploitation of the characteristic vocabulary that
exists in a specific genre and domain in order to ulti-
mately achieve our goal of message induction, some-
thing which justifies the use of the above statistical
measures. The first three measures are known to be
used in context of Information retrieval to capture top-
ical informations. The latter measure has been pro-
posed by (Hernandez and Grau, 2003) in order to ex-
tract rhetorical indicator phrases from a genre depen-
dant corpus.

In order to calculate the aforementioned statistics,
and create the appropriate set of words, we ignored all
the stop-words. In addition we worked only with the
verbs and nouns. The intuition behind this decision lies
in the fact that the created set will later be used for the
identification of the predicates and the induction of the

semantic roles. As Gildea & Jurafsky (2002)—among
others—have mentioned, predicates, or action denot-
ing words, are mostly represented by verbs or nouns.9

Thus, in this series of experiments we are mostly focus-
ing in the extraction of a set of words that approaches
the set that is obtained by the union of all the verbs and
nouns found in the annotated sentences.

4 Experiments and Results
The corpus that we have consists of 163 journalistic
articles which describe the evolution of five different
terroristic incidents that involved hostages. The cor-
pus was initially used in the context of training a multi-
document summarization system. Out of the 3,027 sen-
tences that the corpus contains, about one third (1,017
sentences) were annotated with the 48 message types
that were mentioned in section 2.1.

Number of Documents: 163
Number of Token: 71,888
Number of Sentences: 3,027
Annotated Sentences (messages): 1,017
Distinct Verbs and Nouns in the Corpus: 7,185
Distinct Verbs and Nouns in the Messages: 2,426

Table 2: Corpus Statistics.

The corpus contained 7,185 distinct verbs and nouns,
which actually constitute the U of the formula (1)
above. Out of those 7,185 distinct verbs and nouns
2,426 appear in the sentences that have been annotated
with the messages. Our goal was to create this set that
approached as much as possible to the set of 2,426 dis-
tinct verbs and nouns that are found in the messages.

Using the four different statistical measures pre-
sented in the previous section, we tried to reconstruct
that set. In order to understand how the statistical mea-
sures behaved, we varied for each one of them the value
of the threshold used. For each statistical measure used,
the threshold represents something different. For the
Collection Frequency measure the threshold represents
the n% most frequent words that appear in the cor-
pus. For the Document Frequency it represents the n%
most frequent words that appear in each document sep-
arately. For tf.idf it represents the words with the high-
est n% tf.idf score in each document. Finally for the
Inter-document Frequency the threshold represents the
verbs and nouns that appear in at least n documents.
Since for the first three measures the threshold repre-
sents a percentage, we varied it from 1 to 100 in order
to study how this measure behaves. For the case of
the Inter-document Frequency, we varied the threshold
from 1 to 73 which represents the maximum number of
documents in which a word appeared.

In order to measure the performance of the statistical
measures employed, we used four different evaluation
measures, often employed in the information retrieval

9In some rare cases predicates can be represented by ad-
jectives as well.
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Lexicon Extraction
(initial predicate filtering)

Unsupervised Clustering

Clusters of predicates and semantic roles

Figure 2: Two different stages in the process of predicate clustering

field. Those measures are the Precision, Recall, F-
measure and Fallout. Precision represents the percent-
age of the correctly obtained verbs and nouns over the
total number of obtained verbs and nouns. Recall rep-
resents the percentage of the obtained verbs and nouns
over the target set of verbs and nouns. The F-measure
is the harmonic mean of Precision and Recall. Finally,
fallout represents the number of verbs and nouns that
were wrongly classified by the statistical measures as
belonging to a message, over the total number of verbs
and nouns that do not belong to a message. In an ideal
situation one expects a very high precision and recall
(and by consequence F-measure) and a very low Fall-
out.

The obtained graphs that combine the evaluation re-
sults for the four statistical measures presented in sec-
tion 3 are shown in Figures 3 through 6. A first remark
that we can make in respect to those graphs is that con-
cerning the collection frequency, document frequency
and tf.idf measures, for small threshold numbers we
have more or less high precision values while the recall
and fallout values are low. This implies that for smaller
threshold values the obtained sets are rather small, in
relation toM (and by consequence to U as well). As
the threshold increases we have the opposite situation,
that is the precision falls while the recall and the fall-
out increases, implying that we get much bigger sets of
verbs and nouns.

In terms of absolute numbers now, the best F-
measure is given by the Collection Frequency measure
with a threshold value of 46%. In other words, the
best results—in terms of F-measure—is given by the
union of the 46% most frequent verbs and nouns that
appear in the corpus. For this threshold the Precision
is 54.14%, the Recall is 72.18% and the F-measure is
61,87%. This high F-measure though comes at a cer-
tain cost since the Fallout is at 31.16%. This implies
that although we get a rather satisfying score in terms
of precision and recall, the number of false positives
that we get is rather high in relation to our universe.
As we have earlier said, a motivating factor of this pa-
per is the automatic induction of the structures that we
have called messages; the extracted lexicon of verbs
and messages will later be used by an unsupervised
clustering algorithm in order to create the classes of

words which will correspond to the message types. For
this reason, although we prefer to have an F-measure as
high as possible, we also want to have a fallout measure
as low as possible, so that the number of false positives
will not perturb the clustering algorithm.

If, on the other hand, we examine the relation be-
tween the F-measure and Fallout, we notice that for the
Inter-document Frequency with a threshold value of 4
we obtain a Precision of 71.60%, a recall of 43.86%
and an F-measure of 54.40%. Most importantly though
we get a fallout measure of 8.86% which implies that
the percentage of wrongly classified verbs and nouns
compose a small percentage of the total universe of
verbs and nouns. This combination of high F-measure
and very low Fallout is very important for later stages
during the process of message induction.

5 Discussion

As we have claimed in the introduction of this paper,
although we have applied our series of experiments in
a single domain, that of terroristic incidents which in-
volve hostages, we believe that the proposed procedure
can be viewed as a “general” one. In the section we
would like to clarify what exactly we mean by this
statement.

In order to proceed, we would like to suggest that
one can view two different kinds of generalization for
the proposed procedure:

1. The proposed procedure is a general one in the
sense that it can be applied in a large corpus of het-
erogeneous documents incorporating various do-
mains and genres, in order to yield “general”, i.e.
domain-independent, frames that can later be used
for any kind of domain.

2. The proposed procedure is a general one in the
sense that it can be used in any kind of domain
without any modifications. In contrast with the
first point, in this case the documents to which
the proposed procedure will be applied ought to
be homogeneous and rather representative of the
domain. The induced frames will not be general
ones, but instead will be domain dependent ones.
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Figure 3: Collection Frequency statistics
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Figure 4: Document Frequency statistics

Given the above two definitions of generality, we
could say that the procedure proposed in this paper
falls rather in the second category than in the first
one. Ignoring for the moment the second stage of the
procedure—clustering of word sequences characteris-
tic of specific semantic roles—and focusing on the ac-
tual work described in this paper, that is the use of
statistical methods for the identification of candidate
predicates, it becomes clear that the use of an hetero-
geneous, non-balanced corpus is prone to skewing the
results. By consequence, we believe that the proposed
procedure is general in the sense that we can use it for
any kind of domain which is described by an homoge-
neous corpus of documents.

6 Related Work

Teufel and Moens (2002) and Saggion and Lapalme
(2002) have shown that templates based on domain
concepts and relations descriptions can be used for the
task of automatic text summarization. The drawback
of their work is that they rely on manual acquisition
of lexical resources and semantic classes’ definition.
Consequently, they do not avoid the time-consuming
task of elaborating linguistic resources. It is actually
for this kind of reason—that is, the laborious manual
work—that automatic induction of various structures is
a recurrent theme in different research areas of Natural
Language Processing.

An example of an inductive Information Extraction
algorithm is the one presented by Fabio Ciravegna

(2001). The algorithm is called (LP)2. The goal of the
algorithm is to induce several symbolic rules given as
input previous SGML tagged information by the user.
The induced rules will later be applied in new texts in
order to tag it with the appropriate SGML tags. The
induced rules by (LP)2 fall into two distinct categories.
In the first we have a bottom up procedure which gen-
eralizes the tag instances found in the training corpus
which uses shallow NLP knowledge. A second set of
rules is also created which have a corrective character;
that is, the application of this second set of rules aims
at correcting several of the mistakes that are performed
by the first set of rules.

On the other hand several researchers have pioneered
the automatic acquisition of lexical and semantic re-
sources (such as verb classes). Some approaches are
based on Harris’s (1951) distribution hypothesis: syn-
tactic structures with high occurrences can be used for
identifying word clusters with common contexts (Lin
and Pantel, 2001). Some others perform analysis from
semantic networks (Green et al., 2004). Poibeau and
Dutoit (2002) showed that both can be used in a com-
plementary way.

Currently, our approach follows the first trend.
Based on Hernandez and Grau (2003; 2004)’s proposal,
we aim at explicitly using corpus characteristics such as
its genre and domain features to reduce the quantity of
considered data. In this paper we have explored various
statistical measures which could be used as a filter for
improving results obtained by the previous mentioned
works.
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Figure 5: Tf.idf statistics
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Figure 6: Inter-document frequency statistics

7 Conclusions and Future Work

In this paper we have presented a statistical approach
for the extraction of a lexicon which contains the verbs
and nouns that can be considered as candidates for use
as predicates for the induction of predicate/argument
structures that we call messages. Actually, the research
presented here can be considered as the first step in a
two-stages approach. The next step involves the use
of clustering algorithms on the extracted lexicon which
will provide the final clusters that will contain the pred-
icates and arguments for the messages. This process
is itself part of a larger process for the induction of
predicate/argument structures. Apart from messages,
such structures could as well be the structures that are
associated with frame semantics, that is the frames
and their associated semantic roles. Despite the great
resemblances that messages and frames have, one of
their great differences is the fact that messages were
firstly introduced in the context of automatic multi-
document summarization. By consequence they are
meant to capture the most important information in a
domain. Frames and semantic roles on the other hand,
do not have this restriction and thus are more general.
Nonetheless, it is our hope that the current research
could ultimately be useful for the induction of frame se-
mantics. In fact it is in our plans for the immediate fu-
ture work to apply the same procedure in FrameNet an-
notated data10 in order to extract a vocabulary of verbs

10See http://framenet.icsi.berkeley.edu/
index.php?option=com_wrapper&Itemid=84

and nouns which will be characteristic of the different
Linguistic Units (LUs) for the frames of FrameNet.

The proposed statistical measures are meant to be a
first step towards a fully automated process of mes-
sage induction. The immediate next step in the pro-
cess involves the application of various unsupervised
clustering techniques on the obtained lexicon in order
to create the 48 different classes each one of which
will represent a distinct vocabulary for the 48 differ-
ent message types. We are currently experimenting
with several algorithms such K-means, Expectation-
Minimization (EM), Cobweb and Farthest First. In ad-
dition to those clustering algorithms, we are also exam-
ining the use of various lexical association measures
such as Mutual Information, Dice coefficient, χ2, etc.
Although this approach will provide us with clusters of
predicates and candidate arguments, still the problem
of linking the predicates with their arguments remains.
Undoubtedly, the use of more linguistically oriented
techniques, such as syntactic analysis, is inevitable. We
are currently experimenting with the use of a shallow
parser (chunker) in order to identify the chunks that
behave similarly in respect to a given cluster of pred-
icates.

Concerning the evaluation of our approach, the high-
est F-measure score (61,87%) was given by the Col-
lection Frequency statistical measure with a threshold
value of 46%. This high F-measure though came at the
cost of a high Fallout score (31.16%). Since the ex-
tracted lexicon will later be used as an input to a clus-
tering algorithm, we would like to minimize as much as
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possible the false positives. By consequence we have
opted in using the Inter-document Frequency measure
which presents an F-measure of 54.40% and a much
more limited Fallout of 8.86%.
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Abstract

Indirect negative evidence is clearly an im-
portant way for learners to constrain over-
generalisation, and yet a good learning
theoretic analysis has yet to be provided
for this, whether in a PAC or a proba-
bilistic identification in the limit frame-
work. In this paper we suggest a theoreti-
cal analysis of indirect negative evidence
that allows the presence of ungrammati-
cal strings in the input and also accounts
for the relationship between grammatical-
ity/acceptability and probability. Given
independently justified assumptions about
lower bounds on the probabilities of gram-
matical strings, we establish that a limited
number of membership queries of some
strings can be probabilistically simulated.

1 Introduction

First language acquisition has been studied for a
long time from a theoretical point of view, (Gold,
1967; Niyogi and Berwick, 2000), but a consen-
sus has not emerged as to the most appropriate
model for learnability. The two main competing
candidates, Gold-style identification in the limit
and PAC-learning both have significant flaws.

For most NLP researchers, these issues are sim-
ply not problems: for all empirical purposes, one
is interested in modelling the distribution of exam-
ples or the conditional distribution of labels given
examples and the obvious solution – an ε − δ
bound on some suitable loss function such as the
Kullback-Leibler Divergence – is sufficient (Horn-
ing, 1969; Angluin, 1988a). There may be some
complexity issues involved with computing these
approximations, but there is no debate about the
appropriateness of the learning paradigm.

However, such an approach is unappealing to
linguists for a number of reasons: it fails to draw
a distinction between grammatical and ungram-
matical sentences, and for many linguists the key

data are not the “performance” data but rather the
“voice of competence” as expressed in grammat-
icality and acceptability judgments. Many of the
most interesting sentences for syntacticians are
comparatively rare and unusual and may occur
with negligible frequency in the data.

We do not want to get into this debate here: in
this paper, we will assume that there is a categori-
cal distinction between grammatical and ungram-
matical sentences. See (Schütze, 1996) for exten-
sive discussion.

Within this view learnability is technically quite
difficult to formalise in a realistic way. Children
clearly are provided with examples of the lan-
guage – so-called positive data – but the status
of examples not in the language – negative data
– is one of the endless and rather circular de-
bates in the language acquisition literature (Mar-
cus, 1993). Here we do not look at the role of
corrections and other forms of negative data but
we focus on what has been called indirect nega-
tive evidence (INE). INE is the non-occurrence of
data in the primary linguistic data; informally, if
the child does not hear certain ungrammatical sen-
tences, then by their absence the child can infer
that those strings are ungrammatical.

Indirect negative evidence has long been recog-
nised as an important source of information
(Pinker, 1979). However it has been surpris-
ingly difficult to find an explicit learning theo-
retic account of INE. Indeed, in both the PAC
and IIL paradigms it can be shown, that under
the standard assumptions, INE cannot help the
learner. Thus in many of these models, there
is a sharp and implausible distinction between
learning paradigms where the learner is provided
systematically with every negative example, and
those where the learner is denied any negative ev-
idence at all. Neither of these is very realistic.

In this paper, we suggest a resolution for this
conflict, by re-examining the standard learnability
assumptions. We make three uncontroversial ob-
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servations: first that the examples the child is pro-
vided with are unlabelled, secondly that there are
a small proportion of ungrammatical sentences in
the input to the child, and thirdly that in spite of
this, the child does in fact learn.

We then draw a careful distinction between
probability and grammaticality and propose a re-
striction on the class of distributions allowed to
take account of the fact that children are exposed
to some ungrammatical utterances. We call this
the Disjoint Distribution Assumption: the assump-
tion that the classes of distributions for different
languages must be disjoint. Based on this assump-
tion, we argue that the learner can infer lower
bounds on the probabilities of grammatical strings,
and that using these lower bounds allow a prob-
abilistic approximation to membership queries of
some strings.

On this basis we conclude that the learner does
have some limited access to indirect negative evi-
dence, and we discuss some of the limitations on
this data and the implications for learnability.

2 Background

The most linguistically influential learnability
paradigm is undoubtedly that of Gold (Gold,
1967). In this paradigm the learner is required to
converge to exactly the right answer after a finite
time. In one variant of the paradigm the learner
is provided with only positive examples, and must
learn on every presentation of the language. Un-
der this paradigm no suprafinite class of languages
is learnable. If alternatively the learner is pro-
vided with a presentation of labelled examples,
then pretty much anything is learnable, but clearly
this paradigm has little relevance to the course of
language acquisition.

The major problem with the Gold positive data
paradigm is that the learner is required to learn
under every presentation; given the minimal con-
straints on what counts as a presentation, this re-
sults in a model which is unrealistically hard. In
particular, it is difficult for the learner to recover
from an overly general hypothesis; since it is has
only positive examples, such a hypothesis will
never be directly contradicted.

Indirect negative evidence is the claim that the
absence of sentences in the PLD can allow a
learner to infer that those sentences are ungram-
matical. As (Chomsky, 1981, p. 9) says:

A not unreasonable acquisition sys-

tem can be devised with the opera-
tive principle that if certain structures
or rules fail to be exemplified in rel-
atively simple expressions, where they
would expect to be found, then a (pos-
sibly marked) option is selected exclud-
ing them in the grammar, so that a kind
of “negative evidence” can be available
even without corrections, adverse reac-
tions etc.

While this informal argument has been widely
accepted, and is often appealed to, it has so far not
been incorporated explicitly into a formal model
of learnability. Thus there are no learning mod-
els that we are aware of where positive learning
results have been achieved using indirect negative
evidence. Instead positive learnability results have
typically used general probabilistic models of con-
vergence without explicitly modelling grammati-
cality.

In what follows we will use the following no-
tation. Σ is a finite alphabet, and Σ∗ is the
set of all finite strings over Σ. A (formal) lan-
guage L is a subset of Σ∗. A distribution D over
Σ∗ is a function pD from Σ∗ to [0, 1] such that∑

w∈Σ∗ pD(w) = 1. We will write D(Σ∗) for the
set of all distributions over Σ∗. The support of a
distribution D is the set of strings with positive
probability supp(D) = {w|pD(w) > 0}.

3 Probabilistic learning

The solution is to recognise the probabilistic na-
ture of how the samples are generated. We can
assume they are generated by some stochastic pro-
cess. On its own this says nothing – anything can
be modelled by a stochastic process. To get learn-
ability we will need to add some constraints.

Suppose the child has seen thousands of times
sentences of the type “I am AP”, and “He is
AP” where AP is an adjective phrase, but he has
never heard anybody say “He am AP”. Intuitively
it seems reasonable in this case to assume that
the child can infer from this that sentences of the
form“He am AP” are ungrammatical. Now, in the
case of the Gold paradigm, the child can make
no such inference. No matter how many millions
or trillions of times he has heard other examples,
the Gold paradigm does not allow any inference
to be made from frequency. The teacher, or en-
vironment, is an adversary who might be deliber-
ately withholding this data in order to confuse the
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learner. The learner has to ignore this information.
However, in a more plausible learning environ-

ment, the learner can reason as follows. First, the
number of times that the learner has observed sen-
tences of the form “He am AP” is zero. From this,
the learner can infer that sentences of this type are
rare: i.e. that they are not very probable. Similarly
from the high frequency of examples of the type “I
am AP” and so on in the observed data, the learner
can infer that the probability of these sentences is
high.

The second step is that the learner can con-
clude from the difference in probability of these
two similar sets of sentences, that there must be a
difference in grammaticality between “He am AP”
and “He is AP”, and thus that sentences of the type
“He am AP” are ungrammatical.

It is important to recognise that the inference
proceeds in two steps:

1. the first is the inference from low frequency
in the observed data to low probability and

2. the second is the inference from compara-
tively low probability to ungrammaticality.

Both of these steps need justification, but if they
are valid, then the learner can extract evidence
about what is not in the language from stochastic
evidence about what is in the language. The first
step will be justified by some obvious and reason-
able probabilistic assumptions about the presenta-
tion of the data; the second step is more subtle and
requires some assumptions about the way the dis-
tribution of examples relates to the language being
learned.

3.1 Stochastic assumptions
The basic assumption we make is that the sam-
ples are being generated randomly in some way;
here we will make the standard assumption that
each sentence is generated independently from
the same fixed distribution, the Independently and
Identically Distributed (IID) assumption. While
this is a very standard assumption in statistics and
probability, it has been criticised as a modelling
assumption for language acquisition (Chater and
Vitányi, 2007).

Here we are interested in the acquisition of syn-
tax. We are therefore modelling the dependencies
between words and phrases in sentences, but as-
suming that there are no dependencies between
different sentences in discourse. That is to say, we

assume that the probability that a child hears a par-
ticular sentence does not depend on the previously
occurring sentence. Clearly, there are dependen-
cies between sentences. After questions, come an-
swers; a polar interrogative is likely to be followed
by a “yes” or a “no”; topics relate consecutive
sentences semantically, and numerous other fac-
tors cause inter-sentential relationships and regu-
larities of various types. Moreover, acceptability
does depend a great deal on the immediate context.
“Where did who go?” is marginal in most con-
texts; following “Where did he go?” it is perfectly
acceptable. Additionally, since there are multiple
people generating Child Directed Speech (CDS),
this also introduces dependencies: each person
speaks in a slightly different way; while a rela-
tive is visiting, there will be a higher probability
of certain utterances, and so on. These correspond
to a violation of the “identically” part of the IID
assumption: the distribution will change in time.

The question is whether it is legitimate to ne-
glect these issues in order to get some mathemat-
ical insight: do these idealising assumptions criti-
cally affect learnability? All of the computational
work that we are aware of makes these assump-
tions, whether in a nativist paradigm, (Niyogi and
Berwick, 2000; Sakas and Fodor, 2001; Yang,
2002) or an empiricist one (Clark and Thollard,
2004). We do need to make some assumptions,
otherwise even learning the class of observed nat-
ural languages would be too hard. The minimal
assumptions if we wish to allow any learnability
under stochastic presentation are that the process
generating the data is stationary and mixing. All
we need is for the law of large numbers to hold,
and for there to be rapid convergence of the ob-
served frequency to the expectation. We can get
this easily with the IID assumption, or with a bit
more work using ergodic theory. Thus in what fol-
lows we will make the IID assumption; effectively
using it as a place-holder for some more realistic
assumption, based on ergodic processes. See for
example (Gamarnik, 2003) for a an extension of
PAC analysis in this direction. The inference from
low frequency to low probability follows from the
minimal assumptions, specifically the IID, which
we are making here.

4 Probability and Grammaticality

We now look at the second step in the probabilistic
inference: how can the child go from low probabil-
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ity to ungrammaticality? More generally the ques-
tion is what is the relation between probability and
grammaticality. There are lots of factors that affect
probability other than grammaticality: length of
utterance, lexical frequency, semantic factors and
real world factors all can have an impact on prob-
ability.

Low probability on its own cannot imply un-
grammaticality: if there are infinitely many gram-
matical sentences then there cannot be a lower
bound on the probability: if all grammatical
sentences have probability at least ε then there
could be at most 1/ε grammatical sentences which
would make the language finite. A very long
grammatical sentence can have very low probabil-
ity, lower than a short ungrammatical sentence, so
a less naive approach is necessary: the key point is
that the probability must be comparatively low.

Since we are learning from unlabelled data, the
only information that the child has comes from
from the distribution of examples, and so the dis-
tribution must pick out the language precisely. To
see this more clearly, suppose that the learner had
access to an “Oracle” that would tell it the true
probability of any string, and has no limit on how
many strings it sees. A learner in this unrealistic
model is clearly more powerful than any learner
that just looks at a finite sample of the data. If this
learner could not learn, then no real learner could
learn on the basis of finite data.

More precisely for any language L we will have
a corresponding set of distributions D(L), and we
require the learner to learn under any of these dis-
tributions. What we require is that if we have two
distinct languages L and L′ then the two sets of
distributionsD(L) andD(L′) must be disjoint, i.e.
have no elements in common. If they did have a
distribution D in common, then no learner could
tell the two languages apart as the information be-
ing provided would be identical. Of course, given
two distinct languages L and L′, it is possible that
they intersect, that is to say that there are strings
w in L∩L′; a natural language example would be
two related dialects of the same language such as
some dialect of British English and some dialect of
American; though the languages are distinct in for-
mal terms, they are not disjoint, as there are sen-
tences that are grammatical in both. When we con-
sider the sets of distributions that are allowed for
each language D(L) and D(L′), we may find that
there are elements D ∈ D(L) and D′ ∈ D(L′),

whose supports overlap, or even whose supports
are identical, supp(D) = supp(D′), and we may
well find that there are even some strings whose
probabilities are identical; i.e. there may be a
string w such that pD(w) = pD′(w) > 0. But
what we do not allow is that we have a distribution
D that is an element of both D(L) and D(L′). If
there were such an element, then when the learner
was provided with samples drawn from this dis-
tribution, since the samples are unlabelled, there
is absolutely no way that the learner could work
out whether the target was L or L′; the distribu-
tion would not determine the language. Therefore
there must be a function from distributions to lan-
guages. We cannot have a single distribution that
could be from two different languages. Let’s call
this the disjoint distribution assumption (DDA):
the assumption that the sets of distributions for dis-
tinct languages are disjoint.

Definition 1 The Disjoint Distribution Assump-
tion: If L 6= L′ then D(L) ∩ D(L′) = ∅.

This assumption seems uncontroversial; indeed
every proposal for a formal probabilistic model of
language acquisition that we are aware of makes
this assumption implicitly.

Now consider the convergence criterion: we
wish to measure the error with respect to the distri-
bution. There are two error terms, corresponding
to false positives and false negatives. Suppose our
target language is T and our hypothesis is H . De-
fine PD(S) for some set S to be

∑
w∈S pD(s).

e+ = PD(H \ T ) (1)

e− = PD(T \H) (2)

We will require both of these error terms to con-
verge to zero rapidly, and uniformly, as the amount
of data the learner has increases.

5 Modelling the DDA

If we accept this assumption, then we will require
some constraints on the sets of distributions. There
are a number of ways to model this: the most ba-
sic way is to assume that strings have probability
greater than zero if and only if the string is in the
language. Formally, for all D in D(L)

pD(w) > 0 ⇔ w ∈ L (3)

Here we clearly have a function from distribu-
tions to languages: we just take the support of the

29



distribution to be the language: for all D in D(L),
supp(D) = L. Under this assumption alone how-
ever, indirect negative evidence will not be avail-
able.

That is because, in this situation, low probabil-
ity does not imply ungrammaticality: only zero
probability implies ungrammaticality. The fact
that we have never seen a sentence in a finite sam-
ple of size n means that we can say that it is likely
to have probability less than about 1/n, but we
cannot say that its probability is likely to be zero.
Thus we can never conclude that a sentence is un-
grammatical, if we make the assumption in Equa-
tion 3, and assume that there are no other limita-
tions on the set of distributions. Since we have
to learn for any distribution, we must learn even
when the distribution is being picked adversari-
ally. Suppose we have never seen an occurrence
of a string; this could be because the probability
has been artificially lowered to some infinitesimal
quantity by the adversary to mislead us. Thus we
gain nothing. Since there is no non-trivial lower
bound on the probability of grammatical strings,
effectively there is no difference between the re-
quirement pD(w) > 0 ⇔ w ∈ L and the weaker
condition pD(w) > 0 ⇒ w ∈ L.

But this is not the only possibility: indeed, it is
not a very good model at all. First, the assump-
tion that ungrammatical strings have zero proba-
bility is false. Ungrammatical sentences, that is
strings w, such that w 6∈ L, do occur in the en-
vironment, albeit with low probability. There are
performance errors, poetry and songs, other chil-
dren with less than adult competence, foreigners
and many other potential sources of ungrammat-
ical sentences. The orthodox view is that CDS
is “unswervingly well-formed” (Newport et al.,
1977): this is a slight exaggeration as a quick look
at CHILDES (MacWhinney, 2000) will confirm.
However, if we allow probabilities to be non-zero
for ungrammatical sentences, and put no other re-
strictions on the distributions then the learner will
fail on everything, since any distribution could be
for any language.

Secondly, the convergence criterion becomes
vacuous. As the probability of ungrammatical sen-
tences is now zero, this means that PD(H \ T ) =
e+ = 0, and thus the vacuous learner that always
returns the hypothesis Σ∗ will have zero error. The
normal way of dealing with this (Shvaytser, 1990)
is to require the learner to hypothesize a subset of

the target. This is extremely undesirable, as it fails
to account for the presence of over-generalisation
errors in the child – or any form of production of
ungrammatical sentences. On the basis of these
arguments, we can see that this naive approach is
clearly inadequate.

There are a number of other arguments why dis-
tribution free approaches are inappropriate here,
even though they are desirable in standard appli-
cations of statistical estimation (Collins, 2005).
First, the distribution of examples causally de-
pends on the people who are uttering the examples
who are native speakers of the language the learner
is learning and use that knowledge to construct ut-
terances. Second, suppose that we are trying to
learn a class of languages that includes some in-
finite regular language Lr. For concreteness sup-
pose it consists of {a∗b∗c∗}; any number of a’s fol-
lowed by any number of b’s followed by any num-
ber of c’s. The learner must learn under any dis-
tribution: in particular it will have to learn under
the distribution where every string except an in-
finitesimally small amount has the number of ’a’s
equal to the number of ’b’s, or under the distribu-
tion where the number of occurrences of all three
letters must be equal, or any other arbitrary subset
of the target language. The adversary can distort
the probabilities so that with probability close to
one, at a fixed finite time, the learner will only see
strings from this subset. In effect the learner has
to learn these arbitrary subsets, which could be of
much greater complexity than the language.

Indeed researchers doing computational or
mathematical modelling of language acquisition
often find it convenient to restrict the distribu-
tions in some way. For example (Niyogi and
Berwick, 2000), in some computational modelling
of a parameter-setting model of language acquisi-
tion say

In the earlier section we assumed
that the data was uniformly distributed.
. . . In particular we can choose a dis-
tribution which will make the conver-
gence time as large as we want. Thus
the distribution-free convergence time
for the three parameter system is infi-
nite.

However, finding an alternative is not easy.
There are no completely satisfactory ways of re-
stricting the class of distributions, while maintain-
ing the property that the support of the distribu-
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tion is equal to the language. (Clark and Thollard,
2004) argue for limiting the class of distributions
to those defined by the probabilistic variants of the
standard Chomsky representations. While this is
sufficient to achieve some interesting learning re-
sults, the class of distributions seems too small,
and is primarily motivated by the requirements of
the learning algorithm, rather than an analysis of
the learning situation.

5.1 Other bounds

Rather than making the simplistic assumption that
the support of the distribution must equal the lan-
guage, we can instead make the more realistic as-
sumption that every sentence, grammatical or un-
grammatical, can in principle appear in the input
and have non zero probability. In this case then
we do not need to require the learner to produce a
hypothesis that is a subset of the target, because if
the learner overgeneralises, e+ will be non-zero.

However, we clearly need to add some con-
straints to enforce the DDA. We can model this as
a function from distributions to languages. It is ob-
vious that grammaticality is correlated with prob-
ability in the sense that grammatical sentences are,
broadly speaking, more likely than ungrammatical
sentences; a natural way of articulating this is to
say that that there must be a real valued threshold
function gD(w) such that if pD(w) > gD(w) then
w ∈ L. Using this we define the set of allowable
distributions for a language L to be:

D(L, g) = {D : pD(w) > gD(w) ⇔ w ∈ L}
(4)

Clearly this will satisfy the DDA. On its own this
is vacuous – we have just changed notation, but
this notation gives us a framework in which to
compare some alternatives.

The original assumption that the support is
equal to the languages in this framework then just
has the simple form gD(w) = 0. The naive con-
stant bound we rejected above would be to have
this threshold as a constant that depends neither on
D nor on w i.e. for all w , gD(w) = ε > 0. Both
of these bounds are clearly false, in the sense that
they do not hold for natural distributions: the first
because there are ungrammatical sentences with
non-zero probability; the second because there are
grammatical sentences with arbitrarily low proba-
bility. But the bound here need not be a constant,
and indeed it can depend both on the distribution
D and the word w.

5.2 Functional bound
We now look at variants of these bounds that pro-
vide a more accurate picture of the set of distribu-
tions that the child is exposed to. Recall that what
we are trying to do is to characterise a range of dis-
tributions that is large enough to include those that
the child will be exposed to. A slightly more nu-
anced way would be to have this as a very simple
function of w, that ignores D, and is just a function
of length. For example, we could have a simple
uniform exponential model:

gD(w) = αgβ
|w|
g (5)

This is in some sense an application of Harris’s
idea of equiprobability (Harris, 1991):

whatever else there is to be said
about the form of language, a fun-
damental task is to state the depar-
tures from equiprobability in sound- and
word-sequences

Using this model, we do not assume that the
learner is provided with information about the
threshold g; rather the learner will have cer-
tain, presumably domain general mechanisms that
cause it to discard anomalies, and pay attention
to significant deviations from equiprobability. We
can view the threshold g as defining a bound on
equiprobability; the role of syntax is to charac-
terise these deviations from the assumption that all
sequences are in some sense equally likely.

A more realistic model would depend also on
D; for example once could define these thresholds
to depend on some simple observable properties of
the distribution that could take account of lexical
probabilities: more sophisticated versions of this
bound could be derived from a unigram model, or
a class-based model (Pereira, 2000).

Alternatively we could take account of the pre-
fix and suffix probability of a string: for example,
where for some α < 1: 1

gD(w) = α max
uv=w

pD(uΣ∗)pD(Σ∗v) (6)

6 Using the lower bound

Putting aside the specific proposal for the lower
bound g, and going back to the issue of indirect

1A prefix is just an initial segment of a string and has no
linguistic and similarly for a suffix as the final segment.
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negative evidence, we can see that the bound g is
the missing piece in the inference: if we observe
that a string w has zero frequency in our data set,
then we can conclude it has low probability, say
p; if p is less than g(w), then the string will be
ungrammatical; therefore the inference from low
probability to ungrammaticality in this case will
be justified.

The bound here is justified independently:
given the indubitable fact that there is a non-zero
probability of ungrammatical strings in the child’s
input, and the DDA, which again seems unassail-
able, together with the fact that learners do learn
some languages, it is a logical necessity that there
is such a bound. This bound then justifies indirect
negative evidence.

It is important to realise how limited this neg-
ative evidence is: it does not give the learner un-
limited access to negative examples. The learner
can only find out about sentences that would be
frequent if they were grammatical; this may be
enough to constrain overgeneralisation.

The most straightforward way of formalising
this indirect negative evidence is with membership
queries (Valiant, 1984; Angluin, 1988b). Mem-
bership queries are a model of learning where the
learner, rather than merely passively receiving ex-
amples, can query an oracle about whether an ex-
ample is in the language or not. In the model we
propose, the learner can approximate a member-
ship query with high probability by seeing the fre-
quency of an example with a high g in a large sam-
ple. If the frequency is low, often zero, in this sam-
ple, then with high probability this example will be
ungrammatical.

In particular given a functional bound, and some
polynomial thresholds on the probability, and us-
ing Chernoff bounds we can simulate a polyno-
mial number of membership queries, using large
samples of data. Note that membership queries
were part of the original PAC model (Valiant,
1984). Thus we can precisely define a limited
form of indirect negative evidence.

In particular given a bound g, we can test to see
whether a polynomial number of strings are un-
grammatical by taking a large sample and examin-
ing their frequency.

The exact details here depend on the form of
gD(w); if the bound depends on D in some re-
spect the learner will need to estimate some aspect
of D to compute the bound. This corresponds to

working out how probable the sentence would be
if it were grammatical. In the cases we have con-
sidered here, given sufficient data, we can estimate
gD(w) with high probability to an accuracy of ε1;
call the estimate ĝD(w). We can also estimate the
actual probability of the string with high probabil-
ity again with accuracy ε2: let us denote this es-
timate by p̂D(w). If p̂D(w) + ε2 < ĝD(w) − ε1,
then we can conclude that pD(w) < gD(w) and
therefore that the sentence is ungrammatical. Con-
versely, the fact that a string has been observed
once does not necessarily mean that it is grammat-
ical. It only means that the probability is non-zero.
For the learner to conclude that it is grammatical,
s/he needs to have seen it enough times to con-
clude that the probability is above threshold. This
will be if p̂D(w)− ε2 > ĝD(w) + ε1

Note that this may be slightly too weak and
we might want to have a separate lower bound
for grammaticality and upper bound for ungram-
maticality. Otherwise if the distribution is such
that many strings are very close to the boundary
it will not be possible for the learner to determine
whether they are grammatical or not.

We can thus define learnability with respect to a
bound g that defines a set of distributionsD(L,G).
Thus this model differs from the PAC model in two
respects: first the data is unlabelled, and secondly
is is not distribution free.

Definition An algorithm A learns the class of
languagesL if there is a polynomial p such that for
every language L ∈ L, where n is the size of the
smallest representation of L, for all distributions
D ∈ D(L, g) for all ε, δ > 0, when the algorithm
A is provided with at least p(n, ε−1, δ−1,Σ) un-
labelled examples drawn IID from D, it produces
with probability at least 1−δ a hypothesis H such
that the error PD(H \T ∪T \H) < ε and further-
more it runs in time polynomial in the total size of
the sample.

7 Discussion

The unrealistic assumptions of the Gold paradigm
were realised quite early on (Horning, 1969). It
is possible to modify the Gold paradigm by in-
corporating a probabilistic presentation in the data
and requiring the learner to learn with probabil-
ity one. Perhaps surprisingly this does not change
anything, if we put no constraints on the target dis-
tribution (Angluin, 1988a).

In particular given a presentation on which the
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normal non-probabilistic learner fails, we can con-
struct a distribution on which the probabilistic
learner will fail. Thus allowing an adversary to
pick the distribution is just as bad as allowing an
adversary to pick the presentation. However, the
distribution free assumption with unlabelled data
cannot account for the real variety of distributions
of CDS. In this model we propose restrictions on
the class of distributions, motivated by the oc-
currence of ungrammatical sentences. This also
means that we do not require a separate bound for
over-generalisation. As a result, we conclude that
there are limited amounts of negative evidence,
and suggest that these can be formalised as a lim-
ited number of membership queries, of strings that
would occur infrequently if they were ungrammat-
ical.

To be clear, we are not claiming that this is a di-
rect model of how children learn languages: rather
we hope to get some insight into the fundamen-
tal limitations of learning from unlabelled data by
switching to a more nuanced model. Here we have
not presented any positive results using this model,
but we observe that distribution dependent results
for learning regular languages and some context
free languages could be naturally modified to learn
in this framework. We hope that the recognition of
the validity of indirect negative evidence will di-
rect attention away from the supposed problems of
controlling overgeneralisation and towards the real
problems: the computational complexity of infer-
ring complex models.
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Abstract

Building on the use of local contexts, or
frames, for human category acquisition,
we explore the treatment of contexts as
categories. This allows us to examine and
evaluate the categorical properties that lo-
cal unsupervised methods can distinguish
and their relationship to corpus POS tags.
From there, we use lexical information
to combine contexts in a way which pre-
serves the intended category, providing a
platform for grammatical category induc-
tion.

1 Introduction and Motivation

In human category acquisition, the immediate lo-
cal context of a word has proven to be a reliable
indicator of its grammatical category, or part of
speech (e.g., Mintz, 2002, 2003; Redington et al.,
1998). Likewise, category induction techniques
cluster word types together (e.g., Clark, 2003;
Schütze, 1995), using similar information, i.e.,
distributions of local context information. These
methods are successful and useful (e.g. Koo et al.,
2008), but in both cases it is not always clear
whether errors in lexical classification are due to a
problem in the induction algorithm or in what con-
texts count as identifying the same category (cf.
Dickinson, 2008). The question we ask, then, is:
what role does the context on its own play in defin-
ing a grammatical category? Specifically, when do
two contexts identify the same category?

Many category induction experiments start by
trying to categorize words, and Parisien et al.
(2008) categorize word usages, a combination of
a word and its context. But to isolate the effect the
context has on the word, we take the approach of
categorizing contexts as a first step towards clus-
tering words. By separating out contexts for word
clustering, we can begin to speak of better dis-

ambiguation models as a foundation for induc-
tion. We aim in this paper to thoroughly investi-
gate what category properties contexts can or can-
not distinguish by themselves.

With this approach, we are able to more thor-
oughly examine the categories used for evaluation.
Evaluation of induction methods is difficult, due to
the variety of corpora and tagsets in existence (see
discussion in Clark, 2003) and the variety of po-
tential purposes for induced categories (e.g., Koo
et al., 2008; Miller et al., 2004). Yet improving the
evaluation of category induction is vital, as eval-
uation does not match up well with grammar in-
duction evaluation (Headden III et al., 2008). For
many evaluations, POS tags have been mapped
to a smaller tagset (e.g., Goldwater and Griffiths,
2007; Toutanova and Johnson, 2008), but there
have been few criteria for evaluating the quality
of these mappings. By isolating contexts, we can
investigate how each mapping affects the accuracy
of a method and the lexicon.

Using corpus annotation also allows us to ex-
plore the relation between induced categories
and computationally or theoretically-relevant cat-
egories (e.g., Elworthy, 1995). While human cate-
gory acquisition results successfully divide a lexi-
con into categories, these categories are not neces-
sarily ones which are appropriate for many com-
putational purposes or match theoretical syntactic
analysis. This work can also serve as a platform to
help drive the design of new tagsets, or refinement
of old ones, by outlining which types of categories
are or are not applicable for category induction.

After discussing some preliminary issues in sec-
tion 2, in section 3 we examine to what extent con-
texts by themselves can distinguish different cat-
egory properties and how this affects evaluation.
Namely, we propose that corpus tagsets should
be clear about identifying syntactic/distributional
properties and about how tagset mappings for
evaluation should outline how much information

34



is lost by mapping. In section 4, in more prelimi-
nary work, we add lexical information to contexts,
in order to merge them together and see which still
identify the same category.

2 Preliminaries

2.1 Background

Research on language acquisition has addressed
how humans learn categories of words, and we use
this as a starting point. Mintz (2002) shows that
local context, in the form of a frame of two words
surrounding a target word, leads to the target’s
categorization in adults, and Mintz (2003) shows
that frequent frames supply category information
in child language corpora. A frame is not decom-
posed into its left and right sides (cf., e.g., Reding-
ton et al., 1998; Clark, 2003; Schütze, 1995), but
is taken as their joint occurrence (Mintz, 2003).1

For category acquisition, frequent frames are
used, those with a frequency above a certain
threshold. These predict category membership, as
the set of words appearing in a given frame should
represent a single category. The frequent frame
you it, for example, largely identifies verbs, as
shown in (1), taken from child-directed speech in
the CHILDES database (MacWhinney, 2000). For
frequent frames in six subcorpora of CHILDES,
Mintz (2003) obtains both high type and token ac-
curacy in categorizing words.

(1) a. you put it

b. you see it

The categories do not reflect fine-grained lin-
guistic distinctions, though, nor do they fully ac-
count for ambiguous words. Indeed, accuracies
slightly degrade when moving from “Standard La-
beling”2 to the more fine-grained “Expanded La-
beling,”3 from .98 to .91 in token accuracy and
from .93 to .91 in type accuracy. In scaling the
method beyond child-directed speech, it would
be beneficial to use annotated data, which allows
for ambiguity and distinguishes a word’s cate-
gory across corpus instances. Furthermore, even
though many frames identify the same category,

1This use of frame is different than that used for subcate-
gorization frames, which are also used to induce word classes
(e.g., Korhonen et al., 2003).

2Categories = noun, verb, adjective, preposition, adverb,
determiner, wh-word, not, conjunction, and interjection.

3Nouns split into nouns and pronouns; verbs split into
verbs, auxiliaries, and copula

the method does not thoroughly specify how to re-
late them.

It has been recognized for some time that wider
contexts result in better induction models (e.g.,
Parisien et al., 2008; Redington et al., 1998), but
many linguistic distinctions rely on lexical infor-
mation that cannot be inferred from additional
context (Dickinson, 2008), so focusing on short
contexts can provide many insights. The use of
frames allows for frequent recurrent contexts and
a way to investigate corpus categories, or POS tags
(cf., e.g., Dickinson and Jochim, 2008). An added
benefit of starting with this method is that it can be
converted to a model of online acquisition (Wang
and Mintz, 2007). For this paper, however, we
only investigate the type of information input into
the model.

2.2 Some definitions

Frequency The core idea of using frames is that
words used in the same context are associated with
each other, and the more often these contexts oc-
cur, the more confidence we have that the frame in-
dicates a category. Setting a threshold to obtain the
45 most frequent frames in each subcorpus (about
80,000 words on average), (Mintz, 2003) allows a
frame to occur often enough to be meaningful and
have a variety of target words in the frame.

To determine what category properties frames
pinpoint (section 3), we use two thresholds to de-
fine frequent. Singly occurring frames cannot pro-
vide any information about groupings of words,
so we first consider frames that occur more than
once. This gives a large number of frames, cover-
ing much of the corpus (about 970,000 tokens), but
frames with few instances have very little informa-
tion. For the other threshold, frequent frames are
those which have a frequency of 200, about 0.03%
of the total number of frames in the corpus. One
could explore more thresholds, but for compar-
ing tagset mappings, these provide a good picture.
The higher threshold is appropriate for combining
contexts (section 4), as we need more information
to tell whether two frames behave similarly.

Accuracy To evaluate, we need a measure of the
accuracy of each frame. Mintz (2003) and Red-
ington et al. (1998) calculate accuracy by counting
all pairs of words (types or tokens) that are from
the same category, divided by all possible pairs of
words in a grouping. This captures the idea that
each word should have the same category as every

35



other word in its category set.
Viewing the task as disambiguating contexts

(see section 3), however, this measurement does
not seem to adequately represent cases with a ma-
jority label. For example, if three words have
the tag X and one Y , pairwise comparison re-
sults in an accuracy of 50%, even though X is
dominant. To account for this, we measure the
precision of the most frequent category instances
among all instances, e.g., 75% for the above ex-
ample (cf. the notion of purity in Manning et al.,
2008). Additionally, we only use measurements
of token precision. Token precision naturally han-
dles ambiguous words and is easy to calculate in a
POS-annotated corpus.

3 Categories in local contexts

In automatic category induction, a category is of-
ten treated as a set, or cluster, of words (Clark,
2003; Schütze, 1995), and category ambiguity is
represented by the fact that words can appear in
more than one set. Relatedly, one can cluster word
usages, a combination of a word and its context
(Parisien et al., 2008). An erroneous classification
occurs when a word is in an incorrect set, and one
source of error is when the contexts being treated
as indicative of the same category are actually am-
biguous. For example, in a bigram model, the con-
text be identifies nouns, adjectives, and verbs,
among others.

Viewed in this way, it is important to gauge
the precision of contexts for distinguishing a cat-
egory (cf. also Dickinson, 2008). In other words,
how often does the same context identify the same
category? And how fine-grained is the category
that the context distinguishes? To test whether
a frame defines a single category in non-child-
directed speech, we focus on which categorical
properties frames define, and for this we use a
POS-annotated corpus. Due to its popularity for
unsupervised POS induction research (e.g., Gold-
berg et al., 2008; Goldwater and Griffiths, 2007;
Toutanova and Johnson, 2008) and its often-used
tagset, for our initial research, we use the Wall
Street Journal (WSJ) portion of the Penn Treebank
(Marcus et al., 1993), with 36 tags (plus 9 punc-
tuation tags), and we use sections 00-18, leaving
held-out data for future experiments.4

Defining frequent frames as those occurring at

4Even if we wanted child-directed speech, the CHILDES
database (MacWhinney, 2000) uses coarse POS tags.

least 200 times, we find 79.5% token precision.
Additionally, we have 99 frames, identifying 14
types of categories as the majority tag (common
noun (NN) being the most prevalent (37 frames)).
For a threshold of 2, we have 77.3% precision for
67,721 frames and 35 categories.5 With precision
below 80%, we observe that frames are not fully
able to disambiguate these corpus categories.

3.1 Frame-defined categories

These corpus categories, however, are composed
of a variety of morphological and syntactic fea-
tures, the exact nature of which varies from tagset
to tagset. By merging different tags, we can factor
out different types of morphological and syntac-
tic properties to determine which ones are more or
less easily identified by frames. Accuracy will of
course improve by merging tags; what is important
is for which mappings it improves.

We start with basic categories, akin to those
in Mintz (2003). Despite the differences among
tagsets, these basic categories are common, and
merging POS tags into basic categories can show
that differences in accuracy have more to do with
stricter category labels than language type. We
merged tags to create basic categories, as in table 1
(adapted from Hepple and van Genabith (2000);
see appendix A for descriptions).6

Category Corpus tags
Determiner DT, PDT, PRP$
Adjective JJ, JJR, JJS
Noun NN, NNS, PRP, NNP, NNPS
Adverb RB, RBR, RBS
Verb MD, VB, VBD, VBG, VBN,

VBP, VBZ
Wh-Det. WDT, WP$

Table 1: Tag mappings into basic categories

These broader categories result in the accuracies
in table 2, and we also record accuracies for the
similar PTB-17 tagset used in a variety of unsu-
pervised tagging experiments (Smith and Eisner,
2005), which mainly differs by treating VBG and
VBN uniquely. With token precision around 90%,
it seems that frame-based disambiguation is gener-
ally identifying basic categories, though with less

5LS (List item marker) is not identified; UH (interjection)
appears in one repeating frame, and SYM (symbol) in two.

6The 13 other linguistic tags were not merged, i.e., CC,
CD, EX, FW, IN, LS, POS, RP, SYM, TO, UH, WP, WRB.
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accuracy than in Mintz (2003).

≥ 2 ≥ 200
Orig. 77.3% 79.5%

Merged 85.9% 91.0%
PTB-17 85.1% 89.7%

Table 2: Effect of mappings on precision

But which properties of the tagset do the
frame contexts accurately capture and which do
they not? To get at this question, we ex-
plore linguistically-motivated mappings between
the original tagset and the fully-merged tagset in
table 1. Given the predominance of verbs and
nouns, we focus on distinguishing linguistic prop-
erties within these categories. For example, sim-
ply by merging nouns and leaving all other orig-
inal tags unchanged, we move from 79.5% token
precision to 88.4% (for the threshold of 200).

Leaving all other mappings as in table 1, we
merge nouns and verbs along two dimensions:
their common syntactic properties or their com-
mon morphological properties. Ideally, we pre-
fer frames to pick out syntactic properties, since
morphological properties can assumedly be deter-
mined from word-internal properties (see Clark,
2003; Christiansen and Monaghan, 2006).

Specifically, we can merge nouns by noun
type (PRP [pronoun], NN/NNS [common noun],
NNP/NNPS [proper noun]) or by noun form, in
this case based on grammatical number (PRP
[pronoun], NN/NNP [singular noun], NNS/NNPS
[plural noun]). We can merge verbs by finite-
ness (MD [modal], VBP/VBZ/VBD [finite verb],
VB/VBG/VBN [nonfinite verb]) or by verb form
(MD [modal], VB/VBP [base], VBD/VBN [-ed],
VBG [-ing], VBZ [-s]). In the latter case, verbs
with consistently similar forms are grouped—e.g.,
see can be a baseform (VB) or a present tense verb
(VBP).

The results are given in tables 3 and 4. We
find that merging verbs by finiteness and nouns by
noun type results in higher precision. This con-
firms that contexts can better distinguish syntactic,
but not necessarily morphological, properties. As
we will see in the next section, this mapping also
maintains distinctions in the lexicon. Such use of
local contexts, along with tag merging, can be used
to evaluate tagsets which claim to be distributional
(see, e.g., Dickinson and Jochim, 2008).

It should be noted that we have only explored

Noun type Noun form
Finiteness 82.9% 81.2%
Verb form 81.2% 79.5%

Table 3: Mapping precision (freq. ≥ 2)

Noun type Noun form
Finiteness 86.4% 85.3%
Verb form 84.5% 83.4%

Table 4: Mapping precision (freq. ≥ 200)

category mappings which merge tags, ignoring
possible splits. While splitting a tag like TO (to)
into prepositional and infinitival uses would be
ideal, we do not have the information automati-
cally available. We are thus limited in our eval-
uation by what the tagset offers. Some tag splits
can be automatically recovered (e.g., splitting PRP
based on properties such as person), but if it is au-
tomatically recoverable from the lexicon, we do
not necessarily need context to identify it, an idea
we turn to in the next section.

3.2 Evaluating tagset mappings

Some of the category distinctions made by frames
are more or less important for the context to make.
For example, it is detrimental if we conflate VB
and VBP because this is a prominent ambiguity for
many words (e.g., see). On the other hand, there
are no words which can be both VBP (e.g., see)
and VBZ (e.g., sees). Ideally, induction methods
would be able to distinguish all these cases—just
as they often make distinctions beyond what is in a
tagset—but there are differences in how problem-
atic the mappings are. If we group VB and VBP
into one tag, there is no way to recover that distinc-
tion; for VBP and VBZ, there are at least different
words which inherently take the different tags.

Thus, a mapping is preferred which does not
conflate tags that vary for individual words. To
calculate this, we compare the original lexicon
with a mapped lexicon and count the number of
words which lose a distinction. Consider the
words accept and accepts: accept varies between
VB and VBP; accepts is only VBZ. When we map
tags based on verb form, we count 1 for accept,
as VB and VBP are now one tag (Verb). When
we map verbs based on finiteness, we count 0 for
these two words, as accept still has two tags (V-
nonfin, V-fin) and accepts has one tag (V-fin).
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We evaluate our mappings in table 5 by enumer-
ating the number of word types whose distinctions
are lost by a particular mapping (out of 44,520
word types); we also repeat the token precision
values for comparison. Perhaps unsurprisingly,
grouping words based on form results in high con-
fusability (cf. the discussion of see in section 3.1).
On the other hand, merging nouns by type and
verbs by finiteness results in something of a bal-
ance between precision and non-confusability. It
is thus these types of categorizations which we can
reasonably expect induction models to capture.

Lost Precision
Mapping tags ≥ 2 ≥ 200
All mappings 3003 85.9% 91.0%
PTB-17 2038 85.1% 89.7%
N. form/V. form 2699 79.5% 83.4%
N. type/V. form 2148 81.2% 84.5%
N. form/Finite 951 81.2% 85.3%
N. type/Finite 399 82.9% 86.4%
No mappings 0 77.3% 79.5%

Table 5: Confusable word types

For induction evaluation, in addition to an ac-
curacy metric, a metric such as the one we have
just proposed is important to gauge how much cor-
pus annotation information is lost when perform-
ing tagset mappings. For example, the PTB-17
mapping (Smith and Eisner, 2005) is commonly
used for evaluating category induction (Goldwa-
ter and Griffiths, 2007; Toutanova and Johnson,
2008), yet it loses distinctions for 2038 words.

We could also define mappings which lose no
distinctions in the lexicon. Initial experiments
show that this allows no merging of nouns, and
that the resulting precision is only minimally bet-
ter than no mapping at all. We should also note
that the number of confusable words may be too
high, given errors in the lexicon (cf. Dickinson,
2008). For example, removing tags occurring less
than 10% of the time for a word results in only 305
confusable words for the Noun type/Finiteness
(NF) mapping and 1575 for PTB-17.

4 Combining contexts

We have narrowly focused on identical contexts,
or frames, for identifying categories, but this could
leave us with as many categories as frames (67,721
for ≥ 2, 99 for ≥ 200, instead of 35 and 30). We
need to reduce the number of categories without

inappropriately merging them (cf. the notion of
“completeness” in Mintz, 2003; Christiansen and
Monaghan, 2006). Thus far, we have not utilized
a frame’s target words; we turn to these now, in
order to better gauge the effectiveness of frames
for identifying categories. Although the work is
somewhat preliminary, our goal is to continue to
investigate when contexts identify the same cate-
gory. This merging of contexts is different than
clustering words (e.g., Clark, 2000; Brown et al.,
1992), but is applicable, as word clustering relies
on knowing which contexts identify the same cat-
egory.

4.1 Word-based combination
On their own, frames at best distinguish only very
broad categorical properties. This is perhaps un-
surprising, as the finer-grained distinctions in cor-
pora seem to be based on lexical properties more
than on additional context (see, e.g., Dickinson,
2008). If we want to combine contexts in a way
which maps to corpus tagsets, then, we need to
examine the target words. It is likely that two sets
share the same tag if they contain the same words
(cf. overlap in Mintz, 2003). In fact, the more a
frame’s word set overlaps with another’s word set,
the more likely it is unambiguous in the first place,
as the other set provides corroborating evidence.
Therefore, we use overlap of frames’ word sets as
a criterion to combine them.

This allows us to combine frames which do not
share context words. For example, in (2) we find
frames identifying baseform verbs (VB) (2a) and
frames identifying cardinal numbers (CD) (2b),
despite having a variety of context words. Their
target word sets, however, are sufficiently similar.

(2) a. will to, will the, to the, to up,
would the, to their, n’t the,
to a, to its, to that, to to

b. or cents, $ million, rose %,
a %, about %, to %, $ a,
$ billion

By viewing frames as categories, in the fu-
ture we could also investigate splitting cate-
gories, based on subsets of words, morpho-
logical/phonological cues (e.g., Christiansen and
Monaghan, 2006), or on additional context words,
better handling frames that are ambiguous.

Calculating overlap We merge frames whose
word sets overlap, using a simple weighted fre-
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quency distance metric. We define sufficient over-
lap as the case where a given percent of the words
in one frame’s word set are found in the other’s
word set. We define this test in either direction,
as smaller sets can be a subset of a larger set. For
example, the frames the on (224 tokens) and the

of (4304 tokens) have an overlap of 78 tokens;
overlap here is 34.8% (78/224). While we could
use a more sophisticated form of clustering (see,
e.g., Manning et al., 2008), this will help deter-
mine the viability of this general approach.

Of course, two sets may share a category with
relatively few shared words, and so we transitively
combine sets of contexts. If the overlap of frames
A and B meet our overlap criterion and the overlap
of frames A and C also meet the criterion, then all
three sets are merged, even if B and C have only
a small amount of overlap.7

Using the threshold of 200, we test criteria of
30%, 40%, and 50% overlap and consider the
frames’ overlap calculated as a percentage of word
types or as a percentage of word tokens. For exam-
ple, if a word type occurs 10 times in one word set
and 20 in the other, the overlap of types is 1, and
the overlap of tokens is 10. Token overlap better
captures similarities in distributions of words.

4.2 Evaluation

Table 6 shows the number of categories for the
30%, 40%, and 50% type-based (TyB) and token-
based (ToB) overlap criteria for merging. As we
can see, the overlap based on tokens in word sets
results in more categories, i.e., fewer merges.

% TyB ToB
50% 59 75
40% 42 64
30% 27 50

Table 6: Number of categories by condition

The precision of each of these criteria is given
in table 7, evaluating on both the original tagset
and the noun type/finiteness (NF) mapping. We
can see that the token-based overlap is consistently
more accurate than type-based overlap, and there
is virtually no drop in precision for any of the
token-based conditions.8 Thus, for the rest of the
evaluation, we use only the token-based overlap.

7We currently do not consider overlap of already merged
sets, e.g., between A+B and C.

8Experiments at 20% show a noticeable drop in precision.

% Tags Frames TyB ToB
50% Orig. 79.5% 76.4% 79.5%

NF 86.4% 82.8% 86.4%
40% Orig. 79.5% 75.7% 79.3%

NF 86.4% 81.8% 86.1%
30% Orig. 79.5% 74.7% 79.1%

NF 86.4% 81.7% 86.1%

Table 7: Precision of merged frames

We mentioned that if frame word sets overlap,
the less ambiguous their category should be. We
check this by looking at the difference between
merged and unmerged frames, as shown in table 8.
The number of categories are also given in paren-
theses; for example, for 30% overlap, 41 frames
are unmerged, and the remaining 58 make up 9
categories. These results confirm for this data that
frames which are merged have a higher precision.

Merged Unmerged Overall
50% 93.4% (7) 79.9% (68) 86.4% (75)
40% 89.7% (10) 81.1% (54) 86.1% (64)
30% 89.7% (9) 77.4% (41) 86.1% (50)

Table 8: Precision of merged & unmerged frames
for NF mapping (with number of categories)

But are we only merging a select, small set of
words? To gauge this, we measure how much
of the corpus is categorized by the 99 most fre-
quent frames. Namely, 46,874 tokens occur as tar-
gets in our threshold of 99 frequent frames out of
663,608 target tokens in the entire corpus,9 a re-
call of 7.1%. Table 9 shows some recall figures for
the frequent frames. There are 9621 word types in
the set of target words for the 99 frequent frames,
which is 27.2% of the target lexicon. Crucially,
though, these 9621 are realized as 523,662 target
tokens in the corpus, or 78.9%. The words cate-
gorized by the frequent frames extend to a large
portion of the corpus (cf. also Mintz, 2003).

Tokens Types Coverage
Merged (30%) 5.0% 20.0% 61.5%

Unmerged (30%) 2.0% 11.5% 65.9%
Total Overlap 7.1% 27.2% 78.9%

Table 9: Recall of frames

9Because we remove frames which contain punctuation,
the set of target tokens is a subset of all words in the corpus.
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4.2.1 Qualitative analysis
To better analyze what is happening for future
work, we look more closely at 30% overlap. Of
the 58 frames merged into 9 categories, 54 of them
have the same majority tag after merging. The four
frames which get merged into a different category
are worth investigating, to see the method’s limi-
tations and potential for improvement.

Of the four frames which lose their majority
tag after merging, two can be ignored when map-
ping to the NF tags. The frame it the with ma-
jority tag VBZ becomes VBD when merged, but
both are V-fin. Likewise, n’t to changes from
VB to VBN, both cases of V-nonfin. The third
case reveals an evaluation problem with the orig-
inal tagset: the frames million $ (IN) and %

$ (TO) are merged into a category labeled TO.
The tag TO is for the word to and is not split into
prepositional and infinitival uses. Corpus cate-
gories such as these, which overlap in their def-
initions yet cannot be merged (due to their non-
overlapping uses), are particularly problematic for
evaluation.

The final case which does not properly merge is
the most serious. The frame is the (37% of to-
kens as preposition (IN)) merges with is a (41%
of tokens as VBG); the merged VBG category has
an precision of 34%. The distribution of tags is rel-
atively similar, the highest percentages being for
IN and VBG in both. This highlights the point
made earlier, that more information is needed, to
split the word sets.

4.2.2 TIGER Corpus
To better evaluate frequent frames for determin-
ing categories, we also test them on the German
TIGER corpus (Brants et al., 2002), version 2,
to see how the method handles data with freer
word order and more morphological complexity.
We use the training data, with the data split as
in Dubey (2004). The frequency threshold for
the WSJ (0.03% of all frames) leaves us with
only 60 frames in the TIGER corpus, and 51 of
these frames have a majority tag of NN.10 Thus,
we adjusted the threshold to 0.02% (102 mini-
mum occurrences), thereby obtaining 119 frequent
frames, with a precision of 82.0%. For the 30%
token-based overlap (the best result for English),
frames merged into 81 classes, with 79.1% pre-
cision. These precision figures are on a par with

10We use no tagset mappings for our TIGER experiments.

English (cf. table 7).11 Part of this might be due
to the fact that NN is still a large majority (76% of
the frames). Additionally, we find that, although
the frame tokens make up only 5.2% of the corpus
and the types make up 15.9% of the target lexi-
con, those types correspond to 67.2% of the target
corpus tokens.

5 Summary and Outlook

Building on the use of frames for human category
acquisition, we have explored the benefits of treat-
ing contexts—in this case, frames—as categories
and analyzed the consequences. This allowed us
to examine a way to evaluate tagset mappings and
provide feedback on distributional tagset design.
From there, we explored using lexical information
to combine contexts in a way which generally pre-
serves the intended category.

We evaluated this on English and German, but,
to fully verify our findings, a high priority is to
perform similar experiments on more corpora, em-
ploying different tagsets, for different languages.
Additionally, we need to expand the definition of
a context to more accurately categorize contexts,
while at the same time not lowering recall.

Acknowledgements

We wish to thank the Indiana University Compu-
tational Linguistics discussion group for feedback,
as well as the three anonymous reviewers.

A Some Penn Treebank POS tags
DT Determiner
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
MD Modal
NN Noun, singular or mass
NNS Noun, plural
NNP Proper noun, singular
NNPS Proper noun, plural
PDT Predeterminer
PRP Personal pronoun
PRP$ Possessive pronoun
RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non-3rd person singular present
VBZ Verb, 3rd person singular present
WDT Wh-determiner
WP$ Possessive wh-pronoun

11Interestingly, thresholds of 20% and 10% result in simi-
larly high precision.
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Abstract 

We present the Darwinised Data-
Oriented Parsing algorithm, an incre-
mental, dy-namic form of Data-Oriented 
Parsing, in which exemplars are used as 
replicators, subject to a selection pressure 
towards gen-eralisability.1 

1 Introduction 

Data-Oriented Parsing (DOP) is a state-of-the 
art approach to both supervised and unsupervised 
parsing (Bod1992, 1998, 2006a, 2006b, 2007a, 
2007b, Zollman and Sima’an 2005), which has 
mostly been developed within a technologically-
oriented computer science context. Recent work 
has highlighted some interesting cognitive prop-
erties of the Data-Oriented approach 
(Borensztajn, Zuidema & Bod 2008, Bod 2008). 
However, these studies have mostly focused on 
the static properties of the DOP probability 
model. Here, we present the first attempt at a 
dynamic, incremental Data-Oriented model 
which can address the time course of language 
learning, rather than just the outcome; Dar-
winised DOP. 

2 Data-Oriented Parsing 

2.1 Supervised DOP 

Data-Oriented Parsing (DOP) is a paradigm in 
Natural Language Processing in which linguistic 
knowledge is represented as fragmentable, re-
combinable exemplars of concrete previous ex-
perience, usually in the form of trees. What cru-
cially distinguishes DOP from other approaches 
is the fact that fragments of arbitrary size are 

                                                 
1 The author thanks Rens Bod, Mark-Jan Nederhof and 
three anonymous reviewers for exceedingly helpful com-
ments, sug-gestions and references. 

used, ranging, in the case of the usual tree-
structures, from depth-1 context-free rewrite 
rules to entire trees, and all points in between; 
this gives it the power to pick up on whatever 
statistical patterns are present in the data, to a 
considerable extent bypassing of the researcher’s 
theoretical prejudices. Moreover, it allows these 
regularities to be exploited without being repre-
sented. DOP was first proposed by Scha (1990), 
and implemented and developed by Bod (1992, 
1998). 

The simplest manifestation of DOP is DOP1, 
as described in Bod (1998 p12-23 and 40-50), 
though more sophisticated versions exist. The 
parser uses a large corpus of natural language 
strings annotated with labeled, ordered tree-
structures, divided into a training corpus and a 
smaller corpus against which the parser is tested. 
The parser uses every possible subtree (of unlim-
ited depth) of all the available trees, constrained 
only by the following wellformedness criteria 
(Fig. 1).  

• Every subtree must be of at least depth 1. 

• Sister relationships must be preserved: that 
is, either all or none of the daughters of a 
given node may be extracted, but not only 
some. 

 
Figure 1: Well-formed subtrees of a parse of 

“John likes Mary” 
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Fig 2: A sequence of substitutions comprising a 
derivation of “John likes Mary”. is the opera-
tor for leftmost non-terminal leaf-node substitu-

tion. 

The parser is given test corpus strings and 
builds up new parse-trees for these using the 
fragments available to it from the training corpus 
(Fig. 2), starting with a fragment with an S-node 
at the top, and then, for each nonterminal leaf-
node, working rightwards, substituting in addi-
tional subtrees, the topmost node of which must 
carry the same label as the node to be substituted. 
(see figure 2.2). 

In DOP research it is necessary to distinguish 
between parses and derivations. A parse is the 
tree structure expressed over a string; a deriva-
tion is the particular sequence of subtree substi-
tutions by which it was constructed. When pars-
ing with probabilistic context-free grammars 
(PCFG’s, see Manning and Schütze1999, 
pp.381-405; note that a PCFG is equivalent to a 
DOP grammar in which subtree depth has been 
restricted to 1), there is a one-to-one mapping 
between parses and derivations, because all non-
terminal nodes (nodes which have daughters in 
the completed parse) must be substitution sites. 
In DOP, subtrees can be of any depth, and so in 
any given derivation, any subset of the non-
terminal nodes could have been substitution 
sites, while the remainder will not have been. As 
such, if a parse contains N many non-terminal 
nodes, it will have 2N many derivations. 

 For each subtree t, its probability P(t) is its to-
tal frequency |t| of occurrence in the training cor-
pus over the summed corpus frequency of sub-
trees with the same root node;2 

  (1) 
…where r(t)and r(t') are the node-labels on the 

root-nodes of subtreest and t'. 
                                                 
2 Note that although, beside the node-label on the substitu-
tion site, the input to be parsed is also a constraint on the 
selection of subtrees for substitutions, these constraints are 
not factored in to the calculation of probabilities. That is to 
say, the probability used is that of the subtree, not the sub-
stitution. 

The probability of a derivation is the product 
of the probabilities of its subtrees (note that is 
the notation for the substitution operation; thus 
t1…tn is the sequence of substitutions, which 
together comprise the derivation); 

  (2) 

And the probability of a parse T is the sum of 
the probabilities of its possible derivations D; 

  (3) 

 The output of the parser is, in theory, the most 
probable parse. In practice, there are issues of 
computational complexity that prevent this from 
being calculated directly; instead, a Monte-Carlo 
sample is taken. Furthermore, although the num-
ber of subtrees for any given tree increases 
exponentially with tree-size, it is possible to 
reduce DOP trees to a stochastically equivalent 
PCFG which expands linearly with tree-size; for 
details see Goodman 1996, 2003) 

Bod (ibid p.54) reports accuracies of 85% on 
the ATIS3 corpus for DOP1. However, better 
results are achieved with later, more sophisti-
cated versions of DOP – the current state of the 
art is DOP* (Zollman and Sima’an 2005), which 
selects parses on the basis of the shortest deriva-
tion, and only uses probabilities to tie-break if 
there is more than one shortest derivation; this 
approach overcomes the problems of statistical 
consistency and bias which Johnson (1998) 
pointed out as afflicting DOP1. 

2.2 Unsupervised DOP 

Unsupervised DOP (UDOP, Bod 2006b, 
2007a, 2007b) extends the DOP approach to 
bootstrap language without recourse to a training 
corpus of manually annotated language data as a 
representation of “prior experience”. UDOP ex-
pands on DOP’s maximalist, all-subtrees, ap-
proach by using all subtrees of all possible (bi-
nary) trees to provide the parser with a resource 
of subtrees for the construction of derivations 
(which may be stored within a chart in quadratic 
space: Bod 1998, pp.40-8). Not only is this 
shown to achieve state-of-the art results com-
pared to other unsupervised parsing methods 
(Bod2006b, 2007a), it is also shown to outper-
form state-of-the-art supervised parsing tech-
niques when evaluated as a language model for a 
practical application (Machine Translation), 
rather than using the rather academical and the-
                                                 
3 Air Transport Information System – part of the Penn Tree-
bank. 
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ory-laden standard of agreement with the judge-
ments of manual annotations on a corpus (Bod 
2007b). 

In the UDOP* implementation of UDOP, all 
subtrees of all possible trees are extracted from 
the training corpus, and from this exemplar-base, 
the shortest derivation (in the fashion of DOP*) 
for each string is calculated (again, the complex-
ity of the task may be reined in using Goodman’s 
PCFG-reduction, 1996, 2003). The set of trees 
that results from this is then converted again to 
subtrees and used as a Stochastic Tree Substitu-
tion Grammar, which is then used to parse the 
test strings. In UML-DOP, another implementa-
tion, this last step is iterated over the training 
data until there is negligible reduction in cross-
entropy.  Bod (2007a) shows that these methods 
applied to miniature “toy” corpora can be used to 
explain linguistically interesting phenomena, 
such as long-distance agreement and “move-
ment”, as emerging out of simpler structures 
without themselves being found in either experi-
ence or “hardwired” grammar. However, the 
batch learning methods noted above are cogni-
tively implausible. This is not a criticism of the 
approach in itself; Batterman (2005) shows that 
idealisations, however unrealistic in themselves, 
are necessary in scientific modeling in order to 
explain universalities which more “realistic” 
models would miss. However, UDOP cannot 
itself model the time-course of developmental 
learning processes, which are by nature incre-
mental. It is to make good this deficit that we 
have developed the Darwinised DOP (DDOP) 
approach. 

2.3 Darwinised DOP 

Darwinised Data-Oriented Parsing is a new 
unsupervised parsing algorithm which allows the 
time-course of pattern-learning to be modeled. 
Unlike previous DOP algorithms, it begins with 
a completely empty training set; it is fed strings 
one by one, and its own outputs are entered into 
the training set. In so doing, it exploits a hitherto 
underexploited property of exemplar-based sys-
tems; when an exemplar (subtree) is reused in 
producing the system’s eventual output, this out-
put contains a new copy of the reused exemplar 
which is inserted back into the exemplar-base 
upon which the algorithm operates; thus, exem-
plars become replicators; packets of information 
coupled to mechanisms by which new copies of 
themselves are generated.Furthermore, exem-
plars which are able to be used more often – 
those that are more highly generalisable - are 

likely to make more new copies of themselves; 
thus we find a selection pressure favouring gen-
eralisability.4It is also worth nothing that because 
the subsequent sampling of subtrees from a 
stored tree can and most likely will cross-cut the 
substitution-sites of the original derivations by 
which the stored tree was created, replication of 
subtrees is recombinant; exemplars do not just 
reproduce, they reproduce sexually.  

Trees have a limited lifespan, and are erased 
from memory after K many parses have been 
generated following their creation. This serves 
two functions; firstly, if the dataset is small, the 
training data may be iterated through several 
times, but because DDOP uses the DOP* short-
est derivation method, it must be prevented from 
seeing strings for which it already has a complete 
parse in memory, or else it will simply return the 
parse it gave before, which of course can be gen-
erated in a single-step derivation. Secondly, 
death is an essential component of evolving sys-
tems. Without death, maladaptive and primitive 
forms are allowed to remain in the system, still 
reproducing, albeit at a slower rate than newer, 
more highly evolved replicators. 

As mentioned above, DDOP uses DOP*’s 
shortest-derivation method of parsing, but be-
cause it begins with an empty exemplar-base, it 
needs to have a backoff behaviour, in case it en-
counters a situation, at some point in a deriva-
tion, where no subtree can be found in the exem-
plar-base which would allow the derivation to 
continue. When a backoff subtree is generated, 
the following information only is used: 

• The node-label l of the substitution sitet. 
This does not affect the probability model, 
but determines the node-label of the root 
of the new subtree. In fact, this feature is 
redundant in all the versions of the model 
tested so far, as the number of available 
node labels has been limited to one. 

• The substring wx … wx’, of the total string 
being parsed, which represents the largest 
possible substring capable of eventually 

                                                 
4 This notion of exemplars as evolving replicators is not 
without precedent; see Batali 1994; however, Batali’s model 
concerned the evolution of a shared linguistic code in a 
population of agents, rather than exploiting this property for 
the individual learning of a preexisting language. We are 
also indebted to Kirby’s (1999, for instance) insight that 
evolving linguistic systems will favour generalisability, 
though again Kirby’s models concern evolution over glos-
sogenetic, generational time-scales. 
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being daughters of the node at the substi-
tution site. 

We have tested two versions of DDOP, Non-
Folding DDOP (NF-DDOP) and Folding DDOP 
(F-DDOP), each of which use different backoff 
procedures: RANDOM and FLAT, respectively. 
The other difference between the two versions of 
DDOP concerns the interpretation of flat struc-
tures in parses (here taken to mean context-free 
rewrite rules with an arity of three or greater) – 
internal nodes with three or more immediate 
daughters. In NF-DDOP, the RANDOM backoff 
procedure generates subtrees as a random sample 
of the complete set of all subtrees of all possible 
parses of substring wi … wi’ with root node t. A 
description of how this is calculated can be 
found at http://www.cs.st-
andrews.ac.uk/backoff.pdf. No distinction is 
made between flat and deep structures. F-DDOP, 
by contrast, takes flat structures to be an indica-
tor uncertaintyregarding actual, lower-arity struc-
ture, and therefore as a shorthand for a set of 
possible lower-arity structures, or “foldings”, 
wherein the high-arity context free rewrite rules 
(subtree of depth one) is replaced with a subtree 
of equal or greater depth, with the same root and 
frontier. In order to reduce computational load, 
this set of allowable foldings is limited to sub-
trees of depth one or two, in the case of the depth 
two foldings further limited to foldings contain-
ing no more than one internal node5. By way of 
example, figure 3 shows all the allowable fold-
ings of a 4-ary subtree. 

Derivations proceed one substitution at a time. 
DOP* subtrees extracted from the training data 
are always used provided there exists at least one 
which fits the string being parsed. If at any point 
no such subtree can be found, then a backoff 
subtree is generated at that step only. A Monte 
Carlo sample of N derivations is generated (in 
the simulations reported here, N = 1500). In or-
der to introduce an element of mutation to the 
process (crucial in any evolving system), a single 
derivation consisting only of backoff subtrees is 
occasionally added to the sample, at a probability 
given by p(AllBackoff), which is a parameter set 
before the run commences, where 0 ≤ 
p(AllBackoff) ≤ 1. Following the procedure of 

                                                 
5 Note that although this limitation excludes possible parses 
which may be linguistically pertinent from the immediate 
folding event (in the case of structures of arity greater than 
3), any flat structures which remain can, when re-used, be 
folded again, allowing the entire space of possible folding to 
be explored eventually. 

DOP*, the shortest derivation in the sample is 
selected as the output parse. If there is more than 
one parse with the shortest derivation, DOP1 
probabilities are applied to tie-break, following 
equations 1-3 above. The chosen parse is added 
to the exemplar-base. Note that because, if an all-
backoff derivation is included in the sample,  it is 
assessed for derivation-length and probability 
just like all the rest, this mutation procedure can 
only actually introduce novel structures if the 
random derivation is shorter than all the others in 
the sample, because only then does it avoid the 
probability-based tiebreak, which precisely pe-
nalizes novelty and favours well-known struc-
tures. 

Initially, because the exemplar-base is empty, 
the backoff behaviour is the only behaviour, 
which, over time, gives way to mostly using cor-
pus trees. Importantly, whenever the outputted 
tree is derived from subtrees taken from mem-
ory, the output tree contains new copies of all 
those subtrees. In this way, subtrees replicate and 
more generalisable subtrees are selected. 

3 Tests & Results 

3.1 Test 1: Six-line toy corpus 

The first test each of the versions of DDOP were 
subjected to was a very simple toy corpus, con-
sisting of six three-word sentences; 

Corpus Oracle 
The dog barks. 
Watch the dog. 
The dog eats. 
The cat barks. 
Watch the cat. 
The cat eats. 

[The dog] barks. 
Watch [the dog.] 
[The dog] eats. 
[The cat] barks. 
Watch [the cat.] 
[The cat] eats. 

Table 1: six-line corpus 

a)  b)  c)  

d)  e)  f)  

Figure 3: 3(a-f) show the allowable 
foldings of the 4-ary subtree in 3(a). 
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This initial task was simply to recognise that 
“the cat” and “the dog” are constituents. The ad-
vantage of initially testing the models on this 
very simple toy corpus is that it is very easy to 
analyse what the model is doing. The toy corpus 
contains two sentence types, V-NP and NP-V (V 
and N for short), each of which may be parse as 
left-branching, flat or right branching (L, F and 
R, respectively). After the first three parses on its 
run, the parser always has parses of n-1 of the n 
sentences in memory; thus each step in an itera-
tion through the data, each stored parse exempli-
fies one of the 3 possible parse-structures, giving 
3n-1 possible memory-states for each step, and 
n(3n-1) possible memory states overall. Of the 
memory-states possible at any step, nine repre-
sent a consistent assignment of parse-structures 
(L/F/R) to sentence-types (V/N), and of these 
only VR-NL represents a successful outcome. 
Inconsistent states are never stable; in the ab-
sence of mutation they are inaccessible and if 
accessed as a result of mutation the parser will 
return to a consistent state within one iteration. 
Barring multiple mutations it is possible to calcu-
late which consistent state that will be. We call 
the n states of a consistent assignment (one state 
for each step), plus all the inconsistent states that 
lead predictably into it, a “territory” within the 
state-space. If the states of a consistent assign-
ment always predictably lead into states in the 
same territory at the next step, the territory will 
form a cyclical trajectory through state-space, 
and will be stable barring a disruptive mutation; 
if they do not, they will lead into the territory of 
another consistent assignment. A mutation while 
the parser is on a cyclical trajectory will have 
one of the following outcomes: 

• Parser moves into an inconsistent state of 
the same territory, returns to cycle. 

• Parser moves into an inconsistent state of 
another territory, changes cycle. 

For NF-DDOP, the model was first probed us-
ing a state-space model of all 108 of the possible 
memory-states of the parser based on a four-line 
version of the above corpus, minus the lines “the 
dog eats” and “the cat eats”. This analysis found 
that eight of the nine consistent assignments are 
stable cycles, withVR-NR being the only excep-
tion. VR-NR states always run off to the “true” 
VR-NL assignment. This means that a mutation 
in the VR-NL cycle has a greater likelihood of 
being non-disruptive (returning to VR-NL) than 
a mutation in any other cycle, and a disruptive 

mutation in another cycle is more likely to result 
in a shift to VR-NL than to any other cycle. 
However, with seven other cyclical territories to 
compete with, the parser still spends the majority 
of its time in states other than VR-NL; VR-NL is 
more robust than the other cyclical modes, but no 
modes are wholly robust. This finding was first 
calculated a priori based on the state-space 
model, then confirmed empirically. Tests with 
the full 6-line corpus found further destabiliza-
tionof VR-NL (Chart 1 below). 

 
Chart 1: Performance of NF-DDOP on the 

six-line test corpus 

 
Chart 2: F1-Scores for F-DDOP on the six-line 

mini-corpus 

 
Chart 3: F1 Scores for F-DDOP on the six-line 
mini-corpus using the RANDOM backoff routine. 
Each data point averages over the 20 parses, 

sampled at 10-parse intervals. 

In contrast, for F-DDOP, VR-NL is the only 
accessible territory, and all otherconsistent as-
signments run off to it, with the result that VR-
NL is completely robust, and the parser’s per-
formance on the six-line toy corpus holds fast to 
F1-Scores of 100%, as shown in Chart 2 below. 
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This is because any state containing flat parse-
structures runs off to VR-NL, and states contain-

ing VL and/or NR are inaccessible, because the 
FLATback-off always yields VF and NF. This is 
made clearer by comparison with a hybrid 
DDOP, in which F-DDOP is combined with the 
RANDOM back-off routine. Here we find that 
VL-NL is accessible and cyclical, reducing the 
robustness of VR-NL. 

3.2 Test 2: 20-line toy corpus 

The second round of tests used a slightly larger 
and more complex corpus – this time of 20 sen-
tences, varying between 3 and 11 words in 
length. Again, notable differences were found 
between NF-DDOP and F-DDOP. Charts 4 and 5 
show the performance of the model on this cor-
pus. 

In both cases, the performance of the model 
was not especially great, with only NF-DDOP 
showing an overall trend towards improvement 
over the course of the run; however, the differ-
ence in mean F1-score is small; 41.6 for NF-
DDOP compared to 37.7 for F-DDOP. Most 
puzzling of all was the wild instability of F-

DDOP on this test, especially when contrasted 
with its robustness in the simpler test. Chart 6 
shows a histogram of the changes in F1-score 
between adjacent datapoints in the preceding 
two tests. Note that the values for F-DDOP are 
rather less sharply peaked and have rather fat-
ter tails. Clearly, further research is required to 
make sense of this. 

More interestingly, a second test was done 
on F-DDOP in which the model was subject to 
limitations on attention, which were loosened 

as time went on: specifically, for the first 700 
iterations through the data, it ignored all but the 
3-word sentences, then continued in 700-
iteration blocks, each with an attention span one 
word greater than the previous, until it could see 
the whole corpus. Not only was the overall per-
formance much better, it also showed much 
greater stability, as can be seen in Chart 7above 

4 Discussion 

UDOP has the unrestricted ability to sample the 
entire range of possible subtrees of possible 
parses of the entirety of whatever dataset it is 
presented with, and has a limitless scope to re-
visit and reconsider past judgements on the basis 
of new information. As such, we would not ex-
pect DDOP to exceed it in power; having access 
only to a limited subset of the UDOP subtree-set, 
and strictly limited powers to revisit and reana-
lyze past judgements, it is fair to assume that at 
best the performance of UDOP represents a theo-
retical upper limit of the power of DDOP. As 

 
Chart 4: NF-DDOP performance on the 20-line 

toy corpus. 

 
Chart 5: F-DDOP performance on the 20-line toy 

corpus 
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Chart 6: frequency distribution of differences be-

tween F1-score at adjacent datapoints in the tests of 
NF-DDOP and F-DDOP on the 20-line toy corpus. 

 
Chart 7: F-DDOP performance with gradually in-
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such, the questions we must attend to are as fol-
lows; how far and in what way can we limit the 
sampling and reanalyzing power of unsupervised 
DOP systems, and still approach the convergence 
properties of UDOP in the limit of learning? And 
if this is possible, can the restrictions adduced be 
illuminatingly related to empirical work in De-
velopmental and Evolutionary Linguistics? 

DDOP in its original form underperformed 
because it was an unsystematic search through 
too large a parameter space for too small an error 
minimum. The population of exemplars is not 
best conceptualized as an assembly of individu-
als in a species, who, in competing with their 
conspecifics, enhance the genetic health of the 
whole; rather, they are best seen as an assembly 
of species (though, like bacteria, promiscuously 
engaged in lateral gene transfer), competing for 
space in a shifting landscape of ecological niches 
defined by statistical patterns in the language 
data. From the viewpoint of an individual exem-
plar, the ecology of this landscape is as much 
defined by its competitors and potential mates as 
by the language-data itself. The problem is the 
selfishness of replicators described by Dawkins 
(1976, Williams 1966) in the Selfish Gene. Evo-
lution is a dumb, blind process, and selection 
concerns only the individual replicator in its im-
mediate fitness landscape. 

However two modifications to the original 
DDOP algorithm, which can both be independ-
ently motivated in terms of cognitive realism, 
have been shown to usefully constrain the avail-
ability of niches so as to produce more favour-
able results. 

The first, the introduction of the Folding pro-
cedure changes the nature of the algorithm’s ini-
tial assumptions regarding unknown structure; 
rather than assigning an arbitrary structure to 
everything on first sight, no initial structure is 
assumed, allowing the learner to pick recurring 
motifs out of the data as they are spotted. (see 
Saffran, Aslin and Newport 1996 on the rapidity 
with which infants can pick out motifs). The ana-
logue of this behaviour, in terms of evolutionary 
biology, is phenotypic plasticity, whereby the 
genotype of a species provides for multiple pos-
sible developmental pathways, to multiple phe-
notypes, modulated in selectionally advanta-
geous ways by environmental conditions. (West-
Eberhard 2003). We may consider the case of 
higher-arity structures in F-DDOP to be the only 
instance in DDOP of a separation between geno-
type and phenotype; in the case of the ternary 
structures in the six-line corpus, the underlying 

flat structure is analogous to the genotype, while 
the flat, left-branching and right-branching sub-
trees extracted from it in subsequent derivations 
may be understood as alternative phenotypes. 
This sort of adaptive plasticity allows “popula-
tions to move into new adaptive zones without 
abandoning old ones … [a]lternative phenotypes 
enable condition sensitive evolutionary experi-
mentation within populations” (West-Eberhard 
2003, p.392). These variations in phenotype arise 
out of an interaction between “genotype” and 
environment (DeWitt and Scheiner 2004b) –
understood as both the incoming stream of lan-
guage inputs and the accumulated store of other 
exemplars – in a manner that responds adaptively 
to the frequencies of linguistic patterns in the 
environment. 

Secondly, we introduced the assumption of an 
initiallimitation on the length of sentences the 
parser is exposed to, which expands with matura-
tion. It is known that adults’ speech to infants 
tends to be characterized by shorter, simpler ut-
terances than normal adult speech (Cameron-
Faulkner, Lieven and Tomasello 2003); further-
more, children’s speech is characterized by a 
gradual increase in Mean Length of Utterance 
(MLU: calculated as morphemes-per-utterance) 
with maturation (Brown 1973: p270-5), and it 
has been shown that MLU is a better predictor of 
comprehension of syntactically complex adult 
utterances than chronological age (de Villiers 
and de Villiers, 1973; see also Elman 1993 for 
further computational work on the payoff of 
“starting small”). This not only improved overall 
performance substantially, but also achieved a 
much-needed gain in stability. 

5 Conclusion 

We have seen that, by building in additional 
cognitively realistic assumptions, the overall per-
formance of DDOP, both in terms of average 
parse quality, and diachronic stability is consid-
erably enhanced; this in itself should be taken as 
a prima facie indication of DDOP’s promise as a 
platform for developmental cognitive modeling. 
We also note with interest a possible resonance 
between the current model and neural models of 
development as evolution at the ontogenetic 
scale: Edelman’s (1987) “Neural Darwinism”, or 
more saliently Fernando, Karishma and Szath-
máry’s (2008) work on neural-developmental 
evolution with true replication.Future research in 
DDOP will investigate the role of the global 
properties of the exemplar base in determining 
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the evolutionary dynamicsin relation to which 
exemplars compete and die, and the success or 
failure of Data-Oriented models of learning and 
cognition. 
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Abstract

In this paper, we attempt to explain the
emergence of the linguistic diversity that
exists across the consonant inventories of
some of the major language families of the
world through a complex network based
growth model. There is only a single pa-
rameter for this model that is meant to
introduce a small amount of randomness
in the otherwise preferential attachment
based growth process. The experiments
with this model parameter indicates that
the choice of consonants among the lan-
guages within a family are far more pref-
erential than it is across the families. Fur-
thermore, our observations indicate that
this parameter might bear a correlation
with the period of existence of the lan-
guage families under investigation. These
findings lead us to argue that preferential
attachement seems to be an appropriate
high level abstraction for language acqui-
sition and change.

1 Introduction

In one of their seminal papers (Hauser et al.,
2002), Noam Chomsky and his co-authors re-
marked that if a Martian ever graced our planet
then it would be awe-struck by the unique abil-
ity of the humans to communicate among them-
selves through the medium of language. How-
ever, if our Martian naturalist were meticulous
then it might also note the surprising co-existence
of 6700 such mutually unintelligible languages
across the world. Till date, the terrestrial scientists
have no definitive answer as to why this linguistic
diversity exists (Pinker, 1994). Previous work in

the area of language evolution has tried to explain
the emergence of this diversity through two differ-
ent background models. The first one assumes that
there is a set of predefined language configurations
and the movement of a particular language on this
landscape is no more than a random walk (Tom-
lin, 1986; Dryer, 1992). The second line of re-
search attempts to relate the ecological, cultural
and demographic parameters with the linguistic
parameters responsible for this diversity (Arita and
Taylor, 1996; Kirby, 1998; Livingstone and Fyfe,
1999; Nettle, 1999). From the above studies, it
turns out that linguistic diversity is an outcome of
the language dynamics in terms of its evolution,
acquisition and change.

In this work, we attempt to investigate the di-
versity that exists across the consonant inventories
of the world’s languages through an evolutionary
framework based on network growth. The use of
a network based model is motivated from the fact
that in the recent years, complex networks have
proved to be an extremely suitable framework for
modeling and studying the structure and dynam-
ics of linguistic systems (Cancho and Solé, 2001;
Dorogovtsev and Mendes, 2001; Cancho and Solé,
2004; Solé et al., 2005).

Along the lines of the study presented
in (Choudhury et al., 2006), we model the struc-
ture of the inventories through a bipartite network,
which has two different sets of nodes, one la-
beled by the languages and the other by the con-
sonants. Edges run in between these two sets
depending on whether a particular consonant is
found in a particular language. This network
is termed the Phoneme–Language Network or
PlaNet in (Choudhury et al., 2006). We construct
five such networks that respectively represent the
consonant inventories belonging to the five ma-
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jor language families namely, the Indo-European
(IE-PlaNet), the Afro-Asiatic (AA-PlaNet), the
Niger-Congo (NC-PlaNet), the Austronesian (AN-
PlaNet) and the Sino-Tibetan (ST-PlaNet).

The emergence of the distribution of occurrence
of the consonants across the languages of a fam-
ily can be explained through a growth model for
the PlaNet representing the family. We employ the
preferential attachment based growth model intro-
duced in (Choudhury et al., 2006) and later ana-
lytically solved in (Peruani et al., 2007) to explain
this emergence for each of the five families. The
model involves a single parameter that is essen-
tially meant to introduce randomness in the oth-
erwise predominantly preferential growth process.
We observe that if we combine the inventories for
all the families together and then attempt to fit this
new data with our model, the value of the param-
eter is significantly different from that of the in-
dividual families. This indicates that the dynam-
ics within the families is quite different from that
across them. There are possibly two factors that
regulate this dynamics: the innate preference of
the speakers towards acquiring certain linguistic
structures over others and shared ancestry of the
languages within a family.

The prime contribution of this paper lies in the
mathematical model that naturally captures and
quantifies the diversification process of the lan-
guage inventories. This diversification, which is
arguably an effect of language acquisition and
change, can be viewed as a manifestation of the
process of preferential attachment at a higher level
of abstraction.

The rest of the paper is laid out as follows. Sec-
tion 2 states the definition of PlaNet, briefly de-
scribes the data source and outlines the construc-
tion procedure for the five networks. In section 3
we review the growth model for the networks. The
experiments and the results are explained in the
next section. Section 5 concludes the paper by ex-
plaining how preferential attachment could possi-
bly model the phenomena of language acquisition,
change and evolution.

2 Definition and Construction of the
Networks

In this section, we revisit the definition of PlaNet,
discuss briefly about the data source, and explain
how we constructed the networks for each of the
families.

Figure 1: Illustration of the nodes and edges of
PlaNet.

2.1 Definition of PlaNet

PlaNet is a bipartite graph G = 〈 VL,VC ,Epl 〉 con-
sisting of two sets of nodes namely, VL (labeled
by the languages) and VC (labeled by the conso-
nants); Epl is the set of edges running between VL

and VC . There is an edge e ∈ Epl from a node
vl ∈ VL to a node vc ∈ VC iff the consonant c is
present in the inventory of the language l. Figure 1
illustrates the nodes and edges of PlaNet.

2.2 Data Source

We use the UCLA Phonological Segment Inven-
tory Database (UPSID) (Maddieson, 1984) as the
source of data for this work. The choice of this
database is motivated by a large number of typo-
logical studies (Lindblom and Maddieson, 1988;
Ladefoged and Maddieson, 1996; de Boer, 2000;
Hinskens and Weijer, 2003) that have been car-
ried out on it by earlier researchers. It is a well
known fact that UPSID suffers from several prob-
lems, especially those involving representational
issues (Vaux and Samuels, 2005). Therefore,
any analysis carried on UPSID and the inferences
drawn from them are subject to questions. How-
ever, the current analysis requires a large amount
of segment inventory data and to the best of our
knowledge UPSID is the biggest database of this
kind. Moreover, we would like to emphasize that
the prime contribution of this work lies in the
mathematical modeling of the data rather than the
results obtained, which, as we shall see shortly, are
not very surprising or novel. The current model
applied to a different database of segment inven-
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tories may lead to different results, though we be-
lieve that the basic trends will remain similar. In
essence, the results described here should be taken
as indicative and not sacrosanct.

There are 317 languages in the database with
541 consonants found across them. From these
data we manually sort the languages into five
groups representing the five families. Note that we
included a language in any group if and only if we
could find a direct evidence of its presence in the
corresponding family. A brief description of each
of these groups and languages found within them
are listed below (Haspelmath et al., 2005; Gordon,
2005).
Indo-European: This family includes most of the
major languages of Europe and south, central and
south-west Asia. Currently, it has around 3 bil-
lion native speakers, which is largest among all
the recognized families of languages in the world.
The total number of languages appearing in this
family is 449. The earliest evidences of the Indo-
European languages have been found to date 4000
years back.
Languages – Albanian, Lithuanian, Breton, Irish,
German, Norwegian, Greek, Bengali, Hindi-
Urdu, Kashmiri, Sinhalese, Farsi, Kurdish, Pashto,
French, Romanian, Spanish, Russian, Bulgarian.
Afro-Asiatic: Afro-Asiatic languages have about
200 million native speakers spread over north,
east, west, central and south-west Africa. This
family is divided into five subgroups with a total of
375 languages. The proto-language of this family
began to diverge into separate branches approxi-
mately 6000 years ago.
Languages – Shilha, Margi, Angas, Dera, Hausa,
Kanakuru, Ngizim, Awiya, Somali, Iraqw, Dizi,
Kefa, Kullo, Hamer, Arabic, Amharic, Socotri.
Niger-Congo: The majority of the languages that
belong to this family are found in the sub-Saharan
parts of Africa. The number of native speakers
is around 300 million and the total number of
languages is 1514. This family descends from a
proto-language, which dates back 5000 years.
Languages – Diola, Temne, Wolof, Akan, Amo,
Bariba, Beembe, Birom, Cham, Dagbani, Doayo,
Efik, Ga, Gbeya, Igbo, Ik, Koma, Lelemi, Senadi,
Tampulma, Tarok, Teke, Zande, Zulu, Kadugli,
Moro, Bisa, Dan, Bambara, Kpelle.
Austronesian: The languages of the Austronesian
family are widely dispersed throughout the islands
of south-east Asia and the Pacific. There are 1268

Networks |VL| |VC | |Epl|
IE-PlaNet 19 148 534

AA-PlaNet 17 123 453
NC-PlaNet 30 135 692
AN-PlaNet 12 82 221
ST-PlaNet 9 71 201

Table 1: Number of nodes and edges in the five
bipartite networks corresponding to the five fami-
lies.

languages in this family, which are spoken by a
population of 6 million native speakers. Around
4000 years back it separated out from its ancestral
branch.
Languages – Rukai, Tsou, Hawaiian, Iai, Adz-
era, Kaliai, Roro, Malagasy, Chamorro, Tagalog,
Batak, Javanese.
Sino-Tibetan: Most of the languages in this fam-
ily are distributed over the entire east Asia. With
a population of around 2 billion native speakers it
ranks second after Indo-European. The total num-
ber of languages in this family is 403. Some of the
first evidences of this family can be traced 6000
years back.
Languages – Hakka, Mandarin, Taishan, Jingpho,
Ao, Karen, Burmese, Lahu, Dafla.

2.3 Construction of the Networks

We use the consonant inventories of the languages
enlisted above to construct the five bipartite net-
works – IE-PlaNet, AA-PlaNet, NC-PlaNet, AN-
PlaNet and ST-PlaNet. The number of nodes and
edges in each of these networks are noted in Ta-
ble 1.

3 The Growth Model for the Networks

As mentioned earlier, we employ the growth
model introduced in (Choudhury et al., 2006) and
later (approximately) solved in (Peruani et al.,
2007) to explain the emergence of the degree dis-
tribution of the consonant nodes for the five bipar-
tite networks. For the purpose of readability, we
briefly summarize the idea below.
Degree Distribution: The degree of a node v, de-
noted by k, is the number of edges incident on
v. The degree distribution is the fraction of nodes
pk that have a degree equal to k (Newman, 2003).
The cumulative degree distribution Pk is the frac-
tion of nodes having degree greater than or equal
to k. Therefore, if there are N nodes in a network
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then,

Pk =
N∑

k=k′
pk′ (1)

Model Description: The model assumes that the
size of the consonant inventories (i.e., the degree
of the language nodes in PlaNet) are known a pri-
ori.

Let the degree of a language node Li ∈ VL

be denoted by di (i.e., di refers to the inventory
size of the language Li in UPSID). The conso-
nant nodes in VC are assumed to be unlabeled, i.e,
they are not marked by the articulatory/acoustic
features (see (Trubetzkoy, 1931) for further refer-
ence) that characterize them. In other words, the
model does not take into account the phonetic sim-
ilarity among the segments. The nodes L1 through
L317 are sorted in the ascending order of their de-
grees. At each time step a node Lj , chosen in
order, preferentially gets connected to dj distinct
nodes (call each such node C) of the set VC . The
probability Pr(C) with which the node Lj gets
connected to the node C is given by,

Pr(C) =
k + ε∑

∀C′ (k
′ + ε)

(2)

where k is the current degree of the node C, C
′

represents the nodes in VC that are not already
connected to Lj and ε is the model parameter that
is meant to introduce a small amount of random-
ness into the growth process. The above steps are
repeated until all the language nodes Lj ∈ VL get
connected to dj consonant nodes.

Intuitively, the model works as follows: If a
consonant is very frequently found in the invento-
ries of the languages, then there is a higher chance
of that consonant being included in the inventory
of a “new language”. Here the term “new lan-
guage” can be interpreted either as a new and hith-
erto unseen sample from the universal set of lan-
guages, or the formation of a new language due
to some form of language change. The param-
eter ε on the other hand ensures that the conso-
nants which are found in none of the languages
from the current sample also have a chance of be-
ing included in the new language. It is similar to
the add-α smoothing used to avoid zero probabil-
ities while estimating probability distributions. It
is easy to see that for very large values of ε the fre-
quency factor will play a very minor role and the
consonants will be chosen randomly by the new
language, irrespective of its present prevalence. It

is natural to ask why and how this particular pro-
cess would model the growth of the language in-
ventories. We defer this question until the last sec-
tion of the paper, and instead focus on some empir-
ical studies to see if the model can really explain
the observed data.

Peruani et al. (2007) analytically derived an ap-
proximate expression for the degree distribution of
the consonant nodes for this model. Let the aver-
age consonant inventory size be denoted by µ and
the number of consonant nodes be N. The solu-
tion obtained in (Peruani et al., 2007) is based on
the assumption that at each time step t, a language
node gets attached to µ consonant nodes, follow-
ing the distribution Pr(C). Under the above as-
sumptions, the degree distribution pk,t for the con-
sonant nodes, obtained by solving the model, is a
β-distribution as follows

pk,t ' A

(
k

t

)ε−1 (
1− k

t

)Nε
µ
−ε−1

(3)

where A is a constant term. Using equations 1
and 3 one can easily compute the value of Pk,t.

There is a subtle point that needs a mention
here. The concept of a time step is very crucial
for a growing network. It might refer to the addi-
tion of an edge or a node to the network. While
these two concepts coincide when every new node
has exactly one edge, there are obvious differences
when the new node has degree greater than one.
The analysis presented in Peruani et al. (2007)
holds good for the case when only one edge is
added per time step. However, if the degree of the
new node being introduced to the system is much
less than N , then Eq. 3 is a good approximation of
the emergent degree distribution for the case when
a node with more than one edge is added per time
step. Therefore, the experiments presented in the
next section attempt to fit the degree distribution
of the real networks with Eq. 3 by tuning the pa-
rameter ε.

4 Experiments and Results

In this section, we attempt to fit the degree dis-
tribution of the five empirical networks with the
expression for Pk,t described in the previous sec-
tion. For all the experiments we set N = 541, t =
number of languages in the family under investi-
gation and µ = average degree of the language
nodes of the PlaNet representing the family under
investigation, that is, the average inventory size for
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Network ε for least LSE Value of LSE

IE-PlaNet 0.055 0.16
AA-PlaNet 0.040 0.24
NC-PlaNet 0.035 0.19
AN-PlaNet 0.030 0.17
ST-PlaNet 0.035 0.03

Combined-PlaNet 0.070 1.47

Table 2: The values of ε and the least LSE for the
different networks. Combined-PlaNet refers to the
network constructed after mixing all the languages
from all the families. For all the experiments

the family. Therefore, given the value of k we
can compute pk,t using Eq. 3 if ε is known, and
from pk,t we can further compute Pk,t. In order to
find the best fitting theoretical degree distribution,
we vary the value of ε in steps of 0.005 within the
range of 0 to 1 and choose that ε for which the log-
arithmic standard error1 (LSE) between the the-
oretical degree distribution and the epirically ob-
served degree distribution of the real network and
the equation is least. LSE is defined as the sum of
the square of the difference between the logarithm
of the ordinate pairs (say y and y

′
) for which the

abscissas are equal. The best fits obtained for each
of the five networks are shown in Figure 2. The
values of ε and the corresponding least LSE for
each of them are noted in Table 2. We make the
following significant and interesting observations.
Observation I: The very low value of the parame-
ter ε indicates that the choice of consonants within
the languages of a family is strongly preferential.
In this context, ε may be thought of as modeling
the (accidental) errors or drifts that can occur dur-
ing language transmission. The fact that the val-
ues of ε across the four major language families,
namely Afro-Asiatic,Niger-Congo, Sino-Tibetan
and Austronesian, are comparable indicates that
the rate of error propagation is a universal factor
that is largely constant across the families. The
value of ε for IE-PlaNet is slightly higher than
the other four families, which might be an effect
of higher diversification within the family due to
geographical or socio-political factors. Neverthe-
less, it is still smaller than the ε of the Combined-

1LSE = (log y − log y′)2. We use LSE as the good-
ness of the fit because the degree distributions of PlaNets are
highly skewed. There are very few high degree nodes and a
large number of low degree nodes. The logarithmic error en-
sures that even very small errors made while fitting the high
degrees are penalized equally as compared to that of the low
degrees. Standard error would not capture this fact and de-
clare a fit as good if it is able to replicate the distribution for
low degrees, but fits the high degrees poorly .

PlaNet.
The optimal ε obtained for Combined-PlaNet is

higher than that of all the families (see Table 2),
though it is comparable to the Indo-European
PlaNet. This points to the fact that the choice
of consonants within the languages of a family is
far more preferential than it is across the families;
this fact is possibly an outcome of shared ances-
try. In other words, the inventories of genetically
related languages are similar (i.e., they share a lot
of consonants) because they have evolved from the
same parent language through a series of linguis-
tic changes, and the chances that they use a large
number of consonants used by the parent language
is naturally high.
Observation II: We observe a very interesting
relationship between the approximate age of the
language family and the values of ε obtained in
each case (see Table 3). The only anomaly is the
Indo-European branch, which possibly indicates
that this might be much older than it is believed
to be. In fact, a recent study (Balter, 2003) has
shown that the age of this family dates back to
8000 years. If this last argument is assumed to
be true then the values of ε have a one-to-one cor-
respondence with the approximate period of ex-
istence of the language families. As a matter of
fact, this correlation can be intuitively justified –
the higher is the period of existence of a family, the
higher are the chances of transmission errors lead-
ing to its diversification into smaller subgroups,
and hence, the values of ε comes out to be more
for the older families. It should be noted that the
difference between the values of ε for the language
families are not significant2. Therefore, the afore-
mentioned observation should be interpreted only
as an interesting possibility; more experimentation
is required for making any stronger claim.

4.1 Control Experiment

How could one be sure that the aforementioned
observations are not an obvious outcome of the
construction of the PlaNet or some spurious cor-
relations? To this end, we conduct a control ex-
periment where a set of inventories is randomly
selected from UPSID to represent a family. The

2Note that in order to obtain the best fit for the cumulative
distribution, ε has been varied in steps of 0.005. Therefore,
the values of ε in Table 2 cannot be more accurate than ε ±
0.005. However, in many cases the difference between the
best-fit ε for two language families is exactly 0.005, which
indicates that the difference is not significant.
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Figure 2: The degree distribution of the different real networks (black dots) along with the fits obtained
from the equation for the optimal values of ε (grey lines).

Families Age (in years) ε

Austronasean 4000 0.030
Niger-Congo 5000 0.035
Sino-Tibetan 6000 0.035
Afro-Asiatic 6000 0.040

Indo-European 4000 (or 8000) 0.055

Table 3: Table showing the relationship between
the age of a family and the value of ε.

number of languages chosen is the same as that of
the PlaNets of the various language families. We
observe that the average value of ε for these ran-
domly constructed PlaNets is 0.068, which, as one
would expect, is close to that of the Combined-
PlaNet. This reinforces the fact that the inherent
proximity among the languages of a real family is
not due to chance.

4.2 Correlation between Families

It can be shown theoretically that if we merge two
PlaNets (say PlaNet1 and PlaNet2) synthesized us-
ing the growth model described here using param-
eters ε1 and ε2, then the ε of the combined PlaNet
can be much greater than both ε1 and ε2 when
there is a low correlation between the degrees of
the consonant nodes between the two PlaNets.
This can be understood as follows. Suppose that
the consonant /k/ is very frequent (i.e., has a high
degree) in PlaNet1, but the consonant /m/ is not.
On the other hand suppose that /m/ is very fre-
quenct in PlaNeT2, but /k/ is not. In the combined

PlaNet the degrees of /m/ and /k/ will even out and
the degree distribution will therefore, be much less
skewed than the original degree distributions of
PlaNet1 and PlaNet2. This is equivalent to the fact
that while ε1 and ε2 were very small, the ε of the
combined PlaNet is quite high. By the same logic
it follows that if the degrees of the consonants are
highly correlated in PlaNet1 and PlaNet2, then the
combined PlaNet will have an ε that is compara-
ble in magnitude to ε1 and ε2. The fact that the
ε for the Combined-PlaNet is higher than that of
family-specific PlaNets, therefore, implies that the
correlation between the frequencies of the conso-
nants across language families is not very high.

In order to verify the above observation we esti-
mate the correlation between the frequency of oc-
currence of the consonants for the different lan-
guage family pairs (i.e., how the frequencies of
the consonants /p/, /t/, /k/, /m/, /n/ . . . are corre-
lated across the different families). Table 4 notes
the value of this correlation among the five fami-
lies. The values in Table 4 indicate that, in general,
the families are somewhat weakly correlated with
each other, the average correlation being ∼ 0.47.

Note that, the correlation between the Afro-
Asiatic and the Niger-Congo families is high not
only because they share the same African origin,
but also due to higher chances of language con-
tacts among their groups of speakers. On the other
hand, the Indo-European and the Sino-Tibetan
families show least correlation because it is usu-
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Families IE AA NC AN ST
IE – 0.49 0.48 0.42 0.25
AA 0.49 – 0.66 0.53 0.43
NC 0.48 0.66 – 0.55 0.37
AN 0.42 0.53 0.55 – 0.50
ST 0.25 0.43 0.37 0.50 –

Table 4: The Pearson’s correlation between the
frequency distributions obtained for the family
pairs. IE: Indo-European, AA: Afro-Asiatic,
NC: Niger-Congo, AN: Austronesian, ST: Sino-
Tibetan.

ally believed that they share absolutely no genetic
connections. Interestingly, similar trends are ob-
served for the values of the parameter ε. If we
combine the languages of the Afro-Asiatic and the
Niger-Congo families and try to fit the new data
then ε turns out to be 0.035 while if we do the same
for the Indo-European and the Sino-Tibetan fam-
ilies then ε is 0.058. For many of the other com-
binations the value of ε and the correlation coeffi-
cient have a one-to-one correspondence. However,
there are clear exceptions also. For instance, if we
combine the Afro-Asiatic and the Indo-European
families then the value of ε is very low (close to
0.04) although the correlation between them is not
very high. The reasons for these exceptions should
be interesting and we plan to further explore this
issue in future.

5 Conclusion

In this paper, we presented a method of network
evolution to capture the emergence of linguistic
diversity that manifests in the five major language
families of the world. How does the growth model,
if at all, captures the process of language dynam-
ics? We argue that preferential attachment is a
high level abstraction of language acquisition as
well as language change. We sketch out two pos-
sible explanations for this fact, both of which are
merely speculations at this point and call for de-
tailed experimentation.

It is a well known fact that the process of lan-
guage acquisition by an individual largely gov-
erns the course of language change in a linguis-
tic community. In the initial years of language
development every child passes through a stage
called babbling during which he/she learns to pro-
duce non-meaningful sequences of consonants and
vowels, some of which are not even used in the
language to which they are exposed (Jakobson,
1968; Locke, 1983). Clear preferences can be

observed for learning certain sounds such as plo-
sives and nasals, whereas fricatives and liquids are
avoided. In fact, this hierarchy of preference dur-
ing the babbling stage follows the cross-linguistic
frequency distribution of the consonants. This in-
nate frequency dependent preference towards cer-
tain phonemes might be because of phonetic rea-
sons (i.e., for articulatory/perceptual benefits). It
can be argued that in the current model, this in-
nate preference gets captured through the process
of preferential attachment.

An alternative explanation could be conceived
of based on the phenomenon of language trans-
mission. Let there be a community of N speak-
ers communicating among themselves by means
of only two consonants say /k/ and /g/. Let the
number of /k/ speakers be m and that of /g/ speak-
ers be n. If we assume that each speaker has l de-
scendants and that language inventories are trans-
mitted with high fidelity then after i generations,
the number of /k/ speakers should be mli and that
of /g/ speakers should be nli. Now if m > n
and l > 1 then for sufficiently large values of i
we have mli À nli. Stated differently, the /k/
speakers by far outnumbers the /g/ speakers after a
few generations even though the initial difference
between them is quite small. This phenomenon
is similar to that of preferential attachment where
language communities get attached to, i.e., select
consonants that are already highly preferred. In
this context ε can be thought to model the acciden-
tal errors during transmission. Since these errors
accumulate over time, this can intuitively explain
why older language families have a higher value
of ε than the younger ones.

In fact, preferential attachment (PA) is a uni-
versally observed evolutionary mechanism that
is known to shape several physical, biological
and socio-economic systems (Newman, 2003).
This phenomenon has also been called for to ex-
plain various linguistic phenomena (Choudhury
and Mukherjee, to appear). We believe that PA
also provides a suitable abstraction for the mech-
anism of language acquisition. Acquisition of vo-
cabulary and growth of the mental lexicon are few
examples of PA in language acquisition. This
work illustrates another variant of PA applied to
explain the structure of consonant inventories and
their diversification across the language families.

57



References
T. Arita and C. E. Taylor. 1996. A simple model

for the evolution of communication. In L. J. Fo-
gel, P. J. Angeline and T. Bäck, editors, The Fifth
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