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Introduction

The geometry of distributional models of lexical semantics represent a core topic in contemporary
computational linguistics for its impact on several advanced Natural Language Processing tasks and
some related knowledge fields (as social science and humanities).

The goal of the EACL 2009 GEMS Workshop on ”GEometrical Models of natural Language
Semantics” was to stimulate research on semantic spaces and distributional methods in NLP, by
adopting an interdisciplinary view. This aimed to enforce the proper exchange of ideas, results and
resources among often independent communities. The workshop provided a common ground for
a fruitful discussion among experts of distributional approaches, collocational corpus analysis and
machine learning, researchers interested in the use of quantitative models in NLP applications (like
question answering, summarization or textual entailment), experts in formal computational semantics
and in other fields of science as well.

The workshop successfully gathered a relevant number of high quality contributions to problems of
meaning representation, acquisition and use, based on distributional and vector space models. We
received 21 submissions, including short and long papers. Long papers were peer-reviewed by three
members of the program committee, short papers by two. As an outcome of the review process, the
program committee selected 11 papers for a full presentation, and 4 for short ones. All selected paper
have been included in these proceedings. The paper are representative of the current state of the art in
the subject, including:

• cutting edge researches on geometric methods and machine learning, such as tensor factorization,
kernel methods and Dirichlet process mixture models;

• applications of semantic space models to NLP tasks, such as Textual Entailment Recognition,
Ontology Learning, Induction of Selectional Preferences, Verb Classification and Machine
Translation

• novel uses of distributional methods for advanced linguistic studies, such as lexical variation and
evolution as well as for educational purposes;

• reference comparative studies among different types of semantic spaces.

The papers included in this volume shed some light on the state of the art and the potential applications
of semantic spaces in NLP and in related linguistic fields.

We would like to thank all the authors for their hard work dedicated to the submissions. Our deepest
gratitude goes to the members of the program committee for their precious reviewing. Most of the
impact of this volume is entirely due to their careful analysis and meaningful suggestions to the authors.
A special thank goes to Patrick Pantel for his stimulating and visionary invited talk, supported by his
own institution. Finally, we acknowledge the EACL 2009 workshop chairs, Miriam Butt, Stephan Clark
as well as Kemal Oflazer and David Schlangen, for their constant support across all the preparatory
work.

Roberto Basili, University of Roma, Tor Vergata, Italy
Marco Pennacchiotti, Yahoo! Inc, Santa Clara, US.

March, 2009
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Klaus Rothenhäusler and Hinrich Schütze

11:25–11:50 A Study of Convolution Tree Kernel with Local Alignment
Lidan Zhang and Kwok-Ping Chan

11:50–12:15 BagPack: A General Framework to Represent Semantic Relations
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Abstract

We propose an approach to corpus-based
semantics, inspired by cognitive science,
in which different semantic tasks are tack-
led using the same underlying reposi-
tory of distributional information, col-
lected once and for all from the source
corpus. Task-specific semantic spaces are
then built on demand from the repository.
A straightforward implementation of our
proposal achieves state-of-the-art perfor-
mance on a number of unrelated tasks.

1 Introduction

Corpus-derived distributional semantic spaces
have proved valuable in tackling a variety of tasks,
ranging from concept categorization to relation ex-
traction to many others (Sahlgren, 2006; Turney,
2006; Padó and Lapata, 2007). The typical ap-
proach in the field has been a “local” one, in which
each semantic task (or set of closely related tasks)
is treated as a separate problem, that requires its
own corpus-derived model and algorithms. Its
successes notwithstanding, the “one task – one
model” approach has also some drawbacks.

From a cognitive angle, corpus-based models
hold promise as simulations of how humans ac-
quire and use conceptual and linguistic informa-
tion from their environment (Landauer and Du-
mais, 1997). However, the common view in cog-
nitive (neuro)science is that humans resort to a
multipurpose semantic memory, i.e., a database
of interconnected concepts and properties (Rogers
and McClelland, 2004), adapting the information
stored there to the task at hand. From an engineer-
ing perspective, going back to the corpus to train a
different model for each application is inefficient
and it runs the risk of overfitting the model to a
specific task, while losing sight of its adaptivity – a
highly desirable feature for any intelligent system.

Think, by contrast, of WordNet, a single network
of semantic information that has been adapted to
all sorts of tasks, many of them certainly not en-
visaged by the resource creators.

In this paper, we explore a different approach
to corpus-based semantics. Our model consists
of a distributional semantic memory – a graph of
weighted links between concepts - built once and
for all from our source corpus. Starting from the
tuples that can be extracted from this graph, we
derive multiple semantic spaces to solve a wide
range of tasks that exemplify various strands of
corpus-based semantic research: measuring se-
mantic similarity between concepts, concept cate-
gorization, selectional preferences, analogy of re-
lations between concept pairs, finding pairs that
instantiate a target relation and spotting an alterna-
tion in verb argument structure. Given a graph like
the one in Figure 1 below, adaptation to all these
tasks (and many others) can be reduced to two ba-
sic operations: 1) building semantic spaces, as co-
occurrence matrices defined by choosing different
units of the graph as row and column elements;
2) measuring similarity in the resulting matrix ei-
ther between specific rows or between a row and
an average of rows whose elements share a certain
property.

After reviewing some of the most closely re-
lated work (Section 2), we introduce our approach
(Section 3) and, in Section 4, we proceed to test
it in various tasks, showing that its performance is
always comparable to that of task-specific meth-
ods. Section 5 draws the current conclusions and
discusses future directions.

2 Related work

Turney (2008) recently advocated the need for a
uniform approach to corpus-based semantic tasks.
Turney recasts a number of semantic challenges in
terms of relational or analogical similarity. Thus,
if an algorithm is able to tackle the latter, it can
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also be used to address the former. Turney tests his
system in a variety of tasks, obtaining good results
across the board. His approach amounts to pick-
ing a task (analogy recognition) and reinterpreting
other tasks as its particular instances. Conversely,
we assume that each task may keep its speci-
ficity, and unification is achieved by designing a
sufficiently general distributional structure, from
which semantic spaces can be generated on de-
mand. Currently, the only task we share with Tur-
ney is finding SAT analogies, where his method
outperforms ours by a large margin (cf. Section
4.2.1). However, Turney uses a corpus that is
25 times larger than ours, and introduces nega-
tive training examples, whereas we dependency-
parse our corpus – thus, performance is not di-
rectly comparable. Besides the fact that our ap-
proach does not require labeled training data like
Turney’s one, it provides, we believe, a more intu-
itive measure of taxonomic similarity (taxonomic
neighbours are concepts that share similar con-
texts, rather than concepts that co-occur with pat-
terns indicating a taxonomic relation), and it is
better suited to model productive semantic phe-
nomena, such as the selectional preferences of
verbs with respect to unseen arguments (eating
topinambur vs. eating ideas). Such tasks will re-
quire an extension of the current framework of
Turney (2008) beyond evidence from the direct co-
occurrence of target word pairs.

While our unified framework is, as far as we
know, novel, the specific ways in which we tackle
the different tasks are standard. Concept similar-
ity is often measured by vectors of co-occurrence
with context words that are typed with dependency
information (Lin, 1998; Curran and Moens, 2002).
Our approach to selectional preference is nearly
identical to the one of Padó et al. (2007). We
solve SAT analogies with a simplified version of
the method of Turney (2006). Detecting whether
a pair expresses a target relation by looking at
shared connector patterns with model pairs is a
common strategy in relation extraction (Pantel and
Pennacchiotti, 2008). Finally, our method to de-
tect verb slot similarity is analogous to the “slot
overlap” of Joanis et al. (2008) and others. Since
we aim at a unified approach, the lack of origi-
nality of our task-specific methods should be re-
garded as a positive fact: our general framework
can naturally reproduce, locally, well-tried ad-hoc
solutions.

3 Distributional semantic memory

Many different, apparently unrelated, semantic
tasks resort to the same underlying information,
a “distributional semantic memory” consisting of
weighted concept+link+concept tuples extracted
from the corpus. The concepts in the tuples are
typically content words. The link contains corpus-
derived information about how the two words are
connected in context: it could be for example a
dependency path or a shallow lexico-syntactic pat-
tern. Finally, the weight typically derives from co-
occurrence counts for the elements in a tuple, re-
scaled via entropy, mutual information or similar
measures. The way in which the tuples are iden-
tified and weighted when populating the memory
is, of course, of fundamental importance to the
quality of the resulting models. However, once
the memory has been populated, it can be used to
tackle many different tasks, without ever having to
go back to the source corpus.

Our approach can be compared with the typical
organization of databases, in which multiple alter-
native “views” can be obtained from the same un-
derlying data structure, to answer different infor-
mation needs. The data structure is virtually inde-
pendent from the way in which it is accessed. Sim-
ilarly, the structure of our repository only obeys
to the distributional constraints extracted from the
corpus, and it is independent from the ways it will
be “queried” to address a specific semantic task.
Different tasks can simply be defined by how we
split the tuples from the repository into row and
column elements of a matrix whose cells are filled
by the corresponding weights. Each of these de-
rived matrices represents a particular view of dis-
tributional memory: we will discuss some of these
views, and the tasks they are appropriate for, in
Section 4.

Concretely, we used here the web-derived, 2-
billion word ukWaC corpus,1 dependency-parsed
with MINIPAR.2 Focusing for now on modeling
noun-to-noun and noun-to-verb connections, we
selected the 20,000 most frequent nouns and 5,000
most frequent verbs as target concepts (minus stop
lists of very frequent items). We selected as tar-
get links the top 30 most frequent direct verb-
noun dependency paths (e.g., kill+obj+victim),
the top 30 preposition-mediated noun-to-noun or

1http://wacky.sslmit.unibo.it
2http://www.cs.ualberta.ca/˜lindek/

minipar.htm
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Figure 1: A fragment of distributional memory

verb-to-noun paths (e.g., soldier+with+gun) and
the top 50 transitive-verb-mediated noun-to-noun
paths (e.g., soldier+use+gun). We extracted all
tuples in which a target link connected two target
concepts. We computed the weight (strength of
association) for all the tuples extracted in this way
using the local MI measure (Evert, 2005), that is
theoretically justified, easy to compute for triples
and robust against overestimation of rare events.
Tuples with local MI ≤ 0 were discarded. For
each preserved tuple c1+ l+c2, we added a same-
weight c1 + l−1 + c2 tuple. In graph-theoretical
terms (treating concepts as nodes and labeling the
weighted edges with links), this means that, for
each edge directed from c1 to c2, there is an edge
from c2 to c1 with the same weight and inverse
label, and that such inverse edges constitute the
full set of links directed from c2 to c1. The re-
sulting database (DM, for Distributional Memory)
contains about 69 million tuples. Figure 1 de-
picts a fragment of DM represented as a graph (as-
sume, for what we just said, that for each edge
from x to y there is a same-weight edge from y
to x with inverse label: e.g., the obj link from
kill to victim stands for the tuples kill+obj+victim
and victim+obj−1+kill, both with weight 915.4;
subj in identifies the subjects of intransitive con-
structions, as in The victim died; subj tr refers to
the subjects of transitive sentences, as in The po-
liceman killed the victim).

We also trained 3 closely comparable models
that use the same source corpus, the same tar-
get concepts (in one case, also the same target
links) and local MI as weighting method, with the
same filtering threshold. The myPlain model im-
plements a classic “flat” co-occurrence approach
(Sahlgren, 2006) in which we keep track of verb-
to-noun co-occurrence within a window that can

include, maximally, one intervening noun, and
noun-to-noun co-occurrence with no more than
2 intervening nouns. The myHAL model uses
the same co-occurrence window, but, like HAL
(Lund and Burgess, 1996), treats left and right co-
occurrences as distinct features. Finally, myDV
uses the same dependency-based target links of
DM as filters. Like in the DV model of Padó
and Lapata (2007), only pairs connected by target
links are preserved, but the links themselves are
not part of the model. Since none of these alter-
native models stores information about the links,
they are only appropriate for the concept similar-
ity tasks, where links are not necessary.

4 Semantic views and experiments

We now look at three views of the DM
graph: concept-by-link+concept (CxLC),
concept+concept-by-link (CCxL), and
concept+link-by-concept (CLxC). Each view
will be tested on one or more semantic tasks and
compared with alternative models. There is a
fourth possible view, links-by-concept+concept
(LxCC), that is not explored here, but would lead
to meaningful semantic tasks (finding links that
express similar semantic relations).

4.1 The CxLC semantic space

Much work in computational linguistics and re-
lated fields relies on measuring similarity among
words/concepts in terms of their patterns of co-
occurrence with other words/concepts (Sahlgren,
2006). For this purpose, we arrange the informa-
tion from the graph in a matrix where the concepts
(nodes) of interest are rows, and the nodes they
are connected to by outgoing edges are columns,
typed with the corresponding edge label. We re-
fer to this view as the concept-by-link+concept
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(CxLC) semantic space. From the graph in Fig-
ure 1, we can for example construct the matrix
in Table 1 (here and below, showing only some
rows and columns of interest). By comparing the
row vectors of such matrix using standard geo-
metrical techniques (e.g., measuring the normal-
ized cosine distance), we can find out about con-
cepts that tend to share similar properties, i.e., are
taxonomically similar (synonyms, antonyms, co-
hyponyms), e.g., soldiers and policemen, that both
kill, are killed and use guns.

subj in−1subj tr−1 obj−1 with use
die kill kill gun gun

teacher 109.4 0.0 9.9 0.0 0.0
victim 1335.2 22.4 915.4 0.0 0.0
soldier 4547.5 1306.9 8948.3 105.9 41.0
policeman 68.6 38.2 538.1 30.5 7.4

Table 1: A fragment of the CxLC space

We use the CxLC space in three taxonomic sim-
ilarity tasks: modeling semantic similarity judg-
ments, noun categorization and verb selectional
restrictions.

4.1.1 Human similarity ratings
We use the dataset of Rubenstein and Goode-
nough (1965), consisting of 65 noun pairs rated
by 51 subjects on a 0-4 similarity scale (e.g. car-
automobile 3.9, cord-smile 0.0). The average rat-
ing for each pair is taken as an estimate of the
perceived similarity between the two words. Fol-
lowing Padó and Lapata (2007), we use Pearson’s
r to evaluate how the distances (cosines) in the
CxLC space between the nouns in each pair cor-
relate with the ratings. Percentage correlations for
DM, our other models and the best absolute re-
sult obtained by Padó and Lapata (DV+), as well
as their best cosine-based performance (cosDV+),
are reported in Table 2.

model r model r

myDV 70 DV+ 62
DM 64 myHAL 61
myPlain 63 cosDV+ 47

Table 2: Correlation with similarity ratings

DM is the second-best model, outperformed
only by DV when the latter is trained on compara-
ble data (myDV in Table 2). Notice that, here and
below, we did not try any parameter tuning (e.g.,
using a similarity measure different than cosine,
feature selection, etc.) to improve the performance
of DM.

4.1.2 Noun categorization
We use the concrete noun dataset of the ESSLLI
2008 Distributional Semantics shared task,3 in-
cluding 44 concrete nouns to be clustered into cog-
nitively justified categories of increasing general-
ity: 6-way (birds, ground animals, fruits, greens,
tools and vehicles), 3-way (animals, plants and
artifacts) and 2-way (natural and artificial enti-
ties). Following the task guidelines, we clustered
the target row vectors in the CxLX matrix with
CLUTO,4 using its default settings, and evalu-
ated the resulting clusters in terms of cluster-size-
weighted averages of purity and entropy (see the
CLUTO documentation). An ideal solution would
have 100% purity and 0% entropy. Table 3 pro-
vides percentage results for our models as well as
for the ESSLLI systems that reported all the rel-
evant performance measures, indexed by first au-
thor. Models are ranked by a global score given by
summing the 3 purity values and subtracting the 3
entropies.

model 6-way 3-way 2-way global
P E P E P E

Katrenko 89 13 100 0 80 59 197
Peirsman+ 82 23 84 34 86 55 140
DM 77 24 79 38 59 97 56
myDV 80 28 75 51 61 95 42
myHAL 75 27 68 51 68 89 44
Peirsman− 73 28 71 54 61 96 27
myPlain 70 31 68 60 59 97 9
Shaoul 41 77 52 84 55 93 -106

Table 3: Concrete noun categorization

DM outperforms our models trained on com-
parable resources. Katrenko’s system queries
Google for patterns that cue the category of a con-
cept, and thus its performance should rather be
seen as an upper bound for distributional models.
Peirsman and colleagues report results based on
different parameter settings: DM’s performance
– not tuned to the task – is worse than their top
model, but better than their worse.

4.1.3 Selectional restrictions
In this task we test the ability of the CxLC space to
predict verbal selectional restrictions. We use the
CxLC matrix to compare a concept to a “proto-
type” constructed by averaging a set of other con-
cepts, that in this case represent typical fillers of

3http://wordspace.collocations.de/
doku.php/esslli:start

4http://glaros.dtc.umn.edu/gkhome/
cluto/cluto/overview
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a verbal slot – for example, by averaging the vec-
tors of the nouns that are, according to the underly-
ing graph, objects of killing, we can build a vector
for the typical “killee”, and model selectional re-
strictions by measuring the similarity of other con-
cepts (including concepts that have not been seen
as objects of killing in the corpus) to this proto-
type. Note that the DM graph is used both to find
the concepts to enter in the prototype (the set of
nouns that are connected to a verb by the relevant
edge) and to compute similarity. Thus, the method
is fully unsupervised.

We test on the two datasets of human judgments
about the plausibility of nouns as arguments (ei-
ther subjects or objects) of verbs used in Padó et
al. (2007), one (McRae) consisting of 100 noun-
verb pairs rated by 36 subjects, the second (Padó)
with 211 pairs rated by 20 subjects. For each verb
in these datasets, we built its prototypical sub-
ject/object argument vector by summing the nor-
malized vectors of the 50 nouns with the highest
weight on the appropriate dependency link to the
verb (e.g., the top 50 nouns connected to kill by an
obj link). The cosine distance of a noun to a proto-
type is taken as the model “plausibility judgment”
about the noun occurring as the relevant verb ar-
gument. Since we are interested in generalization,
if the target noun is in the prototype set we sub-
tract its vector from the prototype before calculat-
ing the cosine. For our comparison models, there
is no way to determine which nouns would form
the prototype, and thus we train them using the
same top noun lists we employ for DM. Following
Padó and colleagues, performance is measured by
the Spearman ρ correlation coefficient between the
average human ratings and the model predictions.
Table 4 reports percentage coverage and correla-
tions for our models as well as those in Padó et
al. (2007) (ParCos is the best among their purely
corpus-based systems).

model McRae Padó
coverage ρ coverage ρ

Padó 56 41 97 51
DM 96 28 98 50
ParCos 91 21 98 48
myDV 96 21 98 39
myHAL 96 12 98 29
myPlain 96 12 98 27
Resnik 94 3 98 24

Table 4: Correlation with verb-argument plausibil-
ity judgments

DM does very well on this task: its performance
on the Padó dataset is comparable to that of the
Padó system, that relies on FrameNet. DM has
nearly identical performance to the latter on the
Padó dataset. On the McRae data, DM has a lower
correlation, but much higher coverage. Since we
are using a larger corpus than Padó et al. (2007),
who train on the BNC, a fairer comparison might
be the one with our alternative models, that are all
outperformed by DM by a large margin.

4.2 The CCxL semantic space

Another view of the DM graph is exemplified in
Table 5, where concept pairs are represented in
terms of the edge labels (links) connecting them.
Importantly, this matrix contains the same infor-
mation that was used to build the CxLC space
of Table 1, with a different arrangement of what
goes in the rows and in the columns, but the same
weights in the cells – compare, for example, the
soldier+gun-by-with cell in Table 5 to the soldier-
by-with+gun cell in Table 1.

in at with use
teacher school 11894.47020.1 28.9 0.0
teacher handbook 2.5 0.0 3.2 10.1
soldier gun 2.8 10.3 105.9 41.0

Table 5: A fragment of the CCxL space

We use this space to measure “relational” sim-
ilarity (Turney, 2006) of concept pairs, e.g., find-
ing that the relation between teachers and hand-
books is more similar to the one between soldiers
and guns, than to the one between teachers and
schools. We also extend relational similarity to
prototypes. Given some example pairs instantiat-
ing a relation, we can harvest new pairs linked by
the same relation by computing the average CCxL
vector of the examples, and finding the nearest
neighbours to this average. In the case at hand,
the link profile of pairs such as soldier+gun and
teacher+handbook could be used to build an “in-
strument relation” prototype.

We test the CCxL semantic space on recogniz-
ing SAT analogies (relational similarity between
pairs) and semantic relation classification (rela-
tional similarity to prototypes).

4.2.1 Recognizing SAT analogies
We used the set of 374 multiple-choice ques-
tions from the SAT college entrance exam. Each
question includes one target pair, usually called
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the stem (ostrich-bird) , and 5 other pairs (lion-
cat, goose-flock, ewe-sheep, cub-bear, primate-
monkey). The task is to choose the pair most anal-
ogous to the stem. Each SAT pair can be rep-
resented by the corresponding row vector in the
CCxL matrix, and we select the pair with the high-
est cosine to the stem. In Table 6 we report our
results, together with the state-of-the-art from the
ACL wiki5 and the scores of Turney (2008) (Pair-
Class) and from Amaç Herdaǧdelen’s PairSpace
system, that was trained on ukWaC. The Attr cells
summarize the performance of the 6 models on the
wiki table that are based on “attributional similar-
ity” only (Turney, 2006). For the other systems,
see the references on the wiki. Since our coverage
is very low (44% of the stems), in order to make a
meaningful comparison with the other models, we
calculated a corrected score (DM−). Having full
access to the results of the ukWaC-trained, simi-
larly performing PairSpace system, we calculated
the adjusted score by assuming that the DM-to-
PairSpace error ratio (estimated on the items we
cover) is constant on the whole dataset, and thus
the DM hit count on the unseen items is approx-
imated by multiplying the PairSpace hit count on
the same items by the error ratio (DM+ is DM’s
accuracy on the covered test items only).

model % correct model % correct
LRA 56.1 KnowBest 43.0
PERT 53.3 DM− 42.3
PairClass 52.1 LSA 42.0
VSM 47.1 AttrMax 35.0
DM+ 45.3 AttrAvg 31.0
PairSpace 44.9 AttrMin 27.3
k-means 44.0 Random 20.0

Table 6: Accuracy with SAT analogies

DM does not excel in this task, but its corrected
performance is well above chance and that of all
the attributional models, and comparable to that of
a WordNet-based system (KnowBest) and a sys-
tem that uses manually crafted information about
analogy domains (LSA). All systems with perfor-
mance above DM+ (and k-means) use corpora that
are orders of magnitude larger than ukWaC.

4.2.2 Classifying semantic relations
We also tested the CCxL space on the 7
semantic relations between nominals adopted
in Task 4 of SEMEVAL 2007 (Girju et

5http://www.aclweb.org/aclwiki/index.
php?title=SAT_Analogy_Questions

al., 2007): Cause-Effect, Instrument-Agency,
Product-Producer, Origin-Entity, Theme-Tool,
Part-Whole, Content-Container. For each rela-
tion, the dataset includes 140 training examples
and about 80 test cases. Each example consists
of a small context retrieved from the Web, con-
taining word pairs connected by a certain pattern
(e..g., “* contains *”). The retrieved contexts were
manually classified by the SEMEVAL organizers
as positive (e.g., wrist-arm) or negative (e.g., ef-
fectiveness-magnesium) instances of a certain re-
lation (e.g., Part-Whole). About 50% training and
test cases are positive instances. For each rela-
tion, we built “hit” and “miss” prototype vectors,
by averaging across the vectors of the positive and
negative training pairs attested in our CCxL model
(we use only the word pairs, not the surround-
ing contexts). A test pair is classified as a hit
for a certain relation if it is closer to the hit pro-
totype vector for that relation than to the corre-
sponding miss prototype. We used the SEMEVAL
2007 evaluation method, i.e., precision, recall, F-
measure and accuracy, macroaveraged over all re-
lations, as reported in Table 7. The DM+ scores
ignore the 32% pairs not in our CCxL space; the
DM− scores assume random performance on such
pairs. These scores give the range within which
our performance will lie once we introduce tech-
niques to deal with unseen pairs. We also report
results of the SEMEVAL systems that did not use
the organizer-provided WordNet sense labels nor
information about the query used to retrieve the
examples, as well as performance of several trivial
classifiers, also from the SEMEVAL task descrip-
tion.

model precision recall F accuracy
UCD-FC 66.1 66.7 64.8 66.0
UCB 62.7 63.0 62.7 65.4
ILK 60.5 69.5 63.8 63.5
DM+ 60.3 62.6 61.1 63.3
UMELB-B 61.5 55.7 57.8 62.7
SemeEval avg 59.2 58.7 58.0 61.1
DM− 56.7 58.2 57.1 59.0
UTH 56.1 57.1 55.9 58.8
majority 81.3 42.9 30.8 57.0
probmatch 48.5 48.5 48.5 51.7
UC3M 48.2 40.3 43.1 49.9
alltrue 48.5 100.0 64.8 48.5

Table 7: SEMEVAL relation classification

The DM accuracy is higher than the three SE-
MEVAL baselines (majority, probmatch and all-
true), DM+ is above the average performance of
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the comparable SEMEVAL models. Differently
from DM, the models that outperform it use fea-
tures extracted from the training contexts and/or
specific additional resources: an annotated com-
pound database for UCD-FC, machine learning
algorithms to train the relation classifiers (ILK,
UCD-FC), Web counts (UCB), etc. The less than
optimal performance by DM is thus counterbal-
anced by its higher “parsimony” and generality.

4.3 The CLxC semantic space
A third view of the information in the DM graph
is the concept+link-by-concept (CLxC) semantic
space exemplified by the matrix in Table 8.

teacher victim soldier policeman
kill subj tr 0.0 22.4 1306.9 38.2
kill obj 9.9 915.4 8948.3 538.1
die subj in 109.4 1335.2 4547.5 68.6

Table 8: A fragment of the CLxC space

This view captures patterns of similarity be-
tween (surface approximations to) argument slots
of predicative words. We can thus use the CLxC
space to extract generalizations about the inner
structure of lexico-semantic representations of the
sort formal semanticists have traditionally being
interested in. In the example, the patterns of
co-occurrence suggest that objects of killing are
rather similar to subjects of dying, hinting at the
classic cause(subj,die(obj)) analysis of killing by
Dowty (1977) and many others. Again, no new in-
formation has been introduced – the matrix in Ta-
ble 8 is yet another re-organization of the data in
our graph (compare, for example, the die+subj in-
by-teacher cell of this matrix with the teacher-by-
subj in+die cell in Table 1).

4.3.1 The causative/inchoative alternation
Syntactic alterations (Levin, 1993) represent
a key aspect of the complex constraints that
shape the syntax-semantics interface. One of
the most important cases of alternation is the
causative/inchoative, in which the object argu-
ment (e.g., John broke the vase) can also be re-
alized as an intransitive subject (e.g., The vase
broke). Verbs differ with respect to the possi-
ble syntactic alternations they can participate in,
and this variation is strongly dependent on their
semantic properties (e.g. semantic roles, event
type, etc.). For instance, while break can undergo
the causative/inchoative alternation, mince cannot:
cf. John minced the meat and *The meat minced.

We test our CLxC semantic space on the
discrimination between transitive verbs un-
dergoing the causative-inchoative alterna-
tions and non-alternating ones. We took
232 causative/inchoative verbs and 170 non-
alternating transitive verbs from Levin (1993).
For each verb vi, we extracted from the CLxC
matrix the row vectors corresponding to its tran-
sitive subject (vi + subj tr), intransitive subject
(vi + subj in), and direct object (vi + obj) slots.
Given the definition of the causative/inchoative
alternation, we predict that with alternating verbs
vi + subj in should be similar to vi + obj
(the things that are broken also break), while
this should not hold for non-alternating verbs
(mincees are very different from mincers).

Our model is completely successful in detect-
ing the distinction. The cosine similarity between
transitive subject and object slots is fairly low for
both classes, as one would expect (medians of 0.16
for alternating verbs and 0.11 for non-alternating
verbs). On the other hand, while for the non-
alternating verbs the median cosine similarity be-
tween the intransitive subject and object slots is
a similarly low 0.09, for the alternating verbs the
median similarity between these slots jump up
to 0.31. Paired t-tests confirm that the per-verb
difference between transitive subject vs. object
cosines and intransitive subject vs. object cosines
is highly statistically significant for the alternating
verbs, but not for the non-alternating ones.

5 Conclusion

We proposed an approach to semantic tasks where
statistics are collected only once from the source
corpus and stored as a set of weighted con-
cept+link+concept tuples (naturally represented
as a graph). Different semantic spaces are con-
structed on demand from this underlying “distri-
butional memory”, to tackle different tasks with-
out going back to the corpus. We have shown that
a straightforward implementation of this approach
leads to excellent performance in various taxo-
nomic similarity tasks, and to performance that,
while not outstanding, is at least reasonable on re-
lational similarity. We also obtained good results
in a task (detecting the causative/inchoative alter-
nation) that goes beyond classic NLP applications
and more in the direction of theoretical semantics.

The most pressing issue we plan to address is
how to improve performance in the relational sim-
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ilarity tasks. Fortunately, some shortcomings of
our current model are obvious and easy to fix.
The low coverage is in part due to the fact that
our set of target concepts does not contain, by de-
sign, some words present in the task sets. More-
over, while our framework does not allow ad-hoc
optimization of corpus-collection methods for dif-
ferent tasks, the way in which the information in
the memory graph is adapted to tasks should of
course go beyond the nearly baseline approaches
we adopted here. In particular, we need to de-
velop a backoff strategy for unseen pairs in the
relational similarity tasks, that, following Turney
(2006), could be based on constructing surrogate
pairs of taxonomically similar words found in the
CxLC space.

Other tasks should also be explored. Here, we
viewed our distributional memory in line with how
cognitive scientists look at the semantic memory
of healthy adults, i.e., as an essentially stable long
term knowledge repository. However, much in-
teresting semantic action takes place when under-
lying knowledge is adapted to context. We plan
to explore how contextual effects can be modeled
in our framework, focusing in particular on how
composition affects word meaning (Erk and Padó,
2008). Similarity could be measured directly on
the underlying graph, by relying on graph-based
similarity algorithms – an elegant approach that
would lead us to an even more unitary view of
what distributional semantic memory is and what
it does. Alternatively, DM could be represented as
a three-mode tensor in the framework of Turney
(2007), enabling smoothing operations analogous
to singular value decomposition.
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Abstract

In the recognition of words that are typical
of a specific language variety, the classic
keyword approach performs rather poorly.
We show how this keyword analysis can be
complemented with a word space model
constructed on the basis of two corpora:
one representative of the language variety
under investigation, and a reference cor-
pus. This combined approach is able to
recognize the markers of a language va-
riety as words that not only have a sig-
nificantly higher frequency as compared
to the reference corpus, but also a differ-
ent distribution. The application of word
space models moreover makes it possible
to automatically discover the lexical alter-
native to a specific marker in the reference
corpus.

1 Introduction

Different varieties of the same language often
come with their lexical peculiarities. Some words
may be restricted to a specific register, while other
ones may have different meanings in different re-
gions. In corpus linguistics, the most straightfor-
ward way of finding such words that are typical
of one language variety is to compile a corpus of
that variety and compare it to a reference corpus
of another variety. The most obvious comparison
takes on the form of a keyword analysis, which
looks for the words that are significantly more fre-
quent in the one corpus as compared to the other
(Dunning, 1993; Scott, 1997; Rayson et al., 2004).
For the purposes of a language-variational study,
this classic keyword approach often does not suf-
fice, however. As Kilgarriff has argued, keyword
statistics are far too sensitive to high frequencies
or topical differences to be used in the study of vo-
cabulary differences (Kilgarriff, 2001). We there-

fore put forward an approach that combines key-
word statistics with distributional models of lex-
ical semantics, or word space models (Sahlgren,
2006; Bullinaria and Levy, 2007; Padó and Lap-
ata, 2007; Peirsman, 2008). In this way, we not
only check whether two words have significantly
different frequencies in the two relevant language
varieties, but also to what degree their distribution
varies between the corpora.

In this paper, we will focus on the lexical dif-
ferences between two regional varieties of Dutch.
Dutch is interesting because it is the official lan-
guage of two neighbouring countries, Belgium and
the Netherlands. Between these two countries,
there exists a considerable amount of lexical vari-
ation (Speelman et al., 2006). There are words
much more frequently used in one of the two va-
rieties as well as terms that have a different mean-
ing in the two regions. We will call such words
markers of a specific lect — a general term for re-
giolects, dialects, or other language varieties that
are specific to a certain region, genre, etc. By con-
structing a word space model on the basis of two
corpora instead of one, we will show how the dis-
tributional approach to lexical semantics can aid
the recognition of such lectal variation.

In the next section, we will point out the weak-
nesses of the classic keyword approach, and show
how word space models can provide a solution. In
section 3, we will discuss how our approach recog-
nizes markers of a given lect. In section 4, we will
demonstrate how it can automatically find the al-
ternatives in the other language variety. Section 5
wraps up with conclusions and an outlook for fu-
ture research.

2 Bilectal Word Spaces

Intuitively, the most obvious way of looking for
words that mark a particular language variety, is
to take a corpus that represents this variety, and
calculate its keywords with respect to a reference
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χ2 log-likelihood
keyword χ2 keyword log-likelihood
frank/noun (‘franc’) 262492.0 frank/noun (‘franc’) 335587.3
meer/adj (‘more’) 149505.0 meer/adj (‘more’) 153811.6
foto/noun (‘photograph’) 84286.7 Vlaams/adj (‘Flemish’) 93723.2
Vlaams/adj (‘Flemish’) 83663.0 foto/noun (‘photograph’) 87235.1
veel/adj (‘much’/’many’) 73655.5 vrijdag/noun (‘Friday’) 77865.5
Belgisch/adj (‘Belgian’) 62280.2 veel/adj (‘much’/‘many’) 74167.1
vrijdag/noun (‘Friday’) 59135.9 Belgisch/adj (‘Belgian’) 64786.0
toekomst/noun (‘future’) 42440.5 toekomst/noun (‘future’) 55879.1
dossier/noun (‘file’) 34623.3 dossier/noun (‘file’) 45570.0
Antwerps/adj (‘Antwerp’) 33659.1 ziekenhuis/noun (’hospital’) 44093.3

Table 1: Top 10 keywords for the Belgian newspaper corpus, as compared to the Twente Nieuws Corpus.

corpus (Dunning, 1993; Scott, 1997; Rayson et al.,
2004). This keyword approach has two important
weaknesses, however. First, it has been shown that
statistically significant differences in the relative
frequencies of a word may arise from high abso-
lute frequencies rather than real lexical variation
(Kilgarriff, 2001). Second, in the explicit com-
parison of two language varieties, the keyword ap-
proach offers no way of telling what word in the
reference corpus, if any, serves as the alternative
to an identified marker. Word space models offer
a solution to both of these problems.

We will present this solution on the basis of two
corpora of Dutch. The first is the Twente Nieuws
Corpus (TwNC), a 300 million word corpus of
Netherlandic Dutch newspaper articles from be-
tween 1999 and 2002. The second is a corpus of
Belgian Dutch we compiled ourselves, with the
goal of making it as comparable to the Twente
Nieuws Corpus as possible. With newspaper arti-
cles from six major Belgian newspapers from the
years 1999 to 2005, it totals over 1 billion word
tokens. Here we will work with a subset of this
corpus of around 200 million word tokens.

2.1 Keywords

As our starting point, we calculated the keywords
of the Belgian corpus with respect to the Nether-
landic corpus, both on the basis of a chi-square test
(with Yates’ continuity correction) (Scott, 1997)
and the log-likelihood ratio (Dunning, 1993). We
considered only words with a total frequency of
at least 200 that moreover occurred at least five
times in each of the five newspapers that make up
the Belgian corpus. This last restriction was im-
posed in order to exclude idiosyncratic language

use in any of those newspapers. The top ten re-
sulting keywords, listed in Table 1, show an over-
lap of 90% between the tests. The words fall into
a number of distinct groups. Frank, Vlaams, Bel-
gisch and Antwerps (this last word appears only in
the χ2 top ten) indeed typically occur in Belgian
Dutch, simply because they are so tightly con-
nected with Belgian culture. Dossier may reflect
a Belgian preference for this French loanword.
Why the words meer, veel, vrijdag, toekomst and
ziekenhuis (only in the log-likelihood top ten) are
in the lists, however, is harder to explain. There
does not appear to be a linguistically significant
difference in use between the two language va-
rieties, neither in frequency nor in sense. The
presence of foto, finally, may reflect certain pub-
lishing habits of Belgian newspapers, but again,
there is no obvious difference in use between Bel-
gium and the Netherlands. In sum, these Belgian
keywords illustrate the weakness of this approach
in the modelling of lexical differences between
two language varieties. This problem was already
noted by Kilgarriff (2001), who argues that “[t]he
LOB-Brown differences cannot in general be in-
terpreted as British-American differences”. One
of the reasons is that “for very common words,
high χ2 values are associated with the sheer quan-
tity of evidence and are not necessarily associated
with a pre-theoretical notion of distinctiveness”.
One way to solve this issue is presented by Speel-
man et al. (2008). In their so-called stable lexical
markers analysis, the word frequencies in one cor-
pus are compared to those in several reference cor-
pora. The keyness of a word then corresponds to
the number of times it appears in the resulting key-
word lists of the first corpus. This repetitive test
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helps filter out spurious keywords whose statistical
significance does not reflect a linguistically signif-
icant difference in frequency. Here we explore an
alternative solution, which scores candidate mark-
ers on the basis of their contextual distribution in
the two corpora, in a so-called bilectal word space.

2.2 Bilectal Word Spaces

Word space models (Sahlgren, 2006; Bullinaria
and Levy, 2007; Padó and Lapata, 2007; Peirsman,
2008) capture the semantic similarity between two
words on the basis of their distribution in a cor-
pus. In these models, two words are similar when
they often occur with the same context words, or
when they tend to appear in the same syntactic re-
lationships. For our purposes, we need to build a
word space on the basis of two corpora, more or
less in the vein of Rapp’s (1999) method for the
identification of translation equivalents. The main
difference is that we use two corpora of the same
language, each of which should be representative
of one of the language varieties under investiga-
tion. All other variables should be kept as constant
as possible, so that we can attribute differences in
word use between the two corpora to lexical dif-
ferences between the two lects. Next, we select
the words that occur in both corpora (or a subset
of the nmost frequent words to reduce dimension-
ality) as the dimensions of the word space model.
For each target word, we then build two context
vectors, one for each corpus. These context vec-
tors contain information about the distribution of
the target word. We finally calculate the similarity
between two context vectors as the cosine of the
angle between them.

One crucial parameter in the construction of
word space models is their definition of distribu-
tion. Some models consider the syntactic relation-
ships in which a target word takes part (Padó and
Lapata, 2007), while other approaches look at the
collocation strength between a target and all of the
words that occur within n words to its left and
right (Bullinaria and Levy, 2007). With these last
word-based approaches, it has been shown that
small context sizes in particular lead to good mod-
els of the semantic similarity between two words
(Bullinaria and Levy, 2007; Peirsman, 2008). So
far, we have therefore performed experiments with
context sizes of one, two and three words to the
left and right of the target. These all gave very sim-
ilar results. Experiments with other context sizes

and with syntactic features will be carried out in
the near future. In this paper, we report on the
results of a word-based model with context size
three.

In order to identify the markers of Belgian
Dutch, we start from the keyword lists above. For
each of the keywords, we get their context vector
from the Belgian corpus, and find the 100 most
similar context vectors from the Netherlandic cor-
pus. The words that correspond to these context
vectors are called the ‘nearest neighbours’ to the
keyword. In the construction of our word space
model, we selected from both corpora the 4,000
most frequent words, and used the cross-section
of 2,538 words as our set of dimensions or context
features. The model then calculated the point-wise
mutual information between the target and each
of the 2,538 context words that occurred at least
twice in its context. All words in the Netherlandic
Dutch corpus with a frequency of at least 200, plus
the target itself, were considered possible nearest
neighbours to the target.

Generally, where there are no major differences
in the use of a keyword between the two lects,
it will have itself as its nearest neighbour. If
this is not the case, this may identify the key-
word as a marker of Belgian Dutch. For exam-
ple, six words from the lists above have them-
selves as their nearest neighbour: meer, foto, veel,
vrijdag, toekomst and ziekenhuis. These are in-
deed the keywords that made little sense from a
language-variational perspective. Dossier is its
own second nearest neighbour, which indicates
that there is slightly less of a match between its
Belgian and Netherlandic use. Finally, the words
linked to Belgian culture — frank, Vlaams, Bel-
gisch and Antwerps — are much lower in their
own lists of nearest neighbours, or totally absent,
which correctly identifies them as markers of Bel-
gian Dutch. In short, the keyword analysis ensures
that the word occurs much more frequently in Bel-
gian Dutch than in Netherlandic Dutch; the word
space approach checks if it also has a different dis-
tribution in the two corpora.

For markers of Belgian Dutch, we can interpret
the nearest neighbour suggested by the system as
the other variety’s alternative to that marker. For
instance, dossier has rapport as its nearest neigh-
bour, a synonym which indeed has a high keyword
value for our Netherlandic Dutch corpus. Simi-
larly, the culture-related words have their Dutch

11



equivalents as their distributionally most simi-
lar words: frank has gulden (‘guilder’), Vlaams
and Belgisch both have Nederlands (‘Dutch’), and
Antwerps has Amsterdams (‘Amsterdam (adj.)’).
This makes intuitive sense if we take meaning to
be a relative concept, where for instance a con-
cept like ‘currency of this country’ is instantiated
by the franc in Belgium and the guilder in Holland
— at least in the pre-Euro period. These findings
suggest that our combined method can be applied
more generally in order to automatically discover
lexical differences between the two language vari-
eties.

3 Recognizing lectal differences

First we want to investigate whether a bilectal
word space model can indeed contribute to the cor-
rect identification of markers of Belgian Dutch on
a larger scale. We therefore had both types of
approaches — the simple keyword approach and
the combined method — suggest a top 2,000 of
possible markers on the basis of our two corpora.
The combined approach uses the same word space
method we described above, with 2,538 dimen-
sions and a context size of three. Basing itself
on the lists of nearest neighbours, it then reorders
the list of keywords, so as to arrive at a ranking
that reflects lectal variation better than the original
one. To this goal, each keyword receives a new
score, which is the multiplication of two individ-
ual numbers. The first number is its rank in the
original keyword list. At this point we considered
only the 5,000 highest scoring keywords. The sec-
ond is based on a list that ranks the words accord-
ing to their difference in distribution between the
two corpora. Words that do not occur in their own
list of 100 nearest neighbours appear at the top of
the list (rank 1), followed by words that are their
own 100th nearest neighbour (rank 2), and so on
to the words that have themselves as nearest neigh-
bour (rank 101). In the future we plan to consider
different numbers of neighbours in order to pun-
ish words with very different distributions more
or less heavily. At this stage, however, restrict-
ing the method to 100 nearest neighbours gives
fine results. These two ranks are then multiplied
to give a combined score, on the basis of which a
final list of candidates for lectal variation is com-
puted. The lower this combined score (reflecting
either high keyword values, very different distri-
butions in the two corpora, or both), the higher

candidate marker evaluation
frank/noun (‘franc’) culture
Vlaams/adj (‘Flemish’) culture
match/noun (‘match’) literature
info/noun (‘info’)
rijkswacht/noun (‘state police’) RBBN

weekend/noun (‘weekend’)
schepen/noun (‘alderman’) RBBN

fr./noun (‘franc’) culture
provinciaal/adj (‘provincial’) RBBN

job/noun (‘job’) RBBN

Table 2: Top ten candidate markers suggested by
the combined method on the basis of the log-
likelihood ratio.

the likelihood that the word is a marker of Belgian
Dutch. This approach thus ensures that words that
have very different distributions in the two corpora
are promoted with respect to the original keyword
list, while words with very similar distributions are
downgraded.

As our Gold Standard we used the Reference
List of Belgian Dutch (Referentiebestand Belgisch
Nederlands, RBBN), a list of almost 4,000 words
and expressions that are typical of Belgian Dutch
(Martin, 2005). These are classified into a number
of groups — culturally-related terms (e.g., names
of political parties), Belgian markers that are not
lexicalized in Netherlandic Dutch, markers that
are lexicalized in Netherlandic Dutch, etc. We
used a subset of 717 one-word nouns, verbs and
adjectives that appear at least 200 times in our
Belgian corpus to evaluate our approach. Even
if we informally explore the first ten candidate
markers, the advantages of combining the log-
likelihood ratio with the word space model already
become clear (see table 2). Four of these candi-
dates are in the RBBN gold standard. Similarly,
frank, Vlaams and fr. are culturally related to Bel-
gium, while match has been identified as a typ-
ically Belgian word in previous corpus-linguistic
research (Geeraerts et al., 1999). Info and week-
end are not present in the external sources we con-
sulted, but nevertheless show an interesting distri-
bution with respect to their respective synonyms.
In the Belgian corpus, info occurs more often than
the longer and more formal information (32,009
vs 30,171), whereas in the Dutch corpus the latter
is used about 25 times as frequently as the former
(1,681 vs 41,429). Similarly, the Belgian corpus
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Figure 1: Precision and recall figures of the keyword methods and the combined approaches.

contains far more instances of weekend than of
its synonym weekeinde (35,406 vs 6,390), while
the Dutch corpus shows the reverse pattern (6,974
vs 28,234). These words are thus far better can-
didate markers than the original keywords meer,
foto, veel, vrijdag, toekomst or ziekenhuis, which
have disappeared from the top ten.

Let us now evaluate the methods more broadly,
on the basis of the top 2,000 keywords they sug-
gest. The left plot in Figure 1 shows their F-scores
in function of the number of suggested markers;
the right graph plots precision in function of re-
call. The two keyword approaches score rather
similarly, with the log-likelihood ratio achieving
slightly better results than the chi-square test. This
superiority of the log-likelihood approach was al-
ready noted by Rayson et al. (2004). Both com-
bined methods give a very clear advantage over the
simple keyword statistics, again with the best re-
sults for the log-likelihood ratio. For example, ten
of the first 100 candidates suggested by both key-
word approaches are present in our Gold Standard,
giving a precision of 10% and a recall of 1.4% (F-
score 2.4%). Adding our word space model makes
this figure rise to 29 correct markers, resulting in
a precision of 29% and a recall of 4% (F-score
7.1%). This large advantage in performance is
maintained further down the list. At 1000 can-
didates, the keyword approaches have a recall of
around 20% (chi-square 19%, log-likelihood 21%)
and a precision of around 14% (chi-square 14%,

log-likelihood 15%). At the same point, the com-
bined approaches have reached a recall of over
30% (chi-square 31%, log-likelihood 32%) with
a precision of around 22% (chi-square 22%, log-
likelihood 23%). Expressed differently, the best
keyword approach needs around 500 candidates
to recover 10% of the gold standard, 1000 to re-
cover 20% and 2000 to recover 40%. This linear
increase is outperformed by the best combined ap-
proach, which needs only 300, 600 and 1500 can-
didate markers to reach the same recall figures.
This corresponds to relative gains of 40%, 40%
and 25%. As these results indicate, the perfor-
mance gain starts to diminish after 1000 candi-
dates. Future experiments will help determine if
this issue can be resolved with different parameter
settings.

Despite these large gains in performance, the
combined method still has problems with a num-
ber of Belgian markers. A manual analysis of
these cases shows that they often have several
senses, only one of which is typical of Belgian
Dutch. The Reference List for instance contains
fout (‘mistake’) and mossel (‘mussel’) as Belgian
markers, with their specialized meanings ‘foul (in
sports)’ and ‘weakling’. Not only do these words
have very low keyword values for the Belgian cor-
pus; they also have very similar distributions in
the two corpora, and are their own first and sec-
ond neighbour, respectively. Sometimes a fail-
ure to recognize a particular marker is more due
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top 100 top 500
class n % n %
in Gold Standard 29 29% 127 25.4%
in Van Dale 11 22% 47 9.4%
related 2 2% 23 4.6%
cultural terms 25 25% 60 12%
total 67 67% 257 51.4%

Table 3: Manual analysis of the top 500 words
suggested by the combined approach.

to the results of one individual method. This
is for instance the case with the correct Belgian
marker home (‘(old people’s) home’). Although
the word space model does not find this word in its
own list of nearest Netherlandic neighbours, it re-
mains low on the marker list due to its fairly small
log-likelihood ratio. Conversely, punt, graad and
klaar are rather high on the keyword list of the
Belgian corpus, but are downgraded, as they have
themselves as their nearest neighbour. This is
again because their status as a marker only applies
to one infrequent meaning (‘school mark’, ‘two-
year cycle of primary education’ and ‘clear’) in-
stead of the dominant meanings (‘final stop, point
(e.g., in sports)’, ‘degree’ and ‘ready’), which are
shared between the two regional varieties. How-
ever, this last disadvantage applies to all markers
that are much more frequently used in Belgium but
still sometimes occur in the Netherlandic corpus
with a similar distribution.

Finally, because our Gold Standard is not an
exhaustive list of Belgian Dutch markers, the re-
sults in Figure 1 are an underestimate of real per-
formance. We therefore manually went through
the top 500 markers suggested by the best com-
bined approach and classified them into three new
groups. The results of this analysis are pre-
sented in Table 3. First, we consulted the Van
Dale Groot Woordenboek der Nederlandse taal
(Den Boon and Geeraerts, 2005), the major dictio-
nary of Dutch, which contains about 3,000 words
marked with the label “Belgian Dutch”. 11% of
the first 100 and 9.4% of the first 500 candidates
that were initially judged incorrect carry this label
or have a definition that explicitly refers to Bel-
gium. Second, we counted the words that are mor-
phologically related to words in the Gold Standard
or to Belgian words found in Van Dale. These are
for instance compound nouns one of whose parts
is present in the Gold Standard, which means that
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Figure 2: Percentage of markers of Belgian Dutch
whose Netherlandic alternative is present among
their n nearest neighbours.

they are correct markers of Belgian Dutch as well.
They represent 2% of the top 100 and 4.6% of the
top 500. Third, we counted the words that are in-
herently linked to Belgian culture, mostly in the
form of place names. This group corresponds to
25% of the first 100 and 12% of the first 500 can-
didate markers. This suggests that the true preci-
sion of our method at 100 and 500 candidates is
thus at least 67% and 51.4%, respectively.

4 Finding alternatives

The Reference List of Belgian Dutch not only
lists Belgian Dutch words and expressions, but
also gives their Netherlandic Dutch alternative, if
one exists. Our word space model offers us a
promising way of determining this alternative au-
tomatically, by looking at the nearest Netherlandic
neighbours to a Belgian marker. As our Gold Stan-
dard, we selected from the Reference List those
words with a frequency of at least 200 in the Bel-
gian corpus whose Dutch alternative also had a
frequency of at least 200 in the Dutch corpus. This
resulted in a test set of 315 words: 240 nouns,
45 verbs and 30 adjectives. For each of these
words, we used our word space model to find the
100 nearest Netherlandic neighbours, again with
context size three but now with as dimensions all
words shared between the two corpora, in order to
improve performance. We then determined if the
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Dutch alternative was indeed in the list of nearest
neighbours to the target. We started by looking
at the single nearest neighbour only, and then step
by step extended the list to include the 100 nearest
neighbours. If a word had itself among its nearest
neighbours, this neighbour was discarded and re-
placed by the next one down the list. The results
are shown in Figure 2. 11 out of 30 adjectives
(36.7%), 10 out of 45 verbs (22.2%) and 56 out
of 240 nouns (23.3%) had their Dutch alternative
as their nearest neighbour. At ten nearest neigh-
bours, these figures had risen to 60.0%, 48.9%
and 44.6%. These encouraging results underpin
the usefulness of word space models in language-
variational research.

A manual analysis of Belgian markers for which
the approach does not find the Netherlandic alter-
native again reveals that a large majority of these
errors occur when polysemous words have only
one, infrequent meaning that is typical of Bel-
gian Dutch. For example, the dominant sense
of the word tenor is obviously the ‘male singer’
meaning. In Belgium, however, this term can
also refer to a leading figure, for instance in a
political party or a sports discipline. Since this
metaphorical sense is far less frequent than the lit-
eral one, the context vector fails to pick it up, and
almost all nearest Netherlandic neighbours are re-
lated to opera or music. One way to solve this
problem would be to abandon word space models
that build only one context vector per word. In-
stead, we could cluster all individual contexts of a
word, with the aim of identifying context clusters
that correspond to the several senses of that word
(Schütze, 1998). This is outside the scope of the
current paper, however.

5 Conclusions and future research

We have presented an application of word space
models to language-variational research. To our
knowledge, the construction of word space mod-
els on the basis of two corpora of the same lan-
guage instead of one is new to both variational
linguistics and Natural Language Processing. It
complements the classic keyword approach in that
it helps recognize those keywords that, in addition
to their different relative frequencies in two lan-
guage varieties, also have a substantially different
distribution. An application of this method to Bel-
gian Dutch showed that the keywords that pass this
test indeed much more often represent markers of

the language variety under investigation. More-
over, often the word space model also succeeded
in identifying the Netherlandic Dutch alternative
to the Belgian marker.

As the development of this approach is still in its
early stages, we have committed ourselves more
to its general presentation than to the precise pa-
rameter settings. In the near future, we therefore
aim to investigate more fully the possible varia-
tion that the method allows. First, we will focus
on the implementation of the word space model,
by studying word-based models with other context
sizes as well as syntax-based approaches. Sec-
ond, we want to examine other ways in which
the word-based model and the classic keyword ap-
proach can be combined, apart from the multipli-
cation of ranks that we have proposed here. While
this large freedom in parameter settings could be
seen as a weakness of the proposed method, the
fact that we obtained similar results for all settings
we have tried out so far, adds to our confidence
that word space models present a sensible com-
plementation of the classic keyword approaches,
irrespective of the precise parameter settings.

In addition to those modelling issues, there are
a number of other extensions we would like to ex-
plore. First, the Gold Standard we have used so
far is rather limited in scope. We therefore plan
to incorporate more sources on language variation
to test the robustness of our approach. Finally, as
we have observed a number of times, the method
in its present form is not sensitive to possibly in-
frequent meanings of a polysemous word. This
may be solved by the application of a clustering
approach that is able to cluster a word’s contexts
into several sense clusters (Schütze, 1998). Still,
the promising results in this paper encourage us to
believe that the current approach has a future as a
new method in language-variational research and
as a tool for lexicography.
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Abstract

We present the results of clustering exper-
iments with a number of different evalu-
ation sets using dependency based word
spaces. Contrary to previous results we
found a clear advantage using a parsed
corpus over word spaces constructed with
the help of simple patterns. We achieve
considerable gains in performance over
these spaces ranging between 9 and 13%
in absolute terms of cluster purity.

1 Introduction

Word space models have become a mainstay in the
automatic acquisition of lexical semantic knowl-
edge. The computation of semantic relatedness of
two words in such models is based on their distri-
butional similarity. The most crucial way in which
such models differ is the definition of distribu-
tional similarity: In a regular word space model
the observed distribution concerns the immediate
neighbours of a word within a predefined win-
dow to the left and right (Schütze, 1992; Sahlgren,
2006). Early on in the development as an alter-
native models were proposed that relied on the
similarity of the distribution of syntactic relations
(Hindle, 1990; Padó and Lapata, 2007). More
recently the distribution of the occurrence within
simple patterns defined in the form of regular ex-
pressions that are supposed to capture explicit se-
mantic relations was explored as the basis of distri-
butional similarity (Almuhareb and Poesio, 2004).

Whereas dependency based semantic spaces
have been shown to surpass other word space mod-
els for a number of problems (Padó and Lapata,
2007; Lin, 1998), for the task of categorisation
simple pattern based spaces have been shown to

perform equally good if not better (Poesio and Al-
muhareb, 2005b; Almuhareb and Poesio, 2005b).
We want to show that dependency based spaces
also fare better in these tasks if the dependency re-
lations used are selected reasonably. At the same
time we want to show that such a system can be
built with freely available components and with-
out the need to rely on the index of a proprietary
search engine vendor.

We propose to use the web acquired data of the
ukWaC (Ferraresi et al., 2008), which is huge but
still manageable and comes in a pre-cleaned ver-
sion with HTML markup removed. It can easily
be fed into a parser like MiniPar which allows for
the subsequent extraction of dependency relations
of different types and complexity. In particular we
work with dependency paths that can reach beyond
direct dependencies as opposed to Lin (1998) but
in the line of Pado and Lapata (2007). In contrast
to the latter, however, different paths that end in
the same word are not generally mapped to the
same dimension in our model. A path in a depen-
dency graph can pass through several nodes and
encompass different relations.

We experimented with two sets of nouns pre-
viously used in the literature for word clustering.
The nouns in both sets are taken from a number
of different WordNet categories. Hence, the task
consists in clustering together the words from the
same category. By keeping the clustering algo-
rithm constant, differences in performance can be
attributed to the differences of the word represen-
tations.

The next section provides a formal description
of our word space model. Section 3 reports on our
clustering experiments with two sets of concepts
used previously to evaluate the categorisation abil-
ities of word spaces. Section 4 discusses these re-
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sults and draws some conclusions.

2 Word Space Construction

We follow the formalisation and terminology de-
veloped in Pado and Lapata (2007) according to
which a dependency based space is determined by
the sets of its basis elementsB and targetsT that
form a matrixM = B× T, a similarity function
S that assigns a real-valued similarity measure to
pairs of elements fromT, the association measure
A that captures the strength of the relation between
a target and a basis element, the context selection
function cont, the basis mapping functionµ and
the path value functionv. Our set of targets is al-
ways a subset of the lemmas output by MiniPar.
The remaining elements are defined in this section.
We useπ to denote a path in a dependency graph
which is conceived of as an undirected graph for
this purpose. So, in general a dependency path has
an upward and downward part where one can have
length zero. All the paths used to define the con-
texts for target words are anchored there, i.e. they
start from the target.

In choosing the context definitions that deter-
mine what dependency paths are used in the con-
struction of the word vectors, we oriented our-
selves at the sets proposed in Pado and Lap-
ata (2007). As Pado and Lapata (2007) achieved
their best results with it we started from their
medium sized set of context definitions, from
which we extracted the appropriate ones for our
experiments and added some that seemed to make
sense for our purposes: As our evaluation sets con-
sist entirely of nouns, we used only context defi-
nitions that start at a noun. Thereby we can en-
sure that only nominal uses are recorded in a word
vector if a target word can have different parts of
speech. The complete set of dependency relations
our context selection functioncont comprises is
given in Figure 1 along with an example for each.

We only chose paths that end in an open word
class assuming that they are more informative
about the meaning of a target word. Paths end-
ing in a preposition for instance, as used by
Pado and Lapata (2007), were not considered. For
the same reason we implemented a simple stop
word filter that discards paths ending in a pronoun,
which are assigned the tagN by MiniPar just like
any other noun.

On the other hand we added the relation be-
tween a prepositional complement and the noun it

modifies (appearing as relation IX in Figure 1) as
a close approximation of the pattern used by (Al-
muhareb and Poesio, 2004) to identify attributes
of a concept as detailed in the next section. Path
specifications X and XI are also additions we
made that are thought to gather additional attribute
values to the ones already covered by III.

As a basis mapping functionµ we used a gen-
eralisation of the one used by Grefenstette (1994)
and Lin (1998). They map a dependency between
two words to a pair consisting of the relation la-
bel l and the end word of the dependencyend(π).
As we use paths that span more than a single re-
lation, this approach is not directly applicable to
our setup. Instead we use a mapping function that
maps a path to the sequence of edge labels through
which it passes combined with the end word:

µ(π) = (l(π),end(π))

where l(·) is a labelling function that returns
the sequence of edge labels for a given path.
With this basis mapping function the nodes or
words respectively through which a path passes
are all neglected except for the node where the
path ends. So, for the nounhuman the se-
quencehuman and mouse genomeas well as
the sequencehuman and chimpanzee genome
increase the count for the same basis element
:N:conj:N:*:N:nn:N:genome. Here we
use a path notation of the general form:

(: POS : rel : POS : {word,∗})n

wherePOS is a part of speech,rel a relation and
word a node label, i.e. a lemma, all as produced
by MiniPar. The length of a path is determined by
n and the asterisk (*) indicates that a node label is
ignored by the basis mapping function.

As an alternative we experimented with a lexi-
cal basis mapping function that maps a path to its
end word:

µ(π) = end(π)

This reduces the number of dimensions consider-
ably and yields semantic spaces that are similar
to window based word spaces. As this mapping
function consistently delivered worse results, we
dropped it from our evaluation.

Considering that (Padó and Lapata, 2007) only
reported very small differences for different path
valuation functions, we only used a constant valu-
ation of paths:

vconst(π) = 1
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(I) the subject of a verb

All humans die.

PreDet
N

Vpre

subj

(II) an object of a verb

Gods from another world created humans

V
N

subj obj

(III) modified by an adjective

Young dogs are like young humans

VBE
Prep

A
N

s pred

pcomp-n

mod

(IV) linked to another noun via a genitive relation

The human’s eyes glimmered with comprehension

Det
N

N
V

det

subj mod

gen

(V) part of a nominal complex

The human body presents a problem.

Det N
N

V

subj

det

obj
nn

(VI) part of a conjunction

Humans and animals are equally fair game.

N
U N

VBE

s

punc

pred
conj

(VII) the subject of a predicate noun

Humans are the only specie that has sex for pleasure.

N
VBE

N
C

s

det, mod

pred

rel
subj

(VIII) the subject of a predicate adjective

Humans are fallible.

N
VBE

A

s pred
subj

(IX) the prepositional complement modifying a noun

You must get into the mind of humans.

N Aux
V

Det
N

Prep
N

s aux

det

obj

mod

pcomp-n

(X) the prepositional complement modifying a
noun that is the subject of a predicate adjective

The nature of humans is corrupt.

N
Prep

N

VBE
A

s

mod

pcomp-n

pred

(XI) the prepositional complement modifying a noun that is the subject of a predicate noun

Chief diseases of humans are infections.

N
Prep

N

VBE
N

s

mod

pcomp-n

pred

(XII) relations I-IV and VI-XI above but now with the target as part of a complex noun phrase as shown for
a conjunction relation (VI) in the example

They interrogated him about the human body and reproduction.

Prep

Det N
N

U N

mod

det

pcomp-n

puncnn conj

Figure 1: Context definitions used in the construction of ourword spaces. All examples show contexts
for the targethuman. Greyed out parts are just for illustrative purposes and have no impact on the word
vectors. The examples are slightly simplified versions of sentences found in ukWaC.19



Thus, an occurrence of any path, irrespective of
length or grammatical relations that are involved,
increases the count of the respective basis element
by one.

We implemented three different association
functions, A, to transform the raw frequency
counts and weight the influence of the different co-
occurrences. We worked with an implementation
of the log likelihood ratio (g-Score) as proposed
by Dunning (1993) and two variants of thet-score,
one considering all values (t-score) and one where
only positive values (t-score+) are kept following
the results of Curran and Moens (2002). We also
experimented with different frequency cutoffs re-
moving dimensions that occur very frequently or
very rarely.

3 Evaluation

For all our experiments we used the ukWaC cor-
pus1 to construct the word spaces, which was
parsed using MiniPar. The latter provides lemma
information, which we used as possible target and
context words. The word vectors we built from
this data were represented as pseudo documents in
an inverted index. To our knowledge the experi-
ments described in this paper are the first to work
with a completely parsed version of the ukWaC.

For the evaluation the word vectors for the
test sets were clustered into a predefined number
of clusters corresponding to the number of con-
cept classes from which the words were drawn.
All experiments were conducted with the CLUTO
toolkit (Karypis, 2003) using the repeated bisec-
tions clustering algorithm with global optimisa-
tion and the cosine as a distance measure to main-
tain comparability with related work, e.g. Ba-
roni et al. (2008).

As the main evaluation measure we used pu-
rity for the whole set as supplied by CLUTO. For
a clustering solutionΩ of n clusters and a set of
classesC, purity can be defined as:

purity(Ω,C) =
1
n∑

k

max
j

|ωk∩c j |

whereωk denotes the set of terms in a cluster and
c j the set of terms in a class. This aggregate mea-
sure of purity corresponds to the weighted sum of
purities for the individual clusters, which is de-
fined as the ratio of items in a cluster that belong
to the majority class. The results for the two test

1http://wacky.sslmit.unibo.it

sets we used are described in the following two
subsections.

3.1 Results for 214 nouns from
Almuhareb and Poesio (2004)

The first set we worked with was introduced by
Almuhareb and Poesio (2004) and consists of 214
nouns from 13 different categories in WordNet. In
the original paper the best results were achieved
with vector representations built from concept at-
tributes and their values as identified by simple
patterns. For the identification of attribute values
of a conceptC the following pattern was used

“[a|an|the] *C [is|was]”

It will find instances such asan adult human is
identifying adult as a value for an attribute (age)
of [HUMAN ] (we use small capitals enclosed in
square brackets to denote a concept). Attributes
themselves are searched with the pattern

“the * of the C [is|was]”

A match for the concept [HUMAN ] would be the
dignity of the human is, which yieldsdignity as
an attribute. These patterns were translated into
queries and submitted to the Google2 search en-
gine.

We compare our dependency based spaces with
the results achieved with the pattern based ap-
proach in Table 1.

association
measure

g-score t-score t-score+

dependency
based space

77.1% 85.5% 96.7%

window based
space

84.1% 82.7% 89.3%

pattern based
space

- - 85.5%

Table 1: Categorisation results for the 214
concepts and 13 classes proposed in Al-
muhareb and Poesio (2004), which is also
the source of the result for the pattern based space.
They only usedt-score+. The numbers given are
the best accuracies achieved under the different
settings.

For the window based space we used the best
performing in a free association task with a win-
dow size of six words to each side and all the

2http://www.google.com
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context accuracy # dimensions

(I) 82.2% 7359
(II) 92.5% 6680
(III) 88.3% 45322
(IV) – 37231
(V) 82.2% 240157
(VI) 95.3% 93917
(VII) 86.9% 45527
(VIII) 77.1% 5245
(IX) 91.6% 87765
(X) – 2186
(XI) – 6967
(XII) 93.0% 188763

Table 2: Clustering results using only one kind of
path specification. For (IV), (X) and (XI) purity
values are missing because vectors for some of the
words could not be built.

words that appeared at least two times as dimen-
sions ignoring stop words. The effective dimen-
sionality of the so built word vectors is 417 837.

The results for the dependency based spaces
were built by selecting all paths without any
frequency thresholds which resulted in a set of
767 119 dimensions.

As can be seen, both window and dependency
based spaces exceed the pattern based space for
certain association measures. But the dependency
space also has a clear advantage over the window
based space. In particular thet-score+ measure
yields very good results. In contrast theg-score
offers the worst results with thet-score retaining
negative values somewhere in between. For our
further experiments we hence used thet-score+ as-
sociation measure.

3.1.1 Further Analysis

We ran a number of experiments to quantify the
impact the different kinds of paths have on the
clustering result. We first built spaces using only
a single kind of path to find out how good each
performs on its own. The result can be found in
Table 2. For some of the words in the evaluation
set no contexts could be found when only one of
the two most complex context specifications (X),
(XI) was used or when the context was reduced to
the genitive relation (IV). Apart from that the re-
sults suggest that even a single type of relation on
its own can prove highly effective. Especially the
conjunctive relation (VI) performs very well with
a purity value of 95.3%.

removed context accuracy

(I) 97.2%
(II) 97.7%
(III) 97.2%
(IV) 97.2%
(V) 98.1%
(VI) 96.3%
(VII) 97.2%
(VIII) 97.2%
(IX) 96.7%
(X) 97.2%
(XI) 97.2%
(XII) 96.7%

Table 3: Clustering results for spaces with one
context specification removed.

To further clarify the role of the different kinds
of contexts, we ran the experiment with word
spaces where we removed each one of the twelve
context specifications in turn. The results as given
in Table 3 are a bit astonishing at first sight: Only
the removal of the conjunctive relation actually
leads to a decrease in performance. All the other
contexts seem to be either redundant – with per-
formance staying the same when they are removed
– or even harmful – with performance increasing
once they are removed. Having observed this, we
tried to remove further context specifications and
surprisingly found that the best performance of
98.1% can be reached by only including the con-
junction (VI) and the object (II) relations. The di-
mensionality of these vectors is only a fraction of
the original ones with 100 597.

The result for the best performing dependency
based space listed in the table is almost perfect.
Having a closer look at the results reveals that in
fact only four words are put into a wrong cluster.
These words are:lounge, pain, mouse, oyster.

The first is classified as [BUILDING ] instead of
[FURNITURE]. In the case ofloungethe misclas-
sification seems to be attributable to the ambiguity
of the word which can either denote a piece of fur-
niture or a waiting room. The latter is apparently
the more prominent sense in the data. In this usage
the word often appears in conjunctions withroom
or hotel just like restaurant, innor clubhouse.

Pain is misclassified as an [ILLNESS] instead
of a [FEELING] which is at least a close miss.
The misclassification ofmouseas a [BODY PART]
seems rather odd on the other hand. The reason for
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it becomes apparent when looking at the most de-
scriptive and discriminating features of the [BODY

PART] cluster: In both lists the highest in the rank-
ing is the dimension:N:mod:A:left, i.e. left
as an adjectival modifier of the word in question.
The prominence of this particular modification is
of course due to the fact that a lot of body parts
come in pairs and that the members of these pairs
are commonly identified by assigning them to the
left or right half of the body. Certainly, the word
mouseenters this cluster not through its sense of
mouse1 as an animal but rather through its sense of
mouse2 as a piece of computer equipment that has
two buttons, which are also referred to as the left
and right one. Unfortunately, MiniPar frequently
resolvesleft in a wrong way as a modifier ofmouse
instead ofbutton.

Finally for oysterwhich is put into the [EDIBLE

FRUIT] instead of the [ANIMAL ] cluster it is con-
spicuous thatoyster is the only sea animal in the
evaluation set and consequently it rarely occurs
in conjunctions with the other animals. Conjunc-
tions, however, seem to be the most important fea-
tures for defining all the clusters. Additionally
oysterscores low on a lot of dimensions that are
typical for a big number of the members of the an-
imal cluster, e.g.:N:obj:V:kill.

3.2 Results for 402 words from
Almuhareb and Poesio (2005a)

In Poesio and Almuhareb (2005a) a larger evalu-
ation set is introduced that comprises 402 nouns
sampled from the hierarchies under the 21 unique
beginners in WordNet. The words were also cho-
sen so that candidates from different frequency
bands and different levels of ambiguity were rep-
resented. Further results using this set are reported
in Almuhareb and Poesio (2005b). The best result
was obtained with the attribute pattern alone and
filtering to include only nouns. We tried to assem-
ble word vectors with the same patterns based on
the ukWaC corpus. But even if we included both
patterns, we were only able to construct vectors
for 363 of the 402 words. For 118 of them the
number of occurrences, on which they were based,
was less than ten. This gives an impression of the
size of the index that is necessary for such an ap-
proach. To date such an immense amount of data
is only available through proprietary search engine
providers. This makes a system dependant upon
the availability of an API of such a vendor. In fact

the version of the Google API on which the orig-
inal experiments relied has since been axed. Our
approach circumvents such problems.

We ran analogous experiments to the ones de-
scribed in the previous section on this evaluation
set, now producing 21 clusters. The results given
in Table 4 are for a dependency space without any
frequency thresholds and the complete set of con-
text specifications as defined above. The settings
for the window based space were also the same
(6 words to each side). Again the results achieved
with thet-score+ association were clearly superior
to the others and were used in all the following
experiments. Unsurprisingly, for this more diffi-
cult task the performance is not as good as for the
smaller set but nevertheless the superiority of the
dependency based space is clearly visible with an
absolute increase in cluster purity of 8.2% com-
pared with the pattern based space.

association
measure

g-score t-score t-score+

dependency
based space

67.9% 67.2% 79.1%

window based
space

65.7% 60.7% 67.9%

pattern based
space

- - 70.9%

Table 4: Categorisation results for the 402
concepts and 21 classes proposed in Al-
muhareb and Poesio (2005a) which is also
the source of the result for the pattern based
space. The numbers given are the best accuracies
achieved under the different settings.

3.2.1 Further Analysis

Again we ran further experiments to determine the
impact of the different kinds of relations. The re-
moval of any single context specification leads to
a performance drop with this evaluation set. The
smallest decrease is observed when removing con-
text specification XII. However, as we had seen in
the previous experiment with the smaller set that
only two context specifications suffice to reach
peak performance, we conducted another exper-
iment where we started from the best perform-
ing space constructed from a single context spec-
ification (the conjunction relation, VI) and suc-
cessively added the specification that led to the
biggest performance gain. The crucial results are
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majority class concepts
solid tetrahedron, salient, ring, ovoid, octahedron, knob, icosahedron, fluting, dome, dodecahedron,

cylinder, cuboid, cube, crinkle, concavity,samba, coco, nonce, divan, ball, stitch, floater, trove,
hoard, mouse

time yesteryear, yesterday, tonight, tomorrow, today, quaternary, period, moment, hereafter, gesta-
tion, future, epoch, day, date, aeon,stretch, snap, throb, straddle, nap

motivation wanderlust, urge, superego, obsession, morality, mania, life, impulse, ethics, dynamic, con-
science, compulsion,plasticity, opinion, acceptance, sensitivity, desire, interest

assets wager, taxation, quota, profit, payoff, mortgage, investment, income, gain, fund, credit, cap-
ital, allotment, allocation,possession, inducement, incentive, disincentive, deterrence, share,
sequestrian, cheque, check, bond, tailor

district village, town, sultanate, suburb, state, shire, seafront,riverside, prefecture, parish, metropolis,
land, kingdom, county, country, city, canton, borough, borderland, anchorage,tribe, nation,
house, fen, cordoba, faro

legal document treaty, statute, rescript, obligation, licence, law, draft, decree, convention, constitution, bill,
assignment,commencement, extension, incitement, caliphate, clemency, venture, dispensation

physical property weight, visibility, temperature, radius, poundage, momentum, mass, length, diameter, deflec-
tion, taper, indentation, droop, corner, concavity

social unit troop , team, platoon, office, legion, league, household, family, department, confederacy, com-
pany, committee, club, bureau, brigade, branch, agency

atmospheric
phenomenon

wind, typhoon, tornado, thunderstorm, snowfall, shower, sandstorm, rainstorm, lightning, hur-
ricane, fog, drizzle, cyclone, crosswind, cloudburst, cloud, blast, aurora, airstream,glow

social occasion wedding, rededication, prom, pageantry, inaugural, graduation, funeral, fundraiser, fiesta, fete,
feast, enthronement, dance, coronation, commemoration, ceremony, celebration,occasion, raf-
fle, beano

monetary unit zloty, yuan, shilling, rupee, rouble, pound, peso, penny, lira, guilder, franc, escudo, drachma,
dollar, dirham, dinar, cent

tree sycamore, sapling, rowan, pine, palm, oak, mangrove, jacaranda, hornbeam, conifer, cinchona,
casuarina, acacia,riel

chemical element zinc, titanium, silver, potassium, platinum, oxygen, nitrogen, neon, magnesium, lithium, iron,
hydrogen, helium, germanium, copper, charcoal, carbon, calcium, cadmium, bismuth, alu-
minium,gold

illness smallpox, plague, meningitis, malnutrition, leukemia, hepatitis, glaucoma, flu, eczema, dia-
betes, cirrhosis, cholera, cancer, asthma, arthritis, anthrax, acne,menopause

feeling wonder, shame, sadness, pleasure, passion, love, joy, happiness, fear, anger,heaviness, cool-
ness, torment, tenderness, suffering, stinging

vehicle van, truck, ship, rocket, pickup, motorcycle, helicopter,cruiser, car, boat, bicycle, automobile,
airplane, aircraft,jag

creator producer, photographer, painter, originator, musician, manufacturer, maker, inventor, farmer,
developer, designer, craftsman, constructor, builder, artist, architect,motivator

pain toothache, soreness, sting, soreness, sciatica, neuralgia, migraine, lumbago, headache, earache,
burn, bellyache, backache, ache,rheumatism, pain

animal zebra, turtle, tiger, sheep, rat, puppy, monkey, lion, kitten, horse, elephant, dog, deer, cow, cat,
camel, bull, bear

game whist, volleyball, tennis, softball, soccer, rugby, lotto, keno, handball, golf, football, curling,
chess, bowling, basketball, baccarat,twister

edible fruit watermelon, strawberry, pineapple, pear, peach, orange, olive, melon, mango, lemon, kiwi,
grape, cherry, berry, banana, apple,oyster, walnut, pistachio, mandarin, lime, fig, chestnut

Figure 2: Optimal clustering for large evaluation set.

contexts used purity

(VI) 73.4%
(VI), (II) 76.6%
(VI), (II), (III) 80.1%

Table 5: Clustering the larger evaluation set with
an increasing number of context specifications.

given in Table 5. As can be seen the object re-
lation is added first again. This time though the
inclusion of adjectival modification brings another
performance increase which is even one per cent

above the result for the space built from all possi-
ble relations. The addition of any further contexts
consistently degrades performance. The clustering
solution thus produced is given in Figure 2. From
the 1 872 698 dimension used in the original space
only 341 214 are retained.

4 Discussion and Conclusion

Our results are counterintuitive at first sight as it
could be expected that a larger number of differ-
ent contexts would increase performance. Instead
we see the best performance with only a very lim-
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ited set of possible contexts. We suspect that this
behaviour is due to a large amount of correlation
between the different kinds of contexts. The ad-
dition of further contexts beyond a certain point
therefore has no positive effect. As an indication
for this it might be noticed that the three context
specifications that yield the best result for the 402
word set comprise relations with the three main
open word classes. It is to be expected that they
contribute orthogonal information that covers cen-
tral dimensions of meaning. The slight decrease
in performance that can be observed when further
contexts are added is probably due to chance fluc-
tuations and almost certainly not significant; with
significance being hard to determine for any of the
results.

However, it is obviously necessary to cover a
basic variety of features. Patterns which are used
to explicitly track semantic relations on the tex-
tual surface seem to be too restrictive. Informa-
tion accessible from co-occurring verbs for exam-
ple is completely lost. In a regular window based
word space such information is retained and its
performance is competitive with a pattern based
approach. This method is obviously too liberal,
though, if compared to the dependency spaces.

In general we were able to show that seman-
tic spaces are obviously able to capture categori-
cal knowledge about concepts best when they are
built from a syntactically annotated source. This
is true even if the context specification used is not
the most parsimonious. The problem of determin-
ing the right set of contexts is therefore rather an
optimisation issue than a question of using depen-
dency based spaces or not. It is a considerable one,
though, as computations are much cheaper with
vectors of reduced dimensionality, of course.

For the categorisation task the inclusion of more
complex relations reaching over several dependen-
cies does not seem to be helpful considering they
can all be dropped without a decrease in perfor-
mance. As Pado and Lapata (2007) reached better
results in their experiments with a broader set of
context specifications we conclude that the selec-
tion of the kinds of context to include when con-
structing a word space depends largely on the task
at hand.
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Abstract

This paper discusses a new convolu-
tion tree kernel by introducing local
alignments. The main idea of the new
kernel is to allow some syntactic al-
ternations during each match between
subtrees. In this paper, we give an
algorithm to calculate the composite
kernel. The experiment results show
promising improvements on two tasks:
semantic role labeling and question
classification.

1 Introduction

Recently kernel-based methods have become
a state-of-art technique and been widely used
in natural language processing applications.
In this method, a key problem is how to de-
sign a proper kernel function in terms of dif-
ferent data representations. So far, there are
two kinds of data representations. One is to
encode an object with a flat vector whose ele-
ment correspond to an extracted feature from
the object. However the feature vector is sen-
sitive to the structural variations. The ex-
traction schema is heavily dependent on dif-
ferent problems. On the other hand, kernel
function can be directly calculated on the ob-
ject. The advantages are that the original
topological information is to a large extent
preserved and the introduction of additional
noise may be avoided. Thus structure-based
kernels can well model syntactic parse tree
in a variety of applications, such as relation
extraction(Zelenko et al., 2003), named en-
tity recognition(Culotta and Sorensen, 2004),
semantic role labeling(Moschitti et al., 2008)
and so on.

To compute the structural kernel function,
Haussler (1999) introduced a general type of
kernel function, called“ Convolution kernel”.
Based on this work, Collins and Duffy (2002)
proposed a tree kernel calculation by count-
ing the common subtrees. In other words,
two trees are considered if and only if these
two trees are exactly same. In real sentences,
some structural alternations within a given
phrase are permitted without changing its us-
age. Therefore, Moschitti (2004) proposed
partial trees to partially match between sub-
trees. Kashima and Koyanagi (2002) general-
ize the tree kernel to labeled order tree kernel
with more flexible match. And from the idea
of introducing linguistical knowledge, Zhang
et al. (2007) proposed a grammar-driven tree
kernel, in which two subtrees are same if and
only if the corresponding two productions are
in the same manually defined set. In addi-
tion, the problem of hard matching can be al-
leviated by processing or mapping the trees.
For example, Tai mapping (Kuboyama et al.,
2006) generalized the kernel from counting
subtrees to counting the function of mapping.
Moreover multi-source knowledge can benefit
kernel calculation, such as using dependency
information to dynamically determine the tree
span (Qian et al., 2008).

In this paper, we propose a tree kernel cal-
culation algorithm by allowing variations in
productions. The variation is measured with
local alignment score between two derivative
POS sequences. To reduce the computation
complexity, we use the dynamic programming
algorithm to compute the score of any align-
ment. And the top n alignments are consid-
ered in the kernel.
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Another problem in Collins and Duffy’s
tree kernel is context-free. It does not con-
sider any semantic information located at the
leaf nodes of the parsing trees. To lexicalized
tree kernel, Bloehdorn et al. (2007) consid-
ered the associated term similarity by virtue
of WordNet. Shen et al. (2003) constructed a
separate lexical feature containing words on a
given path and merged into the kernel in linear
combination.

The paper is organized as follows. In sec-
tion 2, we describe the commonly used tree
kernel. In section 3, we propose our method
to make use of the local alignment informa-
tion in kernel calculation. Section 4 presents
the results of our experiments for two differ-
ent applications ( Semantic Role Labeling and
Question Classification). Finally section 5
provides our conclusions.

2 Convolution Tree Kernel

The main idea of tree kernel is to count
the number of common subtrees between
two trees T1 and T2. In convolutional
tree kernel (Collins and Duffy, 2002), a
tree(T ) is represented as a vector h(T ) =
(h1(T ), ..., hi(T ), ..., hn(T )), where hi(T ) is
the number of occurrences of the ith tree frag-
ment in the tree T . Since the number of sub-
trees is exponential with the parse tree size,
it is infeasible to directly count the common
subtrees. To reduce the computation complex-
ity, a recursive kernel calculation algorithm
was presented. Given two trees T1 and T2,

K(T1, T2) = < h(T1), h(T2) > (1)

=
∑

i

hi(T1)hi(T2)

=
∑

i

(
∑

n1∈NT1

Ii(n1)
∑

n2∈NT2

Ii(n2))

=
∑

n1∈NT1

∑
n2∈NT2

4(n1, n2)

where, NT1 and NT2 are the sets of all nodes in
trees T1 and T2, respectively. Ii(n) is the indi-
cator function to be 1 if i-th subtree is rooted
at node n and 0 otherwise. And 4(n1, n2) is
the number of common subtrees rooted at n1

and n2. It can be computed efficiently accord-
ing to the following rules:

(1) If the productions at n1 and n2 are differ-
ent, 4(n1, n2) = 0

(2) If the productions at n1 and n2 are same,
and n1 and n2 are pre-terminals, then
4(n1, n2) = λ

(3) Else, 4(n1, n2) = λ
∏nc(n1)

j (1 +
4(ch(n1, j), ch(n2, j)))

where nc(n1) is the number of children of
n1 in the tree. Note that n1 = n2 be-
cause the productions at n1 and n2 are same.
ch(n1, j) represents the jth child of node
n1. And 0 < λ ≤ 1 is the parameter
to downweight the contribution of larger tree
fragments to the kernel. It corresponds to
K(T1, T2) =

∑
i λ

sizeihi(T1)hi(T2), where
sizei is the number of rules in the i’th frag-
ment. The time complexity of computing this
kernel is O(|NT1| · |NT2|).
3 Tree Kernel with Local Alignment

3.1 General Framework
As we referred, one of problems in the ba-
sic tree kernel is its hard match between two
rules. In other words, at each tree level,
the two subtrees are required to be perfectly
equal. However, in real sentences, some
modifiers can be added into a phrase with-
out changing the phrase’s function. For ex-
ample, two sentences are given in Figure 1.
Considering “A1” role, the similarities be-
tween two subtrees(in circle) are 0 in (Collins
and Duffy, 2002), because the productions
“NP→DT ADJP NN” and “NP→DT NN”
are not identical. From linguistical point of
view, the adjective phrase is optional in real
sentences, which does not change the corre-
sponding semantic role. Thus the modifier
components(like “ADJP” in the above exam-
ple) should be neglected in similarity compar-
isons.

To make the hard match flexible, we can
align two string sequences derived from the
same node. Considering the above example,
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Figure 1: Syntactic parse tree with “A1” semantic role

an alignment might be “DT ADJP NN” vs
“DT - NN”, by inserting a symbol(-). The
symbol(-) corresponds to a “NULL” subtree
in the parser tree. And the “NULL” subtree
can be regarded as a null character in the sen-
tence, see Figure 1(c).

Convolution kernels, studied in (Haussler,
1999) gave the framework to construct a com-
plex kernel from its simple elements. Suppose
x ∈ X can be decomposed into x1, ..., xm ≡
~x. Let R be a relation over X1× ...×Xm×X
such that R(~x) is true iff x1, ..., xm are parts
of x. R−1(x) = {~x|R(~x, x)}, which returns
all components. For example, x is any string,
then ~x can be its characters. The convolution
kernel K is defined as:

K(x, y) =
∑

~x∈R−1(x),~y∈R−1(y)

m∏

d=1

Kd(xd, yd)

(2)
Considering our problem, for example, a

derived string sequence x by the rule “n1 →
x”. R(xi, x) is true iff xi appears in the right
hand of x. Given two POS sequences x and
y derived from two nodes n1 and n2, respec-
tively, A(x, y) denotes all the possible align-
ments of the sequence. The general form of
the kernel with local alignment is defined as:

K ′(n1, n2) =
∑

(i,j)∈A(x,y)

K(ni
1, n

j
2) (3)

4′(n1, n2) = λ
∑

(i,j)∈A(x,y)

AS(i,j)

nc(n1,i)∏

d=1

(1 +4′(ch(n1, i, d), ch(n2, j, d))

where, (i, j) denotes the ith and jth variation
for x and y, AS(i,j) is the score for alignment i

and j. And ch(n1, i, d) selects the dth subtree
for the ith aligned schema of node n1.

It is easily to prove the above kernel is pos-
itive semi-definite, since the kernel K(ni

1, n
j
2)

is positive semi-definite. The native computa-
tion is impractical because the number of all
possible alignments(|A(x, y)|) is exponential
with respect to |x| and |y|. In the next sec-
tion, we will discuss how to calculate AS(i,j)

for each alignment.

3.2 Local Alignment Kernel
The local alignment(LA) kernel was usually
used in bioinformatics, to compare the sim-
ilarity between two protein sequences(x and
y) by exploring their alignments(Saigo et al.,
2004).

KLA(x, y) =
∑

π∈A(x,y)

expβs(x,y,π) (4)

where β ≥ 0 is a parameter, A(x, y) denotes
all possible local alignments between x and y,
and s(x, y, π) is the local alignment score for
a given alignment schema π, which is equal
to:

s(x, y, π) =

|π|∑
i=1

S(xπi
1
, yπi

2
)−

|π|−1∑
j=1

[g(πi+1
1 − πi

1) + g(πi+1
2 − πi

2)]

(5)

In equation( 5), S is a substitution matrix, and
g is a gap penalty function. The alignment
score is the sum of the substitution score be-
tween the correspondence at the aligned posi-
tion, minus the sum of the gap penalty for the
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case that ‘-’ symbol is inserted. In natural lan-
guage processing, the substitution matrix can
be selected as identity matrix and no penalty
is accounted.

Obviously, the direct computation of the
original KLA is not practical. Saigo (2004)
presented a dynamic programming algorithm
with time complexity O(|x|·|y|). In this paper,
this dynamic algorithm is used to compute the
kernel matrix, whose element(i, j) is used as
AS(i,j) measurement in equation(3).

3.3 Local Alignment Tree Kernel
Now we embed the above local alignment
score into the general tree kernel computation.
Equation(3) can be re-written into following:

4′ (n1, n2) = λ
∑

π∈A(x,y)

(expβs(x,y,π)×

nc(n1,i)∏

k=1

(1 +4′(ch(n1, i, k), ch(n2, j, k))))

(6)

To further reduce the computation com-
plexity, a threshold (ξ) is used to filter out
alignments with low scores. This can help to
avoid over-generated subtrees and only select
the significant alignments. In other words,
by using the threshold (ξ), we can select the
salient subtree variations for kernels. The fi-
nal kernel calculation is shown below:

4′ (n1, n2) = λ
∑

π ∈ A(x, y)
s(x, y, π) > ξ

(εβs(x,y,π)×

nc(n1,i)∏

k=1

(1 +4′(ch(n1, i, k), ch(n2, j, k))))

(7)

After filtering, the kernel is still positive
semi-definite. This can be easily proved using
the theorem in (Shin and Kuboyama, 2008),
since this subset selection is transitive. More
specifically, if s(x, y, π) > ξ

∧
s(y, z, π′) >

ξ, then s(x, z, π + π′) > ξ.
The algorithm to compute the local align-

ment tree kernel is given in algorithm 1. For

any two nodes pair(xi and yj), the local align-
ment score M(xi, yj) is assigned. In the ker-
nel matrix calculation, the worst case occurs
when the tree is balanced and most of the
alignments are selected.

Algorithm 1 algorithm for local alignment
tree kernel
Require: 2 nodes n1,n2 in parse trees;The

productions are n1 → x1, ..., xm and n2 →
y1, ..., yn

return 4′(n1, n2)
if n1 and n2 are not same then
4′(n1, n2) = 0

else
if both n1 and n2 are pre-terminals then
4′(n1, n2) = 1

else
calculate kernel matrix by equation( 4)
for each possible alignment do

calculate 4′(n1, n2) by equation(7)
end for

end if
end if

4 Experiments

4.1 Semantic Role Labeling

4.1.1 Experiment Setup
We use the CoNLL-2005 SRL shared task
data(Carreras and Marquez, 2005) as our ex-
perimental data. It is from the Wall Street
Journal part of the Penn Treebank, together
with predicate-arguments information from
the PropBank. According to the shared task,
sections 02-21 are used for training, section
24 for development and section 23 as well as
some data from Brown corpus are left for test.
The data sets are described in Table 1.

Sentences Arguments
Training 39,832 239,858
Dev 1,346 8,346

Test
WSJ 1,346 8,346
Brown 450 2,350

Table 1: Data sets statistics
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Considering the two steps in semantic role
labeling, i.e. semantic role identification and
recognition. We assume identification has
been done correctly, and only consider the
semantic role classification. In our experi-
ment, we focus on the semantic classes in-
clude 6 core (A0-A5), 12 adjunct(AM-) and
8 reference(R-) arguments.

In our implementation, SVM-Light-TK1

(Moschitti, 2004) is modified. For SVM
multi-classifier, the ONE-vs-ALL (OVA)
strategy is selected. In all, we prepare the data
for each semantic role (r) as following:

(1) Given a sentence and its correct full syn-
tactic parse tree;

(2) Let P be the predicate. Its potential argu-
ments A are extracted according to (Xue
and Palmer, 2004)

(3) For each pair < p, a >∈ P × A: if a
covers exactly the words of semantic role
of p, put minimal subtree < p, a > into
positive example set (T+

r ); else put it in
the negative examples (T−

r )

In our experiments, we set β = 0.5.

4.1.2 Experimental Results

The classification performance is evalu-
ated with respect to accuracy, precision(p),
recall(r) and F1 = 2pr/(p + r).

Accuracy(%)
(Collins and Duffy, 2002) 84.35
(Moschitti, 2004) 86.72
(Zhang et al., 2007) 87.96
Our Kernel 88.48

Table 2: Performance comparison between
different kernel performance on WSJ data

1http://dit.unitn.it/ moschitt/Tree-Kernel.htm

P(%) R(%) Fβ=1

Development 81.03 68.91 74.48
WSJ Test 84.97 79.45 82.11
Brown Test 76.95 70.94 73.51
WSJ+Brown 82.98 75.40 79.01
WSJ P(%) R(%) F
A0 81.28 83.90 82.56
A1 84.22 66.39 74.25
A2 77.27 62.36 69.02
A3 93.33 21.21 34.57
A4 82.61 51.35 63.33
A5 100.00 40.00 57.41
AM-ADV 74.21 56.21 63.92
AM-CAU 75.00 46.09 57.09
AM-DIR 57.14 16.00 25.00
AM-DIS 77.78 70.00 73.68
AM-EXT 75.00 53.10 62.18
AM-LOC 89.66 74.83 81.57
AM-MNR 84.62 48.20 61.41
AM-MOD 96.64 92.00 94.26
AM-NEG 99.30 95.30 97.26
AM-PNC 48.20 28.31 35.67
AM-PRD 50.00 30.00 37.50
AM-TMP 87.87 73.43 80.00
R-A0 81.08 67.80 73.85
R-A1 77.50 49.60 60.49
R-A2 58.00 42.67 49.17
R-AM-CAU 100.00 25.00 40.00
R-AM-EXT 100.00 100.00 100.00
R-AM-LOC 100.00 55.00 70.97
R-AM-MNR 50.00 25.00 33.33
R-AM-TMP 85.71 52.94 65.46

Table 3: top: overall performance result on
data sets ; bottom: detail result on WSJ
data

Table 2 compares the performance of our
method and other three famous kernels on
WSJ test data. We implemented these three
methods with the same settings described
in the papers. It shows that our kernel
achieves the best performance with 88.48%
accuracy. The advantages of our approach
are: 1). the alignments allow soft syntactic
structure match; 2). threshold can avoid over-
generation and selected salient alignments.

Table 3 gives our performance on data sets
and the detail result on WSJ test data.

29



Similarity Definition
Wu and Palmer simWUP (c1, c2) = 2dep(lso(c1,c2))

d(c1,lso(c1,c2))+d(c2,lso(c1,c2))+2dep(lso(c1,c2))

Resnik simRES(c1, c2) = − log P (lso(c1, c2))

Lin simLIN(c1, c2) = 2 log P (lso(c1,c2))
log P (c1)+log P (c2)

Table 4: popular semantic similarity measurements

4.2 Question Classification

4.2.1 Semantic-enriched Tree Kernel
Another problem in the tree kernel (Collins
and Duffy, 2002) is the lack of semantic in-
formation, since the match stops at the pre-
terminals. All the lexical information is en-
coded at the leaf nodes of parsing trees. How-
ever, the semantic knowledge is important in
some text applications, like Question Classi-
fication. To introduce semantic similarities
between words into our kernel, we use the
framework in Bloehdorn et al. (2007) and
rewrite the rule (2) in the iterative tree kernel
calculation(in section 2).

(2) If the productions at n1 and
n2 are same, and n1 and n2 are
pre-terminals, then 4(n1, n2) =
λαkw(w1, w2)

where w1 and w2 are two words derived from
pre-terminals n1 and n2, respectively, and the
parameter α is to control the contribution of
the leaves. Note that each preterminal has
one child or equally covers one word. So
kw(w1, w2) actually calculate the similarity
between two words w1 and w2.

In general, there are two ways to mea-
sure the semantic similarities. One is to de-
rive from semantic networks such as Word-
Net (Mavroeidis et al., 2005; Bloehdorn et
al., 2006). The other way is to use statisti-
cal methods of distributional or co-occurrence
(Ó Séaghdha and Copestake, 2008) behavior
of the words.

WordNet2 can be regarded as direct graphs
semantically linking concepts by means of
relations. Table 4 gives some similarity
measures between two arbitrary concepts c1

2http://wordnet.princeton.edu/

and c2. For our application, the word-to-
word similarity can be obtained by maximiz-
ing the corresponding concept-based similar-
ity scores. In our implementation, we use
WordNet::Similarity package3(Patwardhan et
al., 2003) and the noun hierarchy of WordNet.

In Table 4, dep is the length of path from a
node to its global root, lso(c1, c2) represents
the lowest super-ordinate of c1 and c2. The
detail definitions can be found in (Budanitsky
and Hirst, 2006) .

As an alternative, Latent Semantic Anal-
ysis(LSA) is a technique. It calculates the
words similarities by means of occurrence
of terms in documents. Given a term-by-
document matrix X , its singular value decom-
position is: X = UΣV T , where Σ is a diago-
nal matrix with singular values in decreasing
arrangement. The column of U are singular
vectors corresponding to the individual singu-
lar value. Then the latent semantic similarity
kernel of terms ti and tj is:

simLSA =< U i
k(U

j
k)T > (8)

where Uk = IkU is to project U onto its first
k dimensions. Ik is the identity matrix whose
first k diagonal elements are 1 and all the other
elements are 0. And U i

k is the i-th row of
the matrix Uk. From equation (8), the LSA-
based similarity between two terms is the in-
ner product of the two projected vectors. The
details of LSA can be found in (Cristianini et
al., 2002; Choi et al., 2001).

4.2.2 Experiment Results
In this set of experiment, we evaluate differ-
ent types of kernels for Question Classifica-
tion(QC) task. The duty of QC is to cat-
egorize questions into different classes. In

3http://search.cpan.org/dist/WordNet-Similarity
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Accuracy(%) 1000 2000 3000 4000 5500
BOW 77.1 83.3 87.2 87.3 89.2
TK 80.2 86.2 87.4 88.6 91.2

LATK 80.4 86.5 87.5 88.8 91.6

α = 1
WUP 81.3 87.3 88.0 89.8 92.5
RES 81.0 87.1 87.9 89.5 92.2
LIN 81.1 87.0 88.0 89.3 92.4

LSA(k = 50) 80.8 86.9 87.8 89.3 91.7

Table 5: Classification accuracy of different kernels on different data sets

this paper we use the same dataset as intro-
duced in(Li and Roth, 2002). The dataset is
divided4 into 5500 questions for training and
500 questions from TREC 20 for testing. The
total training samples are randomly divided
into 5 subsets with sizes 1,000, 2,000, 3,000,
4,000 and 5,500 respectively. All the ques-
tions are labeled into 6 coarse grained cate-
gories and 50 fine grained categories: Abbre-
viations (abbreviation and expansion), Entity
(animal, body, color, creation, currency, med-
ical, event, food, instrument, language, let-
ter, plant, product, religion, sport, substance,
symbol, technique, term, vehicle, word), De-
scription (definition, description, manner, rea-
son), Human (description, group, individual,
title), Location (city, country, mountain, state)
and Numeric (code, count, date, distance,
money, order, percent, period, speed, temper-
ature, size, weight).

In this paper, we compare the linear ker-
nel based on bag-of-word (BOW), the original
tree kernel (TK), the local alignment tree ker-
nel (section 3, LATK) and its correspondences
with LSA similarity and a set of semantic-
enriched LATK with different similarity met-
rics.

To obtain the parse tree, we use Charniak
parser5 for every question. Like the previ-
ous experiment, SVM-Light-TK software and
the OVA strategy are implemented. In all ex-
periments, we use the default parameter in
SVM(e.g. margin parameter) and set α = 1.
In LSA model, we set k = 50. Finally, we
use multi-classification accuracy to evaluate

4http://l2r.cs.uiuc.edu/ cogcomp/Data/QA/QC/
5ftp://ftp.cs.brown.edu/pub/nlparser/

the performance.
Table 5 gives the results of the experiments.

We can see that the local alignment tree ker-
nel increase the multi-classification accuracy
of the basic tree kernel by about 0.4%. The
introduction of semantic information further
improves accuracy. Among WordNet-based
metrics, “Wu and Palmer” metric achieves
the best result, i.e. 92.5%. As a whole,
the WordNet-based similarities perform better
than LSA-based measurement.

5 Conclusion

In this paper, we propose a tree kernel calcula-
tion by allowing local alignments. More flex-
ible productions are considered in line with
modifiers in real sentences. Considering text
related applications, words similarities have
been merged into the presented tree kernel.
These similarities can be derived from dif-
ferent WordNet-based metrics or document
statistics. Finally experiments are carried on
two different applications (Semantic Role La-
beling and Question Classification).

For further work, we plan to study exploit-
ing semantic knowledge in the kernel. A
promising direction is to study the different
effects of these semantic similarities. We are
interested in some distributional similarities
(Lee, 1999) given certain context. Also the
effectivenss of the semantic-enriched tree ker-
nel in SRL is another problem.
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Diarmuid Ó Séaghdha and Ann Copestake. 2008. Se-
mantic classification with distributional kernels. In
Proceedings of the 22nd International Conference
on Computational Linguistics (Coling 2008), pages
649–656, Manchester, UK, August. Coling 2008 Or-
ganizing Committee.

Siddharth Patwardhan, Satanjeev Banerjee, and Ted
Pedersen. 2003. Using measures of semantic re-
latedness for word sense disambiguation. In In Pro-
ceedings of the Fourth International Conference on
Intelligent Text Processing and Computational Lin-
guistics (CICLING-03), pages 241–257.

Longhua Qian, Guodong Zhou, Fang Kong, Qiaoming
Zhu, and Peide Qian. 2008. Exploiting constituent
dependencies for tree kernel-based semantic relation
extraction. In Proceedings of the 22nd International
Conference on Computational Linguistics (Coling
2008), pages 697–704, Manchester, UK, August.
Coling 2008 Organizing Committee.

Hiroto Saigo, Jean-Philippe Vert, Nobuhisa Ueda, and
Tatsuya Akutsu. 2004. Protein homology detec-
tion using string alignment kernels. Bioinformatics,
20(11):1682–1689.

Kilho Shin and Tetsuji Kuboyama. 2008. A gener-
alization of haussler’s convolution kernel: mapping
kernel. In ICML, pages 944–951.

Nianwen Xue and Martha Palmer. 2004. Calibrat-
ing features for semantic role labeling. In Dekang
Lin and Dekai Wu, editors, Proceedings of EMNLP
2004, pages 88–94, Barcelona, Spain, July. Associ-
ation for Computational Linguistics.

Dmitry Zelenko, Chinatsu Aone, and Anthony
Richardella. 2003. Kernel methods for relation ex-
traction. J. Mach. Learn. Res., 3:1083–1106.

Min Zhang, Wanxiang Che, Aiti Aw, Chew Lim Tan,
Guodong Zhou, Ting Liu, and Sheng Li. 2007.
A grammar-driven convolution tree kernel for se-
mantic role classification. In Proceedings of the
45th Annual Meeting of the Association of Compu-
tational Linguistics, pages 200–207, Prague, Czech
Republic, June. Association for Computational Lin-
guistics.

32



Proceedings of the EACL 2009 Workshop on GEMS: GEometical Models of Natural Language Semantics, pages 33–40,
Athens, Greece, 31 March 2009. c©2009 Association for Computational Linguistics

BagPack: A general framework to represent semantic relations

Amaç Herdağdelen
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Abstract

We introduce a way to represent word pairs
instantiating arbitrary semantic relations that
keeps track of the contexts in which the words
in the pair occur both together and indepen-
dently. The resulting features are of sufficient
generality to allow us, with the help of a stan-
dard supervised machine learning algorithm,
to tackle a variety of unrelated semantic tasks
with good results and almost no task-specific
tailoring.

1 Introduction

Co-occurrence statistics extracted from corpora lead
to good performance on a wide range of tasks that
involve the identification of the semantic relation be-
tween two words or concepts (Sahlgren, 2006; Turney,
2006). However, the difficulty of such tasks and the
fact that they are apparently unrelated has led to the
development of largely ad-hoc solutions, tuned to spe-
cific challenges. For many practical applications, this is
a drawback: Given the large number of semantic rela-
tions that might be relevant to one or the other task, we
need a multi-purpose approach that, given an appropri-
ate representation and training examples instantiating
an arbitrary target relation, can automatically mine new
pairs characterized by the same relation. Building on a
recent proposal in this direction by Turney (2008), we
propose a generic method of this sort, and we test it
on a set of unrelated tasks, reporting good performance
across the board with very little task-specific tweaking.

There has been much previous work on corpus-based
models to extract broad classes of related words. The
literature on word space models (Sahlgren, 2006) has
focused on taxonomic similarity (synonyms, antonyms,
co-hyponyms. . . ) and general association (e.g., find-
ing topically related words), exploiting the idea that
taxonomically or associated words will tend to occur
in similar contexts, and thus share a vector of co-
occurring words. The literature on relational similar-
ity, on the other hand, has focused on pairs of words,
devising various methods to compare how similar the
contexts in which target pairs appear are to the contexts
of other pairs that instantiate a relation of interest (Tur-
ney, 2006; Pantel and Pennacchiotti, 2006). Beyond

these domains, purely corpus-based methods play an
increasingly important role in modeling constraints on
composition of words, in particular verbal selectional
preferences – finding out that, say, children are more
likely to eat than apples, whereas the latter are more
likely to be eaten (Erk, 2007; Padó et al., 2007). Tasks
of this sort differ from relation extraction in that we
need to capture productive patterns: we want to find
out that shabu shabu (a Japanese meat dish) is eaten
whereas ink is not, even if in our corpus neither noun is
attested in proximity to forms of the verb to eat.

Turney (2008) is the first, to the best of our knowl-
edge, to raise the issue of a unified approach. In par-
ticular, he treats synonymy and association as special
cases of relational similarity: in the same way in which
we might be able to tell that hands and arms are in
a part-of relation by comparing the contexts in which
they co-occur to the contexts of known part-of pairs,
we can guess that cars and automobiles are synonyms
by comparing the contexts in which they co-occur to
the contexts linking known synonym pairs.

Here, we build on Turney’s work, adding two main
methodological innovations that allow us further gen-
eralization. First, merging classic approaches to taxo-
nomic and relational similarity, we represent concept
pairs by a vector that concatenates information about
the contexts in which the two words occur indepen-
dently, and the contexts in which they co-occur (Mirkin
et al. 2006 also integrate information from the lexi-
cal patterns in which two words co-occur and simi-
larity of the contexts in which each word occurs on
its own, to improve performance in lexical entailment
acquisition). Second, we represent contexts as bag of
words and bigrams, rather than strings of words (“pat-
terns”) of arbitrary length: we leave it to the machine
learning algorithm to zero in on the most interesting
words/bigrams.

Thanks to the concatenated vector, we can tackle
tasks in which the two words are not expected to
co-occur even in very large corpora (such as selec-
tional preference). Concatenation, together with un-
igram/bigram representation of context, allows us to
scale down the approach to smaller training corpora
(Turney used a corpus of more than 50 billion words),
since we do not need to see the words directly co-
occurring, and the unigram/bigram dimensions of the
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vectors are less sparse than dimensions based on longer
strings of words. We show that our method produces
reasonable results also on a corpus of 2 billion words,
with many unseen pairs. Moreover, our bigram and
unigram representation is general enough that we do
not need to extract separate statistics nor perform ad-
hoc feature selection for each task: we build the co-
occurrence matrix once, and use the same matrix in all
experiments. The bag-of-words assumption also makes
for faster and more compact model building, since the
number of features we extract from a context is linear
in the number of words in the context, whereas it is ex-
ponential for Turney. On the other hand, our method
is currently lagging behind Turney’s in terms of perfor-
mance, suggesting that at least some task-specific tun-
ing will be necessary.

Following Turney, we focus on devising a suitably
general featural representation, and we see the spe-
cific machine learning algorithm employed to perform
the various tasks as a parameter. Here, we use Sup-
port Vector Machines since they are a particularly ef-
fective general-purpose method. In terms of empirical
evaluation of the model, besides experimenting with
the “classic” SAT and TOEFL datasets, we show how
our algorithm can tackle the selectional preference task
proposed in Padó (2007) – a regression task – and we
introduce to the corpus-based semantics community a
challenge from the ConceptNet repository of common-
sense knowledge (extending such repository by auto-
mated means is the original motivation of our project).

In the next section, we will present our proposed
method along with the corpora and model parameter
choices used in the implementation. In Section 3, we
describe the tasks that we use to evaluate the model.
Results are reported in Section 4 and we conclude in
Section 5, with a brief overview of the contributions of
this paper.

2 Methodology
2.1 Model
The central idea in BagPack (Bag-of-words represen-
tation of Paired concept knowledge) is to construct a
vector-based representation of a pair of words in such a
way that the vector represents both the contexts where
the two words co-occur and the contexts where the sin-
gle words occur on their own. A straightforward ap-
proach is to construct three different sub-vectors, one
for the first word, one for the second word, and one for
the co-occurring pair. The concatenation of these three
sub-vectors is the final vector that represents the pair.

This approach provides us a graceful fall back mech-
anism in case of data scarcity. Even if the two words are
not observed co-occurring in the corpus – no syntag-
maic information about the pair –, the corresponding
vector will still represent the individual contexts where
the words are observed on their own. Our hypothesis
(and hope) is that this information will be representa-
tive of the semantic relation between the pair, in the

sense that, given pairs characterized by same relation,
there should be paradigmatic similarity across the first,
resp. second elements of the pairs (e.g., if the relation
is between professionals and the typical tool of their
trade, it is reasonable to expect that that both profes-
sionals and tools will tend to share similar contexts).

Before going into further details, we need to describe
what a “co-occurrence” precisely means, define the no-
tion of context, and determine how to structure our vec-
tor. For a single word W , the following pseudo regular
expression identifies an observation of occurrence:

“C W D” (1)

where C and D can be empty strings or concatena-
tions of up to 4 words separated by whitespace (i.e.
C1, . . . , Ci and D1, . . . , Dj where i, j ≤ 4). Each ob-
servation of this pattern constitutes a single context of
W . The pattern is matched with the longest possible
substring without crossing sentence boundaries.

Let (W1,W2) denote an ordered pair of words W1

and W2. We say the two words occur as a pair when-
ever one of the following pseudo regular expressions is
observed in the corpus:

“C W1 D W2 E” (2)
“C W2 D W1 E” (3)

where C and E can be empty strings or concatena-
tions of up to 2 words and similarly, D can be ei-
ther an empty string or concatenation of up to 5 words
(i.e. C1, . . . , Ci, D1, . . . , Dj , and E1, . . . , Ek where
i, j ≤ 2 and k ≤ 5). Together, patterns 2 and 3 con-
stitute the pair context for W1 and W2. The pattern is
matched with the longest possible substring while mak-
ing sure that D does not contain neither W1 nor W2.

The number of context words allowed before, after,
and between the targets are actually model parameters
but for the experiments reported in this study, we used
the aforementioned values with no attempt at tuning.

The vector representing (W1,W2) is a concatenation
v1v2v1,2, where, the sub-vectors v1 and v2 are con-
structed by using the single contexts of W1 and W2

correspondingly (i.e. by pattern 1) and the sub-vector
v1,2 is built by using the pair contexts identified by
the patterns 2 and 3. We refer to the components as
single-occurrence vectors and pair-occurrence vector
respectively.

The population of BagPack starts by identifying the
b most frequent unigrams and the b most frequent bi-
grams as basis terms. Let T denote a basis term. For
the construction of v1, we create two features for each
term T : tpre corresponds to the number of observations
of T in the single contexts of W1 occurring before W1

and tpost corresponds to the number of observations of
T in the single occurrence of W1 where T occurs after
W1 (i.e. number of observations of the pattern 1 where
T ∈ C and T ∈ D correspondingly). The construc-
tion of v2 is identical except that this time the features
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correspond to the number of times the basis term is ob-
served before and after the target word W2 in single
contexts. The construction of the pair-occurrence sub-
vector v1,2 proceeds in a similar fashion but in addi-
tion, we incorporate also the order of W1 and W2 as
they co-occur in the pair context: The number of ob-
servations of the pair contexts where W1 occurs before
W2 and T precedes (follows) the pair, are represented
by feature t+pre (t+post). The number of cases where
the basis term is in between the target words is repre-
sented by t+betw. The number of cases where W2 oc-
curs before W1 and T precedes the pair is represented
by the feature t−pre. Similarly the number of cases
where T follows (is in between) the pair is represented
by the feature t−post (t−betw).

Assume that the words "only" and "that" are our ba-
sis terms and consider the following context for the
word pair ("cat", "lion"): "Lion is the only cat that
lives in large social groups." The observation of the ba-
sis terms should contribute to the pair-occurrence sub-
vector v1,2 and since the target words occur in reverse
order, this context results in the incrementation of the
features only−betw and that−post by one.

To sum up, we have 2b basis terms (b unigrams and
b bigrams). Each of the single-occurrence sub-vectors
v1 and v2 consists of 4b features: Each basis term
gives rise to 2 features incorporating the relative posi-
tion of basis term with respect to the single word. The
pair-occurrence sub-vector, v1,2, consists of 12b fea-
tures: Each basis term gives rise to 6 new features; ×3
for possible relative positions of the basis term with re-
spect to the pair and ×2 for the order of the words.
Importantly, the 2b basis terms are picked only once,
and the overall co-occurrence matrix is built once and
for all for all the tasks: unlike Turney, we do not need
to go back to the corpus to pick basis terms and collect
separate statistics for different tasks.

The specifics of the adaptation to each task will be
detailed in Section 3. For the moment, it should suffice
to note that the vectors v1 and v2 represent the con-
texts in which the two words occur on their own, thus
encode paradigmatic information. However, v1,2 rep-
resents the contexts in which the two words co-occur,
thus encode sytagmatic information.

The model training and evaluation is done in a 10-
fold cross-validation setting whenever applicable. The
reported performance measures are the averages over
all folds and the confidence intervals are calculated by
using the distribution of fold-specific results. The only
exception to this setting is the SAT analogy questions
task simply because we consider each question as a
separate mini dataset as described in Section 3.

2.2 Source Corpora
We carried out our tests on two different corpora:
ukWaC, a Web-derived, POS-tagged and lemmatized
collection of about 2 billion tokens,1 and the Yahoo!

1http://wacky.sslmit.unibo.it

database queried via the BOSS service.2 We will refer
to these corpora as ukWaC and Yahoo from now on.

In ukWaC, we limited the number of occurrence and
co-occurrence queries to the first 5000 observations
for computational efficiency. Since we collect cor-
pus statistics at the lemma level, we construct Yahoo!
queries using disjunctions of inflected forms that were
automatically generated with the NodeBox Linguistics
library.3 For example, the query to look for “lion” and
“cat” with 4 words in the middle is: “(lion OR lions) *
* * * (cat OR cats OR catting OR catted)”. Each pair
requires 14 Yahoo! queries (one for W1, one for W2,
6 for (W1,W2), in that order, with 0-to-5 intervening
words, 6 analogous queries for (W2,W1)). Yahoo! re-
turns maximally 1,000 snippets per query, and the latter
are lemmatized with the TreeTagger4 before feature ex-
traction.

2.3 Model implementation

We did not carry out a search for “good” parameter val-
ues. Instead, the model parameters are generally picked
at convenience to ease memory requirements and com-
putational efficiency. For instance, in all experiments,
b is set to 1500 unless noted otherwise in order to fit
the vectors of all pairs at our hand into the computer
memory.

Once we construct the vectors for a set of word pairs,
we get a co-occurrence matrix with pairs on the rows
and the features on the columns. In all of our exper-
iments, the same normalization method and classifi-
cation algorithm is used with the default parameters:
First, a TF-IDF feature weighting is applied to the co-
occurrence matrix (Salton and Buckley, 1988). Then
following the suggestion of Hsu and Chang (2003),
each feature t’s [µ̂t−2σ̂t, µ̂t +2σ̂t] interval is scaled to
[0, 1], trimming the exceeding values from upper and
lower bounds (the symbols µ̂t and σ̂t denote the av-
erage and standard deviation of the feature values re-
spectively). For the classification algorithm, we use the
C-SVM classifier and for regression the ε-SVM regres-
sor, both implemented in the Matlab toolbox of Canu
et al. (2005). We employed a linear kernel. The cost
parameter C is set to 1 for all experiments; for the re-
gressor, ε = 0.2. For other pattern recognition related
coding (e.g., cross validation, scaling, etc.) we made
use of the Matlab PRTools (Duin, 2001).

For each task that will be defined in the next section,
we evaluated our algorithm on the following represen-
tations: 1) Single-occurrence vectors (v1v2 condition)
2) Pair-occurrence vectors (v1,2 condition) 3) Entire
co-occurrence matrix (v1v2v1,2 condition).

2http://developer.yahoo.com/search/
boss/

3http://nodebox.net/code/index.php/
Linguistics

4http://www.ims.uni-stuttgart.de/
projekte/corplex/TreeTagger/
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3 Tasks

3.1 SAT Analogy Questions

The first task we evaluated our algorithm on is the
SAT analogy questions task introduced by Turney et al.
(2003). In this task, there are 374 multiple choice ques-
tions with a pair of related words like (lion,cat) as the
stem and 5 other pairs as the choices. The correct an-
swer is the choice pair which has the relationship most
similar to that in the stem pair.

We adopt a similar approach to the one used in Tur-
ney (2008) and consider each question as a separate bi-
nary classification problem with one positive training
instance and 5 unknown pairs. For a question, we pick
a pair at random from the stems of other questions as a
pseudo negative instance and train our classifier on this
two-instance training set. Then the trained classifier is
evaluated on the choice pairs and the pair with the high-
est posterior probability for the positive class is called
the winner. The procedure is repeated 10 times pick-
ing a different pseudo-negative instance each time and
the choice pair which is selected as the winner most of-
ten is taken as the answer to that question. The perfor-
mance measure on this task is defined as the percent-
age of correctly answered questions. The mean score
and confidence intervals are calculated over the perfor-
mance scores obtained for all folds.

3.2 TOEFL Synonym Questions

This task, introduced by Landauer and Dumais (1997),
consists of 80 multiple choice questions in which a
word is given as the stem and the correct choice is the
word which has the closest meaning to that of the stem,
among 4 candidates. To fit the task into our frame-
work, we pair each choice with the stem word and ob-
tain 4 word pairs for each question. The word pair
constructed with the stem and the correct choice is la-
beled as positive and the other pairs are labeled as neg-
ative. We consider all 320 pairs constructed for all 80
questions as our dataset. Thus, the problem is turned
into a binary classification problem where the task is
to discriminate the synonymous word pairs (i.e. pos-
itive class) from the other pairs (i.e. negative class).
We made sure that the pairs constructed for the same
question were never split between training and test set,
so that no question-specific learning is performed. The
reason for this precaution is that the evaluation is done
on a per-question basis. The estimated posterior class
probabilities of the pairs constructed for the same ques-
tion are compared to each other and the pair with the
highest probability for the positive class is selected as
the answer for the question. By keeping the pairs of
a question in the same set we make sure their posteri-
ors are calculated by the same trained classifier. The
performance measure is the percentage of correctly an-
swered questions and we report the mean performance
over all 10 folds.

3.3 Selectional Preference Judgments
Linguists have long been interested in the semantic
constraints that verbs impose on their arguments, a
broad area that has also attracted computational mod-
eling, with increasing interest in purely corpus-based
methods (Erk, 2007; Padó et al., 2007). This task is
of particular interest to us as an example of a broader
class of linguistic problems that involve productive
constraints on composition. As has been stressed at
least since Chomsky’s early work (Chomsky, 1957), no
matter how large a corpus is, if a phenomenon is pro-
ductive there will always be new well-formed instances
that are not in the corpus. In the domain of selectional
restrictions this is particularly obvious: we would not
say that an algorithm learned the constraints on the pos-
sible objects/patients of eating simply by producing the
list of all the attested objects of this verb in a very large
corpus; the interesting issue is whether the algorithm
can detect if an unseen object is or is not a plausible
“eatee”, like humans do without problems. Specifi-
cally, we test selectional preferences on the dataset con-
structed by Padó (2007), that collects average plausi-
bility judgments (from 20 speakers) for nouns as either
subjects or objects of verbs (211 noun-verb pairs).

We formulate this task as a regression problem. We
train the ε-SVM regressor with 18-fold cross valida-
tion: Since the pair instances are not independent but
grouped according to the verbs, one fold is constructed
for each of the 18 verbs used in the dataset. In each
fold, all instances sharing the corresponding verb are
left out as the test set. The performance measure for
this task is the Spearman correlation between the hu-
man judgments and our algorithm’s estimates. There
are two possible ways to calculate this measure. One is
to get the overall correlation between the human judg-
ments and our estimates obtained by concatenating the
output of each cross-validation fold. That measure al-
lows us to compare our method with the previously re-
ported results. However, it cannot control for a possi-
ble verb-effect on the human judgment values: If the
average judgment values of the pairs associated with a
specific verb is significantly higher (or lower) than the
average of the pairs associated with another verb, then
any regressor which simply learns to assign the aver-
age value to all pairs associated with that verb (regard-
less of whether there is a patient or agent relation be-
tween the pairs) will still get a reasonably high correla-
tion because of the variation of judgment scores across
the verbs. To control for this effect, we also calculated
the correlation between the human judgments and our
estimates for each verb’s plausibility values separately,
and we report averages across these separate correla-
tions (the “mean” results reported below).

3.4 Common-sense Relations from ConceptNet
Open Mind Common Sense5 is an ongoing project of
acquisition of common-sense knowledge from ordinary

5http://commons.media.mit.edu/en/
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Relation Pairs Relation Pairs
IsA 316 PartOf 139

UsedFor 198 LocationOf 1379
CapableOf 228 Total 1943

Table 1: ConceptNet relations after filtering.

people by letting them carry out simple semantic and
linguistics tasks. An end result of the project is Con-
ceptNet 3, a large scale semantic network consisting of
relations between concept pairs (Havasi et al., 2007). It
is possible to view this network as a collection of se-
mantic assertions, each of which can be represented by
a triple involving two concepts and a relation between
them, e.g. UsedFor(piccolo, make music). One moti-
vation for this project is the fact that common-sense
knowledge is assumed to be known by both parties in
a communication setting and usually is not expressed
explicitly. Thus, corpus-based approaches may have
serious difficulties in capturing these relations (Havasi
et al., 2007), but there are reasons to believe that they
could still be useful: Eslick (2006) uses the assertions
of ConceptNet as seeds to parse Web search results and
augment ConceptNet by new candidate relations.

We use the ConceptNet snapshot released in June
2008, containing more than 200.000 assertions with
around 20 semantic relations like UsedFor, Desirious-
EffectOf, or SubEventOf. Each assertion has a confi-
dence rating based on the number of people who ex-
pressed or confirmed that assertion. For simplicity we
limited ourselves to single word concepts and the re-
lations between them. Furthermore, we eliminated the
assertions with a confidence score lower than 3 in an
attempt to increase the "quality" of the assertions and
focused on the most populated 5 relations of the re-
maining set, as given in Table 3.4. There may be more
than one relation between a pair of concepts, so the to-
tal number is less than the sum of the size of the indi-
vidual relation sets.

4 Results
For the multiple choice question tasks (i.e. SAT and
TOEFL), we say a question is complete when all of the
related pairs (stem and choice) are represented by vec-
tors with at least one non-zero component. If a ques-
tion has at least one pair represented by a zero-vector
(missing pairs), then we say that the question is partial.
For these tasks, we report the worst-case performance
scores where we assume that a random guessing per-
formance is obtained on the partial questions. This is
a strict lower bound because it discards all information
we have about a partial question even if it has only one
missing pair. We define coverage as the percentage of
complete questions.

4.1 SAT
In Yahoo, the coverage is quite high. In the v1,2 only
condition, 4 questions had at least some choice/stem

pairs with all zero components. In all other cases, all of
the pairs were represented by vectors with at least one
non-zero component. The highest score is obtained for
the v1v2v1,2 condition with a 44.1% of correct ques-
tions, that is not significantly above the 42.5% perfor-
mance of v1,2 (paired t-test, α = 0.05). The v1v2 only
condition results in a poorer performance of 33.9% cor-
rect questions, statistically lower than the former two
conditions.

For ukWaC, the v1,2 only condition provides a rel-
atively low coverage. Only 238 questions out of 374
were complete. For the other conditions, we get a com-
plete coverage. The performances are statistically in-
distinguishable from each other and are 38.0%, 38.2%,
and 39.6% for v1,2, v1v2, and v1v2v1,2 respectively.

Condition Yahoo ukWaC
v1,2 42.5% 38.0%
v1v2 33.9% 38.2%

v1v2v1,2 44.1% 39.6%

Table 2: Percentage of correctly answered questions in
SAT analogy task, worst-case scenario.

In Fig. 1, the best performances we get for Yahoo
and ukWaC are compared to previous studies with 95%
binomial confidence intervals plotted. The reported
values are taken from the ACL wiki page on the state of
the art for SAT analogy questions6. The algorithm pro-
posed by Turney (2008) is labeled as Turney-PairClass.
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Figure 1: Comparison with previous algorithms on
SAT analogy questions.

Overall, the performance of BagPack is not at the
level of the state of the art but still provides a reasonable
level even in the v1v2 only condition for which we do
not utilize the contexts where the two words co-occur.
This aspect is most striking for ukWaC where the cov-
erage is low and by only utilizing the single-occurrence
sub-vectors we obtain a performance of 38.2% cor-
rect answers (the comparable “attributional” models re-

6See http://aclweb.org/aclwiki/ for further
information and references
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ported in Turney, 2006, have an average performance of
31%).

4.2 TOEFL
For the v1,2 sub-vector calculated for Yahoo, we have
two partial questions out of 80 and the system answers
80.0% of the questions correctly. The single occur-
rence case v1v2 instead provides a correct percentage
of 41.2% which is significantly above the random per-
formance of 25% but still very poor. The combined
case v1v2v1,2 provides a score of 75.0% with no sta-
tistically significant difference from the v1,2 case. The
reason of the low performance for v1v2 is an open
question.

For ukWaC, the coverage for the v1v2 case is pretty
low. Out of 320 pairs, 70 were represented by zero-
vectors, resulting in 34 partial questions out of 80.
The performance is at 33.8%. The v1v2 case on its
own does not lead to a performance better than random
guessing (27.5%) but the combined case v1v2v1,2

provides the highest ukWaC score of 42.5%.

Condition Yahoo ukWaC
v1,2 80.0% 33.8%
v1v2 41.2% 27.5%

v1v2v1,2 75.0% 42.5%

Table 3: Percentage of correctly answered questions in
TOEFL synonym task, worst-case scenario.

To our knowledge, the best performance with a
purely corpus-based approach is that of Rapp (2003)
who obtained a score of 92.5% with SVD. Fig. 2 re-
ports our results and a list of other corpus-based sys-
tems which achieve scores higher than 70%, along with
95% confidence interval values. The results are taken
from the ACL wiki page on the state of the art for
TOEFL synonym questions.
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We note that our results obtained for Yahoo are com-
parable to the results of Turney but even the best re-
sults obtained for ukWaC and the Yahoo’s results for

v1v2 only condition are very poor. Whether this is
because of the inability of the sub-vectors to capture
synonymity or because the default parameter values of
SVM are not adequate is an open question. Notice that
our concatenated v1v2 vector does not exploit infor-
mation about the similarity of v1 to v2, that, presum-
ably, should be of great help in solving the synonym
task.

4.3 Selectional Preference

The coverage for this dataset is quite high. All pairs
were represented by non-zero vectors for Yahoo while
only two pairs had zero-vectors for ukWaC. The two
pairs are discarded in our experiments. For Yahoo, the
best results are obtained for the v1,2 case. The single-
occurrence case, v1v2, provides an overall correlation
of 0.36 and mean correlation of 0.26. However low, in
case of rarely co-occurring word pairs this data could
be the only data we have in our hands and it is impor-
tant that it provides reasonable judgment estimates.

For the ukWaC corpus, the best results we get are
an overall correlation of 0.60 and a mean correlation of
0.52 for the combined case v1v2v1,2. The results for
v1,2 and v1v2v1,2 are statistically indistinguishable.

Yahoo ukWaC
Condition Overall Mean Overall Mean

v1,2 0.60 0.45 0.58 0.48
v1v2 0.36 0.26 0.33 0.22

v1v2v1,2 0.55 0.42 0.60 0.52

Table 4: Spearman correlations between the targets and
estimations for selectional preference task.

In Fig. 3, we present a comparison of our results with
some previous studies reported in Padó et al. (2007).
The best result reported so far is a correlation of 0.52.
Our results for Yahoo and ukWaC are currently the
highest correlation values reported. Even the verb-
effect-controlled correlations achieve competitive per-
formance.
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4.4 ConceptNet

Only for this task, (because of practical memory limita-
tions) we reduced the model parameter b to 500, which
means we used the 500 most frequent unigrams and
500 most frequent bigrams as our basis terms. For each
of the 5 relations at our hand, we trained a different
SVM classifier by labeling the pairs with the corre-
sponding relation as positive and the rest as negative.
To eliminate the issue of unbalanced number of nega-
tive and positive instances we randomly down-sampled
the positive or negative instances set (whichever is
larger). For the IsA, UsedFor, CapableOf, and PartOf
relations, the down-sampling procedure means keep-
ing some of the negative instances out of the training
and test sets while for the LocationOf relation it means
keeping a subset of the positive instances out. We per-
formed 5 iterations of the down-sampling procedure
and for each iteration we carried out a 10-fold cross-
validation to train and test our classifier. The results are
test set averages over all iterations and folds. The per-
formance measure we use is the area under the receiver
operating characteristic (AUC in short for area under
the curve). The AUC of a classifier is the area under the
curve defined by the corresponding true positive rate
and false positive rate values obtained for varying the
threshold of the classifier to accept an instance as posi-
tive. Intuitively, AUC is the probability that a randomly
picked positive instance’s estimated posterior probabil-
ity is higher than a randomly picked negative instance’s
estimated posterior probability (Fawcett, 2006).

The coverage is quite high for both corpora: Out of
1943 pairs,only 3 were represented by a zero-vector in
Yahoo while in ukWaC this number is 68. For sim-
plicity, we discarded missing pairs from our analysis.
We report only the results obtained for the entire co-
occurrence matrix. The results are virtually identi-
cal for the other conditions too: Both for Yahoo and
ukWaC, almost all of the AUC values obtained for all
relations and for all conditions are above 95%. Only
the PartOf relation has AUC values above 90% (which
is still a very good result).

Relation Yahoo ukWaC
IsA 99.0% 98.0%

UsedFor 98.2% 98.5%
CapableOf 98.9% 99.1%

PartOf 97.6% 95.0%
LocationOf 99.0% 98.8%

Table 5: AUC scores for 5 relations of ConceptNet,
classifier trained for v1v2v1,2 condition.

The very high performance we observe for the Con-
ceptNet task is surprising when compared to the mod-
erate performance we observe for other tasks. Our ex-
tensive filtering of the assertions could have resulted
in a biased dataset which might have made the job of
the classifier easy while reducing its generalization ca-

pacity. To investigate this, we decided to use the pairs
coming from the SAT task as a validation set.

Again, we trained an SVM classifier on the Concept-
Net data for each of the 5 relations like we did previ-
ously, but this time without cross-validation (i.e. after
the down-sampling, we used the entire set as the train-
ing dataset in each iteration). Then we evaluated the
classifiers on the 2224 pairs of the SAT analogy task
(removing pairs that were in the training data) and av-
eraged the posterior probability reported by each SVM
over each down-sampling iteration. The 5 pairs which
are assigned the highest posterior probability for each
relation are reported in Table 6. We have not yet quan-
tified the performance of BagPack in this task but the
preliminary results in this table are, qualitatively, ex-
ceptionally good.

5 Conclusions
We presented a general way to build a vector-based
space to represent the semantic relations between word
pairs and showed how that representation can be used
to solve various tasks involving semantic similarity.
For SAT and TOEFL, we obtained reasonable perfor-
mances comparable to the state of the art. For the es-
timation of selective preference judgments about verb-
noun pairs, we achieved state of the art performance.
Perhaps more importantly, our representation format
allows us to provide meaningful estimates even when
the verb and noun are not observed co-occurring in the
corpus – which is an obvious advantage over the mod-
els which rely on sytagmatic contexts alone and cannot
provide estimates for word pairs that are not seen di-
rectly co-occurring. We also obtained very promising
results for the automated augmentation of ConceptNet.

The generality of the proposed method is also re-
flected in the fact that we built a single feature space
based on frequent basis terms and used the same fea-
tures for all pairs coming from different tasks. The
use of the same feature set for all pairs makes it pos-
sible to build a single database of word-pair vectors.
For example, we were able to re-use the vectors con-
structed for SAT pairs as a validation set in the Con-
ceptNet task. Furthermore, the results reported here are
obtained for the same machine learning model (SVM)
without any parameter tweaking, which renders them
very strict lower bounds.

Another contribution is that the proposed method
provides a way to represent the relations between
words even if they are not observed co-occurring in the
corpus. Employing a larger corpus can be an alternative
solution for some cases but this is not always possible
and some tasks, like estimating selectional preference
judgments, inherently call for a method that does not
exclusively depends on paired co-occurrence observa-
tions.

Finally, we introduced ConceptNet, a common-sense
semantic network, to the corpus-based semantics com-
munity, both as a new challenge and as a repository we
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Rank IsA UsedFor PartOf CapableOf LocationOf
1 watch,timepiece pencil,draw vehicle,wheel motorist,drive spectator,arena
2 emerald,gem blueprint,build spider,leg volatile,vaporize water,riverbed
3 cherry,fruit detergent,clean keyboard,finger concrete,harden bovine,pasture
4 dinosaur,reptile guard,protect train,caboose parasite,contribute benediction,church
5 ostrich,bird buttress,support hub,wheel immature,develop byline,newspaper

Table 6: Top 5 SAT pairs classified as positive for ConceptNet relations, classifier trained for v1v2v1,2 condition.

can benefit from.
In future work, one of the most pressing issue we

want to explore is how to better exploit the informa-
tion in the single occurrence vectors: currently, we do
not make any use of the overlap between v1 and v2.
In this way, we are missing the classic intuition that
taxonomically similar words tend to occur in similar
contexts, and it is thus not surprising that v1v2 flunks
the TOEFL. We are currently looking at ways to aug-
ment our concatenated vector with “meta-information”
about vector overlap.
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Abstract

With increasing opportunities to learn on-
line, the problem of positioning learners
in an educational network of content of-
fers new possibilities for the utilisation of
geometry-based natural language process-
ing techniques.

In this article, the adoption of latent se-
mantic analysis (LSA) for guiding learners
in their conceptual development is investi-
gated. We propose five new algorithmic
derivations of LSA and test their validity
for positioning in an experiment in order to
draw back conclusions on the suitability of
machine learning from previously accred-
ited evidence. Special attention is thereby
directed towards the role of distractors and
the calculation of thresholds when using
similarities as a proxy for assessing con-
ceptual closeness.

Results indicate that learning improves po-
sitioning. Distractors are of low value and
seem to be replaceable by generic noise
to improve threshold calculation. Fur-
thermore, new ways to flexibly calculate
thresholds could be identified.

1 Introduction

The path to new content-rich competencies is
paved by the acquisition of new and the reorgani-
sation of already known concepts. Learners will-
ing to take this journey, however, are imposed with
the problem of positioning themselves to that point
in a learning network of content, where they leave
their known trails and step into the unknown – and
to receive guidance in subsequent further concep-
tual development.

More precisely, positioning requires to map
characteristics from a learner’s individual epis-
temic history (including both achievements and

shortcomings) to the characteristics of the avail-
able learning materials and to recommend reme-
dial action on how to achieve selected conceptual
development goals (Van Bruggen et al., 2006).

The conceptual starting points of learners nec-
essary to guide the positioning process is reflected
in the texts they are writing. Through structure
and word choice, most notably the application of
professional language, arrangement and meaning
of these texts give cues about the level of compe-
tency1 development.

As learning activities increasingly leave digital
traces as evidence for prior learning, positioning
support systems can be built that reduce this prob-
lem to developing efficient and effective match-
making procedures.

Latent semantic analysis (LSA) (Deerwester et
al., 1990) as one technology in the family of
geometry-based natural language models could in
principle provide a technological basis for the po-
sitioning aims outlined above. The assumption un-
derlying this is that the similarity to and of learn-
ing materials can be used as a proxy for similar-
ity in learning outcomes, i.e. the developmental
change in conceptual coverage and organisation
caused by learning.

In particular, LSA utilises threshold values for
the involved semantic similarity judgements. Tra-
ditionally the threshold is obtained by calculat-
ing the average similarity between texts that cor-
respond to the same category. This procedure can
be inaccurate if a representative set of documents
for each category is not available. Furthermore,
similarity values tend to decrease with increasing
corpora and vocabulary sizes. Also, the role of
distractors in this context, i.e. negative evidence
as reference material to sharpen classification for
positioning, is largely unknown.

With the following experiment, we intend to
1See (Smith, 1996) for a clarification of the difference of

competence and competency
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validate that geometrical models (particularly la-
tent semantic analysis) can produce near human
results regarding their propositions on how to ac-
count written learner evidence for prior learning
and positioning these learners to where the best-
suiting starting points are. We will show that latent
semantic analysis works for positioning and that it
can provide effective positioning.

The main focus of this contribution is to inves-
tigate whether machine learning proves useful for
the positioning classifiers, whether distractors im-
prove results, and what the role of thresholds for
the classifiers is.

The rest of this paper is structured as follows.
At first, positioning with LSA and related work
are explained. This is followed by an outline of
our own approach to positioning. Subsequently,
a validation experiment for the set of new algo-
rithms is outlined with which new light is shed on
the utilisation of LSA for positioning. The results
of this experiment are analysed in the following
section in oder to, finally, yield conclusions and
an outlook.

2 Positioning with LSA

According to (Kalz et al., 2007), positioning “is
a process that assists learners in finding a start-
ing point and an efficient route through the [learn-
ing] network that will foster competence build-
ing”. Often, the framework within which this
competence development takes places is a formal
curriculum offered by an educational provider.

Not only when considering a lifelong learner,
for whom the borders between formal and infor-
mal learning are absolutely permeable, recogni-
tion of prior learning turns out to be crucial for po-
sitioning: each individual background differs and
prior learning needs to be respected or even ac-
credited before taking up new learning activities –
especially before enrolling in a curriculum.

Typically, the necessary evidence of prior learn-
ing (i.e., traces of activities and their outcomes)
are gathered in a learner’s portfolio. This portfolio
is then analysed to identify both starting points and
a first navigation path by mapping evidence onto
the development plans available within the learn-
ing network.

The educational background represented in the
portfolio can be of formal nature (e.g. certi-
fied exams) in which case standard admission
and exemption procedures may apply. In other

cases such standard procedures are not available,
therefore assessors need to intellectually evaluate
learner knowledge on specific topics. In proce-
dures for accreditation of prior learning (APL), as-
sessors decide whether evidence brought forward
may lead to exemptions from one or more courses.

For supporting the positioning process (as e.g.
needed for APL) with technology, three different
computational classes of approaches can be distin-
guished: mapping procedures based on the analy-
sis of informal descriptions with textmining tech-
nologies, meta-data based positioning, and posi-
tioning based on ontology mappings (Kalz et al.,
2007). Latent semantic analysis is one of many
possible techniques that can be facilitated to sup-
port or even partially automate the analysis of in-
formal portfolios.

2.1 LSA

LSA is an algorithm applied to approximate the
meaning of texts, thereby exposing semantic struc-
ture to computation. LSA combines the classi-
cal vector-space model with a singular value de-
composition (SVD), a two-mode factor analysis.
Thus, bag-of-words representations of texts can be
mapped into a modified vector space that is as-
sumed to reflect semantic structure.

The basic idea behind LSA is that the colloca-
tion of terms of a given document-term-space re-
flects a higher-order – latent semantic – structure,
which is obscured by word usage (e.g. by syn-
onyms or ambiguities). By using conceptual in-
dices that are derived statistically via a truncated
SVD, this variability problem is believed to be
overcome.

In a typical LSA process, first a document-term
matrix is constructed from a given text base of n
documents containing m terms. This matrix M
of the size m × n is then resolved by the SVD
into the term vector matrix T (constituting the left
singular vectors), the document vector matrix D
(constituting the right singular vectors) being both
orthonormal and the diagonal matrix S.

Multiplying the truncated matrices Tk, Sk and
Dk results in a new matrix Mk (see Figure 1)
which is the least-squares best fit approximation
of M with k singular values (Berry et al., 1994).

2.2 Related Work

LSA has been widely used in learning applications
such as automatic assessment of essays, provision
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Figure 1: Reconstructing a textmatrix from the
lower-order latent-semantic space.

of feedback, and selection of suitable materials ac-
cording to the learner’s degree of expertise in spe-
cific domains.

The Intelligent Essay Assessor (IEA) is an ex-
ample of the first type of applications where the
semantic space is build from materials on the topic
to be evaluated. In (Foltz et al., 1999) the finding is
reported that the IEA rating performance is close
to the one of human raters.

In (van Bruggen et al., 2004) authors report that
LSA-based positioning requires creating a latent-
semantic space from text documents that model
learners’ and public knowledge on a specific sub-
ject. Those texts include written material of learn-
ers’ own production, materials that the learner has
studied and learned in the past, and descriptions of
learning activities that the learner has completed
in the past. Public knowledge on the specific sub-
ject includes educational materials of all kind (e.g.
textbooks or articles).

In this case the description of the activity needs
to be rich in the sense of terminology related to
the domain of application. LSA relies on the use
of rich terminology to characterize the meaning.

Following the traditional LSA procedure, the
similarity (e.g. cosine) between LSA vector mod-
els of the private and public knowledge is then cal-
culated to obtain the learner position with respect
to the public knowledge.

3 Learning Algorithms for Positioning

In the following, we design an experiment, con-
duct it, and evaluate the results to shed new light
on the use of LSA for positioning.

The basic idea of the experiment is to investi-
gate whether LSA works for advising assessors on
acceptance (or rejection) of documents presented
by the learner as evidence of previous conceptual
knowledge on specific subjects covered by the cur-
riculum. The assessment is in all cases done by
comparing a set of learning materials (model solu-

tions plus previously accepted/rejected reference
material) to the documents from learners’ portfo-
lios using cosines as a proxy for their semantic
similarity.

In this comparison, thresholds for the cosine
measure’s values have to be defined above which
two documents are considered to be similar. De-
pending on how exactly the model solutions and
additional reference material are utilised, different
assessment algorithms can be developed.

To validate the proposed positioning services
elaborated below, we compare the automatic rec-
ommendations for each text presented as evidence
with expert recommendations over the same text
(external validation).

To train the thresholds and as a method for as-
sessing the provided evidence, we propose to use
the following five different unsupervised and su-
pervised positioning rules. These configurations
differ in the way how their similarity threshold
is calculated and against which selection of doc-
uments (model solutions and previously expert-
evaluated reference material) the ‘incoming’ docu-
ments are compared. We will subsequently run the
experiment to investigate their effectiveness and
compare the results obtained with them.

Figure 2: The five rules.

The visualisation in Figure 2 depicts the work-
ing principle of the rules described below. In each
panel, a vector space is shown. Circles depict ra-
dial cosine similarity. The document representa-
tives labelled with gn are documents with positive
evidence (‘good’ documents), the ones labelled
with bn are those with negative. The test docu-
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ments carry the labels en (‘essay’).
Best of Golden: The threshold is computed by

averaging the similarity of all three golden stan-
dard essays to each other. The similarity of the
investigated essay is compared to the best three
golden standard essays (=machine score). If the
machine score correlates above the threshold with
the human judgement, the test essay is stated cor-
rect. This rule assumes that the gold standards
have some variation in the correlation among each
other and that using the average correlation among
the gold standards as a threshold is taking that into
account.

Best of Good: Best essays of the humanly
judged good ones. The assumption behind this is
that with more positive examples to evaluate an in-
vestigated essay against, the precision of the eval-
uation should rise. The threshold is the average of
the positive evidence essays among each other.

Average to Good > Average among Good: Tests
if the similarity to the ‘good’ examples is higher
than the average similarity of the humanly judged
good ones. Assumption is that the good evi-
dence gathered circumscribes that area in the la-
tent semantic space which is representative of the
abstract model solution and that any new essay
should be within the boundaries characterised by
this positive evidence thus having a higher correla-
tion to the positive examples then they have among
each other.

Best of Good > Best of Bad: Tests whether the
maximum similarity to the good essays is higher
than the maximum similarity to bad essays. If a
tested essay correlates higher to the best of the
good than to the best of the bad, then it is clas-
sified as accepted.

Average of Good > average of Bad: The same
with average of good > average of bad. Assump-
tion behind this is again that both bad and good
evidence circumscribe an area and that the incom-
ing essay is in either the one or the other class.

4 Corpus and Space Construction

The corpus for building the latent semantic space
is constructed with 2/3 German language corpus
(newspaper articles) and 1/3 domain-specific (a
textbook split into smaller units enhanced by a col-
lection of topic related documents which Google
threw up among the first hits). The corpus has a
size of 444k words (59.719 terms, 2444 textual
units), the mean document length is 181 words

with a standard deviation of 156. The term fre-
quencies have a mean of 7.4 with a standard devi-
ation of 120.

The latent semantic space is constructed over
this corpus deploying the lsa package for R (Wild,
2008; Wild and Stahl, 2007) using dimcalc share
as the calculation method to estimate a good num-
ber of singular values to be kept and the standard
settings of textmatrix() to pre-process the raw
texts. The resulting space utilises 534 dimensions.

For the experiment, 94 essays scored by a hu-
man evaluator on a scale from 0 to 4 points where
used. The essays have a mean document length
of 22.75 terms with a standard deviation of 12.41
(about one paragraph).

To estimate the quality of the latent semantic
space, the learner writings were folded into the
semantic space using fold in(). Comparing the
non-partitioned (i.e. 0 to 4 in steps of .5) human
scores with the machine scores (average similar-
ity to the three initial model solutions), a highly
significant trend can be seen that is far from be-
ing perfect but still only slightly below what two
human raters typically show.

Figure 3: Human vs. Machine Scores.

Figure 3 shows the qualitative human expert
judgements versus the machine grade distribution
using the non-partitioned human scores (from 0 to
4 points in .5 intervals) against the rounded aver-
age cosine similarity to the initial three model so-
lutions. These machine scores are rounded such
that they – again – create the same amount of in-
tervals. As can be seen in the figure, the extreme
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of each score level is displayed in the upper and
lower whisker. Additionally, the lower and upper
‘hinge’ and the median are shown. The overall
Spearman’s rank correlation of the human versus
the (continuous) machine scores suggests a with
.51 medium effect being highly significant on a
level with the p-value below .001. Comparing this
to untrained human raters, who typically correlate
around .6, this is in a similar area, though the ma-
chine differences can be expected to be different
in nature.

A test with 250 singular values was conducted
resulting in a considerately lower Spearman cor-
relation of non-partitioned human and machine
scores.

Both background and test corpus have deliber-
ately been chosen from a set of nine real life cases
to serve as a prototypical example.

For the experiment, the essay collection was
split by half into training (46) and test (48) set
for the validation. Each set has been partitioned
into roughly an equal number of accepted (scores
< 2, 22 essays in training set, 25 in test) and re-
jected essays (scores >= 2, 24 essays in training,
23 in test). All four subsets, – test and training
partitioned into accepted and rejected –, include a
similarly big number of texts.

In order to cross validate, the training and test
sets were random sampled ten times to get rid of
influences on the algorithms from the sort order of
the essays. Both test and training sets were folded
into the latent semantic space. Then, random sub
samples (see below) of the training set were used
to train the algorithms, whereas the test set of 48
test essays in each run was deployed to measure
precision, recall, and the f-measure to analyse the
effectiveness of the rules proposed.

Similarity is used as a proxy within the al-
gorithms to determine whether a student writing
should be accepted for this concept or rejected. As
similarity measure, the cosine similarity cosine()
was used.

In each randomisation loop, the share of ac-
cepted and rejected essays to learn from was var-
ied in a second loop of seven iterations: Always
half of the training set essays were used and the
amount of accepted essays was decreased from 9
to 2 while the number of rejected essays was in-
creased from 2 to 9. This way, the influence of the
number of positive (and negative) examples could
be investigated.

This mixture of accepted and rejected evidence
to learn from was diversified to investigate the
influence of learning from changing shares and
rising or decreasing numbers of positive and/or
negative reference documents – as well as to
analyse the influence of recalculated thresholds.
While varying these training documents, the hu-
man judgements were given to the machine in or-
der to model learning from previous human asses-
sor acceptance and rejection.

5 Findings

5.1 Precision versus Recall

The experiments where run with the five different
algorithms and with the sampling procedures de-
scribed above. For each experiment precision and
recall where measured to find out if an algorithm
can learn from previous inputs and if it is better or
worse compared to the others.

As mentioned above, the following diagrammes
depict from left to right a decreasing number of ac-
cepted essays available for training (9 down to 2)
while the number of rejected essays made avail-
able for training is increased (from 2 to 9).

Rule 1 to 3 do not use these negative samples,
rule 1 does not even use the positive samples but
just three additional model solutions not contained
in the training material of the others. The curves
show the average precision, recall, and f-measure2

of the ten randomisations necessary for the cross
validation. The size of the circles along the curves
symbolises the share of accepted essays in the
training set.

Figure 4: Rule 1: Best of Three Golden

2F = 2 · precision·recall
precision+recall
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Figure 4 shows that recall and precision stay sta-
ble as there are no changes to the reference ma-
terial taken into account: all essays are evaluated
using three fixed ‘gold standard’ texts. This rule
serves as a baseline benchmark for the other re-
sults.

Figure 5: Rule 2: Best of Good

Figure 5 depicts a falling recall when having
less positively judged essays in the training sam-
ple. In most cases, the recall is visibly higher than
in the first rule, ‘Best of Gold’, especially when
given enough good examples to learn from. Preci-
sion is rather stable. We interpret that the falling
recall can be led back to the problem of too few
examples that are then not able to model the target
area of the latent semantic space.

Figure 6: Rule 3: Avg of Good > Avg among
Good

Figure 6 displays that the recall worsens and is
very volatile3. Precision, however, is very stable

3We analysed the recall in two more randomisations of the

and slightly higher than in the previous rule, es-
pecially with rising numbers of positive examples.
It seems that the recall is very dependant on the
positive examples whether they are able to char-
acterise representative boundaries: seeing recall
change with varying amounts of positive exam-
ples, this indicates that the boundaries are not very
well chosen. We assume that this is related to con-
taining ’just pass’ essays that were scored with 2.0
or 2.5 points and distort the boundaries of the tar-
get area in the latent semantic concept space.

Figure 7: Rule 4: Best of Good > Best of Bad

Figure 7 exhibits a quickly falling recall, though
starting on a very high level, whereas precision
is relatively stable. Having more negative evi-
dence clearly seems to be counter productive and
it seems more important to have positive examples
to learn from. We have two explanations for this:
First, bad examples scatter across the space and it
is likely for a good essay to correlate higher with
a bad one when there is only a low number of pos-
itive examples. Second, bad essays might contain
very few words and thus expose correlation arte-
facts that would in principle be easy to detect, but
not with LSA.

Figure 8 depicts a recall that is generically
higher than in the ‘Best of Gold’ case, while pre-
cision is in the same area. Recall seems not to be
so stable but does not drop with more bad samples
(and less good ones) to learn from such as in the
‘Best of Good’ case. We interpret that noise can be
added to increase recall while still only a low num-
ber of positive examples is available to improve it.

whole experiment; whereas the other rules showed the same
results, the recall of this rule was unstable over the test runs,
but in tendency lower than in the other rules.
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Figure 8: Rule 5: Avg of Good > Avg of Bad

5.2 Clustering
To gain further insight about the location of the
94 essays and three gold standards in the higher
order latent-semantic space, a simple cluster anal-
ysis of their vectors was applied. Therefore, all
document-to-document cosine similarities were
calculated, filtered by a threshold of .65 to capture
only strong associations, and, subsequently, a net-
work plot of this resulting graph was visualised.

Figure 9: Similarity Network (cos >= .65).

As can be seen in the two charts, the humanly
positively judged evidence seems to cluster quite
well in the latent-semantic space when visualised
as a network plot. Through filtering the docu-
ment vectors by the vocabulary used only in the
accepted, rejected, or both classes, an even clearer
picture could be generated, shown in Figure 10.

Both figures clearly depict a big connected com-
ponent consisting mainly out of accepted essays,
whereas the rejected essays mainly spread in the

Figure 10: Network with filtered vocabulary.

unconnected surrounding. The rejected essays are
in general not similar to each other, whereas the
accepted samples are.

The second Figure 10 is even more homoge-
neous than the first due to the use of the restricted
vocabulary (i.e. the terms used in all accepted and
rejected essays).

6 Conclusion and Outlook

Distractors are of low value in the rules tested. It
seems that generic noise can be added to keep re-
call higher when only a low number of positive ex-
amples can be utilised. An explanation for this can
be found therein that there are always a lot more
heterogeneous ways to make an error. Homogene-
ity can only be assumed for the positive evidence,
not for negative evidence.

Noise seems to be useful for the calculation
of thresholds. Though it will need further inves-
tigation whether our new hypothesis works that
bad samples can be virtually anything (that is not
good).

Learning helps. The recall was shown to im-
prove in various cases, while precision stayed at
the more or less same level as the simple baseline
rule. Though the threshold calculation using the
difference to good and bad examples seemed to
bear the potential of increasing precision.

Thresholds and ways how to calculate them are
evidently important. We proposed several well
working ways on how to construct thresholds from
evidence that extend the state of the art. Thresh-
olds usually vary with changing corpus sizes and
the measures proposed can adopt to that.

We plan to investigate the use of support vec-
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tor machines in the latent semantic space in order
to gain more flexible means of characterising the
boundaries of the target area representing a con-
cept.

It should be mentioned that this experiment
demonstrates that conceptual development can be
measured and texts and their similarity can serve
as a proxy for that. Of course the experiment we
have conducted bears the danger to bring results
that are only stable within the topical area chosen.

We were able to demonstrate that textual rep-
resentations work on a granularity level of around
23 words, i.e. with the typical length of a free text
question in an exams.

While additionally using three model solutions
or at least two positive samples, we were able to
show that using a textbook split into paragraph-
sized textual units combined with generic back-
ground material, valid classifiers can be built with
relative ease. Furthermore, reference material to
score against can be collected along the way.

The most prominent open problem is to try and
completely get rid of model solutions as reference
material and to assess the lower level concepts
(terms and term aggregates) directly to further re-
duce corpus construction and reference material
collection. Using clustering techniques, this will
mean to identify useful ways for efficient visuali-
sation and analysis.
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Abstract 
Mitkov and Ha (2003) and Mitkov et 
al. (2006) offered an alternative to the 
lengthy and demanding activity of 
developing multiple-choice test items 
by proposing an NLP-based 
methodology for construction of test 
items from instructive texts such as 
textbook chapters and encyclopaedia 
entries. One of the interesting research 
questions which emerged during these 
projects was how better quality 
distractors could automatically be 
chosen. This paper reports the results 
of a study seeking to establish which 
similarity measures generate better 
quality distractors of multiple-choice 
tests. Similarity measures employed in 
the procedure of selection of 
distractors are collocation patterns, 
four different methods of WordNet-
based semantic similarity (extended 
gloss overlap measure, Leacock and 
Chodorow’s, Jiang and Conrath’s as 
well as Lin’s measures), distributional 
similarity, phonetic similarity as well 
as a mixed strategy combining the 
aforementioned measures. The 
evaluation results show that the 
methods based on Lin’s measure and 
on the mixed strategy outperform the 
rest, albeit not in a statistically 
significant fashion. 

1 Introduction 

 
Multiple-choice tests are sets of test items, the 
latter consisting of a question or stem (e.g. 
Who was voted the best international 
footballer for 2008?), the correct answer (e.g. 

Ronaldo) and distractors (e.g. Messi, 
Ronaldino, Torres). This type of test has 
proved to be an efficient tool for measuring 
students’ achievement and is used on a daily 
basis both for assessment and diagnostics 
worldwide.1 According to Question Mark 
Computing Ltd (p.c.), who have licensed their 
Perception software to approximately three 
million users so far, 95% of their users employ 
this software to administrate multiple-choice 
tests.2  Despite their popularity, the manual 
construction of such tests remains a time-
consuming and labour-intensive task. One of 
the main challenges in constructing a multiple-
choice test item is the selection of plausible 
alternatives to the correct answer which will 
better distinguish confident students from 
unconfident ones. 

Mitkov and Ha (2003) and Mitkov et al. 
(2006) offered an alternative to the lengthy 
and demanding activity of developing 
multiple-choice test items by proposing an 
NLP-based methodology for construction of 
test items from instructive texts such as 
textbook chapters and encyclopaedia entries. 
This methodology makes use of NLP 
techniques including shallow parsing, term 
extraction, sentence transformation and 
semantic distance computing and employs 
resources such as corpora and ontologies like 
WordNet. More specifically, the system 
identifies important terms in a textbook text, 

                                                             
1 This paper is not concerned with the issue of whether 
multiple-choice tests are better assessment methodology 
that other types of tests. What it focuses is on improving 
our new NLP methodology to generate multiple-choice 
tests about facts explicitly stated in single declarative 
sentences by establishing which semantic similarity 
measures give rise to better distractors. 
2 More information on the Perception software can be 
found at: www.questionmark.com/perception 
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transforms declarative sentences into questions 
and mines for terms which are semantically 
close to the correct answer, to serve as 
distractors.  
The system for generation of multiple-choice 
tests described in Mitkov and Ha (2003) and in 
Mitkov et al. (2006) was evaluated in practical 
environment where the user was offered the 
option to post-edit and in general to accept, or 
reject the test items generated by the system3. 
The formal evaluation showed that even 
though a significant part of the generated test 
items had to be discarded, and that the 
majority of the items classed as ‘usable’ had to 
be revised and improved by humans, the 
quality of the items generated and proposed by 
the system was not inferior to the tests 
authored by humans, were more diverse in 
terms of topics and very importantly – their 
production needed 4 times less time than the 
manually written items. The evaluation was 
conducted both in terms of measuring the time 
needed to develop test items and in terms of 
classical test analysis to assess the quality of 
test items.  

The paper is structured as follows. Section 2 
will outline the importance of distractors in 
multiple-choice testing as the different 
strategies for automatic selection of the 
distractors are the subject of this study. 
Section 3 will describe how test items are 
produced and will detail the different 
strategies (semantic similarity measures and 
phonetic similarity) used for the selection of 
distractors. Section 4 outlines the in-class 
experiments, presents the evaluation 
methodology, reports on the results and 
discusses these results. 

2 The importance of quality 
distractors 

One of the interesting research questions 
which emerged during the above research was 
how better quality distractors could 
automatically be chosen. In fact user 
evaluation showed that from the three main 
tasks performed in the generation of multiple-
choice tests (term identification, sentence 
transformation and distractor selection), it was 
distractor selection which needed further 
improvement with a view to putting it in 
practical use. 

                                                             
3 A post-editor’s interface was developed to this end. 

Distractors play a vital role for the process 
of multiple-choice testing in that good quality 
distractors ensure that the outcome of the tests 
provides more credible and objective picture 
of the knowledge of the testees involved. On 
the other hand, poor distractors would not 
contribute much to the accuracy of the 
assessment as obvious or too easy distractors 
will pose no challenge to the students and as a 
result, will not be able to distinguish high 
performing from low performing learners. 

The principle according to which the 
distractors were chosen, was semantic 
similarity (Mitkov and Ha, 2003). The 
semantically closer were the distractors to the 
correct answer, the most ‘plausible’ they were 
deemed to be. The rationale behind this 
consists in the fact that distractors 
semantically distant from the correct answer 
could make guessing a ‘straightforward task’. 
By way an example, if processing the sentence 
‘Syntax is the branch of linguistics which 
studies the way words are put together into 
sentences’, the multiple-choice generation 
system would identify syntax as an important 
term, would transform the sentence into the 
question ‘Which branch of linguistics studies 
the way words are put together into 
sentences?’ and would choose ‘Pragmatics’, 
‘Morphology’ and ‘Semantics’ as distractors 
to the correct answer ‘Syntax’, being closer to 
it than ‘Chemistry’, ‘Football’ or ‘Beer’ for 
instance (which if offered as distractors, would 
be easily dismissed by people who do not have 
even any knowledge of linguistics). 

While the semantic similarity premise 
appears as a logical way forward to 
automatically select distractors, there are 
different methods or measures which compute 
semantic similarity. Each of these methods 
could be evaluated individually but here we 
evaluate their suitability for the task of 
selection of distractors in multiple-choice 
tests. This type of evaluation could be 
regarded as extrinsic evaluation of each of the 
methods, where the benchmark for their 
performance would not be an annotated corpus 
or human judgement on accuracy, but to what 
extent a specific NLP application can benefit 
from employing a method. 

Another premise that this study seeks to 
verify is whether orthographically close 
distractors, in addition to being semantically 
related, could yield even better results.  
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3 Production of test items and 
selection of distractors 

Test items were constructed by a program 
based on the methodology described in the 
previous section. We ran the program on an 
on-line course materials in linguistics (Vajda, 
2001). A total of 144 items were initially 
generated. 31 out of these 144 items were kept 
for further considerations as they either did not 
need any or, only minor revision. The 
remaining 113 items were deemed to require 
major post-editing revision. The 31 items kept 
for consideration were further revised by a 
second linguist and finally, we narrowed down 
the selection to 20 questions for the 
experiments4. These 20 questions gave a rise 
to a total of eight different assessments. Each 
assessment had the same 20 questions but they 
differed in the sets of distractors as these were 
chosen using different similarity measures5 
(sections 3.1-3.5). 

To generate a list of distractors for single-
word terms the function coordinate terms in 
WordNet is employed. For multi-word terms, 
noun phrases with the same head as the correct 
answers appearing in the source text as well as 
entry terms from Wikipedia having the same 
head with the correct answers, are used to 
compile the list of distractors. This list of 
distractors is offered to the user from which he 
or she could choose his/her preferred 
distractors.  

In this study we explore which is the best 
way to narrow down the distractors to the 4 
most suitable ones. To this end, the following 
strategies for computing semantic (and in one 
case, phonetic) similarity were employed: (i) 
collocation patterns, (ii-v) four different 
methods of WordNet-based semantic 
similarity (Extended gloss overlap measure, 
Leacock and Chodorow’s, Jiang and Conrath’s 
and Lin’s measures), (vi) Distributional 
Similarity, and (vii) Phonetic similarity.  

                                                             
4 The following is an example of an item generated of 
the program and then post-edited.  
"Which type of clause might contain verb and 
dependent words? i) verb clause ii) adverb clause iii) 
adverbial clause  
  iv) multiple subordinate clause v) subordinate clause". 
5 It should be noted that there were cases where the 
different selection/similarity strategies picked the same 
distractors. 

3.1 Collocation patterns 

The collocation extraction strategy used in this 
experiment is based on the method reported in 
(Mitkov and Ha, 2003). Distractors that appear 
in the source text are given preference. If there 
are not enough distractors, distractors are 
selected randomly from the list. 

For the other methods described below 
(sections 3.2-3.5), instead of giving preference 
to noun phrases appearing in the same text, 
and randomly pick the rest from the list, we 
ranked the distractors in the list based on the 
similarity scores between each distractor and 
the correct answer and chose the top 4 
distractors. 

We compute similarity for words rather than 
multi-word terms. When the correct answers 
and distractors are multi-word terms, we 
calculate the similarities between their 
modifier words. By way of example, in the 
case of "verb clause" and "adverbial clause", 
the similarity score between "verb" and 
"adverbial" is computed. When the correct 
answer or distractor contains more than one 
modifiers we compute the similarity for each 
modifier pairs and we choose the maximum 
score. (e.g. for "verb clause" and "multiple 
subordinate clause", similarity scores of "verb" 
and "multiple" and of "verb" and 
"subordinate" are calculated, the higher one is 
considered to represent the similarity score). 

3.2 Four different methods for WordNet-
based similarity 

For computing WordNet-based semantic 
similarity we employed the package made 
available by Ted Pedersen6. Pedersen’s tool 
computes (i) extended gloss overlap measure 
(Banerjee and Pedersen, 2003), (ii) Leacock 
and Chodorow’s (1998) measure, (iii) Jiang 
and Conrath’s (1997) measure and (iv) Lin’s 
(1997) measure.  

The extended gloss overlap measure 
calculates the overlaps between not only the 
definitions of the two concepts measured but 
also among those concepts to which they are 
related. The relatedness score is the sum of the 
squares of the overlap lengths.  

Leacock and Chodorow’s measure uses the 
normalised path length between the two 
concepts c1 and c2 and is computed as follows: 

                                                             
6 http://search.cpan.org/~tpederse/WordNet-Similarity 
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 (1) 

where len is the number of edges on the 
shortest path in the taxonomy between the two 
concepts and MAX is the depth of the 
taxonomy. 

Jiang and Conrath’s measure compares the 
sum of the information content of the 
individual concepts with that of their lowest 
common subsumer: 

 (2) 

where IC(c) is the information content 
(Patwardhan et al., 2003) of the concept c, and 
lcs denotes the lowest common subsumer, 
which represents the most specific concept 
that the two concepts have in common. 

The Lin measure scales the information 
content of lowest common subsumer with the 
sum of information content of two concepts. 

 

 (3) 

 

3.3 Distributional similarity 

For computing distributional similarity we 
made use of Viktor Pekar's implementation7 
based on Information Radius, which according 
to a comparative study by Dagan et al. (1997) 
performs consistently better than the other 
similar measures. Information Radius (or 
Jensen-Shannon divergence) is a variant of 
Kullback-Leiber divergence measuring 
similarity between two words as the amount of 
information contained in the difference 
between the two corresponding co-occurrence 
vectors. Every word wj is presented by the set 
of words wi1...n with which it co-occurs. The 
semantics of wj are modelled as a vector in an 
n-dimensional space where n is the number of 
words co-occurring with wj, and the features of 
the vector are the probabilities of the co-
occurrences established from their observed 
frequencies, as in (4). In Pekar’s 
implementation, if one word is identified as 
dependent on another word by a dependency 

                                                             
7 http://clg.wlv.ac.uk/demos/similarity/index.html 

parser, these two words are said to be “co-
occuring”8. The corpus used to collect the co-
occurance vector was the BNC and the 
dependency parsed used the FDG parser 
(Tapanainen and Järvinen, 1997). The 
Information Radius (JS) is calculated using 
(5). 

 (4) 

 (5) 

where  

3.4 Phonetic similarity 

For measuring phonetic similarity we use 
Soundex, phonetic algorithm for indexing 
words by sound. It operates on the principle of 
term based evaluation where each term is 
given a Soundex code. Each Soundex code 
itself consists of a letter and three numbers 
between 0 and 6. By way of example the 
Soundex code of verb is V610 (the first 
character in the code is always the first letter 
of the word encoded). Vowels are not used and 
digits are based on the consonants as illustrate 
by the following table: 

 
1. B, P, F, V 
2. C, S, K, G, J, Q, X, Z 
3. D, T 
4. L 
5. M, N 
6. R 

Table 1 Digits based on consonants 

First the Soundex code for each word is 
generated9. Then similarity is computed using 
the Difference method, returning an integer 
result ranging in value from 1 (least similar) to 
4 (most similar). 

3.5 Mixed Strategy 

After items have been generated by the above 
seven methods, we pick three items from each 
method, except from Soundex, where only two 
items have been picked, to compose an 

                                                             
8 There are many other ways to construct the co-
occurrence vectors. This paper does not intend to exploit 
these different ways. 
9 We adopt the phonetic representation used in MS SQL 
Server. As illustrated above, each soundex code consists 
of a letter and three numbers, such as A252. 
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assessment of 20 items. This assessment is 
called “mixed”, and used to assess whether or 
not an assessment with distractors generated 
by combining different methods would 
produce a different result from an assessment 
featuring distractors generated by a single 
method. 

4 In-class experiments, evaluation, 
results and discussion 

The tests (papers) generated with the help of 
our program with the distractors chosen 
according the different methods described 
above, were taken by a total of 243 students 
from different European universities: 
University of Wolverhampton (United 
Kingdom), University College Ghent 
(Belgium), University of Saarbrücken 
(Germany), University of Cordoba (Spain), 
University of Sofia (Bulgaria). A prerequisite 
for the students taking the test was that they 
studied language and linguistics and that they 
had a good command of English. Each test 
paper consisted of 20 questions and the 
students had 30 minutes to reply to the 
questions. The tests were offered through the 
Questionmark Perception web-based testing 
software which in addition to providing a user-
friendly interface, computes diverse statistics 
related to the test questions answered.  

In order to evaluate the quality of the 
multiple-choice test items generated by the 
program (and subsequently post-edited by 
humans), we employed standard item analysis. 
Item analysis is an important procedure in 
classical test theory which provides 
information as to how well each item has 
functioned. The item analysis for multiple-
choice tests usually consists of the following 
information (Gronlund, 1982): (i) the 
difficulty of the item, (ii) the discriminating 
power and (iii) the usefulness10 of each 
distractor. This information can tell us if a 
specific test item was too easy or too hard, 
how well it discriminated between high and 
low scorers on the test and whether all of the 
alternatives functioned as intended. Such types 
of analysis help improve test items or discard 
defective items. 

                                                             
10 Originally called ‘effectiveness’. We chose to term 
this type of analysis ‘usefulness’ to distinguish it from 
the (cost/time) ‘effectiveness’ of the semi-automatic 
procedure as opposed to the manual construction of 
tests. 

Whilst this study focuses on the quality of 
the distractors generated, we believe that the 
distractors are essential for the quality of the 
overall test and hence the difficulty of an item 
and its discriminating power are deemed 
appropriate to assess the quality of distractors, 
even though the quality of the test stem also 
pays in important part. On the other hand 
usefulness is a completely independent 
measure as it looks at distractors only and not 
only the combination of stems and distractors. 

In order to conduct this type of analysis, we 
used a simplified procedure, described in 
(Gronlund, 1982). We arranged the test papers 
in order from the highest score to the lowest 
score. We selected one third of the papers and 
called this the upper group. We also selected 
the same number of papers with the lowest 
scores and called this the lower group. For 
each item, we counted the number of students 
in the upper group who selected each 
alternative; we made the same count for the 
lower group. 

(i) Item Difficulty 

We estimated the Item Difficulty (ID) by 
establishing the ratio of students from the two 
groups who answered the item correctly (ID = 
C/T, where C is the number who answered the 
item correctly and T is the total number of 
students who attempted the item). As Table 2 
shows, from the items featuring distractors 
generated using the collocation method11, there 
were 4 too easy and 0 too difficult items.12 The 
average Item Difficulty was 0.61. From the 
items with distractors generated using 
WordNet-based similarity13, the results were 
the following. When employing the extended 
gloss overlap measure there were 2 too easy 
and 0 too difficult items, showing an average 
ID of 0.58. Leacock and Chodorow’s measure 
produced 1 too easy and 3 too difficult items 
with item average difficulty of 0.54. The use 
of Jiang and Conrath’s measure resulted in 3 
too easy and 1 too difficult items; the average 
item difficulty observed was 0.57. Lin’s 
measure delivered the best results from the 

                                                             
11 Henceforth referred to as ‘collocation items’; the 
distractors generated are referred to as ‘collocation 
distractors’. 
12 For experimental purposes, we consider an item to be 
‘too difficult’ if ID ≤ 0.15 and an item ‘too easy’ if ID ≥ 
0.85. 
13 Henceforth referred to as ‘WordNet items’; the 
distractors are referred to as  ‘WordNet distractors’. 

53



point of item difficulty with an almost ideal 
average item difficulty of 0.51 (the 
recommended item difficult is 0.5; see also 
footnote 16); there were 2 too easy and 1 too 
difficult items. 

The items constructed on the basis of 
distractors selected via the distributional 
similarity metric14, scored an average ID of 
0.64 with 6 items being too easy and 1 ― too 
difficult.  From the items with distractors 
produced using the phonetic similarity 
algorithm15, there were 4 too easy and 0 too 
difficult questions with overall average 
difficult of 0.60. Finally, a mixed strategy 
produced test items with average difficulty of 
0.53, 1 of them being too easy and 0 ― too 
difficult. 

The results showed that almost all items 
produced after selecting distractors using the 
strategies described above, featured very 
reasonable ID values. In many cases the 
average values were close to the recommended 
ID value of 0.5 with Lin’s measure delivering 
the best ID of 0.51. Runners-up are the mixed 
strategy delivering items with average ID 0.53 
Leacock and Chodorow’s measure 
contributing to the generation of items with 
average ID of 0.54. 

(ii) Discriminating Power 

We estimated the item's Discriminating Power 
(DP) by comparing the number students in the 
upper and lower groups who answered the 
item correctly. It is desirable that the 
discrimination is positive which means that the 
item differentiates between students in the 
same way that the total test score does.16 The 
formula for computing the Discriminating 
Power is as follows: DP = (CU – CL) : T/2, 
where CU is the number of students in the 
upper group who answered the item correctly 
and  CL the number of the students in the 
lower group that did so. Here again T is the 

                                                             
14 Henceforth referred to as ‘distributional items’; the 
distractors are referred to as ‘distributional distractors’. 
15 Henceforth referred to as ‘phonetic items’; the 
distractors are referred to as ‘phonetic distractors’. 
16 Zero DP is obtained when an equal number of 
students in each group respond to the item correctly. On 
the other hand, negative DP is obtained when more 
students in the lower group than the upper group answer 
correctly. Items with zero or negative DP should be 
either discarded or improved. 

total number of students included in the item 
analysis.17  

The average Discriminating Power for the 
collocation items was 0.33 and there were no 
negative discriminating collocation test 
items.18 The figures associated to the WordNet 
items were as follows. The average DP for 
items produced with the extended gloss 
overlap measure was 0.32, and there were 2 
items with negative discrimination. Leacock 
and Chodorow’s measure did not produce any 
items with negative discrimination and the 
average DP of these was 0.38. Jiang and 
Conrath’s measure gave rise to 2 negatively 
discriminating items and the average DP of the 
items based on this measure was 0.29. The 
selection of distractors with Lin’s measure 
resulted in items with average DP of 0.37; 
none of them had a negative discrimination. 

The average discrimination power for the 
distributional items was 0.29 (1 item with 
negative discrimination) and for phonetic 
items – 0.34 (0 item with negative 
discrimination). The employment of mixed 
strategy when selecting distractors which 
resulted in items with average DP of 0.39 (0 
items with negative discrimination). 

The figures related to the Discriminating 
Power of the items generated showed that 
whereas the DP was not of the desired high 
level, as a whole the proportion of items with 
negative discrimination was fairly low (Table 
2). The items did not differ substantially in 
terms of the values of DP, the top performer 
being the items where the distractors were 
selected on the basis of the mixed strategy, 
followed by those selected by Leacock and 
Chodorow’s measure and phonetic similarity. 

(iii) Usefulness of the distractors 

 The usefulness of the distractors is estimated 
by comparing the number of students in the 
upper and lower groups who selected each 
incorrect alternative. A good distractor should 
attract more students from the lower group 
than the upper group.  

The evaluation of the distractors estimated 
the average difference between students in the 
                                                             

17 Maximum positive DP is obtained only when all 
students in the upper group answer correctly and no one 
in the lower group does. An item that has a maximum 
DP (1.0) would have an ID 0.5; therefore, test authors 
are advised to construct items at the 0.5 level of 
difficulty. 
18 Obviously a negative discriminating test item is not 
regarded as a good one. 
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lower and upper groups to be 0.74 for the sets 
of distractors generated using collocations.  
For the WordNet distractors the results were as 
follows. The average distance between the 
students in the lower and upper groups was 
found to be 0.71 for the extended gloss overlap 
distractors, 0.76 for the Leacock and 
Chodorow distractors, 0.71 for the Jiang and 
Conrath distractors and 0.83 for the Lin 
distractors. For the distractors selected by way 
of distributional similarity the average 
difference between students in the lower and 
upper groups was 0.79, for the phonetic 
distractors ― 0.66 and for those selected by a 
mixed strategy ― 0.89. 

In our evaluation we also used the notions 
of poor distractors as well as not-useful 
distractors. Distractors are classed as poor if 
they attract more students from the upper 
group than from the lower group. There were 2 
(2.5%) poor distractors from the collocation 
distractors. The WordNet distractors fared as 
follows with regard to the number of poor 
distractors. There were altogether 9 (11%) 
poor distractors from the extended gloss 
overlap distractors, 9 (11%) from the Leacock 
and Chodorow distractors, 10 (12%) from the 
Jiang and Conrath distractors and 10 (12%) 
from the Lin ones. There were 6 (7.5%) from 
the distributional similarity which were 
classed as poor, 5 (6%) from the phonetic 
similarity ones were classed as poor and 5 
(6%) from the distractors selected through a 
mixed strategy were classed as such (Table 2).  

On the other hand, distractors are termed 
not useful if they are not selected by any 
students at all. The evaluation showed (see 
Table 2) that there were 24 (30%) distractors 
deemed not useful from the collocation 
distractors. The figures for not useful 
distractors for those selected by way of 
WordNet similarity were as follows: 17 (21%) 
for extended gloss overlap distractors, 20 
(25%) for the Leacock and Chodorow 
distractors, 19 (24%) for the Jiang and Conrath 
distractors and 16 (20%) for the Lin ones. 
From the distributional distractors, 27 (34%) 
emerged as not useful, whereas 31 (39%) 
phonetic similarity and 14 (18%) mixed 
strategy distractors were found not useful.  

The overall figures suggest that the ‘most 
useful’ distractors are those chosen with mixed 
strategy (highest average difference 0.89; 
lowest number of not useful distractors, 
second lowest number of poor distractors), 
followed by those chosen with Lin’s WordNet 
measure (second highest average distance of 
0.83; second lowest number of not useful 
distractors).  

Summarising the results of the item 
analysis, it is clear that there is not a method 
that outperforms the rest in terms of producing 
best quality items or distractors. At the same 
time it is also clear that in general the mixed 
strategy and Lin’s measure consistently 
perform better than the rest of 
methods/measures. Phonetic similarity did not 
deliver as expected. 

 Item Difficulty Item Discriminating Power Usefulness of distractors 

 

average 
item 

difficulty 

too 
easy 

too 
difficult 

average 
discriminating 

power 

negative 
discriminating 

power 
poor not 

useful 
average 

difference 

Collocation  items 0.61 4 0 0.33 0 2 24 0.74 

WordNet items 

-  Extended gloss overlap 

-  Leacock and Chodorow 

-  Jiang and Conrath 

-  Lin 

 

0.58 

0.54 

0.57 

0.51 

 

2 

1 

3 

2 

 

0 

3 

1 

1 

 

0.32 

0.38 

0.29 

0.37 

 

2 

0 

2 

0 

 

9 

9 

10 

10 

 

17 

20 

19 

16 

 

0.71 

0.76 

0.71 

0.83 

Distributional items 0.64 6 1 0.29 1 6 27 0.79 

Phonetic items 0.60 4 0 0.34 0 5 31 0.66 

Mixed strategy items 0.53 1 0 0.39 0 5 14 0.89 

Table 2: Item analysis 
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Although the results indicate that the Lin 
items have the best average item difficulty, 
none of the difference (between item difficulty 
of Lin and other methods, or between any pair 
of methods) is statistically significant. From 
the DP point of view, only the difference 
between mixed strategy (0.39) and 
distributional items (0.29) is statistically 
significant (p<0.05). For the distractor 
usefulness measure, none of the difference is 
statistically significant (p<0.05). 

5 Conclusion 

In this study we conducted extrinsic evaluation 
of several similarity methods (collocation 
patterns; four different methods of WordNet-
based semantic similarity: extended gloss 
overlap measure, Leacock and Chodorow’s, 
Jiang and Conrath’s as well as Lin’s measures; 
distributional similarity; phonetic similarity; 
mixed strategy) by seeking to establish which 
one would be most suitable for the task of 
selection of distractors in multiple-choice 
tests. The evaluation results based on item 
analysis suggests that whereas there is not a 
method that clearly outperforms in terms of 
delivering better quality distractors, mixed 
strategy and Lin’s measure consistently 
perform better than the rest of 
methods/measures. However, these two 
methods do not offer any statistically 
significant improvement over their closest 
competitors. 
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Abstract
The appropriateness of paraphrases for words de-
pends often on context: “grab” can replace “catch”
in “catch a ball”, but not in “catch a cold”. Struc-
tured Vector Space (SVS) (Erk and Padó, 2008) is
a model that computes word meaning in context
in order to assess the appropriateness of such para-
phrases. This paper investigates “best-practice” pa-
rameter settings for SVS, and it presents a method to
obtain large datasets for paraphrase assessment from
corpora with WSD annotation.

1 Introduction
The meaning of individual occurrences or tokens of
a word can change vastly according to its context. A
central challenge for computational lexical semantics
is describe these token meanings and how they can be
computed for new occurrences.

One prominent approach to this question is the
dictionary-based model of token meaning: The differ-
ent meanings of a word are a set of distinct, disjoint
senses enumerated in a lexicon or ontology, such as
WordNet. For each new occurrence, determining token
meaning means choosing one of the senses, a classifica-
tion task known as Word Sense Disambiguation (WSD).
Unfortunately, this task has turned out to be very hard
both for human annotators and for machines (Kilgarriff
and Rosenzweig, 2000), not at least due to granularity
problems with available resources (Palmer et al., 2007;
McCarthy, 2006). Some researchers have gone so far
as to suggest fundamental problems with the concept of
categorical word senses (Kilgarriff, 1997; Hanks, 2000).

An interesting alternative is offered by vector space
models of word meaning (Lund and Burgess, 1996; Mc-
Donald and Brew, 2004) which characterize the mean-
ing of a word entirely without reference to word senses.
Word meaning is described in terms of a vector in a high-
dimensional vector space that is constructed with dis-
tributional methods. Semantic similarity is then simply
distance to vectors of other words. Vector space models
have been most successful in modeling the meaning of
word types (i.e. in constructing type vectors). The char-
acterization of token meaning by corresponding token
vectors would represent a very interesting alternative to
dictionary-based methods by providing a direct, graded,
unsupervised measure of (dis-)similarity between words
in context that completely avoids reference to dictionary

senses. However, there are still considerable theoretical
and practical problems, even though there is a substan-
tial body of work (Landauer and Dumais, 1997; Schütze,
1998; Kintsch, 2001; Mitchell and Lapata, 2008).

In a recent paper (Erk and Padó, 2008), we have intro-
duced the structured vector space ( SVS) model which
addresses this challenge. It yields one token vector per
input word. Token vectors are not computed by com-
bining the lexical meaning of the surrounding words –
which risks resulting in a “topicality” vector – but by
modifying the type meaning of a word with the semantic
expectations of syntactically related words, which can
be thought of as selectional preferences. For example,
in catch a ball, the token vector for ball is computed by
combining the type vector of ball with a vector for the
selectional preferences of catch for its object. The to-
ken vector for catch, conversely, is constructed from the
type vector of catch and the inverse object preference
vector of ball. The resulting token vectors describe the
meaning of a word in a particular sentence not through a
sense label, but through the distance of the token vector
to other vectors.

A natural question that arises is how vector-based
models of token meaning can be evaluated. It is of
course possible to apply them to a traditional WSD
task. However, this strategy remains vulnerable to all
criticism concerning the annotation of categorical word
senses, and also does not take advantage of the vec-
tor models’ central asset, namely gradedness. Thus,
paraphrase-based assessment for models of token mean-
ing was proposed as a representation-neutral disam-
biguation task that can replace WSD (McCarthy and
Navigli, 2007; Mitchell and Lapata, 2008). Given a
word token in context and a set of potential paraphrases,
the task consists of identifying the subset of valid para-
phrases. For example, in the following example, the
first paraphrase is appropriate, but the second is not:

(1) Google acquired YouTube ⇒
Google bought YouTube

(2) How children acquire skills 6⇒
How children buy skills

This task is graded in the sense that there is no dis-
joint set of labels from which exactly one is picked for
each token; rather, the paraphrases form a set of labels
of which a subset is appropriate for each word token,
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and the appropriate sets for two tokens may overlap to
varying degrees. In an ideal vector-based model, valid
paraphrases such as (1) should possess similar vectors,
and invalid ones such as (2) dissimilar ones.

In Erk and Padó (2008), we evaluated SVS on two
variants of the paraphrase assessment test: first, the pre-
diction of human judgments on a seven-point scale for
paraphrases for verb-subject pairs (Mitchell and Lap-
ata, 2008); and second, the original Lexical Substitution
task by McCarthy and Navigli (2007). To avoid overfit-
ting, we optimized our parameters on the first dataset
and evaluated only the best model on the second dataset.
However, given evidence for substantial inter-task differ-
ences, it is unclear to what extent these parameters are
optimal beyond the Mitchell and Lapata dataset. This
paper addresses this question with two experiments:

Impact of parameters. We re-examine three central
parameters of SVS. The first one is the choice of vector
combination function. Following Mitchell and Lap-
ata (2008), we previously used componentwise multi-
plication, whose interpretation in vector space is not
straightforward. The second one is reweighting. We
obtained the best performance when the context expec-
tations were reweighted by taking each component to
a (high) n-th power, which is counterintuitive. Finally,
we found subjects to be more informative in judging
the appropriateness of paraphrases than objects. This
appears to contradict work in theoretical syntax (Levin
and Rappaport Hovav, 2005).

To reassess the role of these parameters, we construct
a controlled dataset of transitive instances from the Lex-
ical Substitution corpus to reexamine and investigate
these issues, with the aim of providing “best practice”
settings for SVS. This turns out to be more difficult than
expected, leading us to suspect that a globally optimal
parameter setting across tasks may simply not exist. We
also test a simple extension of SVS that uses a richer
context (both subject and object) to construct the token
vector, with first positive results.

Dataset creation. The Lexical Substitution dataset
used in Erk and Padó (2008) was very small, which lim-
its the conclusions that can be drawn from it. This points
towards a more general problem of paraphrase-based
assessment for models of token meaning: Until now, all
datasets for this task were specifically created by hand.
It would provide a strong boost for paraphrase assess-
ment if the large annotated corpora that are available for
WSD could be reused.

We present an experiment on converting the WordNet-
annotated SemCor corpus into a set of “pseudo-
paraphrases” for paraphrase-based assessment. We use
the synonyms and direct hypernyms of an annotated
synset as these “pseudo-paraphrases”. While the syn-
onyms and hypernyms are not guaranteed to work as
direct replacements of the target word in the given con-
text, they are semantically similar to the target word.
The result is a dataset ten times larger than the Lex-

Sub dataset. As we describe in this paper, we find that
this method is nevertheless problematic: The resulting
dataset is considerably more difficult to model than the
existing hand-built paraphrase corpora, and its proper-
ties differ considerably from the manually constructed
Lexical Substitution dataset.

2 The structured vector space model

The main intuition behind the SVS model is to treat the
interpretation of a word in context as guided by expecta-
tions about typical events. This move to include typical
arguments and predicates into a model of word meaning
is motivated both on cognitive and linguistic grounds.
In cognitive science, the central role of expectations
about typical events on almost all aspects of human
language processing is well-established (McRae et al.,
1998; Narayanan and Jurafsky, 2002). In linguistics, ex-
pectations have long been used in semantic theories in
the form of selectional restrictions and selectional pref-
erences (Wilks, 1975), and more recently induced from
corpora (Resnik, 1996). Attention has mostly been lim-
ited to selectional preferences of verbs, which have been
used for for a variety of tasks (Hindle and Rooth, 1993;
Gildea and Jurafsky, 2002). A recent result that the SVS
model builds on is that selectional preferences can be
represented as prototype vectors constructed from seen
arguments (Erk, 2007; Padó et al., 2007).

Representing lemma meaning. To accommodate in-
formation about semantic expectations, the SVS model
extends the traditional representation of word meaning
as a single vector by a set of vectors, each of which
represents the word’s selectional preferences for each
relation that the word can assume in its linguistic con-
text. While we ultimately think of these relations as
“properly semantic” in the sense of semantic roles, the
instantiation of SVS we consider in this paper makes
use of dependency relations as a level of representation
that generalizes over a substantial amount of surface
variation but that can be obtained automatically with
high accuracy using current NLP tools.

The idea is illustrated in Figure 1. In the representa-
tion of the verb catch, the central square stands for the
lexical vector of catch itself. The three arrows link it to
catch ’s preferences for dependency relations it can par-
ticipate in, such as for its subjects, its objects, and for
verbs for which it appears as a complement (comp−1).
The figure shows the head words that enter into the com-
putation of the selectional preference vector. Likewise,
ball is represented by one vector for ball itself, one for
ball ’s preferences for its modifiers (mod), and two for
the verbs of which it can occur as a subject (subj−1)
and an object (obj−1), respectively.

This representation includes selectional preferences
(like subj, obj, mod) exactly parallel to inverse selec-
tional preferences (subj−1, obj−1, comp−1). The SVS
model is then formalized as follows. Let D be a vector
space, and let R be some set of relation labels. We then
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catch

he
fielder
dog

cold
baseball
drift

objsubj

accuse
say
claim

comp-1

ball

whirl
fly

provide

throw
catch

organise

obj-1subj-1

mod

red
golf

elegant

Figure 1: Structured Vector Space representations for
noun ball and verb catch : Each box represents one
vector (lexical information or expectations)

represent the meaning of a lemma w as a triple

m(w) = (vw, R, R−1)

where vw ∈ D is the type vector of the word w itself,
R : R → D maps each relation label onto a vector
that describes w’s selectional preferences, and R−1 :
R → D maps from role labels to vectors describing
inverse selectional preferences of w. Both R and R−1

are partial functions. For example, the direct object
preference is undefined for intransitive verbs.1

Computing meaning in context. SVS computes the
meaning of a word a in the context of another word
b via their selectional preferences as follows: Let
m(a) = (va, Ra, R−1

a ) and m(b) = (vb, Rb, R
−1
b ) be

the representations of the two words, and let r ∈ R
be the relation linking a to b. Then, the meaning of a
and b in this context is defined as a pair of structured
vector triples: m(a r→ b) is the meaning of a with b as

its r-argument, and m(b r−1

→ a) the meaning of b as the
r-argument of a:

m(a r→ b) =
(
va �R−1

b (r), Ra − {r}, R−1
a

)
m(b r−1

→ a) =
(
vb �Ra(r), Rb, R

−1
b − {r}

)
(3)

where v1 � v2 is a direct vector combination function
as in traditional models, e.g. addition or component-
wise multiplication. If either Ra(r) or R−1

b (r) are not
defined, the combination fails. Afterward, the filled
argument position r is deleted from Ra and R−1

b .
Figure 2 illustrates the procedure on the representa-

tions from Figure 1. The dotted lines indicate that the
lexical vector for catch is combined with the inverse
object preference of ball. Likewise, the lexical vector
for ball combines with the object preference vector of
catch.

Recursive application. In Erk and Padó (2008), we
considered only one combination step; however, the

1We use separate functions R, R−1 rather than a joint
syntactic context preference function because (a) this sepa-
ration models the conceptual difference between predicates
and arguments, and (b) it allows for a simpler, more elegant
formulation of the computation of meaning in context in Eq. 3.

catch

...
cold

baseball
drift

obj
subj

...

comp-1

ball

...

throw
catch

organise

obj-1 subj-1

mod

...

!

!

Figure 2: Combining predicate and argument via
relation-specific semantic expectations

syntactic context of a word in a dependency tree often
consists of more than one word. It seems intuitively
plausible that disambiguation should profit from more
context information. Thus, we extend SVS with recur-
sive application. Let a stand in relation r to b. As
defined above, the result of combining m(a) and m(b)
by relation r are two structured vector triples m(a r→ b)

and m(b r−1

→ a). If a also stands in relation s 6= r to
a word c with m(c) = (va, Ra, R−1

a ), we define the
meaning of a in the context of b and c canonically as

m(m(a r→ b) s→ c) =
(
(va �R−1

b (r))�R−1
c (s),

Ra − {r, s}, R−1
a

)
(4)

If � is associative and commutative, then m(m(a r→
b) s→ c) = m(m(a s→ c) r→ b). This will be the case
for all the combination functions we use in this paper.

Note that this is a simplistic model of the influence
of multiple context words: it computes only lexical
meaning recursively, but does not model the influence
of context on the selectional preferences. For example,
the subject selectional preferences of catch are identical
to those of catch the ball, even though one would ex-
pect that the outfielder corresponds much better to the
expectations of catch the ball than of just catch.

3 Experimental Setup
The task that we are considering is paraphrase assess-
ment in context. Given a predicate-argument pair and
a paraphrase candidate, the models have to decide how
appropriate the paraphrase is for the predicate-argument
combination. This is the main task against which token
vector models have been evaluated in the past (Mitchell
and Lapata, 2008; Erk and Padó, 2008). In Experi-
ment 1, we use manually created paraphrases. In Exper-
iment 2, we replaces human-generated paraphrases with
“pseudo-paraphrases”, contextually similar words that
may not be completely appropriate as paraphrases in the
given context, but can be collected automatically. Our
parameter choices for SVS are as similar as possible to
the second experiment of our earlier paper.

Vector space. We use a dependency-based vector
space that counts a target word and a context word
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as co-occurring in a sentence if they are connected by
an “informative” path in the dependency graph for the
sentence.2 We build the space from a Minipar-parsed
version of the British National Corpus with dependency
parses obtained from Minipar (Lin, 1993). It uses raw
co-occurrence counts and 2000 dimensions.

Selectional preferences and reweighting. We use
a prototype-based selectional preference model (Erk,
2007). It models the selectional preferences of a predi-
cate for an argument position as the weighted centroid
of the vectors for all head words seen for this position
in a large corpus. Let f(a, r, b) denote the frequency of
a occurring in relation r to b in the parsed BNC. Then,
we compute the selectional preferences as:

R′
b(r) =

1
N

∑
a:f(a,r,b)>0

f(a, r, b) · ~va (5)

where N is the number of fillers a with f(a, r, b) > 0.
In Erk and Padó (2008), we found that applying a

reweighting step to the selectional preference vector by
taking each component of the centroid vector R′

b(r) to
the n-th power lead to substantial improvements. The
motivation for this technique is to alleviate noise aris-
ing from the use of unfiltered head words for the con-
struction. The reweighted selectional preference vector
Rb(r) is defined as:

Rb(r) = 〈vn
1 , . . . , vn

m〉 for R′
b(r) = 〈v1, . . . , vm〉 (6)

where we write 〈v1, . . . , vm〉 for the sequence of values
that make up a vector R′

b(r). Inverse selectional pref-
erences R−1

b (r) of nouns are defined analogously, by
computing the centroid of the verbs seen as governors
of the noun in relation r.

In this paper, we test reweighting parameters of n be-
tween 0.5 and 30. Generally, small ns will decrease the
influence of the selectional preference vector. The result
can be thought of as a “word type vector modified by
context expectations”, while large ns increase the role
of context, until we arrive at a “contextual expectation
vector modified by the word type vector”. 3

Vector combination. We test three vector combina-
tion functions �, which have different interpretations
in vector space. The simplest one is componentwise
addition, abbreviated as add, i.e., simple vector addi-
tion.4 With addition, context dimensions receive a high
count whenever either of the two vectors has a high
co-occurrence count for the context.

2We used the minimal context specification and plain
weight of the DependencyVectors software package.

3For the component-wise minimum combination (see be-
low), where we normalize the vectors before the combination,
the reweighting has a different effect. It shifts most of the mass
onto the largest-value dimensions and sets smaller dimensions
to values close to zero.

4Since we subsequently focus on cosine similarity, which
is length-invariant, vector addition can also be interpreted as
centroid computation.

Next, we test component-wise multiplication (mult).
This operation is more difficult to interpret in terms of
vector space, since it does not correspond to the standard
inner or outer vector products. The most straightforward
interpretation is to reinterpret the second vector as a di-
agonal matrix, i.e., as a linear transformation of the first
vector. Large entries in the second vector increase the
weight of the corresponding contexts; small entries de-
crease it. Mitchell and Lapata (2008) found this method
to yield the best results.

The third vector combination function we consider
is component-wise minimum (min). This combination
function results in a vector with high counts only for
contexts which co-occur frequently with both input vec-
tors and can thus be understood as an intersection be-
tween the two context sets. Since the entries of two
vectors need to be on the same order to magnitude for
this method to yield meaningful results, we normalize
vectors before the combination for min.

Assessing models of token meaning. Given a transi-
tive verb v with subject a and direct object b, we test
three variants of computing a token vector for v. The
first two involve only one combination step. In the subj
condition, v’s type vector is combined with the inverse
subject preference vector of a. In the obj condition, v’s
type vector is combined with the inverse object pref-
erence vector of b. The third variant is the recursive
application of the SVS combination procedure described
in Section 2 (condition both). Specifically, we combine
v’s type vector with both a’s inverse subject preference
and with b’s inverse object preference to obtain a “richer”
token vector.

In all three cases, the resulting token vector is com-
pared to the type vector of the paraphrase (in Experi-
ment 1) or the semantically related word (in Experiment
2). We use Cosine Similarity, a standard choice as vector
space similarity measure.

4 Experiments

4.1 Experiment 1: The impact of parameters
In our 2008 paper, we tested the LexSub data only with
the parameters that showed best results on the Mitchell
and Lapata data: vector combination using component-
wise multiplication (mult), and the computation of (in-
verse) selectional preference vectors with high powers
of n = 20 or n = 30. However, there were indications
that the two datasets showed fundamental differences.
In particular, the Mitchell and Lapata data could only be
modeled using a PMI-transformed vector space, while
the LexSub data could only be modeled using raw co-
occurrence count vectors.

Another one of our findings that warrants further in-
quiry stems from our comparison of different context
choices (verb plus subject, verb plus object, noun plus
embedding verb). We found that subjects are better dis-
ambiguators than objects. This seems counterintuitive
both on theoretical and empirical grounds. Theoretically,
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Sentence Substitutes
By asking people who work
there, I have since determined
that he didn’t. (# 2002)

be employed 4;
labour 1

Remember how hard your ances-
tors worked. (# 2005)

toil 4; labour 3;
task 1

Figure 3: Lexical substitution example items for “work”

the notion of verb phrase has been motivated, among
other things, with the claim that direct objects contribute
more to a verb’s disambiguation than subjects (Levin
and Rappaport Hovav, 2005). Empirically, subjects
are known to be realized more often as pronouns than
objects, which makes their vector representations less
semantically specific. However, we used two different
datasets – the subject results on a set of intransitive
verbs, and the object results on a set of transitive verbs,
so the results are not comparable.

In this experiment, we construct a new, more con-
trolled dataset from the Lexical Substitution corpus to
systematically assess the importance of the three main
parameters: the relation used for disambiguation, the
combination function, and the reweighting parameter.

Construction of the LEXSUB-PARA dataset. The
original Lexical Substitution corpus, constructed for the
SemEval-1 lexical substitution task (McCarthy and Nav-
igli, 2007), consists of 10 instances each of 200 target
words in sentential contexts, drawn from a large inter-
net corpus (Sharoff, 2006). Contextually appropriate
paraphrases for each instance of each target word were
elicited from up to 6 participants. Figure 3 shows two in-
stances for the verb to work. The frequency distribution
over paraphrases can be understood as a characterization
of the target word’s meaning in each context.

For the current paper, we constructed a new subset of
LexSub we call LEXSUB-PARA by parsing LexSub with
Minipar (Lin, 1993) and extracting all 177 sentences
with transitive verbs that had overtly realized subjects
and objects, regardless of voice. We did not manually
verify the correctness of the parses, but discarded 17
sentences where we were not able to compute inverse
selectional preferences for the subject or object head
word (these were mostly rare proper names). This left
160 transitive instances of 42 verbs.

Evaluation For evaluation, we use a variant of the Se-
mEval “out of ten” (OOT) evaluation metrics defined by
McCarthy and Navigli (2007). They developed two met-
rics, OOT Precision and Recall, which compare where a
predicted set of appropriate paraphrases must be evalu-
ated against a gold standard set. Their metrics are called
“out of ten” because they are measure the accuracy of the
first ten paraphrases predicted by the system. Since they
allow systems to abstain from predictions for any num-
ber of tokens, their two variants average this accuracy
(a), over the tokens with a prediction (OOT Precision),
and (b), over all tokens (OOT Recall). Since our system

0.5 1 2 5 10 20
add obj 61.5 59.7 58.9 56.1 56.0 55.7
add subj 61.7 61.7 59.5 58.4 57.3 57.0
add both 61.3 60.0 60.2 57.7 57.1 56.7
mult obj 59.8 59.7 57.8 55.7 55.7 55.4
mult subj 60.3 59.7 59.3 57.3 57.7 56.7
mult both 59.9 58.8 57.1 55.8 55.3 <1Pr

min obj 60.2 60.0 59.5 57.3 55.7 55.8
min subj 62.2 60.5 59.1 58.5 57.8 57.0
min both 62.3 60.2 59.8 57.3 55.8 55.1

Table 1: OOT accuracy on the LEXSUB-PARA dataset
across models and reweighting values (best results for
each model boldfaced). Random baseline: 53.7. Target
type vector baseline: 57.1. Pr: Numerical problem.

produces predictions for all tokens, OOT Precision and
Recall become identical.

Formally, let Gi be the gold paraphrases for occur-
rence i, and let f(s, i) be the frequency with which s
has been named as paraphrase for i. Let Mi be the ten
paraphrase candidates top-ranked by the SVS model for
i. We write out-of-ten accuracy (OOT) as:

OOT = 1/|I|
∑

i

∑
s∈Mi∩Gi

f(s, i)∑
s∈Gi

f(s, i)
(7)

We compute two baselines. The first one is random
baseline that guesses whether paraphrases are appropri-
ate. The second baseline uses the original type vector
of the target verb without any combination, i.e., its “out
of context meaning”, as representation for the token.

Results. Table 1 shows the results on the LEXSUB-
PARA dataset. Recall that the task is to decide the ap-
propriateness of paraphrases for verb instances, disam-
biguated by the inverse selectional preferences of their
subjects (subj), their objects (obj), and both. The ran-
dom baseline attains an OOT accuracy of 53.7, and the
type vector of the target vector performs at 57.1.

SVS is able to outperform both baselines for all val-
ues of the reweighting parameter n <2, and we find the
best results for the lowest value, n = 0.5. As for the
influence of the vector combination function, the best
result is yielded by min (OOT=62.3), followed by add
(OOT=61.7), while mult shows generally worse results
(OOT=60.3). For both add and mult, using only the sub-
ject as context only is optimal. The overall best result,
using min, is seen for both; however, the improvement
over subj is very small.

In the model mult-both-20, where target vectors were
multiplied with two very large expectation vectors, al-
most all instances failed due to overflow errors.

Discussion. Our results indicate that our parameter
optimization strategy in Erk and Padó (2008) was in fact
flawed. The parameters that were best for the Mitchell
and Lapata (2008) data (mult, n = 20) are suboptimal
for LEXSUB-PARA data.5 The good results for low val-

5We assume that our results hold for the Padó & Erk (2008)
lexical substitution dataset as well, due to its similar nature.
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ues of n indicate that good discrimination between valid
and invalid paraphrases can be obtained by relatively
small modifications of the target vector in the direction
indicated by the context. Surprisingly, we still find that
the results in the subj condition are almost always better
than those in the obj condition, even though the dataset
consists only of transitive verbs, where we would have
expected the inverse result. We have two partial ex-
planations. First, we find that pronouns, which occur
frequently in subject position (I, he), are still informa-
tive enough to distinguish “animate” from “inanimate”
paraphrases of verbs such as touch. Second, we see
a higher number of Minipar errors in for object posi-
tions than for subject positions, and consequently more
data both for object fillers and for object selectional
preferences.

The overall best result was yielded by a condition that
used both (subject plus object) for disambiguation, using
the recursive modification from Eq. (4). While we see
this as a promising result, the difference to the second-
best result is very small, in almost all other conditions
the performance of both is close to the average of obj
and subj and thus a suboptimal choice.

4.2 Experiment 2: Creating larger datasets with
pseudo-paraphrases

With a size of 2,000 sentences, even the complete
LexSub dataset is tiny in comparison to many other
resources in NLP. Limiting attention to successfully
parsed transitive instances results in an even smaller
dataset on which it is difficult to distinguish noise from
genuine differences between models. This is a large
problem for the use of paraphrase appropriateness as
evaluation task for models of word meaning in context.

In consequence, the automatic creation of larger
datasets is an important task. While unsupervised meth-
ods for paraphrase induction are becoming available
(e.g., Callison-Burch (2008)), they are still so noisy
that the created datasets cannot serve as gold standards.
However, there is an alternative strategy: there is a
considerable amount of data in different languages an-
notated with categorical word sense, created (e.g.) for
Word Sense Disambiguation exercises such as Senseval.
We suggest to convert these data for use in a task similar
to paraphrase assessment, interpreting available infor-
mation about the word sense as pseudo-paraphrases.
Of course, the caveat is that these pseudo-paraphrases
may behave differently than genuine paraphrases. To
investigate this issue, we repeat Experiment 1 on this
dataset.

Construction of the SEMCOR-PARA dataset The
SemCor corpus is a subset of the Brown corpus that
contains 23,346 lemmas annotated with senses accord-
ing to WordNet 1.6. Fortunately, WordNet provides a
rich characterization of word senses. This allows us
to use the WordNet synonyms of a given word sense
as pseudo-paraphrases. Since it can be the case that
the target word is the only word in a synset, we also

0.5 1 2 5 10 20
add obj 21.7 20.7 23.2 24.3 24.2 21.8
add subj 20.6 20.1 22.9 24.4 23.3 19.7
add both 21.1 20.3 23.2 24.4 23.3 18.9
mult obj 22.6 24.8 25.0 24.4 24.2 21.4
mult subj 21.1 23.9 24.4 24.4 23.5 19.8
mult both 24.5 24.5 25.6 24.3 20.0 17.4
min obj 20.9 19.5 23.6 24.4 24.3 21.9
min subj 20.1 19.6 22.5 24.2 23.9 19.6
min both 20.1 19.8 25.2 24.5 24.3 19.0

Table 2: OOT accuracy on the SEMCOR-PARA dataset
across models and reweighting values (best results for
each line boldfaced). Random baseline: 19.6. Target
type vector baseline: 20.8

need to add direct hypernyms. Direct hypernyms have
been used in annotation tasks to characterize WordNet
senses (Mihalcea and Chklovski, 2003), an indicator
that they are usually close enough in meaning to func-
tion as pseudo-paraphrases.

Again, we parsed the corpus with Minipar and iden-
tified all sense-tagged instances of the verbs from
LEXSUB-PARA, to keep the two corpora as compa-
rable as possible. For each instance wi of word w, we
collected all synonyms and direct hypernyms of the
synset as the set of appropriate paraphrases. The list
of synonyms and direct hypernyms of all other senses
of w, whether they occur in SemCor or not, were con-
sidered inappropriate paraphrases for the instance wi.
This method does not provide us with frequencies for
the pseudo-paraphrases; we thus assumed a uniform fre-
quency of 1. This does not do away with the gradedness
of the meaning representation, though, since each token
is still associated with a set of appropriate paraphrases.

Out of 2242 transitive verb instances, we further re-
moved 153 since we could not compute selectional pref-
erences for at least one of the fillers. 484 instances were
removed because WordNet did not list any verbal para-
phrases for the annotated synset or its direct hypernym.
This resulted in 1605 instances for 40 verbs, a dataset
an order of magnitude larger than LEXSUB-PARA. (See
Section 4.3 for an example verb with paraphrases.)

Results and Discussion. We again use the OOT ac-
curacy measure. The results for paraphrase assessment
on SEMCOR-PARA are shown in Table 2. The numbers
are substantially lower than for LEXSUB-PARA. This
is first and foremost a consequence of the higher “poly-
semy” of the pseudo-paraphrases. In LEXSUB-PARA,
the average numbers of possible paraphrases per tar-
get word is 20; in SEMCOR-PARA, 54. This is to be
expected and also reflected in the much lower random
baseline (19.6% OOT). However, we also observe that
the reduction in error rate over the baseline is consider-
ably lower for SEMCOR-PARA than for LEXSUB-PARA
(10% vs. 20% reduction).

Among the parameters of the model, we find the
largest impact for the reweighting parameter. The best
results occur in the middle range(n = 2 and n = 5),
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with both lower and higher weights yielding consid-
erably lower scores. Apparently, it is more difficult
to strike the right balance between the target and the
expectations on this dataset. This is also mirrored in
the smaller improvement of the target type vector base-
line over the random baseline. As for vector combi-
nation functions, we find the best results for the more
“intersection”-like mult and min combinations, with
somewhat lower results for add; however, the differ-
ences are rather small. Finally, combination with obj
works better than combination with subj. At least among
the best results, both is able to improve over the use of ei-
ther individual relation. The best result uses mult-both,
with an OOT accuracy of 25.6.

4.3 Further analysis

In our two experiments, we have found systematic rela-
tionships between the SVS model parameters and their
performance within the LEXSUB-PARA and SEMCOR-
PARA datasets. Unfortunately, few of the parameter set-
tings we found to work well appear to generalize across
the two datasets; neither do they correspond to the op-
timal parameter values we established for the Mitchell
and Lapata dataset in our 2008 paper. Variables that
vary particularly strikingly are the reweighting parame-
ter and the performance of different relations. To better
understand these differences, we perform a further vali-
dation analysis that attempts to link model performance
to a variable that (a) behaves consistently across the two
datasets used in this paper and (b) sheds light onto the
patterns we have observed for the parameters.

The quantity we will use for this purpose is the aver-
age discriminativity of the model. We define discrimina-
tivity as the degree to which the token vector computed
by the model is on average more similar to the valid than
to the invalid paraphrases. For a paraphrase ordering
task such as the one we are considering, we want this
quantity to be as large as possible; very small quantities
indicate that the model is basically “guessing” an order.

Figure 4 plots disciminativity against model perfor-
mance. As can be expected, it is indeed a very strong
correlation between discriminativity and OOT accu-
racy across all models. A Pearson’s correlation test
confirms that the correlation is highly significant for
both datasets (LEXSUB-PARA: r=0.65, p < 0.0001;
SEMCOR-PARA: r=0.76, p < 0.0001).

Next, we considered the relationship between the
mean discriminativity for different combinations and
reweighting values n. Figure 5 shows the resulting plots,
which reveal two main differences between the datasets.
The first one is the influence of the reweighting parame-
ter. For LEXSUB-PARA, the highest discriminativity is
found for small values of n, with decreasing values for
higher parameter values. In contrast, SEMCOR-PARA
shows the highest discriminativity for middle values of
n (on the order of 5–10), with lowest values on either
side. The second difference is the relative discrimina-
tivity of obj and subj. On LEXSUB-PARA, the subj

predictions are more discriminative than obj predictions
for all values of n. On SEMCOR-PARA, this picture is
reversed, with more discriminative obj predictions for
the best (and thus relevant) values of n.

We interpret these patterns, which fit the observed
OOT accuracy numbers well, as additional evidence that
the variations we see between the datasets are not noise
or artifacts of the setup, but arise due to the different
makeup of the two datasets. This ties in with our intu-
itions about the differences between human-generated
paraphrases and WordNet “pseudo-paraphrases”. Com-
pare the following paraphrase lists:

dismiss (LexSub): banish, deride, discard, discharge, dis-
patch, excuse, fire, ignore, reject, release, remove, sack

dismiss (SemCor/WordNet): alter, axe, brush, can, change,
discount, displace, disregard, dissolve, drop, farewell,
fire, force, ignore, modify, notice, packing, push, reject,
remove, sack, send, terminate, throw, usher

The SEMCOR-PARA list contains a larger number of
unspecific pseudo-paraphrases such as change, push,
send, which stem from direct WordNet hypernyms of
the more specific dismiss senses. Presumably, these
terms are assigned rather general vectors which the SVS
finds difficult to rule out as paraphrases. This lowers
the discriminativity of the models, in particular for subj,
and results in the smaller relative improvement over
the baseline we observe for SEMCOR-PARA. This sug-
gests that the usability of word sense-derived datasets
in evaluations could be improved by taking depth in the
WordNet hierarchy into account when including direct
hypernyms among the pseudo-paraphrases.

5 Conclusions
In this paper, we have explored the parameter space
for the computation of vector-based representations of
token meaning with the SVS model.

Our evaluation scenario was paraphrase assessment.
To systematically assess the impact of parameter choice,
we created two new controlled datasets. The first one,
the LEXSUB-PARA dataset, is a small subset of the Lex-
ical Substitution corpus (McCarthy and Navigli, 2007)
that was specifically created for this task. The second
dataset, SEMCOR-PARA, which is considerably larger,
consists in instances from the SemCor corpus whose
WordNet annotation was automatically converted into
“pseudo-paraphrase” annotation.6

We found a small number of regularities that hold for
both datasets: namely, that the reweighting parameter
is the most important choice for a SVS model, followed
by the relation used as context, while the influence of
the vector combination function is comparatively small.
Unfortunately, the actual settings of these parameters
appeared not to generalize well from one dataset to
the other. We have collected evidence that these diver-
gences are not due to noise, but to genuine differences

6Both datasets can be obtained from the authors.
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Figure 4: Scatterplot of "out of ten" accuracy against model discriminativity between valid and invalid paraphrases.
Left: LEXSUB-PARA, right: SEMCOR-PARA.
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Figure 5: Average amount to which predictions are more similar to valid than to invalid paraphrases, for different
reweighting values. Left: LEXSUB-PARA, right: SEMCOR-PARA.

in the datasets. We describe an auxiliary quantity, dis-
criminativity, that measures the ability of the model’s
predictions to distinguish between valid and invalid para-
phrases.

The consequence we draw from this study is that it
is surprisingly difficult to establish generalizable “best
practice” parameter setting for SVS. Good parameter
values appear to be sensitive to the properties of datasets.
For example, we have attributed the observation that
subjects are more informative on LEXSUB-PARA, while
objects work better on SEMCOR-PARA, to differences
in the set of paraphrase competitors. In this regard,
the conversion of the WSD corpus can be considered a
partial success. We have constructed the largest existing
paraphrase assessment corpus. However, the use of
WordNet information to create paraphrases results in a
very difficult corpus. We will investigate methods that
exclude overly general hypernyms of the target words as
paraphrases to alleviate the problems we see currently.

Discriminativity further suggests that paraphrase as-
sessment can be improved by selectional preference
representations that are trained to maximize the dis-
tance between valid and invalid paraphrases. Such a
representation could be provided by discriminative for-

mulations (Bergsma et al., 2008), or by exemplar-based
models that are able to deal better with the ambiguity
present in the preferences of very general words.

Another important topic for further research is the
computation of token vectors that incorporate more than
one context word. The current results we obtain for
“both” are promising but limited; it appears that the suc-
cessful integration of multiple context words requires
strategies that go beyond simplistic addition or intersec-
tion of observed contexts.
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Abstract
In this paper, we propose a novel way
to include unsupervised feature selection
methods in probabilistic taxonomy learn-
ing models. We leverage on the computa-
tion of logistic regression to exploit unsu-
pervised feature selection of singular value
decomposition (SVD). Experiments show
that this way of using SVD for feature se-
lection positively affects performances.

1 Introduction

Taxonomies are extremely important knowledge
repositories in a variety of applications for nat-
ural language processing and knowledge repre-
sentation. Yet, manually built taxonomies such
as WordNet (Miller, 1995) often lack in cover-
age when used in specific knowledge domains.
Automatically creating or extending taxonomies
for specific domains is then a very interesting
area of research (O’Sullivan et al., 1995; Magnini
and Speranza, 2001; Snow et al., 2006). Auto-
matic methods for learning taxonomies from cor-
pora often use distributional hypothesis (Harris,
1964) and exploit some induced lexical-syntactic
patterns (Hearst, 1992; Pantel and Pennacchiotti,
2006). In these models, within a very large set,
candidate word pairs are selected as new word
pairs in hyperonymy and added to an existing tax-
onomy. Candidate pairs are represented in some
feature space. Often, these feature spaces are
huge and, then, models may take into considera-
tion noisy features.

In machine learning, feature selection has been
often used to reduce the dimensions in huge fea-
ture spaces. This has many advantages, e.g., re-
ducing the computational cost and improving per-
formances by removing noisy features (Guyon and
Elisseeff, 2003).

In this paper, we propose a novel way to in-
clude unsupervised feature selection methods in

probabilistic taxonomy learning models. Given
the probabilistic taxonomy learning model intro-
duced by (Snow et al., 2006), we leverage on the
computation of logistic regression to exploit sin-
gular value decomposition (SVD) as unsupervised
feature selection. SVD is used to compute the
pseudo-inverse matrix needed in logistic regres-
sion.

To describe our idea, we firstly review how
SVD can be used as unsupervised feature selec-
tion (Sec. 2). In Section 3 we then describe the
probabilistic taxonomy learning model introduced
by (Snow et al., 2006). We will then shortly re-
view the logistic regression used to compute the
taxonomy learning model to describe where SVD
can be naturally used. We will describe our ex-
periments in Sec. 4. Finally, we will draw some
conclusions and describe our future work (Sec. 5).

2 Unsupervised feature selection with
Singular Value Decomposition

Singular value decomposition (SVD) is one of the
possible factorization of a rectangular matrix that
has been largely used in information retrieval for
reducing the dimension of the document vector
space (Deerwester et al., 1990).

The decomposition can be defined as follows.
Given a generic rectangular n × m matrix A, its
singular value decomposition is:

A = UΣV T

where U is a matrix n × r, V T is a r ×m and Σ
is a diagonal matrix r × r. The two matrices U
and V are unitary, i.e., UTU = I and V TV = I .
The diagonal elements of the Σ are the singular
values such as δ1 ≥ δ2 ≥ ... ≥ δr > 0 where r is
the rank of the matrix A. For the decomposition,
SVD exploits the linear combination of rows and
columns of A.

A first trivial way of using SVD as unsupervised
feature reduction is the following. Given E as set
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of training examples represented in a feature space
of n features, we can observe it as a matrix, i.e.
a sequence of examples E = (−→e1 ...−→em). With
SVD, the n × m matrix E can be factorized as
E = UΣV T . This factorization implies we can
focus the learning problem on a new space using
the transformation provided by the matrix U . This
new space is represented by the matrix:

E′ = UTE = ΣV T (1)

where each example is represented with r new fea-
tures. Each new feature is obtained as a linear
combination of the original features, i.e. each fea-
ture vector −→el can be seen as a new feature vector
−→el ′ = UT−→el . When the target feature space is big
whereas the cardinality of the training set is small,
i.e., n >> m, the application of SVD results in a
reduction of the original feature space as the rank
r of the matrix E is r ≤ min(n,m).

A more interesting way of using SVD as unsu-
pervised feature selection model is to exploit its
approximated computations, i.e. :

A ≈ Ak = Um×kΣk×kV
T
k×n

where k is smaller than the rank r. The compu-
tation algorithm (Golub and Kahan, 1965) is al-
lowed to stop at a given k different from the real
rank r. The property of the singular values, i.e.,
δ1 ≥ δ2 ≥ ... ≥ δr > 0, guarantees that the
first k are bigger than the discarded ones. There
is a direct relation between the informativeness of
the dimension and the value of the singular value.
High singular values correspond to dimensions of
the new space where examples have more vari-
ability whereas low singular values determine di-
mensions where examples have a smaller variabil-
ity (see (Liu, 2007)). These dimensions can not
be used as discriminative features in learning al-
gorithms. The possibility of computing the ap-
proximated version of the matrix gives a power-
ful method for feature selection and filtering as
we can decide in advance how many features or,
better, linear combination of original features we
want to use.

As feature selection model, SVD is unsuper-
vised in the sense that the feature selection is done
without taking into account the final classes of the
training examples. This is not always the case,
feature selection models such as those based on
Information Gain largely use the final classes of
training examples. SVD as feature selection is in-
dependent from the classification problem.

3 Probabilistic Taxonomy Learning and
SVD feature selection

Recently, Snow et al. (2006) introduced a prob-
abilistic model for learning taxonomies form cor-
pora. This probabilistic formulation exploits the
two well known hypotheses: the distributional hy-
pothesis (Harris, 1964) and the exploitation of
the lexico-syntactic patterns as in (Robison, 1970;
Hearst, 1992). Yet, in this formulation, we can
positively and naturally introduce our use of SVD
as feature selection model.

In the rest of this section we will firstly intro-
duce the probabilistic model (Sec. 3.1) and, then,
we will describe how SVD is used as feature se-
lector in the logistic regression that estimates the
probabilities of the model. To describe this part we
need to go in depth into the definition of the logis-
tic regression (Sec. 3.2) and the way of estimating
the regression coefficients (Sec. 3.3). This will
open the possibility of describing how we exploit
SVD (Sec. 3.4)

3.1 Probabilistic model

In the probabilistic formulation (Snow et al.,
2006), the task of learning taxonomies from a cor-
pus is seen as a probability maximization prob-
lem. The taxonomy is seen as a set T of asser-
tions R over pairs Ri,j . If Ri,j is in T , i is a con-
cept and j is one of its generalization (i.e., the di-
rect or the indirect generalization). For example,
Rdog,animal ∈ T describes that dog is an animal.
The main innovation of this probabilistic method
is the ability of taking into account in a single
probability the information coming from the cor-
pus and an existing taxonomy T .

The main probabilities are then: (1) the prior
probability P (Ri,j ∈ T ) of an assertion Ri,j to
belong to the taxonomy T and (2) the posterior
probability P (Ri,j ∈ T |−→e i,j) of an assertion Ri,j
to belong to the taxonomy T given a set of evi-
dences −→e i,j derived from the corpus. Evidences
is a feature vector associated with a pair (i, j). For
examples, a feature may describe how many times
i and j are seen in patterns like ”i as j” or ”i is
a j”. These among many other features are in-
dicators of an is-a relation between i and j (see
(Hearst, 1992)).

Given a set of evidences E over all the relevant
word pairs, in (Snow et al., 2006), the probabilis-
tic taxonomy learning task is defined as the prob-
lem of finding the taxonomy T̂ that maximizes the

67



probability of having the evidences E, i.e.:

T̂ = arg max
T

P (E|T )

In (Snow et al., 2006), this maximization prob-
lem is solved with a local search. What is max-
imized at each step is the increase of the probabil-
ity P (E|T ) of the taxonomy when the taxonomy
changes from T to T ′ = T ∪ N where N are the
relations added at each step. This increase of prob-
abilities is defined as multiplicative change ∆(N)
as follows:

∆(N) = P (E|T ′)/P (E|T ) (2)

The main innovation of the model in (Snow et al.,
2006) is the possibility of adding at each step the
best relation N = {Ri,j} as well as N = I(Ri,j)
that is Ri,j with all the relations by the existing
taxonomy. We will then experiment with our fea-
ture selection methodology in the two different
models:

flat: at each iteration step, a single relation is
added, i.e. R̂i,j = arg maxRi,j ∆(Ri,j)

inductive: at each iteration step, a set of re-
lations is added, i.e. I(R̂i,j) where R̂i,j =
arg maxRi,j ∆(I(Ri,j)).

The last important fact is that it is possible to
demonstrate that

∆(Ei,j) = k · P (Ri,j ∈ T |−→e i,j)
1− P (Ri,j ∈ T |−→e i,j)

=

= k · odds(Ri,j)

where k is a constant (see (Snow et al., 2006))
that will be neglected in the maximization process.
This last equation gives the possibility of using the
logistic regression as it is. In the next sections we
will see how SVD and the related feature selection
can be used to compute the odds.

3.2 Logistic Regression
Logistic Regression (Cox, 1958) is a particular
type of statistical model for relating responses Y
to linear combinations of predictor variables X . It
is a specific kind of Generalized Linear Model (see
(Nelder and Wedderburn, 1972)) where its func-
tion is the logit function and the independent vari-
able Y is a binary or dicothomic variable which
has a Bernoulli distribution. The dependent vari-
able Y takes value 0 or 1. The probability that

Y has value 1 is function of the regressors x =
(1, x1, ..., xk).

The probabilistic taxonomy learner model in-
troduced in the previous section falls in the cat-
egory of probabilistic models where the logistic
regression can be applied as Ri,j ∈ T is the bi-
nary dependent variable and −→e i,j is the vector of
its regressors. In the rest of the section we will see
how the odds, i.e., the multiplicative change, can
be computed.

We start from formally describing the Logistic
Regression Model. Given the two stochastic vari-
ables Y and X , we can define as p the probability
of Y to be 1 given that X=x, i.e.:

p = P (Y = 1|X = x)

The distribution of the variable Y is a Bernulli dis-
tribution, i.e.:

Y ∼ Bernoulli(p)

Given the definition of the logit(p) as:

logit(p) = ln
(

p

1− p

)
(3)

and given the fact that Y is a Bernoulli distribution,
the logistic regression foresees that the logit is a
linear combination of the values of the regressors,
i.e.,

logit(p) = β0 + β1x1 + ...+ βkxk (4)

where β0, β1, ..., βk are called regression coeffi-
cients of the variables x1, ..., xk respectively.

Given the regression coefficients, it is possible
to compute the probability of a given event where
we observe the regressors x to be Y = 1 or in our
case to belong to the taxonomy. This probability
can be computed as follows:

p(x) =
exp(β0 + β1x1 + ...+ βkxk)

1 + exp(β0 + β1x1 + ...+ βkxk)

It is obviously trivial to determine the
odds(Ri,j) related to the multiplicative change
of the probabilistic taxonomy model. The odds
is the ratio between the positive and the negative
event. It is defined as follows:

odds(Ri,j) = P (Ri,j∈T |−→e i,j)

1−P (Ri,j∈T |−→e i,j)
(5)

Then, it is strictly related with the logit, i.e.:

odds(Ri,j) = exp(β0 +−→e Ti,jβ) (6)

The relationship between the possible values of
the probability, odds and logit is show in the Table
1.
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Probability Odds Logit
0 ≤ p < 0.5 [0, 1) (−∞, 0]
0.5 < p ≤ 1 [1,∞) [0,∞)

Table 1: Relationship between probability, odds
and logit

3.3 Estimating Regression Coefficients
The remaining problem is how to estimate the re-
gression coefficients. This estimation is done us-
ing the maximal likelihood estimation to prepare a
set of linear equations using the above logit defini-
tion and, then, solving a linear problem. This will
give us the possibility of introducing the necessity
of determining a pseudo-inverse matrix where we
will use the singular value decomposition and its
natural possibility of performing feature selection.
Once we have the regression coefficients, we have
the possibility of assigning estimating a probabil-
ity P (Ri,j ∈ T |−→e i,j) given any configuration of
the values of the regressors−→e i,j , i.e., the observed
values of the features. For sake of simplicity we
will hereafter refer to −→e i,j as −→e l.

Let assume we have a multiset O of observa-
tions extracted from Y ×E where Y ∈ {0, 1} and
we know that some of them are positive observa-
tions (i.e., Y = 1) and some of them are negative
observations (i.e., Y = 0).

For each pairs the relative configuration −→e l ∈
E that appeared at least once in O, we can de-
termine using the maximal likelihood estimation
P (Y = 1|−→e l). Then, from the equation of the
logit (Eq. 4), we have a linear equation system,
i.e.: −−−−−→

logit(p) = Qβ (7)

where Q is a matrix that includes a constant col-
umn of 1, necessary for the β0 of the linear combi-
nation of the values of the regression. Moreover it
includes the transpose of the evidence matrix, i.e.
E = (−→e 1...−→e m). Therefore the matrix will be:

Q =


1 e11 e12 · · · e1n
1 e21 e22 · · · e2n
...

...
...

. . .
...

1 em1 em2 · · · emn


The set of equations in Eq. 7 can be solved us-

ing multiple linear regression.
In their general form, the equations of multiple

linear regression may be written as (Caron et al.,

1988):

y = Xβ + ε

where:

• y is a column vector n × 1 that includes the
observed values of the dependent variables
Y1, ..., Yk;

• X is a matrix n ×m of the values of the re-
gressors that we have observed;

• β is a column vector m× 1 of the regression
coefficients;

• ε is a column vector including the stochastic
components that have not been observed and
that will not be considered later.

In the case X is a rectangular and singular matrix,
the system y = Xβ has not a solution. Yet, it is
possible to use the principle of the Least Square
Estimation. This principle determines the solution
β that minimize the residual norm, i.e.:

β̂ = arg min ‖Xβ − y‖2 (8)

This problem can be solved by the Moore-
Penrose pseudoinverse X+ (Penrose, 1955).
Then, the final equation to determine the β is

β̂ = X+y

It is important to remark that if the inverse matrix
exist X+ = X−1 and that X+X and XX+ are
symmetric.

For our case, the following equation is valid:

β̂ = Q+−−−−−→logit(p)

3.4 Computing Pseudoinverse Matrix with
SVD Analysis

We finally reached the point where it is possible
to explain our idea that is naturally using singular
value decomposition (SVD) as feature selection in
a probabilistic taxonomy learner. In the previous
sections we described how the probabilities of the
taxonomy learner can be estimated using logistic
regressions and we concluded that a way to de-
termine the regression coefficients β is computing
the Moore-Penrose pseudoinverse Q+. It is pos-
sible to compute the Moore-Penrose pseudoin-
verse using the SVD in the following way (Pen-
rose, 1955). Given an SVD decomposition of the
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matrixQ = UΣV T the pseudo-inverse matrix that
minimizes the Eq. 9 is:

Q+ = V Σ+UT (9)

The diagonal matrix Σ+ is a matrix r× r obtained
first transposing Σ and then calculating the recip-
rocals of the singular value of Σ. So the diagonal
elements of the Σ+ are 1

δ1
, 1
δ2
, ..., , 1

δr
.

We have now our opportunity of using SVD as
natural feature selector as we can compute differ-
ent approximations of the pseudo-inverse matrix.
As we saw in Sec. 2, the algorithm for computing
the singular value decomposition can be stopped a
different dimensions. We called k the number of
dimensions. As we can obtain different SVD as
approximations of the original matrix (Eq. 2), we
can define different approximations of :

Q+ ≈ Q+
k = Vn×kΣ+

k×kU
T
k×m

In our experiments we will use different values
of k to explore the benefits of SVD as feature se-
lector.

4 Experimental Evaluation

In this section, we want to empirically explore
whether our use of SVD feature selection pos-
itively affects performances of the probabilistic
taxonomy learner. The best way of determining
how a taxonomy learner is performing is to see if it
can replicate an existing ”taxonomy”. We will ex-
periment with the attempt of replicating a portion
of WordNet (Miller, 1995). In the experiments, we
will address two issues: 1) determining to what
extent SVD feature selection affect performances
of the taxonomy learner; 2) determining if SVD
as unsupervised feature selection is better for the
task than some simpler model for taxonomy learn-
ing. We will explore the effects on both the flat
and the inductive probabilistic taxonomy learner.

The rest of the section is organized as follows.
In Sec. 4.1 we will describe the experimental set-
up in terms of: how we selected the portion of
WordNet, the description of the corpus used to ex-
tract evidences, a description of the feature space
we used, and, finally, the description of a baseline
models for taxonomy learning we have used. In
Sec. 4.2 we will present the results of the experi-
ments in term of performance.

4.1 Experimental Set-up

To completely define the experiments we need to
describe some issues: how we defined the taxon-
omy to replicate, which corpus we have used to
extract evidences for pairs of words, which feature
space we used, and, finally, the baseline model we
compared our feature selection model against.

As target taxonomy we selected a portion of
WordNet1 (Miller, 1995). Namely, we started
from the 44 concrete nouns listed in (McRae et
al., 2005) and divided in 3 classes: animal, arti-
fact, and vegetable. For sake of comprehension,
this set is described in Tab. 2. For each word w,
we selected the synset sw that is compliant with
the class it belongs to. We then obtained a set S of
synsets (see Tab. 2). We then expanded the set to
S′ adding the siblings (i.e., the coordinate terms)
for each synset in S. The set S′ contains 265 co-
ordinate terms plus the 44 original concrete nouns.
For each element in S we collected its hyperonym,
obtaining the setH . We then removed from the set
H the 4 topmosts: entity, unit, object, and whole.
The set H contains 77 hyperonyms. For the pur-
pose of the experiments we both derived from the
previous sets a taxonomy T and produced a set of
negative examples T . The two sets have been ob-
tained as follows. The taxonomy T is the portion
of WordNet implied by O = H ∪ S′, i.e., T con-
tains all the (s, h) ∈ O × O that are in WordNet.
On the contrary, T contains all the (s, h) ∈ O×O
that are not in WordNet. We then have 5108 posi-
tive pairs in T and 52892 negative pairs in T .

We then split the set T ∪T in two parts, training
and testing. As we want to see if it is possible to
attach the set S′ to the right hyperonym, the split
has been done as follows. We randomly divided
the set S′ in two parts Str and Sts, respectively,
of 70% and 30% of the original S′. We then se-
lected as training Ttr all the pairs in T containing
a synset in Str and as testing set Tts those pairs of
T containing a synset of Sts. For the probabilistic
model, Ttr is the initial taxonomy whereas Tts∪T
is the unknown set.

As corpus we used the English Web as Corpus
(ukWaC) (Ferraresi et al., 2008). This is a web
extracted corpus of about 2700000 web pages con-
taining more than 2 billion words. The corpus con-
tains documents of different topics such as web,
computers, education, public sphere, etc.. It has
been largely demonstrated that the web documents

1We used the version 3.0
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Concrete nouns Clas Sense Concrete nouns Clas Sense
1 banana Vegetable 1 23 boat Artifact 0
2 bottle Artifact 0 24 bowl Artifact 0
3 car Artifact 0 25 cat Animal 0
4 cherry Vegetable 2 26 chicken Animal 1
5 chisel Artifact 0 27 corn Vegetable 2
6 cow Animal 0 28 cup Artifact 0
7 dog Animal 0 29 duck Animal 0
8 eagle Animal 0 30 elephant Animal 0
9 hammer Artifact 1 31 helicopter Artifact 0
10 kettle Artifact 0 32 knife Artifact 0
11 lettuce Vegetable 2 33 lion Animal 0
12 motorcycle Artifact 0 34 mushroom Vegetable 4
13 onion Vegetable 2 35 owl Animal 0
14 peacock Animal 1 36 pear Vegetable 0
15 pen Artifact 0 37 pencil Artifact 0
16 penguin Animal 0 38 pig Animal 0
17 pineapple Vegetable 1 39 potato Vegetable 2
18 rocket Artifact 0 40 scissors Artifact 0
19 screwdriver Artifact 0 41 ship Artifact 0
20 snail Animal 0 42 spoon Artifact 0
21 swan Animal 0 43 telephone Artifact 1
22 truck Artifact 0 44 turtle Animal 1

Table 2: Concrete nouns, Classes and senses selected in WordNet

are good models for natural language (Lapata and
Keller, 2004).

As the focus of the paper is the analysis of the
effect of the SVD feature selection, we used as fea-
ture spaces both n-grams and bag-of-words. Out
of the T ∪ T , we selected only those pairs that
appeared at a distance of at most 3 tokens. Us-
ing these 3 tokens, we generated three spaces:
(1) 1-gram that contains monograms, (2) 2-gram
that contains monograms and bigrams, and (3) the
3-gram space that contains monograms, bigrams,
and trigrams. For the purpose of this experiment,
we used a reduced stop list as classical stop words
as punctuation, parenthesis, the verb to be are very
relevant in the context of features for learning a
taxonomy.

Finally, we want to describe our baseline model
for taxonomy learning. This model only contains
Heart’s patterns (Hearst, 1992) as features. The
feature value is the point-wise mutual information.
These features are in some sense the best features
for the task as these have been manually selected
after a process of corpus analysis. These baseline
features are included in our 3-gram model. We can

then compare our best models with this baseline
features in order to see if our SVD feature selec-
tion model outperforms manual feature selection.

4.2 Results

In the first set of experiments we want to focus on
the issue whether or not performances of the prob-
abilistic taxonomy learner is positively affected
by the proposed feature selection model based on
the singular value decomposition. We then deter-
mined the performance with respect to different
values of k. This latter represents the number of
surviving dimensions where the pseudo-inverse is
computed. Then, it represents the number of fea-
tures the model adopts. We performed this first set
of experiments in the 1-gram feature space. Punc-
tuation has been considered. Figure 1 plots the ac-
curacy of the probabilistic learner with respect to
the size of the feature set, i.e. the number k of sin-
gle values considered for computing the pseudo-
inverse matrix. To determine if the effect of the
feature selection is preserved during the iteration
of the local search algorithm, we report curves at
different sizes of the set of added pairs. Curves are
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Figure 2: Comparison of different feature spaces
with k=400

reported for both the flat model and the inductive
model. The flat algorithm adds one pair at each
iteration. Then, we reported curves for each 20
added pairs. Each curve shows that accuracy does
not increase after a dimension of k=700. This size
of the space is necessary only for the first 20 added
pairs. Accuracy keeps increasing to k=700 and
then decreases. When we add more pairs, the opti-
mal size of the space is around k=200. For the in-
ductive model we report the accuracies for around
40, 80, 130 added pairs. Here, at each iteration,
more than one pair is added. The optimal dimen-
sion of the feature space seems to be around 500
as after that value performances decrease or stay
stable. SVD feature selection has then a positive
effect for both the flat and the inductive probabilis-
tic taxonomy learners. This has beneficial effects
both on the performances and on the computation
time.

In the second set of experiments we want to de-
termine whether or not SVD feature selection for
the probabilistic taxonomy learner behaves better
than a reduced set of known features. We then
fixed the dimension k to 400 and we compared the
baseline model with different probabilistic models
with different feature sets: 1-gram, 2-gram, and
3-gram. We can consider that the trigram model
before the cut on its dimensions contains feature
subsuming the baseline model. Figure 2 shows re-
sults. Curves report accuracy after n added pairs.
All the probabilistic models outperform the base-
line model. As what happened for the first series of
experiments (see Fig. 1) more informative spaces
such as 3-gram behaves better when the number of
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added pairs is small. Performances of the three re-
duced pairs become similar after 100 added pairs.
These experiments show that SVD feature selec-
tion has a positive effect on performances as re-
sulting models are always better with respect to
the baseline.

5 Conclusions and Future Work

We presented a model to naturally introduce
SVD feature selection in a probabilistic taxonomy
learner. The method is effective as allows the de-
signing of better probabilistic taxonomy learners.
We still need to explore at least two issues. First,
we need to determine whether or not the posi-
tive effect of SVD feature selection is preserved
in more complex feature spaces such as syntactic
feature spaces as those used in (Snow et al., 2006).
Second, we need to compare the SVD feature se-
lection with other unsupervised feature selection
models to determine whether or not this is the best
method to use in the case of probabilistic taxon-
omy learning.
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Abstract
In this work, we apply Dirichlet Process
Mixture Models (DPMMs) to a learning
task in natural language processing (NLP):
lexical-semantic verb clustering. We thor-
oughly evaluate a method of guiding DP-
MMs towards a particular clustering so-
lution using pairwise constraints. The
quantitative and qualitative evaluation per-
formed highlights the benefits of both
standard and constrained DPMMs com-
pared to previously used approaches. In
addition, it sheds light on the use of evalu-
ation measures and their practical applica-
tion.

1 Introduction

Bayesian non-parametric models have received a
lot of attention in the machine learning commu-
nity. These models have the attractive property
that the number of components used to model
the data is not fixed in advance but is actually
determined by the model and the data. This
property is particularly interesting for NLP where
many tasks are aimed at discovering novel, pre-
viously unknown information in corpora. Recent
work has applied Bayesian non-parametric mod-
els to anaphora resolution (Haghighi and Klein,
2007), lexical acquisition (Goldwater, 2007) and
language modeling (Teh, 2006) with good results.

Recently, Vlachos et al. (2008) applied the ba-
sic models of this class, Dirichlet Process Mix-
ture Models (DPMMs) (Neal, 2000), to a typical
learning task in NLP: lexical-semantic verb clus-
tering. The task involves discovering classes of
verbs similar in terms of their syntactic-semantic
properties (e.g. MOTION class for travel, walk,
run, etc.). Such classes can provide important
support for other NLP tasks, such as word sense
disambiguation, parsing and semantic role label-
ing (Dang, 2004; Swier and Stevenson, 2004).

Although some fixed classifications are available
(e.g. VerbNet (Kipper-Schuler, 2005)) these are
not comprehensive and are inadequate for specific
domains (Korhonen et al., 2006b).

Unlike the clustering algorithms applied to this
task before, DPMMs do not require the number of
clusters as input. This is important because even
if the number of classes in a particular task was
known (e.g. in the context of a carefully controlled
experiment), a particular dataset may not contain
instances for all the classes. Moreover, each class
is not necessarily contained in one cluster exclu-
sively, since the target classes are defined manu-
ally without taking into account the feature rep-
resentation used. The fact that DPMMs do not
require the number of target clusters in advance,
renders them promising for the many NLP tasks
where clustering is used for learning purposes.

While the results of Vlachos et al. (2008) are
promising, the use of a clustering approach which
discovers the number of clusters in data presents
a new challenge to existing evaluation measures.
In this work, we investigate optimal evaluation
for such approaches, using the dataset and the ba-
sic method of Vlachos et al. as a starting point.
We review the applicability of existing evalua-
tion measures and propose a modified version of
the newly introduced V-measure (Rosenberg and
Hirschberg, 2007). We complement the quanti-
tative evaluation with thorough qualitative assess-
ment, for which we introduce a method to summa-
rize samples obtained from a clustering algorithm.

In preliminary work by Vlachos et al. (2008),
a constrained version of DPMMs which takes ad-
vantage of must-link and cannot-link pairwise con-
straints was introduced. It was demonstrated how
such constraines can guide the clustering solution
towards some prior intuition or considerations rel-
evant to the specific NLP application in mind. We
explain the inference algorithm for the constrained
DPMM in greater detail and evaluate quantita-
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tively the contribution of each constraint type of
independently, complementing it with qualitative
analysis. The latter demonstrates how the pairwise
constraints added affects instances beyond those
involved directly. Finally, we discuss how the un-
supervised and the constrained version of DPMMs
can be used in a real-world setup.

The results from our comprehensive evaluation
show that both versions of DPMMs are capable
of learning novel information not in the gold stan-
dard, and that the constrained version is more ac-
curate than a previous verb clustering approach
which requires setting the number of clusters in
advance and is therefore less realistic.

2 Unsupervised clustering with DPMMs

With DPMMs, as with other Bayesian non-
parametric models, the number of mixture compo-
nents is not fixed in advance, but is determined by
the model and the data. The parameters of each
component are generated by a Dirichlet Process
(DP) which can be seen as a distribution over the
parameters of other distributions. In turn, each in-
stance is generated by the chosen component given
the parameters defined in the previous step:

G|α,G0 ∼ DP (α,G0)
θi|G ∼ G (1)

xi|θi ∼ F (θi)

In Eq. 1, G0 and G are probability distributions
over the component parameters (θ), and α > 0 is
the concentration parameter which determines the
variance of the Dirichlet process. We can think
of G as a randomly drawn probability distribution
with meanG0. Intuitively, the larger α is, the more
similar G will be to G0. Instance xi is generated
by distribution F , parameterized by θi. The graph-
ical model is depicted in Figure 1.

The prior probability of assigning an instance
to a particular component is proportionate to the
number of instances already assigned to it (n−i,z).
In other words, DPMMs exhibit the “rich get
richer” property. In addition, the probability that
a new cluster is created is dependent on the con-
centration parameter α. A popular metaphor to de-
scribe DPMMs which exhibits an equivalent clus-
tering property is the Chinese Restaurant Process
(CRP). Customers (instances) arrive at a Chinese
restaurant which has an infinite number of tables
(components). Each customer sits at one of the ta-
bles that is either occupied or vacant with popular
tables attracting more customers.

Figure 1: Graphical representation of DPMMs.

In this work, the distribution used to model the
components is the multinomial and the prior used
is the Dirichlet distribution (F and G0 in Eq. 1).
The conjugacy between them allows for the ana-
lytic integration over the component parameters.
Following Neal (2000), the component assign-
ments zi are sampled using the following scheme:

P (zi = z|z−i, xi) ∝
p(zi = z|z−i)DirM(xi|zi = z, x−i,z, λ) (2)

In Eq. 2DirM is the Dirichlet-Multinomial distri-
bution, λ are the parameters of the Dirichlet prior
G0 and x−i,z are the instances assigned already to
component z (none if we are sampling the prob-
ability of assignment to a new component). This
sampling scheme is possible due to the fact that the
instances in the model are exchangeable, i.e. the
order in which they are generated is not relevant.

In terms of the CRP metaphor, we consider each
instance xi as the last customer to arrive and he
chooses to sit together with other customers at an
existing table or to sit at a new table. Following
Navarro et al. (2006) who used the same model to
analyze individual differences, we sample the con-
centration parameter α using the inverse Gamma
distribution as a prior.

3 Evaluation measures

The evaluation of unsupervised clustering against
a gold standard is not straightforward because the
clusters found are not explicitly labelled. Formally
defined, an unsupervised clustering algorithm par-
titions a set of instances X = {xi|i = 1, ..., N}
into a set of clusters K = {kj |j = 1, ..., |K|}.
The standard approach to evaluate the quality of
the clusters is to use an external gold standard in
which the instances are partitioned into a set of
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classes C = {cl|l = 1, ..., |C|}. Given this, the
goal is to find a partitioning of the instances K
that is as close as possible to the gold standard C.

Most work on verb clustering has used the F-
measure or the Rand Index (RI) (Rand, 1971)
for evaluation, which rely on counting pairwise
links between instances. However, Rosenberg and
Hirschberg (2007) pointed out that F-measure as-
sumes (the missing) mapping between cl and kj .
In practice, RI values concentrate in a small inter-
val near 100% (Meilă, 2007).

Rosenberg & Hirschberg (2007) proposed an
information-theoretic metric: V-measure. V-
measure is the harmonic mean of homogeneity
and completeness which evaluate the quality of the
clustering in a complementary way. Homogeneity
assesses the degree to which each cluster contains
instances from a single class of C. This is com-
puted as the conditional entropy of the class dis-
tribution of the gold standard given the clustering
discovered by the algorithm, H(C|K), normal-
ized by the entropy of the class distribution in the
gold standard, H(C). Completeness assesses the
degree to which each class is contained in a single
cluster. This is computed as the conditional en-
tropy of the cluster distribution discovered by the
algorithm given the class, H(K|C), normalized
by the entropy of the cluster distribution, H(K).
In both cases, we subtract the resulting ratios from
1 to associate higher scores with better solutions:

h = 1− H(C|K)
H(C)

c = 1− H(K|C)
H(K)

Vβ =
(1 + β) ∗ h ∗ c

(β ∗ h) + c
(3)

The parameter β in Eq. 3 regulates the balance
between homogeneity and completeness. Rosen-
berg & Hirschberg set it to 1 in order to obtain the
harmonic mean of these qualities. They also note
that V-measure favors clustering solutions with a
large number of clusters (large |K|), since such so-
lutions can achieve very high homogeneity while
maintaining reasonable completeness. This ef-
fect is more prominent when a dataset includes a
small number of instaces for gold standard classes.
While increasing |K| does not guarantee an in-
crease in V-measure (splitting homogeneous clus-
ters would reduce completeness without improv-
ing homogeneity), it is easier to achieve higher

scores when more clusters are produced.
Another relevant measure is the Variation of In-

formation (VI) (Meilă, 2007). Like V-measure,
it assesses homogeneity and completeness using
the quantitiesH(C|K) andH(K|C) respectively,
however it simply adds them up to obtain a final
result (higher scores are worse). It is also a metric,
i.e. VI scores can be added, subtracted, etc, since
the quantities involved are measured in bits. How-
ever, it can be observed that if |C| and |K| are very
different then the terms H(C|K) and H(K|C)
will not necessarily be in the same range. In par-
ticular, if |K| � |C| then H(K|C) (and V I) will
be low. In addition, VI scores are not normalized
and therefore their interpretation is difficult.

Both V-measure and VI have important advan-
tages over RI and F-measure: they do not assume
a mapping between classes and clusters and their
scores depend only on the relative sizes of the clus-
ters. However, V-measure and VI can be mislead-
ing if the number of clusters found (|K|) is sub-
stantially different than the number of gold stan-
dard classes (|C|). In order to ameliorate this, we
suggest to take advantage of the β parameter in
Eq. 3 in order to balance homogeneity and com-
pleteness. More specifically, setting β = |K|/|C|
assigns more weight to completeness than to ho-
mogeneity in case |K| > |C| since the former is
harder to achieve and the latter is easier when the
clustering solution has more clusters than the gold
standard has classes. The opposite occurs when
|K| < |C|. In case |K| = |C| the score is the
same as the original V-measure. Achieving 100%
score according to any of these measures requires
correct prediction of the number of clusters.

In this work, we evaluate our results using the
three measures described above (V-measure, VI,
V-beta). We complement this evaluation with
qualitative evaluation which assesses the poten-
tial of DPMMs to discover novel information that
might not be included in the gold standard.

4 Experiments

To perform lexical-semantic verb clustering we
used the dataset of Sun et al. (2008). It contains
204 verbs belonging to 17 fine-grained classes in
Levin’s (1993) taxonomy so that each class con-
tains 12 verbs. The classes and their verbs were
selected randomly. The features for each verb are
its subcategorization frames (SCFs) and associ-
ated frequencies in corpus data, which capture the
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DPMM Sun et al.
no. of clusters 37.79 17
homogeneity 60.23% 57.57%
completeness 55.82% 60.19%

V-measure 57.94% 58.85%
V-beta 57.11% 58.85%

VI (bits) 3.5746 3.3598

Table 1: Clustering performances.

syntactic context in which the verb occurs. SCFs
were extracted from the publicly available VALEX
lexicon (Korhonen et al., 2006a). VALEX was ac-
quired automatically using a domain-independent
statistical parsing toolkit, RASP (Briscoe and Car-
roll, 2002), and a classifier which identifies verbal
SCFs. As a consequence, it includes some noise
due to standard text processing and parsing errors
and due to the subtlety of argument-adjunct dis-
tinction. In our experiments, we used the SCFs
obtained from VALEX1, parameterized for the
prepositional frame, which had the best perfor-
mance in the experiments of Sun et al. (2008).

The feature sets based on verbal SCFs are very
sparse and the counts vary over a large range of
values. This can be problematic for generative
models like DPMMs, since a few dominant fea-
tures can mislead the model. To reduce the spar-
sity, we applied non-negative matrix factorization
(NMF) (Lin, 2007) which decomposes the dataset
in two dense matrices with non-negative values. It
has proven useful in a variety of tasks, e.g. infor-
mation retrieval (Xu et al., 2003) and image pro-
cessing (Lee and Seung, 1999).

We use a symmetric Dirichlet prior with param-
eters of 1 (λ in Equation 2). The number of di-
mensions obtained using NMF was 35. We run
the Gibbs sampler 5 times, using 100 iterations for
burn-in and draw 20 samples from each run with
5 iterations lag between samples. Table 1 shows
the average performances. The DPMM discov-
ers 37.79 verb clusters on average with its perfor-
mance ranging between 53% and 58% depending
on the evaluation measure used. Homogeneity is
4.5% higher than completeness, which is expected
since the number of classes in the gold standard is
17. The fact that the DPMM discovers more than
twice the number of classes is reflected in the dif-
ference between the V-measure and V-beta, the lat-
ter being lower. In the same table, we show the re-
sults of Sun et al. (2008), who used pairwise clus-

tering (PC) (Puzicha et al., 2000) which involves
determining the number of clusters in advance.

The performance of the DPMM is 1%-3% lower
than that of Sun et al. As expected, the differ-
ence in V-measure is smaller since the DPMM
discovers a larger number of clusters, while for
VI it is larger. The slightly better performance
of PC can be attributed to two factors. First,
the (correct) number of clusters is given as in-
put to the PC algorithm and not discovered like
by the DPMM. Secondly, PC uses the similarities
between the instances to perform the clustering,
while the DPMM attempts to find the parameters
of the process that generated the data, which is a
different and typically a harder task. In addition,
the DPMM has two clear advantages which we il-
lustrate in the following sections: it can be used to
discover novel information and it can be modified
to incorporate intuitive human supervision.

5 Qualitative evaluation

The gold standard employed in this work (Sun et
al., 2008) is not fully accurate or comprehensive.
It classifies verbs according to their predominant
senses in the fairly small SemCor data. Individ-
ual classes are relatively coarse-grained in terms
of syntactic-semantic analysis1 and they capture
some of the meaning components only. In addi-
tion, the gold standard does not capture the se-
mantic relatedness of distinct classes. In fact, the
main goal of clustering is to improve such exist-
ing classifications with novel information and to
create classifications for new domains. We per-
formed qualitative analysis to investigate the ex-
tent to which the DPMM meets this goal.

We prepared the data for qualitative analysis as
follows: We represented each clustering sample
as a linking matrix between the instances of the
dataset and measured the frequency of each pair
of instances occurring in the same cluster. We
constructed a partial clustering of the instances
using only those links that occur with frequency
higher than a threshold prob link. Singleton clus-
ters were formed by considering instances that
are not linked with any other instances more fre-
quently than a threshold prob single. The lower
the prob link threshold, the larger the clusters will
be, since more instances get linked. Note that in-
cluding more links in the solution can either in-

1Many original Levin classes have been manually refined
in VerbNet.
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crease the number of clusters when instances in-
volved were not linked otherwise, or decrease it
when linking instances that already belong to other
clusters. The higher the prob single threshold,
the more instances will end up as singletons. By
adjusting these two thresholds we can affect the
coverage of the analysis. This approach was cho-
sen because it enables to conduct qualitative analy-
sis of data relevant to most clustering samples and
irrespective of individual samples. It can also be
useful in order to use the output of the clustering
algorithm as a component in a pipeline which re-
quires a single result rather than multiple samples.

Using this method, we generated data sets for
qualitative analysis using 4 sets of values for
prob link and prob single, respectively: (99%,
1%), (95%, 5%), (90%, 10%) and (85%, 15%).
Table 1 shows the number of a) verbs, b) clusters
(2 or more instances) and c) singletons in each
resulting data set, along with the percentage and
size of the clusters which represent 1, 2, or mul-
tiple gold standard classes. As expected, higher
threshold values produce high precision clusters
for a smaller set of verbs (e.g. (99%,1%) pro-
duces 5 singletons and assigns 70 verbs to 20 clus-
ters, 55% of which represent a single gold stan-
dard class), while less extreme threshold values
yield higher recall clusters for a larger set of verbs
(e.g. (85%,15%) produces 10 singletons and as-
signs 140 verbs to 25 clusters, 20% of which con-
tain verbs from several gold standard classes).

We conducted the qualitative analysis by com-
paring the four data sets against the gold standard,
SCF distributions, and WordNet (Fellbaum, 1998)
senses for each test verb. We first analysed the
5-10 singletons in data sets and discovered that
while 3 of the verbs resist classification because
of syntactic idiosyncrasy (e.g. unite takes intransi-
tive SCFs with frequency higher than other mem-
bers of class 22.2), the majority of them (7) end
up in singletons for valid semantic reasons: taking
several frequent WordNet senses they are “too pol-
ysemous” to be realistically clustered according to
their predominant sense (e.g. get and look).

We then examined the clusters, and discovered
that even in the data set created with the lowest
prob link threshold of 85%, almost half of the
“errors” are in fact novel semantic patterns discov-
ered by clustering. Many of these could be new
sub-classes of existing gold standard classes. For
example, looking at the 13 high accuracy clusters

which correspond to a single gold standard class
each, they only represent 9 gold standard classes
because as many as 4 classes been divided into
two clusters, suggesting that the gold standard is
too coarse-grained. Interestingly, each such sub-
division seems semantically justified (e.g. the 11.1
PUT verbs bury and immerse appear in a differ-
ent cluster than the semantically slightly different
place and situate).

In addition, the DPMM discovers semantically
similar gold standard classes. For example, in the
data set created with the prob link threshold of
99%, 6 of the clusters include members from 2
different gold standard classes. 2 occur due to
syntactic idiosyncrasy, but the majority (4) oc-
cur because of true semantic relatedness (e.g. the
clustering relates 22.2 AMALGAMATE and 36.1
CORRESPOND classes which share similar mean-
ing components). Similarly, in the data set pro-
duced by the prob link threshold of 85%, one
of the largest clusters includes 26 verbs from 5
gold standard classes. The majority of them be-
long to 3 classes which are related by the meaning
component of “motion”: 43.1 LIGHT EMISSION,
47.3 MODES OF BEING INVOLVING MOTION, and
51.3.2 RUN verbs:

• class 22.2 AMALGAMATE: overlap
• class 36.1 CORRESPOND: banter, concur, dissent, hag-

gle
• class 43.1 LIGHT EMISSION: flare, flicker, gleam, glis-

ten, glow, shine, sparkle

• class 47.3 MODES OF BEING INVOLVING MOTION:
falter, flutter, quiver, swirl, wobble

• class 51.3.2 RUN: fly, gallop, glide, jog, march, stroll,
swim, travel, trot

Thus many of the singletons and the clusters
in the different outputs capture finer or coarser-
grained lexical-semantic differences than those
captured in the gold standard. It is encouraging
that this happens despite us focussing on a rela-
tively small set of 204 verbs and 17 classes only.

6 Constrained DPMMs

While the ability to discover novel information is
attractive in NLP, in many cases it is also desir-
able to influence the solution with respect to some
prior intuition or consideration relevant to the ap-
plication in mind. For example, while discover-
ing finer-grained classes than those included in the
gold standard is useful for some applications, oth-
ers may benefit from a coarser clustering or a clus-
tering that reveals a specific aspect of the dataset.
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% and size of clusters containing
THR verbs clusters singletons 1 class 2 classes multiple classes

99%,1% 70 20 5 55% (3.0) 30% (2.8) 15% (4.5)
95%,5% 104 25 9 40% (3.7) 44% (2.8) 16% (6.8)

90%,10% 128 28 9 46% (3.4) 39% (2.5) 14% (11.0)
85%,15% 140 25 10 44% (3.7) 28% (3.3) 20% (13.0)

Table 2: An overview of the data sets generated for qualitative analysis

Preliminary work by Vlachos et al. (2008) intro-
duced a constrained version of DPMMs that en-
ables human supervision to guide the clustering
solution when needed. We model the human su-
pervision as pairwise constraints over instances,
following Wagstaff & Cardie (2000): given a pair
of instances, they are either linked together (must-
link) or not (cannot-link). For example, charge
and run should form a must-link if the aim is
to cluster 51.3 MOTION verbs together, but they
should form a cannot-link if we are interested in
54.5 BILL verbs. In the discussion and the experi-
ments that follow, we assume that all links are con-
sistent with each other. This information can be
obtained by asking human experts to label links,
or by extracting it from extant lexical resources.
Specifying the relations between the instances re-
sults in a partial labeling of the instances. Such
labeling is likely to be re-usable, since relations
between the instances are likely to be useful for a
wider range of tasks which might not have identi-
cal labels but could still have similar relations.

In order to incorporate the constraints in the
DPMM, we modify the underlying generative pro-
cess to take them into account. In particular must-
linked instances are generated by the same com-
ponent and cannot-linked instances always by dif-
ferent ones. In terms of the CRP metaphor, cus-
tomers connected with must-links arrive at the
restaurant together and choose a table jointly, re-
specting their cannot-links with other customers.
They get seated at the same table successively one
after the other. Customers without must-links with
others choose tables avoiding their cannot-links.

In order to sample the component assignments
according to this model, we restrict the Gibbs sam-
pler to take them into account using the sampling
scheme of Fig. 2. First we identify linked-groups
of instances, taking into account transitivity2. We
then sample the component assignments only from
distributions that respect the links provided. More

2If A is linked to B and B to C, then A is linked to C.

specifically, for each instance that does not belong
to a linked-group, we restrict the sampler to choose
components that do not contain instances cannot-
linked with it. For instances in a linked-group, we
sample their assignment jointly, again taking into
account their cannot-links. This is performed by
adding each instance of the linked-group succes-
sively to the same component. In Fig. 2, Ci are the
cannot-links for instance(s) i, ` are the indices of
the instances in a linked-group, and z<i and x<i
are the assignments and the instances of a linked-
group that have been assigned to a component be-
fore instance i.

Input: data X , must-linksM, cannot-links C
linked groups = find linked groups(X ,M)
Initialize Z according toM, C
for i not in linked groups

for z = 1 to |Z|+ 1
if x−i,z ∩ Ci = ∅
P (zi = z|z−i, xi) (Eq. 2)

else
P (zi = z|z−i, xi) = 0

Sample from P (zi)
for ` in linked groups

for z = 1 to |Z|+ 1
if x−`,z ∩ C` = ∅

Set P (z` = z|z−`, x`) = 1
for i in `

P (z`= z|z−`, x`)∗ =
P (zi = z|z−`, x−`,z, z<i, x<i)

else
P (z` = z|z−`, x`) = 0

Sample from P (z`)

Figure 2: Gibbs sampler incorporating must-links
and cannot-links.

7 Experiments using constraints

To investigate the impact of pairwise constraints
on clustering by the DPMM, we conduct exper-
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iments in which the links are sampled randomly
from the gold standard. The number of links var-
ied from 10 to 50 and the random choice was re-
peated 5 times without checking for redundancy
due to transitivity. All the other experimental set-
tings are identical to those in Section 4. Follow-
ing Wagstaff & Cardie (2000), in Table 3 we show
the impact of each link type independently (la-
beled “must” and “cannot” accordingly), as well
as when mixed in equal proportions (“mix”).

Adding randomly selected pairwise links is ben-
eficial. In particular, must-links improve the clus-
tering rapidly. Incorporating 50 must-links im-
proves the performance by 7-8% according to the
evaluation measures. In addition, it reduces the
average number of clusters by approximately 4.
The cannot-links are rather ineffective, which is
expected as the clustering discovered by the un-
supervised DPMM is more fine-grained than the
gold standard. For the same reason, it is more
likely that the randomly selected cannot-links are
already discovered by the DPMM and are thus re-
dundant. Wagstaff & Cardie also noted that the
impact of the two types of links tends to vary
across data sets. Nevertheless, a minor improve-
ment is observed in terms of homogeneity. The
balanced mix improves the performance, but less
rapidly than the must-links.

In order to assess how the links added help the
DPMM learn other links we use the Constrained
Rand Index (CRI), which is a modification of the
Rand Index that takes into account only the pair-
wise decisions that are not dictated by the con-
straints added (Wagstaff and Cardie, 2000; Klein
et al., 2002). We evaluate the constrained DPMM
with CRI (Table 3, bottom right graph) and our re-
sults show that the improvements obtained using
pairwise constraints are due to learning links be-
yond the ones enforced.

In a real-world setting, obtaining the mixed set
of links is equivalent to asking a human expert to
give examples of verbs that should be clustered to-
gether or not. Such information could be extracted
from a lexical resource (e.g. ontology). Alterna-
tively, the DPMM could be run without any con-
straints first and if a human expert judges the clus-
tering too coarse (or fine) then cannot-links (or
must-links) could help, since they can adapt the
clustering rapidly. When 20 randomly selected
must-links are integrated, the DPMM reaches or
exceeds the performance of PC used by Sun et

al. (2008) according to all the evaluation mea-
sures. We also argue that it is more realistic to
guide the clustering algorithm using pairwise con-
straints than by defining the number of clusters in
advance. Instead of using pairwise constraints to
affect the clustering solution, one could alter the
parameters for the Dirichlet prior G0 (Eq. 1) or
experiment with varying concentration parameter
values. However, it is difficult to predict in ad-
vance the exact effect such changes would have in
the solution discovered.

Finally, we conducted qualitative analysis of the
samples obtained constraining the DPMM with 10
randomly selected must-links. We first prepared
the data according to the method described in Sec-
tion 5, using prob link and prob single thresh-
olds of 99% and 1% respectively. This resulted in
26 clusters and one singleton for 79 verbs. Recall
that without constraining the DPMM these thresh-
olds produced 20 clusters and 5 singletons for 70
verbs. 49 verbs are shared in both outputs, while
the average cluster size is similar.

The resulting clusters are highly accurate. As
many as 16 (i.e. 62%) of them represent a sin-
gle gold standard class, 7 of which contain (only)
the pairs of must-linked verbs. Interestingly, only
11 out of 17 gold standard classes are exempli-
fied among the 16 clusters, with 5 classes sub-
divided into finer-grained classes. Each of these
sub-divisions seems semantically fully motivated
(e.g. 30.3 PEER verbs were subdivided so that
peep and peek were assigned to a different cluster
than the semantically different gaze, glance and
stare) and 4 of them can be directly attributed to
the use of must-links.

From the 6 clusters that contained members
from two different gold standard classes, the ma-
jority (5) make sense as well. 3 of these contain
members of must-link pairs together with verbs
from semantically related classes (e.g. 37.7 SAY

and 40.2 NONVERBAL EXPRESSION classes). 3 of
the clusters that contain members of several gold
standard classes include must-link pairs as well.
In two cases must-links have helped to bring to-
gether verbs which belong to the same class (e.g.
the members of the must-link pair broaden-freeze
which represent 45.4 CHANGE OF STATE class ap-
pear now in the same cluster with other class mem-
bers dampen, soften and sharpen). Thus, DP-
MMs prove useful in learning novel information
taking into account pairwise constraints. Only 4
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Table 3: Performance of constrained DPMMs incorporating pairwise links.

(i.e. 15%) of the clusters in the output examined
are not meaningful (mostly due to the mismatch
between the syntax and semantics of verbs).

8 Related work

Previous work on unsupervised verb clustering
used algorithms that require the number of clus-
ters as input e.g. PC, Information Bottleneck (Ko-
rhonen et al., 2006b) and spectral clustering (Brew
and Schulte im Walde, 2002). In terms of apply-
ing non-parametric Bayesian approaches to NLP,
Haghighi and Klein (2007) evaluated the cluster-
ing properties of DPMMs by performing anaphora
resolution with good results.

There is a large body of work on semi-
supervised learning (SSL), but relatively little
work has been done on incorporating some form
of supervision in clustering. It is important to note
that the pairwise links used in this work consti-
tute a weak form of supervision since they cannot
be used to infer class labels which are required for
SSL. However, the opposite can be done. Wagstaff
& Cardie (2000) employed must-links and cannot-
links to constrain the COBWEB algorithm, while
Klein et al. (2002) applied them to complete-link
hierarchical agglomerative clustering. The latter
also studied how the added links affect instances
not directly involved in them.

It can be argued that one could use clustering
algorithms that require the number of clusters to
be known in advance to discover interesting sub-
classes such as those discovered by the DPMMs.
However, this would normally require multiple
runs and manual inspection of the results, while

DPMMs discover them automatically. Apart from
the fact that fixing the number of clusters in ad-
vance restricts the discovery of novel information
in the data, such algorithms cannot take full ad-
vantage of the pairwise constraints, since the latter
are likely to change the number of clusters.

9 Conclusions - Future Work

In this work, following Vlachos et al. (2008) we
explored the application of DPMMs to the task of
verb clustering. We modified V-measure (Rosen-
berg and Hirschberg, 2007) to deal more appro-
priately with the varying number of clusters dis-
covered by DPMMs and presented a method of
agregating the generated samples which allows for
qualitative evaluation. The quantitative and qual-
itative evaluation demonstrated that they achieve
performance comparable with that of previous
work and in addition discover novel information in
the data. Furthermore, we evaluated the incorpo-
ration of constraints to guide the DPMM obtaining
promising results and we discussed their applica-
tion in a real-world setup.

The results obtained encourage the application
of DPMMs and non-parametric Bayesian methods
to other NLP tasks. We plan to extend our ex-
periments to larger datasets and further domains.
While the improvements achieved using randomly
selected pairwise constraints were promising, an
active constraint selection scheme as in Klein et
al. (2002) could increase their impact. Finally,
an extrinsic evaluation of the clustering provided
by DPMMs in the context of an NLP application
would be informative on their practical potential.
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Abstract

Distributional similarity methods have
proven to be a valuable tool for the in-
duction of semantic similarity. Up till
now, most algorithms use two-way co-
occurrence data to compute the mean-
ing of words. Co-occurrence frequencies,
however, need not be pairwise. One can
easily imagine situations where it is desir-
able to investigate co-occurrence frequen-
cies of three modes and beyond. This pa-
per will investigate a tensor factorization
method called non-negative tensor factor-
ization to build a model of three-way co-
occurrences. The approach is applied to
the problem of selectional preference in-
duction, and automatically evaluated in a
pseudo-disambiguation task. The results
show that non-negative tensor factoriza-
tion is a promising tool for NLP.

1 Introduction

Distributional similarity methods have proven to
be a valuable tool for the induction of semantic
similarity. The aggregate of a word’s contexts gen-
erally provides enough information to compute its
meaning, viz. its semantic similarity or related-
ness to other words.

Up till now, most algorithms use two-way co-
occurrence data to compute the meaning of words.
A word’s meaning might for example be computed
by looking at:

• the various documents that the word appears
in (words × documents);

• a bag of words context window around the
word (words × context words);

• the dependency relations that the word ap-
pears with (words × dependency relations).

The extracted data – representing the co-
occurrence frequencies of two different entities
– is encoded in a matrix. Co-occurrence fre-
quencies, however, need not be pairwise. One
can easily imagine situations where it is desirable
to investigate co-occurrence frequencies of three
modes and beyond. In an information retrieval
context, one such situation might be the investiga-
tion of words × documents × authors. In an NLP

context, one might want to investigate words× de-
pendency relations × bag of word context words,
or verbs × subjects × direct objects.

Note that it is not possible to investigate the
three-way co-occurrences in a matrix represen-
tation form. It is possible to capture the co-
occurrence frequencies of a verb with its sub-
jects and its direct objects, but one cannot cap-
ture the co-occurrence frequencies of the verb ap-
pearing with the subject and the direct object at
the same time. When the actual three-way co-
occurrence data is ‘matricized’, valuable informa-
tion is thrown-away. To be able to capture the mu-
tual dependencies among the three modes, we will
make use of a generalized tensor representation.

Two-way co-occurrence models (such as la-
tent semantic analysis) have often been augmented
with some form of dimensionality reduction in or-
der to counter noise and overcome data sparseness.
We will also make use of a dimensionality reduc-
tion algorithm appropriate for tensor representa-
tions.

2 Previous Work

2.1 Selectional Preferences & Verb
Clustering

Selectional preferences have been a popular re-
search subject in the NLP community. One of
the first to automatically induce selectional pref-
erences from corpora was Resnik (1996). Resnik
generalizes among nouns by using WordNet noun
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synsets as clusters. He then calculates the se-
lectional preference strength of a specific verb in
a particular relation by computing the Kullback-
Leibler divergence between the cluster distribu-
tion of the verb and the aggregate cluster distri-
bution. The selectional association is then the
contribution of the cluster to the verb’s prefer-
ence strength. The model’s generalization relies
entirely on WordNet; there is no generalization
among the verbs.

The research in this paper is related to previous
work on clustering. Pereira et al. (1993) use an
information-theoretic based clustering approach,
clustering nouns according to their distribution as
direct objects among verbs. Their model is a one-
sided clustering model: only the direct objects are
clustered, there is no clustering among the verbs.

Rooth et al. (1999) use an EM-based cluster-
ing technique to induce a clustering based on the
co-occurrence frequencies of verbs with their sub-
jects and direct objects. As opposed to the method
of Pereira et al. (1993), their model is two-sided:
the verbs as well as the subjects/direct objects are
clustered. We will use a similar model for evalua-
tion purposes.

Recent approaches using distributional similar-
ity methods for the induction of selectional pref-
erences are the ones by Erk (2007), Bhagat et al.
(2007) and Basili et al. (2007).

This research differs from the approaches men-
tioned above by its use of multi-way data: where
the approaches above limit themselves to two-way
co-occurrences, this research will focus on co-
occurrences for multi-way data.

2.2 Factorization Algorithms

2.2.1 Two-way Factorizations
One of the best known factorization algorithms
is principal component analysis (PCA, Pearson
(1901)). PCA transforms the data into a new co-
ordinate system, yielding the best possible fit in a
least square sense given a limited number of di-
mensions. Singular value decomposition (SVD)
is the generalization of the eigenvalue decompo-
sition used in PCA (Wall et al., 2003).

In information retrieval, singular value decom-
position has been applied in latent semantic analy-
sis (LSA, Landauer and Dumais (1997), Landauer
et al. (1998)). In LSA, a term-document matrix
is created, containing the frequency of each word
in a specific document. This matrix is then de-

composed into three other matrices with SVD. The
most important dimensions that come out of the
SVD allegedly represent ‘latent semantic dimen-
sions’, according to which nouns and documents
can be represented more efficiently.

LSA has been criticized for a number of rea-
sons, one of them being the fact that the factor-
ization contains negative numbers. It is not clear
what negativity on a semantic scale should des-
ignate. Subsequent methods such as probabilistic
latent semantic analysis (PLSA, Hofmann (1999))
and non-negative matrix factorization (NMF, Lee
and Seung (2000)) remedy these problems, and
indeed get much more clear-cut semantic dimen-
sions.

2.2.2 Three-way Factorizations

To be able to cope with three-way data, sev-
eral algorithms have been developed as multilin-
ear generalizations of the SVD. In statistics, three-
way component analysis has been extensively in-
vestigated (for an overview, see Kiers and van
Mechelen (2001)). The two most popular methods
are parallel factor analysis (PARAFAC, Harshman
(1970), Carroll and Chang (1970)) and three-mode
principal component analysis (3MPCA, Tucker
(1966)), also called higher order singular value
decomposition (HOSVD, De Lathauwer et al.
(2000)). Three-way factorizations have been ap-
plied in various domains, such as psychometry
and image recognition (Vasilescu and Terzopou-
los, 2002). In information retrieval, three-way fac-
torizations have been applied to the problem of
link analysis (Kolda and Bader, 2006).

One last important method dealing with multi-
way data is non-negative tensor factorization
(NTF, Shashua and Hazan (2005)). NTF is a gener-
alization of non-negative matrix factorization, and
can be considered an extension of the PARAFAC

model with the constraint of non-negativity (cfr.
infra).

One of the few papers that has investigated the
application of tensor factorization for NLP is Tur-
ney (2007), in which a three-mode tensor is used
to compute the semantic similarity of words. The
method achieves 83.75% accuracy on the TOEFL

synonym questions.
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3 Methodology

3.1 Tensors

Distributional similarity methods usually repre-
sent co-occurrence data in the form of a matrix.
This form is perfectly suited to represent two-way
co-occurrence data, but for co-occurrence data be-
yond two modes, we need a more general repre-
sentation. The generalization of a matrix is called
a tensor. A tensor is able to encode co-occurrence
data of any n modes. Figure 1 shows a graphi-
cal comparison of a matrix and a tensor with three
modes – although a tensor can easily be general-
ized to more than three modes.

Figure 1: Matrix representation vs. tensor repre-
sentation

3.2 Non-negative Tensor Factorization

In order to create a succinct and generalized model
of the extracted data, a statistical dimensional-
ity reduction technique called non-negative tensor
factorization (NTF) is applied to the data. The NTF

model is similar to the PARAFAC analysis – popu-
lar in areas such as psychology and bio-chemistry
– with the constraint that all data needs to be non-
negative (i.e. ≥ 0).

Parallel factor analysis (PARAFAC) is a multi-
linear analogue of the singular value decomposi-
tion (SVD) used in latent semantic analysis. The
key idea is to minimize the sum of squares be-
tween the original tensor and the factorized model
of the tensor. For the three mode case of a tensor
T ∈ RD1×D2×D3 this gives equation 1, where k is
the number of dimensions in the factorized model
and ◦ denotes the outer product.

min
xi∈RD1,yi∈RD2,zi∈RD3

‖ T −
k

∑
i=1

xi ◦ yi ◦ zi ‖2
F (1)

With non-negative tensor factorization, the non-
negativity constraint is enforced, yielding a model
like the one in equation 2:

min
xi∈RD1

≥0,yi∈RD2
≥0,zi∈RD3

≥0

‖ T −
k

∑
i=1

xi ◦ yi ◦ zi ‖2
F (2)

The algorithm results in three matrices, indicat-
ing the loadings of each mode on the factorized
dimensions. The model is represented graphically
in figure 2, visualizing the fact that the PARAFAC

decomposition consists of the summation over the
outer products of n (in this case three) vectors.

Figure 2: Graphical representation of the NTF as
the sum of outer products

Computationally, the non-negative tensor fac-
torization model is fitted by applying an alternat-
ing least-squares algorithm. In each iteration, two
of the modes are fixed and the third one is fitted
in a least squares sense. This process is repeated
until convergence.1

3.3 Applied to Language Data

The model can straightforwardly be applied to lan-
guage data. In this part, we describe the fac-
torization of verbs × subjects × direct objects
co-occurrences, but the example can easily be
substituted with other co-occurrence information.
Moreover, the model need not be restricted to 3
modes; it is very well possible to go to 4 modes
and beyond — as long as the computations remain
feasible.

The NTF decomposition for the verbs × sub-
jects× direct objects co-occurrences into the three
loadings matrices is represented graphically in fig-
ure 3. By applying the NTF model to three-way
(s,v,o) co-occurrences, we want to extract a gen-
eralized selectional preference model, and eventu-
ally even induce some kind of frame semantics (in
the broad sense of the word).

In the resulting factorization, each verb, subject
and direct object gets a loading value for each fac-
tor dimension in the corresponding loadings ma-
trix. The original value for a particular (s,v,o)

1The algorithm has been implemented in MATLAB, using
the Tensor Toolbox for sparse tensor calculations (Bader and
Kolda, 2007).
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Figure 3: Graphical representation of the NTF for
language data

triple xsvo can then be reconstructed with equa-
tion 3.

xsvo =
k

∑
i=1

ssivviooi (3)

To reconstruct the selectional preference value
for the triple (man,bite,dog), for example, we
look up the subject vector for man, the verb vector
for bite and the direct object vector for dog. Then,
for each dimension i in the model, we multiply the
ith value of the three vectors. The sum of these
values is the final preference value.

4 Results

4.1 Setup

The approach described in the previous section has
been applied to Dutch, using the Twente Nieuws
Corpus (Ordelman, 2002), a 500M words corpus
of Dutch newspaper texts. The corpus has been
parsed with the Dutch dependency parser Alpino
(van Noord, 2006), and three-way co-occurrences
of verbs with their respective subject and direct
object relations have been extracted. As dimen-
sion sizes, the 1K most frequent verbs were used,
together with the 10K most frequent subjects and
10K most frequent direct objects, yielding a ten-
sor of 1K × 10K × 10K. The resulting tensor is
very sparse, with only 0.0002% of the values be-
ing non-zero.

The tensor has been adapted with a straight-
forward extension of pointwise mutual informa-
tion (Church and Hanks, 1990) for three-way co-
occurrences, following equation 4. Negative val-
ues are set to zero.2

2This is not just an ad hoc conversion to enforce non-
negativity. Negative values indicate a smaller co-occurrence
probability than the expected number of co-occurrences. Set-
ting those values to zero proves beneficial for similarity cal-
culations (see e.g. Bullinaria and Levy (2007)).

MI3(x,y,z) = log
p(x,y,z)

p(x)p(y)p(z)
(4)

The resulting matrix has been factorized into k
dimensions (varying between 50 and 300) with the
NTF algorithm described in section 3.2.

4.2 Examples
Table 1, 2 and 3 show example dimensions that
have been found by the algorithm with k = 100.
Each example gives the top 10 subjects, verbs
and direct objects for a particular dimension, to-
gether with the score for that particular dimension.
Table 1 shows the induction of a ‘police action’
frame, with police authorities as subjects, police
actions as verbs and patients of the police actions
as direct objects.

In table 2, a legislation dimension is induced,
with legislative bodies as subjects3, legislative ac-
tions as verbs, and mostly law (proposals) as direct
objects. Note that some direct objects (e.g. ‘min-
ister’) also designate persons that can be the object
of a legislative act.

Table 3, finally, is clearly an exhibition dimen-
sion, with verbs describing actions of display and
trade that art institutions (subjects) can do with
works of art (objects).

These are not the only sensible dimensions that
have been found by the algorithm. A quick qual-
itative evaluation indicates that about 44 dimen-
sions contain similar, framelike semantics. In an-
other 43 dimensions, the semantics are less clear-
cut (single verbs account for one dimension, or
different senses of a verb get mixed up). 13 dimen-
sions are not so much based on semantic character-
istics, but rather on syntax (e.g. fixed expressions
and pronomina).

4.3 Evaluation
The results of the NTF model have been quantita-
tively evaluated in a pseudo-disambiguation task,
similar to the one used by Rooth et al. (1999). It is
used to evaluate the generalization capabilities of
the algorithm. The task is to judge which subject
(s or s′) and direct object (o or o′) is more likely
for a particular verb v, where (s,v,o) is a combi-
nation drawn from the corpus, and s′ and o′ are a
subject and direct object randomly drawn from the
corpus. A triple is considered correct if the algo-
rithm prefers both s and o over their counterparts

3Note that VVD, D66, PvdA and CDA are Dutch political
parties.
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subjects sus verbs vs objects ob js

politie ‘police’ .99 houd aan ‘arrest’ .64 verdachte ‘suspect’ .16
agent ‘policeman’ .07 arresteer ‘arrest’ .63 man ‘man’ .16
autoriteit ‘authority’ .05 pak op ‘run in’ .41 betoger ‘demonstrator’ .14
Justitie ’Justice’ .05 schiet dood ‘shoot’ .08 relschopper ‘rioter’ .13
recherche ‘detective force’ .04 verdenk ‘suspect’ .07 raddraaiers ‘instigator’ .13
marechaussee ‘military police’ .04 tref aan ‘find’ .06 overvaller ‘raider’ .13
justitie ‘justice’ .04 achterhaal ‘overtake’ .05 Roemeen ‘Romanian’ .13
arrestatieteam ‘special squad’ .03 verwijder ‘remove’ .05 actievoerder ‘campaigner’ .13
leger ‘army’ .03 zoek ‘search’ .04 hooligan ‘hooligan’ .13
douane ‘customs’ .02 spoor op ‘track’ .03 Algerijn ‘Algerian’ .13

Table 1: Top 10 subjects, verbs and direct objects for the ‘police action’ dimension

subjects sus verbs vs objects ob js

meerderheid ‘majority’ .33 steun ‘support’ .83 motie ‘motion’ .63
VVD .28 dien in ‘submit’ .44 voorstel ‘proposal’ .53
D66 .25 neem aan ‘pass’ .23 plan ‘plan’ .28
Kamermeerderheid ‘Chamber majority’ .25 wijs af ‘reject’ .17 wetsvoorstel ‘bill’ .19
fractie ‘party’ .24 verwerp ‘reject’ .14 hem ‘him’ .18
PvdA .23 vind ‘think’ .08 kabinet ‘cabinet’ .16
CDA .23 aanvaard ‘accepts’ .05 minister ‘minister’ .16
Tweede Kamer ‘Second Chamber’ .21 behandel ‘treat’ .05 beleid ‘policy’ .13
partij ‘party’ .20 doe ‘do’ .04 kandidatuur ‘candidature’ .11
Kamer ‘Chamber’ .20 keur goed ‘pass’ .03 amendement ‘amendment’ .09

Table 2: Top 10 subjects, verbs and direct objects for the ‘legislation’ dimension

s′ and o′ (so the (s,v,o) triple – that appears in the
test corpus – is preferred over the triples (s′,v,o′),
(s′,v,o) and (s,v,o′)). Table 4 shows three exam-
ples from the pseudo-disambiguation task.

s v o s′ o′

jongere drink bier coalitie aandeel
‘youngster’ ‘drink’ ‘beer’ ‘coalition’ ‘share’
werkgever riskeer boete doel kopzorg
‘employer’ ‘risk’ ‘fine’ ‘goal’ ‘worry’
directeur zwaai scepter informateur vodka
‘manager’ ‘sway’ ‘sceptre’ ‘informer’ ‘wodka’

Table 4: Three examples from the pseudo-
disambiguation evaluation task’s test set

Four different models have been evaluated. The
first two models are tensor factorization models.
The first model is the NTF model, as described
in section 3.2. The second model is the original
PARAFAC model, without the non-negativity con-
straints.

The other two models are matrix factorization
models. The third model is the non-negative ma-

trix factorization (NMF) model, and the fourth
model is the singular value decomposition (SVD).
For these models, a matrix has been constructed
that contains the pairwise co-occurrence frequen-
cies of verbs by subjects as well as direct objects.
This gives a matrix of 1K verbs by 10K subjects
+ 10K direct objects (1K × 20K). The matrix has
been adapted with pointwise mutual information.

The models have been evaluated with 10-fold
cross-validation. The corpus contains 298,540 dif-
ferent (s,v,o) co-occurrences. Those have been
randomly divided into 10 equal parts. So in each
fold, 268,686 co-occurrences have been used for
training, and 29,854 have been used for testing.
The accuracy results of the evaluation are given in
table 5.

The results clearly indicate that the NTF model
outperforms all the other models. The model
achieves the best result with 300 dimensions, but
the differences between the different NTF models
are not very large – all attaining scores around
90%.
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subjects sus verbs vs objects ob js

tentoonstelling ‘exhibition’ .50 toon ‘display’ .72 schilderij ‘painting’ .47
expositie ‘exposition’ .49 omvat ‘cover’ .63 werk ‘work’ .46
galerie ‘gallery’ .36 bevat ‘contain’ .18 tekening ‘drawing’ .36
collectie ‘collection’ .29 presenteer ‘present’ .17 foto ‘picture’ .33
museum ‘museum’ .27 laat ‘let’ .07 sculptuur ‘sculpture’ .25
oeuvre ‘oeuvre’ .22 koop ‘buy’ .07 aquarel ‘aquarelle’ .20
Kunsthal .19 bezit ‘own’ .06 object ‘object’ .19
kunstenaar ‘artist’ .15 zie ‘see’ .05 beeld ‘statue’ .12
dat ‘that’ .12 koop aan ‘acquire’ .05 overzicht ‘overview’ .12
hij ‘he’ .10 in huis heb ‘own’ .04 portret ‘portrait’ .11

Table 3: Top 10 subjects, verbs and direct objects for the ‘exhibition’ dimension

dimensions
50 (%) 100 (%) 300 (%)

NTF 89.52 ± 0.18 90.43 ± 0.14 90.89 ± 0.16
PARAFAC 85.57 ± 0.25 83.58 ± 0.59 80.12 ± 0.76
NMF 81.79 ± 0.15 78.83 ± 0.40 75.74 ± 0.63
SVD 69.60 ± 0.41 62.84 ± 1.30 45.22 ± 1.01

Table 5: Results of the 10-fold cross-validation for
the NTF, PARAFAC, NMF and SVD model for 50,
100 and 300 dimensions (averages and standard
deviation)

The PARAFAC results indicate the fitness of ten-
sor factorization for the induction of three-way se-
lectional preferences. Even without the constraint
of non-negativity, the model outperforms the ma-
trix factorization models, reaching a score of about
85%. The model deteriorates when more dimen-
sions are used.

Both matrix factorization models perform
worse than their tensor factorization counterparts.
The NMF still scores reasonably well, indicating
the positive effect of the non-negativity constraint.
The simple SVD model performs worst, reaching a
score of about 70% with 50 dimensions.

5 Conclusion and Future Work

This paper has presented a novel method that
is able to investigate three-way co-occurrences.
Other distributional methods deal almost exclu-
sively with pairwise co-occurrences. The ability
to keep track of multi-way co-occurrences opens
up new possibilities and brings about interesting
results. The method uses a factorization model –
non-negative tensor factorization – that is suitable
for three way data. The model is able to generalize
among the data and overcome data sparseness.

The method has been applied to the problem
of selectional preference induction. The results
indicate that the algorithm is able to induce se-
lectional preferences, leading to a broad kind
of frame semantics. The quantitative evaluation
shows that use of three-way data is clearly benefi-
cial for the induction of three-way selectional pref-
erences. The tensor models outperform the sim-
ple matrix models in the pseudo-disambiguation
task. The results also indicate the positive ef-
fect of the non-negativity constraint: both mod-
els with non-negative constraints outperform their
non-constrained counterparts.

The results as well as the evaluation indicate
that the method presented here is a promising tool
for the investigation of NLP topics, although more
research and thorough evaluation are desirable.

There is quite some room for future work. First
of all, we want to further investigate the useful-
ness of the method for selectional preference in-
duction. This includes a deeper quantitative eval-
uation and a comparison to other methods for se-
lectional preference induction. We also want to
include other dependency relations in our model,
apart from subjects and direct objects.

Secondly, there is room for improvement and
further research with regard to the tensor factor-
ization model. The model presented here min-
imizes the sum of squared distance. This is,
however, not the only objective function possi-
ble. Another possibility is the minimization of the
Kullback-Leibler divergence. Minimizing the sum
of squared distance assumes normally distributed
data, and language phenomena are rarely normally
distributed. Other objective functions – such as the
minimization of the Kullback-Leibler divergence
– might be able to capture the language structures
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much more adequately. We specifically want to
stress this second line of future research as one of
the most promising and exciting ones.

Finally, the model presented here is not
only suitable for selectional preference induction.
There are many problems in NLP that involve
three-way co-occurrences. In future work, we
want to apply the NTF model presented here to
other problems in NLP, the most important one be-
ing word sense discrimination.
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Abstract

This paper presents a graph-theoretic
approach to the identification of yet-
unknown word translations. The proposed
algorithm is based on the recursive Sim-
Rank algorithm and relies on the intuition
that two words are similar if they estab-
lish similar grammatical relationships with
similar other words. We also present a for-
mulation of SimRank in matrix form and
extensions for edge weights, edge labels
and multiple graphs.

1 Introduction

This paper describes a cross-linguistic experiment
which attempts to extend a given translation dic-
tionary with translations of novel words.

In our experiment, we use an English and
a German text corpus and represent each cor-
pus as a graph whose nodes are words and
whose edges represent grammatical relationships
between words. The corpora need not be parallel.

Our intuition is that a node in the English and a
node in the German graph are similar (that is, are
likely to be translations of one another), if their
neighboring nodes are. Figure 1 shows part of the
English and the German word graph.

Many of the (first and higher order) neighbors
of food andLebensmitteltranslate to one another
(marked by dotted lines), indicating thatfood and
Lebensmittel, too, are likely mutual translations.

Our hypothesis yields a recursive algorithm for
computing node similarities based on the simi-
larities of the nodes they are connected to. We
initialize the node similarities using an English-
German dictionary whose entries correspond to
known pairs of equivalent nodes (words). These
node equivalences constitute the “seeds” from
which novel English-German node (word) corre-
spondences are bootstrapped.

We are not aware of any previous work using a
measure of similarity between nodes in graphs for
cross-lingual lexicon acquisition.

Our approach is appealing in that it is language
independent, easily implemented and visualized,
and readily generalized to other types of data.

Section 2 is dedicated to related research on
the automatic extension of translation lexicons. In
Section 3 we review SimRank (Jeh and Widom,
2002), an algorithm for computing similarities of
nodes in a graph, which forms the basis of our
work. We provide a formulation of SimRank in
terms of simple matrix operations which allows
an efficient implementation using optimized ma-
trix packages. We further present a generalization
of SimRank to edge-weighted and edge-labeled
graphs and to inter-graph node comparison.

Section 4 describes the process used for build-
ing the word graphs. Section 5 presents an experi-
ment for evaluating our approach to bilingual lex-
icon acquisition. Section 6 reports the results. We
present our conclusions and directions for future
research in Section 7.

2 Related Work on cross-lingual lexical
acquisition

The work by Rapp (1999) is driven by the idea
that a word and its translation to another lan-
guage are likely to co-occur with similar words.
Given a German and an English corpus, he com-
putes two word-by-word co-occurrence matrices,
one for each language, whose columns span a vec-
tor space representing the corresponding corpus.

In order to find the English translation of a Ger-
man word, he uses a base dictionary to translate
all known column labels to English. This yields
a new vector representation of the German word
in the English vector space. This mapped vector
is then compared to all English word vectors, the
most similar ones being candidate translations.
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food Lebensmittel

receive erhalten

award Preis

provide liefern

evidence Beweis

buy kaufen

book Buch

publish verlegen

boat Haus

waste ablehnen

Figure 1: Likely translations based on neighboring nodes

Rapp reports an accuracy of72% for a small
number of test words with well-defined meaning.

Diab and Finch (2000) first compute word sim-
ilarities within each language corpus separately
by comparing their co-occurrence vectors. Their
challenge then is to derive a mapping from one
language to the other (i.e. a translation lexicon)
which best preserves the intra-language word sim-
ilarities. The mapping is initialized with a few seed
“translations” (punctuation marks) which are as-
sumed to be common to both corpora.

They test their method on two corpora written
in the same language and report accuracy rates of
over90% on this pseudo-translation task. The ap-
proach is attractive in that it does not require a
seed lexicon. A drawback is its high computational
cost.

Koehn and Knight (2002) use a (linear) com-
bination of clues for bootstrapping an English-
German noun translation dictionary. In addition to
similar assumptions as above, they consider words
to be likely translations of one another if they have
the same or similar spelling and/or occur with sim-
ilar frequencies. Koehn and Knight reach an accu-
racy of 39% on a test set consisting of the 1,000
most frequent English and German nouns. The
experiment excludes verbs whose semantics are
more complex than those of nouns.

Otero and Campos (2005) extract English-
Spanish pairs of lexico-syntactic patterns from a
small parallel corpus. They then construct con-
text vectors for all English and Spanish words by
recording their frequency of occurrence in each of
these patterns. English and Spanish vectors thus
reside in the same vector space and are readily
compared.

The approach reaches an accuracy of 89% on a
test set consisting of 100 randomly chosen words

from among those with a frequency of 100 or
higher. The authors do not report results for low-
frequency words.

3 The SimRank algorithm

An algorithm for computing similarities of nodes
in graphs is the SimRank algorithm (Jeh and
Widom, 2002). It was originally proposed for di-
rected unweighted graphs of web pages (nodes)
and hyperlinks (links).

The idea of SimRank is to recursively com-
pute node similarity scores based on the scores
of neighboring nodes. The similaritySij of two
different nodesi and j in a graph is defined as
the normalized sum of the pairwise similarities of
their neighbors:

Sij =
c

|N(i)| |N(j)|

∑

k∈N(i),l∈N(j)

Skl. (1)

N(i) and N(j) are the set ofi’s and j’s neigh-
bors respectively, andc is a multiplicative factor
smaller than but close to 1 which demotes the con-
tribution of higher order neighbors.Sij is set to 1
if i andj are identical, which provides a basis for
the recursion.

3.1 Matrix formulation of SimRank

We derive a formulation of the SimRank similarity
updates which merely consists of matrix multipli-
cations as follows. In terms of the graph’s (binary)
adjacency matrixA, the SimRank recursion reads:

Sij =
c

|N(i)| |N(j)|

∑

k∈N(i),l∈N(j)

Aik Ajl Skl

(2)
noting thatAikAjl = 1, iff k is a neighbor ofi
and l is a neighbor ofj at the same time. This is
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equivalent to

Sij = c
∑

k,l

Aik

|N(i)|

Ajl

|N(j)|
Skl (3)

= c
∑

k,l

Aik∑
ν Aiν

Ajl∑
ν Ajν

Skl.

TheSij can be assembled in a square node sim-
ilarity matrix S, and it is easy to see that the indi-
vidual similarity updates can be summarized as:

Sk = c Ã Sk−1Ã
T (4)

whereÃ is the row-normalized adjacency matrix
andk denotes the current level of recursion.Ã is
obtained by dividing each entry ofA by the sum of
the entries in its row. The SimRank iteration is ini-
tialized withS = I, and the diagonal ofS, which
contains the node self-similarities, is reset to ones
after each iteration.

This representation of SimRank in closed ma-
trix form allows the use of optimized off-the-shelf
sparse matrix packages for the implementation of
the algorithm. This rendered the pruning strate-
gies proposed in the original paper unnecessary.
We also note that the Bipartite SimRank algorithm
introduced in (Jeh and Widom, 2002) is just a spe-
cial case of Equation 4.

3.2 Extension with weights and link types

The SimRank algorithm assumes an unweighted
graph, i.e. a binary adjacency matrixA. Equa-
tion 4 can equally be used to compute similarities
in a weightedgraph by lettingÃ be the graph’s
row-normalizedweightedadjacency matrix. The
entries ofÃ then represent transition probabili-
ties between nodes rather than hard (binary) adja-
cency. The proof of the existence and uniqueness
of a solution to this more general recursion pro-
ceeds in analogy to the proof given in the original
paper.

Furthermore, we allow the links in the graph to
be of different types and define the following gen-
eralized SimRank recursion, whereT is the set of
link types andNt(i) denotes the set of nodes con-
nected to nodei via a link of typet.

Sij =
c

|T |

∑

t∈T

1

|Nt(i)| |Nt(j)|

∑

k∈Nt(i),l∈Nt(j)

Skl.

(5)
In matrix formulation:

Sk =
c

|T |

∑

t∈T

Ãt Sk−1Ãt
T

(6)

whereAt is the adjacency matrix associated with
link type t and, again, may be weighted.

3.3 SimRank across graphs

SimRank was originally designed for the com-
parison of nodes within a single graph. However,
SimRank is readily and accordingly applied to
the comparison of nodes of two different graphs.
The original SimRank algorithm starts off with the
nodes’ self-similarities which propagate to other
non-identical pairs of nodes. In the case of two dif-
ferent graphsA andB, we can instead initialize the
algorithm with a set of initially known node-node
correspondences.

The original SimRank equation (2) then be-
comes

Sij =
c

|N(i)| |N(j)|

∑

k,l

Aik Bjl Skl, (7)

which is equivalent to

Sk = c Ã Sk−1 B̃T , (8)

or, if links are typed,

Sk =
c

|T |

∑

t∈T

Ãt Sk−1 B̃t
T
. (9)

The similarity matrixS is now a rectangular
matrix containing the similarities between nodes
in A and nodes inB. Those entries ofS which
correspond to known node-node correspondences
are reset to 1 after each iteration.

4 The graph model

The grammatical relationships were extracted
from the British National Corpus (BNC) (100 mil-
lion words), and the Huge German Corpus (HGC)
(180 million words of newspaper text). We com-
piled a list of English verb-object (V-O) pairs
based on the verb-argument information extracted
by (Schulte im Walde, 1998) from the BNC. The
German V-O pairs were extracted from a syntactic
analysis of the HGC carried out using the BitPar
parser (Schmid, 2004).

We used only V-O pairs because they consti-
tute far more sense-discriminative contexts than,
for example, verb-subject pairs, but we plan to ex-
amine these and other grammatical relationships
in future work.

We reduced English compound nouns to their
heads and lemmatized all data. In English phrasal
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English German

Low Mid High Low Mid High

N V N V N V N V N V N V
0.313 0.228 0.253 0.288 0.253 0.255 0.232 0.247 0.205 0.237 0.211 0.205

Table 1: The 12 categories of test words, with mean relative ranks of test words

verbs, we attach the particles to the verbs to dis-
tinguish them from the original verb (e.gput off
vs. put). Both the English and German V-O pairs
were filtered using stop lists consisting of modal
and auxiliary verbs as well as pronouns. To reduce
noise, we decided to keep only those relationships
which occurred at least three times in the respec-
tive corpus.

The English and German data alike are then rep-
resented as a bipartite graph whose nodes divide
into two sets, verbs and nouns, and whose edges
are the V-O relationships which connect verbs to
nouns (cf. Figure 1). The edges of the graph are
weighted by frequency of occurrence.

We “prune” both the English and German graph
by recursively removing all leaf nodes (nodes with
a single neighbor). As these correspond to words
which appear only in a single relationship, there is
only limited evidence of their meaning.

After pruning, there are 4,926 nodes (3,365
nouns, 1,561 verbs) and 43,762 links in the En-
glish, and 3,074 nodes (2,207 nouns, 867 verbs)
and 15,386 links in the German word graph.

5 Evaluation experiment

The aim of our evaluation experiment is to test
the extended SimRank algorithm for its ability to
identify novel word translations given the English
and German word graph of the previous section
and an English-German seed lexicon. We use the
dict.cc English-German dictionary1.

Our evaluation strategy is as follows. We se-
lect a set of test words at random from among the
words listed in the dictionary, and remove their en-
tries from the dictionary. We run six iterations of
SimRank using the remaining dictionary entries
as the seed translations (the known node equiv-
alences), and record the similarities of each test
word to its known translations. As in the original
SimRank paper,c is set to 0.8.

We include both English and German test words
and let them vary in frequency: high- (> 100),

1http://www.dict.cc/ (May 5th 2008)

mid- (> 20 and ≤ 100), and low- (≤ 20) fre-
quent as well as word class (noun, verb). Thus, we
obtain 12 categories of test words (summarized in
Table 1), each of which is filled with 50 randomly
selected words, giving a total of 600 test words.

SimRank returns a matrix of English-German
node-node similarities. Given a test word, we ex-
tract its row from the similarity matrix and sort the
corresponding words by their similarities to the
test word. We then scan this sorted list of words
and their similarities for the test word’s reference
translations (those listed in the original dictionary)
and record their positions (i.e. ranks) in this list.
We then replace absolute ranks with relative ranks
by dividing by the total number of candidate trans-
lations.

6 Results

Table 1 lists the mean relative rank of the reference
translations for each of the test categories. The
values of around 0.2-0.3 clearly indicate that our
approach ranks the reference translations much
higher than a random process would.

Relative rank

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
5

15
25

Figure 2: Distribution of the relative ranks of the
reference translations in the English-High-N test
set.

Exemplary of all test sets, Figure 2 shows the
distribution of the relative ranks of the reference
translations for the test words in English-High-N.
The bulk of the distribution lies below 0.3, i.e. in
the top30% of the candidate list.

In order to give the reader an idea of the results,
we present some examples of test words and their
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Test word Top 10 predicted translations Ranks
sanction Ausgangssperre Wirtschaftssanktion

Ausnahmezustand Embargo Moratorium
SanktionTodesurteil Geldstrafe Bußgeld
Anmeldung

Sanktion(6)
Maßnahme(1407)

delay anfechten revidieren zurückstellen
füllen verkünden quittieren vertagen
verschieben aufheben respektieren

verzögern(78)
aufhalten(712)

Kosten hallmark trouser blouse makup uniform
armour robe testimony witness jumper

cost(285)

öffnen unlock lock usher step peer shut guard
hurry slam close

open(12)
undo(481)

Table 2: Some examples of test words, their pre-
dicted translations, and the ranks of their true
translations.

predicted translations in Table 2.
Most of the 10 top-ranked candidate transla-

tions of sanction are hyponyms of the correct
translations. This is mainly due to insufficient
noun compound analysis. Both the English and
German nouns in our graph model are single
words. Whereas the English nouns consist only of
head nouns, the German nouns include many com-
pounds (as they are written without spaces), and
thus tend to be more specific.

Some of the top candidate translations ofde-
lay are correct (verschieben) or at least acceptable
(vertagen), but do not count as such as they are
missing in the gold standard dictionary.

The mistranslation of the German nounKosten
is due to semantic ambiguity.Kostenco-occurs of-
ten with the verbtragen as in to bear costs. The
verb tragen however is ambiguous and may as
well be translated asto wearwhich is strongly as-
sociated with clothes.

We find several antonyms oföffnenamong its
top predicted translations. Verb-object relation-
ships alone do not suffice to distinguish synonyms
from antonyms. Similarly, it is extremely difficult
to differentiate between the members of closed
categories (e.g. the days of the week, months of
the year, mass and time units) using only syntactic
relationships.

7 Conclusions and Future Research

The matrix formulation of the SimRank algorithm
given in this paper allows an implementation using
efficient off-the-shelf software libraries for matrix
computation.

We presented an extension of the SimRank
algorithm to edge-weighted and edge-labeled
graphs. We further generalized the SimRank equa-
tions to permit the comparison of nodes from two
different graphs, and proposed an application to

bilingual lexicon induction.
Our system is not yet accurate enough to be

used for actual compilation of translation dictio-
naries. We further need to address the problem of
data sparsity. In particular, we need to remove the
bias towards low-degree words whose similarities
to other words are unduly high.

In order to solve the problem of ambiguity, we
intend to apply SimRank to the incidence repre-
sentation of the word graphs, which is constructed
by putting a node on each link. The proposed al-
gorithm will then naturally return similarities be-
tween the more sense-discriminative links (syn-
tactic relationships) in addition to similarities be-
tween the often ambiguous nodes (isolated words).
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Abstract

We address the problem of classifying
multiword expression tokens in running
text. We focus our study on Verb-Noun
Constructions (VNC) that vary in their id-
iomaticity depending on context. VNC
tokens are classified as either idiomatic
or literal. Our approach hinges upon
the assumption that a literal VNC will
have morein commonwith its component
words than an idiomatic one. Commonal-
ity is measured by contextual overlap. To
this end, we set out to explore different
contextual variations and different similar-
ity measures handling the sparsity in the
possible contexts via four different param-
eter variations. Our approach yields state
of the art performance with an overall ac-
curacy of 75.54% on a TEST data set.

1 Introduction

A Multi-Word Expression (MWE), for our pur-
poses, can be defined as a multi-word unit that
refers to a single concept, for example -kick the
bucket, spill the beans, make a decision, etc. An
MWE typically has an idiosyncratic meaning that
is moreor differentthan the meaning of its compo-
nent words. An MWE meaning is transparent, i.e.
predictable, in as much as the component words
in the expression relay the meaning portended by
the speaker compositionally. Accordingly, MWEs
vary in their degree of meaning compositionality;
compositionality is correlated with the level of id-
iomaticity. An MWE is compositional if the mean-
ing of an MWE as a unit can be predicted from the
meaning of its component words such as inmake
a decisionmeaningto decide. If we conceive of
idiomaticity as being a continuum, the more id-
iomatic an expression, the less transparent and the
more non-compositional it is.

MWEs are pervasive in natural language, espe-
cially in web based texts and speech genres. Iden-
tifying MWEs and understanding their meaning is

essential to language understanding, hence they
are of crucial importance for any Natural Lan-
guage Processing (NLP) applications that aim at
handling robust language meaning and use.

To date, most research has addressed the prob-
lem of MWE typeclassification for VNC expres-
sions in English (Melamed, 1997; Lin, 1999;
Baldwin et al., 2003; na Villada Moirón and
Tiedemann, 2006; Fazly and Stevenson, 2007;
Van de Cruys and Villada Moirón, 2007; Mc-
Carthy et al., 2007), nottokenclassification. For
example: he spilt the beans over the kitchen
counteris most likely a literal usage. This is given
away by the use of the prepositional phraseover
the kitchen counter, since it is plausable that beans
could have literally been spilt on a location such as
a kitchen counter. Most previous research would
classifyspilt the beansas idiomatic irrespective of
usage. A recent study by (Cook et al., 2008) of
60 idiom MWE types concluded that almost half
of them had clear literal meaning and over 40% of
their usages in text were actually literal. Thus, it
would be important for an NLP application such
as machine translation, for example, when given a
new MWE token, to be able to determine whether
it is used idiomatically or not.

In this paper, we address the problem of MWE
classification for verb-noun (VNC) token con-
structions in running text. We investigate the bi-
nary classification of an unseen VNC token ex-
pression as being eitherIdiomatic (IDM) or Lit-
eral (LIT). An IDM expression is certainly an
MWE, however, the converse is not necessarily
true. We handle the problem ofsparsityfor MWE
classification by exploring different vector space
features: various vector similarity metrics, and
more linguistically oriented feature sets. We eval-
uate our results against a standard data set from the
study by (Cook et al., 2007). We achieve state of
the art performance in classifying VNC tokens as
either literal (F-measure: Fβ1

=0.64) or idiomatic
(Fβ1

=0.82), corresponding to an overall accuracy
of 75.54%.

This paper is organized as follows: In Section
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2 we describe our understanding of the various
classes of MWEs in general. Section 3 is a sum-
mary of previous related research. Section 4 de-
scribes our approach. In Section 5 we present the
details of our experiments. We discuss the results
in Section 6. Finally, we conclude in Section 7.

2 Multi-word Expressions

MWEs are typically not productive, though they
allow for inflectional variation (Sag et al., 2002).
They have been conventionalized due to persistent
use. MWEs can be classified based on their se-
mantic types as follows.Idiomatic : This category
includes expressions that are semantically non-
compositional,fixed expressionssuch askingdom
come, ad hoc, non-fixed expressionssuch asbreak
new ground, speak of the devil. Semi-idiomatic:
This class includes expressions that seem seman-
tically non-compositional, yet their semantics are
more or less transparent. This category consists
of Light Verb Constructions (LVC) such asmake
a living and Verb Particle Constructions (VPC)
such aswrite-up, call-up. Non-Idiomatic: This
category includes expressions that are semanti-
cally compositional such asprime minister, proper
nouns such asNew York Yankees.

3 Previous Related Work

Several researchers have addressed the problem of
MWE classification (Baldwin et al., 2003; Katz
and Giesbrecht, 2006; Schone and Juraksfy, 2001;
Hashimoto et al., 2006; Hashimoto and Kawahara,
2008). The majority of the proposed research has
been using unsupervised approaches and have ad-
dressed the problem of MWE type classification
irrespective of usage in context. Only, the work
by Hashimoto et al. (2006) and Hashimoto and
Kawahara (2008) addressed token classification in
Japanese using supervised learning.

The most comparable work to ours is the re-
search by (Cook et al., 2007) and (Fazly and
Stevenson, 2007). On the other hand, (Cook et
al., 2007) develop an unsupervised technique that
classifies a VNC expression as idiomatic or literal.
They examine if the similarity between the con-
text vector of the MWE, in this case the VNC,
and that of its idiomatic usage is higher than the
similarity between its context vector and that of
its literal usage. They define the vector dimen-
sions in terms of the co-occurrence frequencies of
1000 most frequent content bearing words (nouns,

verbs, adjectives, adverbs and determiners) in the
corpus. A context vector for a VNC expression
is defined in terms of the words in the sentence
in which it occurs. They employ the cosine mea-
sure to estimate similarity between contextual vec-
tors. They assume that every instance of an ex-
pression occurring in a certaincanonicalsyntactic
form is idiomatic, otherwise it is literal. This as-
sumption holds for many cases of idiomatic usage
since many of them are conventionalized, however
in cases such asspilt the beans on the counter top,
the expression would be misclassified as idiomatic
since it does occur in the canonical form though
the meaning in this case is literal. Their work
is similar to this paper in that they explore the
VNC expressions at the token level. Their method
achieves an accuracy of 52.7% on a data set con-
taining expression tokens used mostly in their lit-
eral sense, whereas it yields an accuracy of 82.3%
on a data set in which most usages are idiomatic.
Further, they report that a classifier that predicts
the idiomatic label if an expression (token) occurs
in a canonical form achieves an accuracy of 53.4%
on the former data set (where the majority of the
MWEs occur in their literal sense) and 84.7% on
the latter data set (where the majority of the MWE
instances are idiomatic). This indicates that these
‘canonical’ forms can still be used literally. They
report an overall system performance accuracy of
72.4%.1

(Fazly and Stevenson, 2007) correlate compo-
sitionality with idiomaticity. They measure com-
positionality as a combination of two similarity
values: firstly, similar to (Katz and Giesbrecht,
2006), the similarity (cosine similarity) between
the context of a VNC and the contexts of its con-
stituent words; secondly, the similarity between an
expression’s context and that of a verb that is mor-
phologically related to the noun in the expression,
for instance,decidefor make a decision. Context
context(t) of an expression or a word,t, is de-
fined as a vector of the frequencies of nouns co-
occurring witht within a window of±5 words.
The resulting compositionality measure yields an
Fβ=1=0.51 on identifying literal expressions and
Fβ=1=0.42 on identifying idiomatic expressions.
However their results are not comparable to ours
since it is type-based study.

1We note that the use of accuracy as a measure for this
work is not the most appropriate since accuracy is a measure
of error rather than correctness, hence we report F-measure
in addition to accuracy.
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4 Our Approach

Recognizing the significance of contextual infor-
mation in MWE token classification, we explore
the space of contextual modeling for the task of
classifying the token instances of VNC expres-
sions into literal versus idiomatic expressions. In-
spired by works of (Katz and Giesbrecht, 2006;
Fazly and Stevenson, 2007), our approach is to
compare the context vector of a VNC with the
composed vector of the verb and noun (V-N) com-
ponent units of the VNC when they occur in iso-
lation of each other (i.e., not as a VNC). For ex-
ample, in the case of the MWEkick the bucket, we
compare the contexts of the instances of the VNC
kick the bucketagainst the combined contexts for
the verb (V)kick, independent of the nounbucket,
and the contexts for the noun (N)bucket, indepen-
dent of the verbkick. The intuition is that if there
is a high similarity between the VNC and the com-
bined V and N (namely, the V-N vector) contexts
then the VNC token is compositional, hence a lit-
eral instance of the MWE, otherwise the VNC to-
ken is idiomatic.

Previous work, (Fazly and Stevenson, 2007),
restricted context to within the boundaries of the
sentences in which the tokens of interest oc-
curred. We take a cue from that work but de-
fine ‘context(t)’ as a vector with dimensions as
all word types occurring in the same sentence as
t, wheret is a verb type corresponding to the V
in the VNC, noun type corresponding to N in the
VNC, or VNC expression instance. Moreover, our
definition of context includes all nouns, verbs, ad-
jectives and adverbs occurring in the same para-
graph ast. This broader notion of context should
help reduce sparseness effects, simply by enrich-
ing the vector with more contextual information.
Further, we realize the importance of some closed
class words occurring in the vicinity oft. (Cook
et al., 2007) report the importance of determin-
ers in identifying idiomaticity. Prepositions too
should be informative of idiomaticity (or literal us-
age) as illustrated above inspill the beans on the
kitchen counter. Hence, we include determiners
and prepositions occurring in the same sentence as
t. The composed V-N contextual vector combines
the co-occurrence of the verb type (aggregation of
all the verb token instances in the whole corpus)
as well as the noun type with this predefined set
of dimensions. The VNC contextual vector is that
for a specific instance of a VNC expression.

Our objective is to find the best experimental
settings that could yield the most accurate classifi-
cation of VNC expression tokens taking into con-
sideration the sparsity problem. To that end, we
explore the space of possible parameter variation
on the vectors representing our tokens of interest
(VNC, V, or N). We experiment with five different
parameter settings:

Context-Extent The definition of context is
broad or narrow described as follows. Both
ContextBroad and ContextNarrow comprise all
the open class orcontentwords (nouns, verbs, ad-
jectives and adverbs), determiners, and preposi-
tions in thesentencecontaining the token. More-
over, ContextBroad, additionally, includes the
content words from theparagraph in which the
token occurs.

Dimension This is a pruning parameter on the
words included from the Context Extent. The in-
tuition is that salient words should have a big-
ger impact on the calculation of the vector sim-
ilarity. This parameter is varied in three ways:
DimensionNoThresh includes all the words that
co-occur with the token under consideration in
the specified context extent;DimensionFreq

sets a threshold on the co-occurrence frequency
for the words to include in the dimensions
thereby reducing the dimensionality of the vectors.
DimensionRatio is inspired by the utility of the
tf-idf measure in information retrieval, we devise
a threshold scheme that takes into consideration
the salience of the word in context as a function of
its relative frequency. Hence the raw frequencies
of the words in context are converted to a ratio of
two probabilities as per the following equation.

ratio =
p(word|context)

p(word)
=

freq(word in context)
freq(context)

freq(word in corpus)
N

(1)
whereN is the number of words (tokens) in

the corpus andfreq(context) is the number of
contexts for a specific token of interest occurs.
The numerator of the ratio is the probability that
the word occurs in a particular context. The de-
nominator is the probability of occurrence of the
word in the corpus. Here, more weight is placed
on words that are frequent in a certain context but
rarer in the entire corpus. In case of the V and N
contexts, a suitable threshold, which is indepen-
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dent of data size, is determined on this ratio in or-
der to prune context words.

The latter two pruning techniques,
DimensionFreq and DimensionRatio, are
not performed for a VNC token’s context, hence,
all the words in the VNC token’s contextual
window are included. These thresholding meth-
ods are only applied to V-N composed vectors
obtained from the combination of the verb and
noun vectors.

Context-Content This parameter had two set-
tings: words as they occur in the cor-
pus, Context − ContentWords; or some of
the words are collapsed into named entities,
Context − ContentWords+NER. Context −
ContentWords+NER attempts to perform dimen-
sionality reduction and sparsity reduction by col-
lapsing named entities. The intuition is that if
we reduce the dimensions in semantically salient
ways we will not adversely affect performance.
We employ BBN’s IdentiFinder Named Entity
Recognition (NER) System2. The NER system re-
duces all proper names, months, days, dates and
times to NE tags. NER tagging is done on the cor-
pus before the context vectors are extracted. For
our purposes, it is not important thatJohn kicked
the bucket onFriday in New York City – neither
the specific actor of the action, nor the place where
is occurs is of relevance. The sentencePERSON
kicked the bucket onDAY in PLACE conveys the
same amount of information.IdentiFinder identi-
fies 24 NE types. We deem 5 of these inaccurate
based on our observation, and exclude them. We
retain 19 NE types:Animal, Contact Information,
Disease, Event, Facility, Game, Language, Loca-
tion (merged with Geo-political Entity), Nation-
ality, Organization, Person, Product, Date, Time,
Quantity, Cardinal, Money, OrdinalandPercent-
age. The written-text portion of the BNC contains
6.4M named entities in 5M sentences (at least one
NE per sentence). The average number of words
per NE is 2.56, the average number of words per
sentence is 18.36. Thus, we estimate that by us-
ing NER, we reduce vector dimensionality by at
least 14% without introducing the negative effects
of sparsity.

V-N Combination In order to create a single
vector from the units of a VNC expression, we
need to combine the vectors pertaining to the verb

2http://www.bbn.com/technology/identifinder

type (V) and the noun type (N). After combin-
ing the word types in the vector dimensions, we
need to handle their co-occurrence frequency val-
ues. Hence we have two methods:addition where
we simply add the frequencies in the cases of
the shared dimensions which amounts to a union
where the co-occurrence frequencies are added;
or multiplication which amounts to an inter-
section of the vector dimensions where the co-
occurrence frequencies are multiplied, hence giv-
ing more weight to the shared dimensions than in
theaddition case. In a study by (Mitchell and La-
pata, 2008) on a sentence similarity task, a multi-
plicative combination model performs better than
the additive one.

Similarity Measures We experiment with sev-
eral standard similarity measures: Cosine Similar-
ity, Overlap similarity, Dice Coefficient and Jac-
card Index as defined in (Manning and Schütze,
1999). A context vector is converted to a set by
using the dimensions of the vector as members of
the set.

5 Experiments and Results

5.1 Data

We use the British National Corpus (BNC),3

which contains 100M words, because it draws its
text from a wide variety of domains and the ex-
isting gold standard data sets are derived from it.
The BNC contains multiple genres including writ-
ten text and transcribed speech. We only experi-
ment with the written-text portion. We syntacti-
cally parse the corpus with theMinipar4 parser in
order to identify all VNC expression tokens in the
corpus. We exploit the lemmatized version of the
text in order to reduce dimensionality and sparse-
ness. The standard data used in (Cook et al., 2007)
(henceforth CFS07) is derived from a set compris-
ing 2920 unique VNC-Token expressions drawn
from the whole BNC. In this set, VNC token ex-
pressions are manually annotated asidiomatic, lit-
eral or unknown.

For our purposes, we discard 127 of the 2920
token gold standard data set either because they
are derived from the speech transcription por-
tion of the BNC, or becauseMinipar could not
parse them. Similar to the CFS07 set, we ex-
clude expressions labeledunknownor pertaining

3http://www.natcorp.ox.ac.uk/
4http://www.cs.ualberta.ca/ lindek/minipar.htm
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to the skewed data set as deemed by the annota-
tors. Therefore, our resulting data set comprises
1125 VNC token expressions (CFS07 has 1180).
We then split them into a development (DEV) set
and a test (TEST) set. The DEV set comprises
564 token expressions corresponding to 346 id-
iomatic (IDM) expressions and 218 literal (LIT)
ones (CFS07 dev has 573). The TEST set com-
prises 561 token expressions corresponding to 356
IDM expression tokens and 205 LIT ones (CFS07
test has 607). There is a complete overlap in types
between our DEV and CFS07’s dev set and our
TEST and CFS07’s test set. They each comprise
14 VNC type expressions with no overlap in type
between the TEST and DEV sets. We divide the
tokens between the DEV and TEST maintaining
the same proportions of IDM to LIT as recom-
mended in CFS07: DEV is 61.5% and TEST is
63.7%.

5.2 Experimental Set-up

We vary four of the experimental parameters:
Context-Extent{sentence only narrow (N), sen-
tence + paragraph broad(B)}, Context-Content
{Words (W), Words+NER (NE)}, Dimension{no
threshold (nT), frequency (F), ratio (R)}, and V-
N compositionality{Additive (A), Multiplicative
(M)}. We present the results for all similarity mea-
sures. The thresholds (forDimensionFreq and
DimensionRatio) are tuned on all the similarity
measures collectively. It is observed that the per-
formance of all the measures improved/worsened
together, illustrating the same trends in perfor-
mance, over the various settings of the thresholds
evaluated on the DEV data set. Based on tuning
on the DEV set, we empirically set the value of
the threshold on F to be 188 and for R to be 175
across all experimental conditions. We present re-
sults here for 10 experimental conditions based on
the four experimental parameters:{nT-A-W-N,
nT-M-W-N, F-A-W-N, F-M-W-N, R-A-W-N, R-
M-W-N, R-A-W-B, R-M-W-B, R-A-NE-B, R-
M-NE-B}. For instance,R-A-W-N , the Dimen-
sion parameter is set to the RatioDimensionRatio

(R), the V-N compositionality mode is addition
(A), and the Context-Content is set toContext −
ContentWords (W), and, Context-Extent is set to
ContextNarrow (N).

5.3 Results

We use Fβ=1 (F-measure) as the harmonic mean
between Precision and Recall, as well as accu-

racy to report the results. We report the results
separately for the two classes IDM and LIT on
the DEV and TEST data set for all four similar-
ity measures.

6 Discussion

As shown in Table 2, we obtain the best classifi-
cation accuracy of 75.54% (R-A-NE-B) on TEST
using the Overlap similarity measure, with Fβ=1

values for the IDM and LIT classes being 0.82
and 0.64, respectively. These results are generally
comparable to state-of-the-art results obtained by
CFS07 who report an overall system accuracy of
72.4% on their test set. Hence, we improve over
state-of-the-art results by 3% absolute.

In the DEV set, the highest results (F-measures
for IDM and LIT, as well as accuracy scores) are
obtained for all conditions consistently using the
Overlap similarity measure. We also note that our
approach tends to fare better overall in classifying
IDM than LIT. The best performance is obtained
in experimental settingR-A-NE-B at 78.53% ac-
curacy corresponding to an IDM classification F-
measure of 0.83 and LIT classification F-measure
of 0.71.

In the TEST set, we note that Overlap simi-
larity yields the highest overall results, however
inconsistently across all the experimental condi-
tions. The highest scores are yielded by the same
experimental condition R-A-NE-B. In fact, com-
parable to previous work, the Cosine similarity
measure significantly outperforms the other sim-
ilarity measures when the Dimension parameter is
set to no threshold (nT) and with a set threshold on
frequency (F). However, Cosine is outperformed
by Overlap when we apply a threshold to the Ratio
Dimension. It is worth noting that across all exper-
imental conditions (except in one case,nT-A-W-
N using Overlap similarity), IDM F-measures are
consistently higher than LIT F-measures, suggest-
ing that our approach is more reliable in detecting
idiomatic VNC MWE rather than not.

The overall results strongly suggest that us-
ing intelligent dimensionality reduction, such as
a threshold on the ratio, significantly outperforms
no thresholding (nT) and simple frequency thresh-
olding (F) comparing across different similarity
measures and all experimental conditions. Recall
that R was employed to maintain the salient sig-
nals in the context and exclude those that are irrel-
evant.
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Experiment Dice Coefficient Jaccard Index Overlap Cosine
F-measure Acc. % F-measure Acc. % F-measure Acc. % F-measure Acc. %
IDM LIT IDM LIT IDM LIT IDM LIT

nT-A-W-N 0.45 0.44 44.39 0.47 0.43 44.92 0.50 0.56 53.30 0.49 0.42 45.63
nT-M-W-N 0.48 0.46 46.88 0.48 0.46 46.88 0.58 0.57 57.78 0.46 0.47 46.52
F-A-W-N 0.47 0.47 46.70 0.47 0.47 46.70 0.58 0.53 55.62 0.50 0.50 50.09
F-M-W-N 0.48 0.49 48.31 0.48 0.49 48.31 0.58 0.57 57.40 0.54 0.50 52.05
R-A-W-N 0.79 0.62 72.73 0.79 0.62 72.73 0.79 0.63 73.44 0.79 0.62 72.73
R-M-W-N 0.76 0.06 62.21 0.76 0.06 62.21 0.77 0.06 62.39 0.77 0.06 62.39
R-A-W-B 0.59 0.57 58.11 0.59 0.57 58.11 0.80 0.72 76.47 0.67 0.65 65.78
R-M-W-B 0.67 0.63 65.06 0.67 0.63 65.06 0.80 0.71 76.65 0.71 0.66 68.81
R-A-NE-B 0.58 0.58 58.14 0.58 0.58 58.14 0.83 0.71 78.53 0.70 0.64 67.08
R-M-NE-B 0.63 0.63 62.79 0.63 0.63 62.79 0.76 0.69 73.17 0.73 0.67 70.13

Table 1: Evaluation on of different experimental conditions on DEV

Experiment Dice Coefficient Jaccard Index Overlap Cosine
F-measure Acc. % F-measure Acc. % F-measure Acc. % F-measure Acc. %
IDM LIT IDM LIT IDM LIT IDM LIT

nT-A-W-N 0.58 0.48 53.50 0.62 0.49 56.37 0.43 0.50 46.32 0.63 0.48 56.37
nT-M-W-N 0.58 0.46 52.60 0.53 0.48 50.45 0.53 0.50 51.71 0.55 0.51 52.78
F-A-W-N 0.60 0.48 55.12 0.60 0.48 55.12 0.46 0.36 41.47 0.60 0.46 54.04
F-M-W-N 0.56 0.48 52.07 0.56 0.48 52.07 0.49 0.45 47.04 0.62 0.49 56.19
R-A-W-N 0.81 0.57 73.61 0.81 0.57 73.61 0.82 0.57 74.51 0.81 0.57 73.61
R-M-W-N 0.78 0.09 64.99 0.78 0.09 64.99 0.78 0.08 64.81 0.78 0.08 64.81
R-A-W-B 0.69 0.57 64.11 0.62 0.56 59.11 0.78 0.66 73.04 0.68 0.60 64.64
R-M-W-B 0.64 0.60 61.79 0.64 0.60 61.79 0.78 0.64 72.86 0.69 0.62 65.89
R-A-NE-B 0.61 0.56 58.45 0.61 0.56 58.45 0.82 0.64 75.54 0.68 0.58 63.37
R-M-NE-B 0.59 0.58 58.63 0.59 0.58 58.63 0.76 0.65 71.40 0.69 0.61 65.29

Table 2: Evaluation of different experimental conditions on TEST

The results suggest some interaction between
the vector combination method, A or M, and the
Dimensionality pruning parameters. Experimen-
tal conditions that apply the multiplicative compo-
sitionality on the component vectors V and N yield
higher results in the nT and F conditions across all
the similarity measures. Yet once we apply R di-
mensionality pruning, we see that the additive vec-
tor combination, A parameter setting, yields bet-
ter results. This indicated that the M condition
already prunes too much in addition to the R di-
mensionality hence leading to slightly lower per-
formance.

For both DEV and TEST, we note that the R pa-
rameter settings coupled with the A parameter set-
ting. For DEV, we observe that the results yielded
from the Broad context extent, contextual sentence
and surrounding paragraph, yield higher results
than those obtained from the narrow N, context

sentence only, across M and A conditions. This
trend is not consistent with the results on the TEST
data set. R-A-W-N, outperforms R-A-W-B, how-
ever, R-M-W-B outperforms R-M-W-N.

We would like to point out that R-M-W-N has
very low values for the LIT F-measure, this is at-
tributed to the use of a unified R threshold value
of 175. We experimented with different optimal
thresholds for R depending on the parameter set-
ting combination and we discovered that for R-
M-W-N, the fine-tuned optimal threshold should
have been 27 as tuned on the DEV set, yielding
LIT F-measures of 0.68 and 0.63, for DEV and
TEST, respectively. Hence when using the uni-
fied value of 175, more of the compositional vec-
tors components of V+N are pruned away leading
to similarity values between the V+N vector and
the VNC vector of 0 (across all similarity mea-
sures). Accordingly, most of the expressions are
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mis-classified as IDM.
The best results overall are yielded from the NE

conditions. This result strongly suggests that using
class based linguistic information and novel ways
to keep the relevant tokens in the vectors such as
R yields better MWE classification.

Qualitatively, we note the best results are ob-
tained on the following VNCs from the TEST
set in the Overlap similarity measure for theR-
A-W-B experimental setting (percentage of to-
kens classified correctly):make hay(94%), make
mark(88%), pull punch (86%), have word(81%),
blow whistle (80%), hit wall (79%), hold fire
(73%). While we note the highest performance
on the following VNCs in the correspondingR-A-
NE-B experimental setting:make hay(88%), make
mark(87%), pull punch (91%), have word(85%),
blow whistle (84%), hold fire (82%). We observe
that both conditions performed the worse on to-
kens from the following VNCslose thread, make
hit. Especially,make hit is problematic since it
mostly a literal expression, yet in the gold stan-
dard set we see it marked inconsistently. For in-
stance, the literal sentenceHe bowled it himself
and Wilfred Rhodesmade the winninghit while
the following annotatesmake hitas idiomatic: It
was the TV show Saturday Night Live which orig-
inally madeMartin a huge hit in the States.

We also note the difference in performance in
the hard cases of VNCs that are relatively trans-
parent, only theR-A-W-B and R-A-NE-B exper-
imental conditions were able to classify them cor-
rectly with high F-measures as either IDM or LIT,
namely: have word, hit wall, make mark. For R-
A-W-B , the yielded accuracies are 81%, 79% and
88% respectively, and forR-A-NE-B, the accura-
cies are 85%, 65%, and 87%, respectively. How-
ever, in thenT-A-W-N condition have wordis
classified incorrectly 82% of the time and inF-A-
W-N it is classified incorrectly 85% of the time.
Make markis classified incorrectly 77% of the
time, make hay(77%) andhit wall (57%) in the
F-A-W-N experimental setting. This may be at-
tributed to the use of the Broader context, or the
use of R in the other more accurate experimental
settings.

7 Conclusion

In this study, we explored a set of features that
contribute to VNC token expression binary clas-
sification. We applied dimensionality reduction

heuristics inspired by information retrieval (tf-idf
like ratio measure) and linguistics (named-entity
recogniiton). These contributions improve signif-
icantly over experimental conditions that do not
manipulate context and dimensions. Our system
achieves state-of-the-art performance on a set that
is very close to a standard data set. Different from
previous studies, we classify VNC token expres-
sions in context. We include function words in
modeling the VNC token contexts as well as using
the whole paragraph in which it occurs as context.
Moreover we empirically show that the Overlap
similarity measure is a better measure to use for
MWE classification.
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Abstract 

This paper presents a new statistical method 

for detecting and tracking changes in word 

meaning, based on Latent Semantic Analysis. 

By comparing the density of semantic vector 

clusters this method allows researchers to 

make statistical inferences on questions such 

as whether the meaning of a word changed 

across time or if a phonetic cluster is asso-

ciated with a specific meaning. Possible appli-

cations of this method are then illustrated in 

tracing the semantic change of „dog‟, „do‟, and 

„deer‟ in early English and examining and 

comparing phonaesthemes. 

1 Introduction 

The increase in available computing power over 

the last few decades has led to an explosion in 

the application of statistical methods to the anal-

ysis of texts. Researchers have applied these me-

thods to a wide range of tasks, from word-sense 

disambiguation (Levin et al., 2006) to the sum-

marization of texts (Marcu, 2003) and the auto-

matic scoring of student essays (Riedel et al., 

2006). However, some fields of linguistics that 

have traditionally employed corpora as their 

source material, such as historical semantics, 

have yet to benefit from the application of these 

statistical methods.  

In this paper we demonstrate how an existing 

statistical tool (Latent Semantic Analysis) can be 

adapted and used to automate and enhance some 

aspects of research in historical semantics and 

other fields whose focus is on the comparative 

analysis of word meanings within a corpus. Our 

method allows us to assess the semantic variation 

within the set of individual occurrences of a giv-

en word type. This variation is inversely related 

to a property of types that we call density – intui-

tively, a tendency to occur in highly similar con-

texts. In terms of our LSA-based spatial semantic 

model, we calculate vectors representing the con-

text of each occurrence of a given term, and es-

timate the term‟s cohesiveness as the density 

with which these token context vectors are 

“packed” in space. 

2 The method 

Latent Semantic Analysis (LSA) is a collective 

term for a family of related methods, all of which 

involve building numerical representations of 

words based on occurrence patterns in a training 

corpus. The basic underlying assumption is that 

co-occurrence within the same contexts can be 

used as a stand-in measure of semantic related-

ness (see Firth, 1957; Halliday and Hasan, 1976; 

Hoey, 1991, for early articulations of this idea). 

The success of the method in technical applica-

tions such as information retrieval and its popu-

larity as a research tool in psychology, education, 

linguistics and other disciplines suggest that this 

hypothesis holds up well for the purposes of 

those applications. 

The relevant notion of “context” varies. The 

first and still widely used implementation of the 

idea, developed in Information Retrieval and 

originally known as Latent Semantic Indexing 

(Deerwester et al., 1990), assembles a term-

document matrix in which each vocabulary item 

(term) is associated with an n-dimensional vector 

recording its distribution over the n documents in 

the corpus. In contrast, the version we applied in 

this work measures co-occurrence in a way that 

is more independent of the characteristics of the 

documents in the training corpus, building in-
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stead a term-term matrix associating vocabulary 

items with vectors representing their frequency 

of co-occurrence with each of a list of “content-

bearing” words. This approach originated with 

the “WordSpace” paradigm developed by 

Schütze (1996). The software we used is a ver-

sion of the “Infomap” package developed at 

Stanford University and freely available (see also 

Takayama et al., 1999). We describe it and the 

steps we took in our experiments in some detail 

below. 

2.1 Word vectors 

The information encoded in the co-occurrence 

matrix, and thus ultimately the similarity meas-

ure depends greatly on the genre and subject 

matter of the training corpus (Takayama et al., 

1999; Kaufmann, 2000). In our case, we used the 

entire available corpus as our training corpus. 

The word types in the training corpus are ranked 

by frequency of occurrence, and the Infomap 

system automatically selects (i) a vocabulary 𝑊  

for which vector representations are to be col-

lected, and (ii) a set 𝐶 of 1,000 “content-bearing” 

words whose occurrence or non-occurrence is 

taken to be indicative of the subject matter of a 

given passage of text. Usually, these choices are 

guided by a stoplist of (mostly closed-class) lexi-

cal items that are to be excluded, but because we 

were interested in tracing changes in the meaning 

of lexical items we reduced this stoplist to a bare 

minimum. To compensate, we increased the 

number of “content-bearing” words to 2,000. The 

vocabulary 𝑊 consisted of the 40,000 most fre-

quent non-stoplist words. The set 𝐶 of content-

bearing words contained the 50
th
 through 2,049

th
 

most frequent non-stoplist words. This method 

may seem rather blunt, but it has the advantage 

of not requiring any human intervention or ante-

cedently given information about the domain. 

The cells in the resulting matrix of 40,000 

rows and 2,000 columns were filled with co-

occurrence counts recording, for each 

pair  𝑤, 𝑐 ∈ 𝑊 × 𝐶, the number of times a token 

of 𝑐 occurred in the context of a token of 𝑤 in 

the corpus.
1
 The “context” of a token 𝑤𝑖  in our 

                                                 
1 Two details are glossed over here: First, the Infomap sys-

tem weighs this raw count with a 𝑡𝑓. 𝑖𝑑𝑓 measure of the 

column label c, calculated as follows: 𝑡𝑓. 𝑖𝑑𝑓 𝑐 = 𝑡𝑓 𝑐 ×

 𝑙𝑜𝑔 𝐷 + 1 − 𝑙𝑜𝑔 𝑑𝑓 𝑐    where 𝑡𝑓 and 𝑑𝑓 are the number 

of occurrences of 𝑐 and the number of documents in which 

𝑐 occurs, respectively, and 𝐷 is the total number of docu-

ments. Second, the number in each cell is replaced with its 

square root, in order to approximate a normal distribution of 

counts and attenuate the potentially distorting influence of 

implementation is the set of tokens in a fixed-

width window from the 15th item preceding 𝑤𝑖  

to the 15th item following it (less if a document 

boundary intervenes). The matrix was trans-

formed by Singular Value Decomposition 

(SVD), whose implementation in the Infomap 

system relies on the SVDPACKC package 

(Berry, 1992; Berry et al., 1993). The output was 

a reduced 40,000 × 100 matrix. Thus each item 

𝑤 ∈ 𝑊 is associated with a 100-dimensional 

vector 𝑤   . 

2.2 Context vectors 

Once the vector space is obtained from the 

training corpus, vectors can be calculated for any 

multi-word unit of text (e.g. paragraphs, queries, 

or documents), regardless of whether it occurs in 

the original training corpus or not, as the normal-

ized sum of the vectors associated with the words 

it contains. In this way, for each occurrence of a 

target word type under investigation, we calcu-

lated a context vector from the 15 words preced-

ing and the 15 words following that occurrence. 

Context vectors were first used in Word Sense 

Discrimination by Schütze (1998). Similarly to 

that application, we assume that these “second-

order” vectors encode the aggregate meaning, or 

topic, of the segment they represent, and thus, 

following the reasoning behind LSA, are 

indicative of the meaning with which it is being 

used on that particular occurrence. Consequently, 

for each target word of interest, the context 

vectors associated with its occurrences constitute 

the data points. The analysis is then a matter of 

grouping these data points according to some 

criterion (e.g., the period in which the text was 

written) and conducting an appropriate statistical 

test. In some cases it might also be possible to 

use regression or apply a clustering analysis. 

2.3 Semantic Density Analysis 

Conducting statistical tests comparing groups of 

vectors is not trivial. Fortunately, some questions 

can be answered based on the similarity of vec-

tors within each group rather than the vectors 

themselves. The similarity between two vectors 

𝑤   , 𝑣  is measured as the cosine between them:
2
 

                                                                          
high base frequencies (cf. Takayama, et al. 1998; Widdows, 

2004). 
2 While the cosine measure is the accepted measure of simi-

larity, the cosine function is non-linear and therefore prob-

lematic for many statistical methods. Several transforma-

tions can be used to correct this (e.g., Fisher‟s z). In this 

paper we will use the angle, in degrees, between the two 

vectors (i.e., 𝑐𝑜𝑠−1) because it is easily interpretable. 

105



𝑐𝑜𝑠 𝑤   , 𝑣  =
𝑤   ∙ 𝑣 

 𝑤     𝑣  
 

 

The average similarity of a group of vectors is 

indicative of its density – a dense group of highly 

similar vectors will have a high average cosine 

(and a correspondingly low average angle) 

whereas a sparse group of dissimilar vectors will 

have an average cosine that approaches zero (and 

a correspondingly high average angle).
3
 Thus 

since a word that has a single, highly restricted 

meaning (e.g. „palindrome‟) is likely to occur in 

a very restricted set of contexts, its context vec-

tors are also likely to have a low average angle 

between them, compared to a word that is highly 

polysemous or appears in a large variety of con-

texts (e.g. „bank‟, „do‟). From this observation, it 

follows that it should be possible to compare the 

cohesiveness of groups of vectors in terms of the 

average pairwise similarity of the vectors of 

which they are comprised. Because the number 

of such pairings tends to be prohibitively large 

(e.g., nearly 1,000,000 for a group of 1,000 vec-

tors), it is useful to use only a sub-sample in any 

single analysis. A Monte-Carlo analysis in which 

n pair-wise similarity values are chosen at ran-

dom from each group of vectors is therefore ap-

propriate.
4
 

However, there is one final complication to 

consider in the analysis. The passage of time in-

fluences not only the meaning of words, but also 

styles and variety of writing. For example, texts 

in the 11
th
 century were much less varied, on av-

erage, than those written in the 15
th
 century.

5
 

This will influence the calculation of context 

vectors as those depend, in part, on the text they 

are taken from. Because the document as a whole 

is represented by a vector that is the average of 

all of its words, it is possible to predict that, if no 

other factors exist, two contexts are likely to be 

related to one another to the same degree that 

their documents are. Controlling for this effect 

can therefore be achieved by subtracting from 

                                                 
3
 Since the cosine ranges from -1 to +1, it is possible in 

principle to obtain negative average cosines. In practice, 

however, the overwhelming majority of vocabulary items 

have a non-negative cosine with any given target word, 

hence the average cosine usually does not fall below zero. 
4
 It is important to note that the number of independent 

samples in the analysis is determined not by the number of 

similarity values compared but by the number of individual 

vectors used in the analysis. 
5 Tracking changes in the distribution of the document 

vectors in a corpus over time might itself be of interest to 

some researchers but is beyond the scope of the current 

paper. 

the angle between two context vectors the angle 

between the documents in which they appear.  

3 Applications to Research 

3.1 A Diachronic Investigation: Semantic 

Change 

One of the central questions of historical seman-

tics is the following (Traugott, 1999):
6
 

 
Given the form-meaning pair 𝐿 (lexeme) what 

changes did meaning 𝑀 undergo? 

 

For example, the form as long as underwent 

the change `equal in length‟ > `equal in time‟ > 

`provided that‟. Evidence for semantic change 

comes from written records, cognates, and struc-

tural analysis (Bloomfield, 1933).  Traditional 

categories of semantic change include (Traugott, 

2005: 2-4; Campbell, 2004:254-262; Forston, 

2003: 648-650): 

 Broadening (generalization, extension, 

borrowing): A restricted meaning becomes less 

restricted (e.g. Late Old English docga `a (spe-

cific) powerful breed of dog‟ > dog `any member 

of the species Canis familiaris‟ 

 Narrowing (specialization, restriction): A 

relatively general meaning becomes more specif-

ic (e.g. Old English deor `animal‟ > deer) 

 Pejoration (degeneration): A meaning be-

comes more negative (e.g. Old English sælig 

`blessed, blissful‟ > sely `happy, innocent, pitia-

ble‟ > silly `foolish, stupid‟) 

 

Semantic change results from the use of lan-

guage in context, whether linguistic or extralin-

guistic. Later meanings of forms are connected to 

earlier ones, where all semantic change arises by 

polysemy, i.e. new meanings coexist with earlier 

ones, typically in restricted contexts. Sometimes 

new meanings split off from earlier ones and are 

no longer considered variants by language users 

(e.g. mistress `woman in a position of authority, 

head of household‟ > `woman in a continuing 

extra-marital relationship with a man‟). 

Semantic change is often considered unsyste-

matic (Hock and Joseph, 1996: 252). However, 

recent work (Traugott and Dasher, 2002) sug-

gests that there is, in fact, significant cross-

linguistic regularity in semantic change. For ex-

                                                 
6 This is the semasiological perspective on semantic change. 

Other perspectives include the onomasiological perspective 

(“Given the concept 𝐶, what lexemes can it be expressed 

by?”). See Traugott 1999 for discussion. 
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ample, in the Invited Inferencing Model of Se-

mantic Change proposed by Traugott and Dasher 

(2002) the main mechanism of semantic change 

is argued to be the semanticization of conversa-

tional implicatures, where conversational impli-

catures are a component of speaker meaning that 

arises from the interaction between what the 

speaker says and rational principles of communi-

cation (Grice, 1989 [1975]). Conversational im-

plicatures are suggested by an utterance but not 

entailed. For example, the utterance Some stu-

dents came to the party strongly suggests that 

some but not all students came to the party, even 

though the utterance would be true strictly speak-

ing if all students came to the party. According to 

the Invited Inferencing Model, conversational 

implicatures become part of the semantic poly-

semies of particular forms over time. 

Such changes in meaning should be evident 

when examining the contexts in which the lex-

eme of interest appears. In other words, changes 

in the meaning of a type should translate to dif-

ferences in the contexts in which its tokens are 

used. For instance, semantic broadening results 

in a meaning that is less restricted and as a result 

can be used in a larger variety of contexts. In a 

semantic space that encompasses the period of 

such a change, this increase in variety can be 

measured as a decrease in vector density across 

the time span of the corpus. This decrease trans-

lates into an increase in the average angle be-

tween the context vectors for the word. For in-

stance, because the Old English word „docga‟ 

applied to a specific breed of dog, we predicted 

that earlier occurrences of the lexemes „docga‟ 

and „dog‟, in a corpus of documents of the ap-

propriate time period, will show less variety than 

later occurrences. 

An even more extreme case of semantic broa-

dening is predicted to occur as part of the process 

of grammaticalization (Traugot and Dasher, 

2002) in which a content word becomes a func-

tion word. Because, as a general rule, a function 

word can be used in a much larger variety of 

contexts than a content word, a word that under-

went grammaticalization should appear in a sub-

stantially larger variety of contexts than it did 

prior to becoming a function word. One well stu-

died case of grammaticalization is that of periph-

rastic „do‟. While in Old English „do‟ was used 

as a verb with a causative and habitual sense 

(e.g. „do you harm‟), later in English it took on a 

functional role that is nearly devoid of meaning 

(e.g. „do you know him?‟). Because this change 

occurred in Middle English, we predicted that 

earlier occurrences of „do‟ will show less variety 

than later ones. 

In contrast with broadening, semantic narrow-

ing results in a meaning that is more restricted, 

and is therefore applicable in fewer contexts than 

before. This decrease in variety results in an in-

crease in vector density and can be directly 

measured as a decrease in the average angle be-

tween the context vectors for the word. As an 

example, the Old English word „deor‟ denoted a 

larger group of living creatures than does the 

Modern English word „deer‟. We therefore pre-

dicted that earlier occurrences of the lexemes 

„deor‟ and „deer‟, in a corpus of the appropriate 

time period, will show more variety than later 

occurrences. 

We tested our predictions using a corpus de-

rived from the Helsinki corpus (Rissanen, 1994). 

The Helsinki corpus is comprised of texts span-

ning the periods of Old English (prior to 

1150A.D.), Middle English (1150-1500A.D.), 

and Early Modern English (1500-1710A.D.). 

Because spelling in Old English was highly vari-

able, we decided to exclude that part of the cor-

pus and focused our analysis on the Middle Eng-

lish and Early Modern English periods. The re-

sulting corpus included 504 distinct documents 

totaling approximately 1.1 million words. 

To test our predictions regarding semantic 

change in the words „dog‟, „do‟, and „deer‟, we 

collected all of the contexts in which they appear 

in our subset of the Helsinki corpus. This re-

sulted in 112 contexts for „dog‟, 4298 contexts 

for „do‟, and 61 contexts for „deer‟. Because 

there were relatively few occurrences of „dog‟ 

Table 1 - Mean angle between context vectors for target words in different periods in the Helsinki 

corpus (standard deviations are given in parenthesis) 

 

n 

Unknown composi-

tion date 

(<1250) 

Early Middle 

English 

(1150-1350) 

Late Middle 

English 

(1350-1500) 

Early Modern 

English 

(1500-1710) 

dog 112   15.47 (14.19) 24.73(10.43) 

do 4298  10.31(13.57) 13.02 (9.50) 24.54 (11.2) 

deer 61 38.72 (17.59) 20.6 (18.18)  20.5 (9.82) 

science 79   13.56 (13.33) 28.31 (12.24) 
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and „deer‟ in the corpus it was practical to com-

pute the angles between all possible pairs of con-

text vectors. As a result, we elected to forgo the 

Monte-Carlo analysis for those two words in fa-

vor of a full analysis. The results of our analysis 

for all three words are given in Table 1. These 

results were congruent with our prediction: The 

density of the contexts decreases over time for 

both „dog‟ (t(110) = 2.17, p < .05) and „do‟ 

(F(2,2997)=409.41, p < .01) while in the case of 

„deer‟ there is an increase in the density of the 

contexts over time (t(36) = 3.05, p < .01). 

Furthermore, our analysis corresponds with 

the data collected by Ellegård (1953). Ellegård 

traced the grammaticalization of „do‟ by manual-

ly examining changes in the proportions of its 

various uses between 1400 and 1700. His data 

identifies an overall shift in the pattern of use 

that occurred mainly between 1475 and 1575. 

Our analysis identifies a similar shift in patterns 

between the time periods spanning 1350-1500 

and 1500-1570. Figure 1 depicts an overlay of 

both datasets. The relative scale of the two sets 

was set so that the proportions of „do‟ uses at 

1400 and 1700 (the beginning and end of El-

legård‟s data, respectively) match the semantic 

density measured by our method at those times. 

Finally, our method can be used not only to 

test predictions based on established cases of 

semantic change, but also to identify new ones. 

For instance, in examining the contexts of the 

word „science‟ we can identify that it underwent 

semantic broadening shortly after it first ap-

peared in the 14
th
 century (t(77) = 4.51, p < .01). 

A subsequent examination of the contexts in 

which the word appears indicated that this is 

probably the result of a shift from a meaning re-

lated to generalized knowledge (e.g., „…and 

learn science of school‟, John of Trevisa's Polyc-

hronicon, 1387) to one that can also be used to 

refer to more specific disciplines (e.g., „…of the 

seven liberal sciences‟, Simon Forman‟s Diary, 

1602). 

Our long term goal with respect to this type of 

analysis is to use this method in a computer-

based tool that can scan a diachronic corpus and 

automatically identify probable cases of semantic 

change within it. Researchers can then use these 

results to focus on identifying the specifics of 

such changes, as well as examine the overall pat-

terns of change that exist in the corpus. It is our 

belief that such a use will enable a more rigorous 

testing and refinement of existing theories of se-

mantic change. 

3.2 A Synchronic Investigation: Phonaes-

themes 

In addition to examining changes in meaning 

across time, it is also possible to employ our me-

thod to examine how the semantic space relates 

to other possible partitioning of the lexemes 

represented by it. For instance, while the rela-

tionship between the phonetic representation and 

semantic content is largely considered to be arbi-

trary, there are some notable exceptions. One 

interesting case is that of phonaesthemes (Firth, 

1930), sub-morphemic units that have a predict-

able effect on the meaning of the word as a 

whole. In English, one of the more frequently 

mentioned phonaesthemes is a word-initial gl- 

which is common in words related to the visual 

modality (e.g., „glance‟, „gleam‟). While there 

have been some scholastic explorations of these 

non-morphological relationships between sound 

and meaning, they have not been thoroughly ex-

plored by behavioral and computational research 

(with some notable exceptions; e.g. Hutchins, 

1998; Bergen, 2004). Recently, Otis and Sagi 

(2008) used the semantic density of the cluster of 

words sharing a phonaestheme as a measure of 
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Figure 1 – A comparison of the rise of periphrastic 'do' as measured by semantic density in our study and 

the proportion of periphrastic 'do' uses by Ellegård (1953). 
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the strength of the relationship between the pho-

netic cluster and its proposed meaning.  

Otis and Sagi used a corpus derived from 

Project Gutenberg (http://www.gutenberg.org/) 

as the basis for their analysis. Specifically, they 

used the bulk of the English language literary 

works available through the project‟s website. 

This resulted in a corpus of 4034 separate docu-

ments consisting of over 290 million words.  

The bulk of the candidate phonaesthemes they 

tested were taken from the list used by Hutchins 

(1998), with the addition of two candidate pho-

naesthemes (kn- and -ign). Two letter combina-

tions that were considered unlikely to be pho-

naesthemes (br- and z-) were also included in 

order to test the method‟s capacity for discrimi-

nating between phonaesthemes and non-

phonaesthemes. Overall Otis and Sagi (2008) 

examined 47 possible phonaesthemes. 

In cases where a phonetic cluster represents a 

phonaestheme, it intuitively follows that pairs of 

words sharing that phonetic cluster are more 

likely to share some aspect of their meaning than 

pairs of words chosen at random. Otis and Sagi 

tested whether this was true for any specific can-

didate phonaestheme using a Monte-Carlo analy-

sis. First they identified all of the words in the 

corpus sharing a conjectured phonaestheme
7
 and 

chose the most frequent representative word 

form for each stem, resulting in a cluster of word 

types representing each candidate phonaes-

theme.
8
 Next they tested the statistical signific-

ance of this relationship by running 100 t-test 

comparisons. Each of these tests compared the 

relationship of 50 pairs of words chosen at ran-

dom from the conjectured cluster with 50 pairs of 

words chosen at random from a similarly sized 

cluster, randomly generated from the entire cor-

pus. The number of times these t-tests resulted in 

a statistically significant difference (α = .05) was 

recorded. This analysis was repeated 3 times for 

each conjectured phonaestheme and the median 

value was used as the final result. 

To determine whether a conjectured phonaes-

theme was statistically supported by their analy-

sis Otis and Sagi compared the overall frequency 

                                                 
7 It is important to note that due to the nature of a written 

corpus, the match was orthographical rather than phonetic. 

However, in most cases the two are highly congruent. 
8 Because, in this case, Otis and Sagi were not interested in 

temporal changes in meaning, they used the overall word 

vectors rather than look at each context individually. As a 

result, each of the vectors used in the analysis is based on 

occurrences in many different documents and there was no 

need to control for the variability of the documents.  

of statistically significant t-tests with the binomi-

al distribution for their α (.05). After applying a 

Bonferroni correction for performing 50 compar-

isons, the threshold for statistical significance of 

the binomial test was for 14 t-tests out of 100 to 

turn out as significant, with a frequency of 13 

being marginally significant. Therefore, if the 

significance frequency (#Sig below) of a candi-

date phonaestheme was 15 or higher, that pho-

naestheme was judged as being supported by 

statistical evidence. Significance frequencies of 

13 and 14 were considered as indicative of a 

phonaestheme for which there was only marginal 

statistical support. 

Among Hutchins‟ original list of 44 possible 

phonaesthemes, 26 were found to be statistically 

reliable and 2 were marginally reliable. Overall 

the results were in line with the empirical data 

collected by Hutchins. By way of comparing the 

two datasets, #Sig and Hutchins‟ average rating 

measure were well correlated (r = .53). Neither 

of the unlikely phonaestheme candidates we ex-

amined were statistically supported phonaes-

themes (#Sigbr- = 6; #Sigz- = 5), whereas both of 

our newly hypothesized phonaesthemes were 

statistically supported (#Sigkn- = 28; #Sig-ign = 

23). In addition to being able to use this measure 

as a decision criterion as to whether a specific 

phonetic cluster might be phonaesthemic, it can 

also be used to compare the relative strength of 

two such clusters. For instance, in the Gutenberg 

corpus the phonaesthemic ending –owl (e.g., 

„growl‟, „howl‟; #Sig=97) was comprised of a 

cluster of words that were more similar to one 

another than –oop (e.g., „hoop‟, „loop‟; #Sig=32).  

Such results can then be used to test the cogni-

tive effects of phonaesthemes. For instance, fol-

lowing the comparison above, we might hypo-

thesize that the word „growl‟ might be a better 

semantic prime for „howl‟ than the word „hoop‟ 

is for the word „loop‟. In contrast, because a 

word-initial br- is not phonaesthemic, the word 

„breeze‟ is unlikely to be a semantic prime for 

the word „brick‟. In addition, it might be interest-

ing to combine the diachronic analysis from the 

previous section with the synchronic analysis in 

this section to investigate questions such as when 

and how phonaesthemes come to be part of a 

language and what factors might affect the 

strength of a phonaestheme. 

4 Discussion 

While the method presented in this paper is 

aimed towards quantifying semantic relation-
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ships that were previously difficult to quantify, it 

also raises an interesting theoretical issue, name-

ly the relationship between the statistically com-

puted semantic space and the actual semantic 

content of words. On the one hand, simulations 

based on Latent Semantic Analysis have been 

shown to correlate with cognitive factors such as 

the acquisition of vocabulary and the categoriza-

tion of texts (cf. Landauer & Dumais, 1997). On 

the other hand, in reality speakers‟ use of lan-

guage relies on more than simple patterns of 

word co-occurrence – For instance, we use syn-

tactic structures and pragmatic reasoning to sup-

plement the meaning of the individual lexemes 

we come across (e.g., Fodor, 1995; Grice, 1989 

[1975]). It is therefore likely that while LSA cap-

tures some of the variability in meaning exhi-

bited by words in context, it does not capture all 

of it. Indeed, there is a growing body of methods 

that propose to integrate these two disparate 

sources of linguistic information (e.g., Pado and 

Lapata, 2007; Widdows, 2003) 

Certainly, the results reported in this paper 

suggest that enough of the meaning of words and 

contexts is captured to allow interesting infe-

rences about semantic change and the relatedness 

of words to be drawn with a reasonable degree of 

certainty. However, it is possible that some im-

portant aspects of meaning are systematically 

ignored by the analysis. For instance, it remains 

to be seen whether this method can distinguish 

between processes like pejoration and amerliora-

tion as they require a fine grained distinction be-

tween „good‟ and „bad‟ meanings. 

Regardless of any such limitations, it is clear 

that important information about meaning can be 

gathered through a systematic analysis of the 

contexts in which words appear. Furthermore, 

phenomena such as the existence of phonaes-

themes and the success of LSA in predicting vo-

cabulary acquisition rates, suggest that the acqui-

sition of new vocabulary involves the gleaning of 

the meaning of words through their context. The 

role of context in semantic change is therefore 

likely to be an active one – when a listener en-

counters a word they are unfamiliar with they are 

likely to use the context in which it appears, as 

well as its phonetic composition, as clues to its 

meaning. Furthermore, if a word is likewise en-

countered in context in which it is unlikely, this 

unexpected observation may induce the listener 

to adjust their representation of both the context 

and the word in order to increase the overall co-

herence of the utterance or sentence. As a result, 

it is possible that examining the contexts in 

which a word is used in different documents and 

time periods might be useful not only as a tool 

for examining the history of a semantic change 

but also as an instrument for predicting its future 

progress. Overall, this suggests a dynamic view 

of the field of semantics – semantics as an ever-

changing landscape of meaning. In such a view, 

semantic change is the norm as the perceived 

meaning of words keeps shifting to accommo-

date the contexts in which they are used. 
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Abstract

We present the context-theoretic frame-
work, which provides a set of rules for the
nature of composition of meaning based
on the philosophy ofmeaning as context.
Principally, in the framework the composi-
tion of the meaning of words can be repre-
sented as multiplication of their represen-
tative vectors, where multiplication is dis-
tributive with respect to the vector space.

We discuss the applicability of the frame-
work to a range of techniques in natu-
ral language processing, including subse-
quence matching, the lexical entailment
model of Dagan et al. (2005), vector-based
representations of taxonomies, statistical
parsing and the representation of uncer-
tainty in logical semantics.

1 Introduction

Techniques such as latent semantic analysis (Deer-
wester et al., 1990) and its variants have been
very successful in representing the meanings of
words as vectors, yet there is currently no theory
of natural language semantics that explains how
we should compose these representations: what
should the representation of a phrase be, given the
representation of the words in the phrase? In this
paper we present such a theory, which is based
on the philosophy ofmeaning as context, as epit-
omised by the famous sayings of Wittgenstein
(1953), “Meaning justis use” and Firth (1957),
“You shall know a word by the company it keeps”.
For the sake of brevity we shall present only a
summary of our research, which is described in
full in (Clarke, 2007), and we give a simplified
version of the framework, which nevertheless suf-
fices for the examples which follow.

We believe that the development of theories that
can take vector representations of meaning beyond

the word level, to the phrasal and sentence lev-
els and beyond are essential for vector based se-
mantics to truly compete with logical semantics,
both in their academic standing and in application
to real problems in natural language processing.
Moreover the time is ripe for such a theory: never
has there been such an abundance of immediately
available textual data (in the form of the world-
wide web) or cheap computing power to enable
vector-based representations of meaning to be ob-
tained. The need to organise and understand the
new abundance of data makes these techniques all
the more attractive since meanings are determined
automatically and are thus more robust in compar-
ison to hand-built representations of meaning. A
guiding theory of vector based semantics would
undoubtedly be invaluable in the application of
these representations to problems in natural lan-
guage processing.

The context-theoretic framework does not pro-
vide a formula for how to compose meaning;
rather it provides mathematical guidelines for the-
ories of meaning. It describes the nature of the
vector space in which meanings live, gives some
restrictions on how meanings compose, and pro-
vides us with a measure of the degree of entail-
ment between strings for any implementation of
the framework.

The remainder of the paper is structured as fol-
lows: in Section 2 we present the framework; in
Section 3 we present applications of the frame-
work:

• We describe subsequence matching (Section
3.1) and the lexical entailment model of (Da-
gan et al., 2005) (Section 3.2), both of which
have been applied to the task of recognising
textual entailment.

• We show how a vector based representation
of a taxonomy incorporating probabilistic in-
formation about word meanings can be con-
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d1 d2 d3 d4 d5 d6 d1 d2 d3 d4 d5 d6 d1 d2 d3 d4 d5 d6

orange fruit orange∧ fruit

Figure 1: Vector representations of two terms in
a spaceL1(S) whereS = {d1, d2, d3, d4, d5, d6}
and their vector lattice meet (the darker shaded
area).

structed in Section 3.3.

• We show how syntax can be represented
within the framework in Section 3.4.

• We summarise our approach to representing
uncertainty in logical semantics in Section
3.5.

2 Context-theoretic Framework

The context-theoretic framework is based on the
idea that the vector representation of the meaning
of a word is derived from the contexts in which it
occurs. However it extends this idea to strings of
any length: we assume there is some setS con-
taining all the possible contexts associated with
any string. Acontext theoryis an implementa-
tion of the context-theoretic framework; a key re-
quirement for a context theory is a mapping from
strings to vectors formed from the set of contexts.

In vector based techniques, the set of contexts
may be the set of possible dependency relations
between words, or the set of documents in which
strings may occur; in context-theoretic semantics
however, the set of “contexts” can be any set.
We continue to refer to it as a set of contexts
since the intuition and philosophy which forms the
basis for the framework derives from this idea;
in practice the set may even consist of logical
sentences describing the meanings of strings in
model-theoretic terms.

An important aspect of vector-based techniques
is measuring the frequency of occurrence of
strings in each context. We model this in a gen-
eral way as follows: letA be a set consisting of
the words of the language under consideration.
The first requirement of a context theory is a map-
ping x 7→ x̂ from a stringx ∈ A∗ to a vector

x̂ ∈ L1(S)+, whereL1(S) means the set of all
functions fromS to the real numbersR which are
finite under theL1 norm,

‖u‖1 =
∑

s∈S

|u(s)|

andL1(S)+ restricts this to functions to the non-
negative real numbers,R+; these functions are
called the positive elements of the vector space
L1(S). The requirement that theL1 norm is finite,
and that the map is only to positive elements re-
flects the fact that the vectors are intended to repre-
sent an estimate of relative frequency distributions
of the strings over the contexts, since a frequency
distribution will always satisfy these requirements.
Note also that thel1 norm of the context vector of
a string is simply the sum of all its components
and is thus proportional to its probability.

The set of functionsL1(S) is a vector space un-
der the point-wise operations:

(αu)(s) = αu(s)

(u+ v)(s) = u(s) + v(s)

for u, v ∈ L1(S) andα ∈ R, but it is also a lattice
under the operations

(u ∧ v)(s) = min(u(s), v(s))

(u ∨ v)(s) = max(u(s), v(s)).

In fact it is avector latticeor Riesz space(Alipran-
tis and Burkinshaw, 1985) since it satisfies the fol-
lowing relationships

if u ≤ v then αu ≤ αv

if u ≤ v then u+ w ≤ v + w,

whereα ∈ R
+ and≤ is the partial ordering asso-

ciated with the lattice operations, defined byu ≤ v
if u ∧ v = u.

Together with thel1 norm, the vector lattice
defines anAbstract Lebesgue space(Abramovich
and Aliprantis, 2002) a vector space incorporating
all the properties of a measure space, and thus can
also be thought of as defining a probability space,
where∨ and∧ correspond to the union and inter-
section of events in theσ algebra, and the norm
corresponds to the (un-normalised) probability.

2.1 Distributional Generality

The vector lattice nature of the space under consid-
eration is important in the context-theoretic frame-
work since it is used to define a degree of entail-
ment between strings. Our notion of entailment is
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based on the concept ofdistributional generality
(Weeds et al., 2004), a generalisation of the distri-
butional hypothesis of Harris (1985), in which it
is assumed that terms with a more general mean-
ing will occur in a wider array of contexts, an
idea later developed by Geffet and Dagan (2005).
Weeds et al. (2004) also found that frequency
played a large role in determining the direction
of entailment, with the more general term often
occurring more frequently. The partial ordering
of the vector lattice encapsulates these properties
sincex̂ ≤ ŷ if and only if y occurs more frequently
in all the contexts in whichx occurs.

This partial ordering is a strict relationship,
however, that is unlikely to exist between any two
given vectors. Because of this, we define adegree
of entailment

Ent(u, v) =
‖u ∧ v‖1
‖u‖1

.

This value has the properties of a conditional prob-
ability; in the case ofu = x̂ and v = ŷ it is a
measure of the degree to which the contexts string
x occurs in are shared by the contexts stringy oc-
curs in.

2.2 Multiplication

The map from strings to vectors already tells us ev-
erything we need to know about the composition
of words: given two wordsx andy, we have their
individual context vectorŝx andŷ, and the mean-
ing of the stringxy is represented by the vector
x̂y. The question we address is what relationship
should be imposed between the representation of
the meanings of individual wordŝx andŷ and the
meaning of their composition̂xy. As it stands, we
have little guidance on what maps from strings to
context vectors are appropriate.

The first restriction we propose is that vector
representations of meanings should be compos-
able in their own right, without consideration of
what words they originated from. In fact we place
a strong requirement on the nature of multiplica-
tion on elements: we require that the multiplica-
tion · on the vector space defines alattice-ordered
algebra. This means that multiplication is asso-
ciative, distributive with respect to addition, and
satisfiesu · v ≥ 0 if u ≥ 0 andv ≥ 0, i.e. the
product of positive elements is also positive.

We argue that composition of context vectors
needs to be compatible with concatenation of

words, i.e.
x̂ · ŷ = x̂y,

i.e. the map from strings to context vectors defines
a semigroup homomorphism. Then the require-
ment that multiplication is associative can be seen
to be a natural one since the homomorphism en-
forces this requirement for context vectors. Sim-
ilarly since all context vectors are positive their
product in the algebra must also be positive, thus it
is natural to extend this to all elements of the alge-
bra. The requirement for distributivity is justified
by our own model of meaning as context in text
corpora, described in full elsewhere.

2.3 Context Theory

The above requirements give us all we need to de-
fine a context theory.

Definition 1 (Context theory). 〈A,S, ˆ, · 〉 defines
a context theory ifL1(S) is a lattice-ordered al-
gebra under the multiplication defined by· andˆ
defines a semigroup homomorphismx 7→ x̂ from
A∗ toL1(S)+.

3 Context Theories for Natural
Language

In this section we describe applications of the
context-theoretic framework to applications in
computational linguistics and natural language
processing. We shall commonly use a construc-
tion in which there is a binary operation◦ on S
that makes it a semigroup. In this caseL1(S) is a
lattice-ordered algebra with convolution as multi-
plication:

(u · v)(r) =
∑

s◦t=r

u(s)v(t)

for r, s, t ∈ S andu, v ∈ L1(S). We denote the
unit basis element associated with an elementx ∈
S by ex, that isex(y) = 1 if and only if y = x,
otherwiseex(y) = 0.

3.1 Subsequence Matching

A string x ∈ A∗ is called a “subsequence” of
y ∈ A∗ if each element ofx occurs iny in the
same order, but with the possibility of other ele-
ments occurring in between, so for exampleabba
is a subsequence ofacabcba in {a, b, c}∗. We de-
note the set of subsequences ofx (including the
empty string) bySub(x). Subsequence match-
ing compares the subsequences of two strings: the
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more subsequences they have in common the more
similar they are assumed to be. This idea has
been used successfully in text classification (Lodhi
et al., 2002) and recognising textual entailment
(Clarke, 2006).

We can describe such models using a context
theory 〈A,A∗, ˆ, · 〉, where · is convolution in
L1(A∗) and

x̂ = (1/2|x|)
∑

y∈Sub(x)

ey,

i.e. the context vector of a string is a weighted sum
of its subsequences. Under this context theoryx̂ ≤
ŷ, i.e.x completely entailsy if x is a subsequence
of y.

Many variations on this context theory are pos-
sible, for example using more complex mappings
toL1(A∗). The context theory can also be adapted
to incorporate a measure of lexical overlap be-
tween strings, an approach that, although simple,
performs comparably to more complex techniques
in tasks such as recognising textual entailment
(Dagan et al., 2005)

3.2 Lexical Entailment Model

Glickman and Dagan (2005) define their own
model of entailment and apply it to the task of
recognising textual entailment. They estimate
entailment between words based on occurrences
in documents: they estimate alexical entailment
probability LEP(x, y) between two termsx andy
to be

LEP(x, y) ≃
nx,y

ny

whereny and nx,y denote the number of docu-
ments that the wordy occurs in and the wordsx
andy both occur in respectively.

We can describe this using a context theory
〈A,D, ˆ, · 〉, whereD is the set of documents, and

x̂(d) =

{
1 if x occurs in documentd
0 otherwise.

.

In this case the estimate ofLEP(x, y) coincides
with our own degree of entailmentEnt(x, y).

There are many ways in which the multiplica-
tion · can be defined onL1(D). The simplest one
definesed · ef = ed if d = f andedef = 0 oth-
erwise. The effect of multiplication of the context
vectors of two strings is then set intersection:

(x̂·ŷ)(d) =

{
1 if x andy occur in documentd
0 otherwise.

Model Accuracy CWS

Dirichlet (106) 0.584 0.630
Dirichlet (107) 0.576 0.642
Bayer (MITRE) 0.586 0.617
Glickman (Bar Ilan) 0.586 0.572
Jijkoun (Amsterdam) 0.552 0.559
Newman (Dublin) 0.565 0.6

Table 1: Results obtained with our Latent Dirichlet
projection model on the data from the first Recog-
nising Textual Entailment Challenge for two doc-
ument lengthsN = 106 andN = 107 using a cut-
off for the degree of entailment of0.5 at which
entailment was regarded as holding. CWS is the
confidence weighted score — see (Dagan et al.,
2005) for the definition.

Glickman and Dagan (2005) do not use this
measure, possibly because the problem of data
sparseness makes it useless for long strings. How-
ever the measure they use can be viewed as an ap-
proximation to this context theory.

We have also used this idea to determine en-
tailment, using latent Dirichlet allocation to get
around the problem of data sparseness. A model
was built using a subset of around 380,000 docu-
ments from the Gigaword corpus, and the model
was evaluated on the dataset from the first Recog-
nising Textual Entailment Challenge; the results
are shown in Table 1. In order to use the model, a
document length had to be chosen; it was found
that very long documents yielded better perfor-
mance at this task.

3.3 Representing Taxonomies

In this section we describe how the relationships
described by a taxonomy, the collection ofis-
a relationships described by ontologies such as
WordNet (Fellbaum, 1989), can be embedded in
the vector lattice structure that is crucial to the
context-theoretic framework. This opens up the
way to the possibility of new techniques that
combine the vector-based representations of word
meanings with the ontological ones, for example:

• Semantic smoothing could be applied to
vector based representations of an ontology,
for example using distributional similarity
measures to move words that are distribution-
ally similar closer to each other in the vector
space. This type of technique may allow the
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benefits of vector based techniques and on-
tologies to be combined.

• Automatic classification: representing the
taxonomy in a vector space may make it
easier to look for relationships between the
meanings in the taxonomy and meanings de-
rived from vector based techniques such as
latent semantic analysis, potentially aiding in
classifying word meanings in a taxonomy.

• The new vector representation could lead to
new measures ofsemantic distance, for ex-
ample, theLp norms can all be used to
measure distance between the vector rep-
resentations of meanings in a taxonomy.
Moreover, the vector-based representation al-
lows ambiguity to be represented by adding
the weighted representations of individual
senses.

We assume that theis-a relation is a partial or-
dering; this is true for many ontologies. We wish
to incorporate the partial ordering of the taxonomy
into the partial ordering of the vector lattice. We
will make use of the following result relating to
partial orders:

Definition 2 (Ideals). A lower setin a partially
ordered setS is a setT such that for allx, y ∈ S,
if x ∈ T andy ≤ x theny ∈ T .

Theprincipal ideal generated by an elementx in
a partially ordered setS is defined to be the lower
set

y(x) = {y ∈ S : y ≤ x}.

Proposition 3 (Ideal Completion). If S is a par-
tially ordered set, then

y(·) can be considered as
a function fromS to the powerset2S . Under the
partial ordering defined by set inclusion, the set of
lower sets form a complete lattice, and

y(·) is a
completion ofS, theideal completion.

We are also concerned with the probability of
concepts. This is an idea that has come about
through the introduction of “distance measures”
on taxonomies (Resnik, 1995). Since terms can
be ascribed probabilities based on their frequen-
cies of occurrence in corpora, the concepts they re-
fer to can similarly be assigned probabilities. The
probability of a concept is the probability of en-
countering an instance of that concept in the cor-
pus, that is, the probability that a term selected
at random from the corpus has a meaning that is
subsumed by that particular concept. This ensures

that more general concepts are given higher proba-
bilities, for example if there is a most general con-
cept (a top-most node in the taxonomy, which may
correspond for example to “entity”) its probability
will be one, since every term can be considered an
instance of that concept.

We give a general definition based on this idea
which does not require probabilities to be assigned
based on corpus counts:

Definition 4 (Real Valued Taxonomy). A real val-
ued taxonomy is a finite setS of conceptswith a
partial ordering≤ and a positive real functionp
overS. Themeasureof a concept is then defined
in terms ofp as

p̂(x) =
∑

y∈↓(x)

p(y).

The taxonomy is calledprobabilistic if∑
x∈S p(s) = 1. In this casep̂ refers to the

probability of a concept.

Thus in a probabilistic taxonomy, the function
p corresponds to the probability that a term is ob-
served whose meaning corresponds (in that con-
text) to that concept. The function̂p denotes the
probability that a term is observed whose meaning
in that context is subsumed by the concept.

Note that ifS has a top elementI then in the
probabilistic case, clearlŷp(I) = 1. In studies of
distance measures on ontologies, the concepts in
S often correspond to senses of terms, in this case
the functionp represents the (normalised) proba-
bility that a given term will occur with the sense
indicated by the concept. The top-most concept
often exists, and may be something with the mean-
ing “entity”—intended to include the meaning of
all concepts below it.

The most simple completion we consider is into
the vector latticeL1(S), with basis elements{ex :
x ∈ S}.

Proposition 5 (Ideal Vector Completion). Let S
be a probabilistic taxonomy with probability dis-
tribution functionp that is non-zero everywhere on
S. The functionψ fromS toL1(S) defined by

ψ(x) =
∑

y∈↓(x)

p(y)ey

is a completion of the partial ordering ofS un-
der the vector lattice order ofL1(S), satisfying
‖ψ(x)‖1 = p̂(x).
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entity

organism

plant

grass

cereal

oat rice barley

tree

beech chestnut oak

Figure 2: A small example taxonomy extracted
from WordNet (Fellbaum, 1989).

Proof. The functionψ is clearly order-preserving:
if x ≤ y in S then since

y(x) ⊆
y(y) , neces-

sarily ψ(x) ≤ ψ(y). Conversely, the only way
thatψ(x) ≤ ψ(y) can be true is if

y(x) ⊆
y(y)

sincep is non-zero everywhere. If this is the case,
thenx ≤ y by the nature of the ideal completion.
Thusψ is an order-embedding, and sinceL1(S) is
a complete lattice, it is also a completion. Finally,
note that‖ψ(x)‖1 =

∑
y∈↓(x) p(y) = p̂(x).

This completion allows us to represent concepts
as elements within a vector lattice so that not only
the partial ordering of the taxonomy is preserved,
but the probability of concepts is also preserved as
the size of the vector under theL1 norm.

3.4 Representing Syntax

In this section we give a description link grammar
(Sleator and Temperley, 1991) in terms of a con-
text theory. Link grammar is a lexicalised syntac-
tic formalism which describes properties of words
in terms oflinks formed between them, and which
is context-free in terms of its generative power; for
the sake of brevity we omit the details, although a
sample link grammar parse is show in Figure 3.

Our formulation of link grammar as a context
theory makes use of a construction called afree
inverse semigroup. Informally, the free inverse
semigroup on a setS is formed from elements
of S and their inverses,S−1 = {s−1 : s ∈ S},
satisfying no other condition than those of an in-
verse semigroup. Formally, the free inverse semi-
group is defined in terms of a congruence rela-
tion on(S∪S−1)∗ specifying the inverse property
and commutativity of idempotents — see (Munn,

they mashed their way through the thick mud

a

d

j

d

o

m

s

Figure 3: A link grammar parse. Link types:
s: subject, o: object, m: modifying phrases,
a: adjective,j: preposition,d: determiner.

1974) for details. We denote the free inverse semi-
group onS by FIS(S).

Free inverse semigroups were shown by Munn
(1974) to be equivalent tobirooted word trees. A
birooted word-tree on a setA is a directed acyclic
graph whose edges are labelled by elements ofA
which does not contain any subgraphs of the form
•

a
−→ •

a
←− • or •

a
←− •

a
−→ •, together with

two distinguished nodes, called the start node,2

and finish node,◦.
An element in the free semigroupFIS(S) is de-

noted as a sequencexd1

1 x
d2

2 . . . xdn

n wherexi ∈ S
anddi ∈ {1,−1}.

We construct the birooted word tree by starting
with a single node as the start node, and for eachi
from 1 ton:

• Determine if there is an edge labelledxi leav-
ing the current node ifdi = 1, or arriving at
the current node ifdi = −1.

• If so, follow this edge and make the resulting
node the current node.

• If not, create a new node and join it with an
edge labelledxi in the appropriate direction,
and make this node the current node.

The finish node is the current node after then iter-
ations.

The product of two elementsx andy in the free
inverse semigroup can be computed by finding the
birooted word-tree ofx and that ofy, joining the
graphs by equating the start node ofy with the fin-
ish node ofx (and making it a normal node), and
merging any other nodes and edges necessary to
remove any subgraphs of the form•

a
−→ •

a
←− •

or •
a
←− •

a
−→ •. The inverse of an element

has the same graph with start and finish nodes ex-
changed.
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We can represent parses of sentences in link
grammar by translating words to syntactic cate-
gories in thefree inverse semigroup. The parse
shown earlier for “they mashed their way through
the thick mud” can be represented in the inverse
semigroup onS = {s,m, o, d, j, a} as

ss−1modd−1o−1m−1jdaa−1d−1j−1

which has the following birooted word-tree (the
words which the links derive from are shown in
brackets):

s(they,mashed)
m(mashed, through)

o(mashed,way)

d(their,way)

j(through,mud)

d(the,mud)

a(thick,mud)

Let A be the set of words in the natural lan-
guage under consideration,S be the set of link
types. Then we can form a context theory
〈A,FIS(S), ˆ, · 〉 where· is multiplication defined
by convolution onFIS(S), and a worda ∈ A is
mapped to a probabilistic sum̂a of its link possible
grammar representations (calleddisjuncts). Thus
we have a context theory which maps a stringx
to elements ofL1(FIS(S)); if there is a parse for
this string then there will be some component of
x̂ which corresponds to an idempotent element of
FIS(S). Moreover we can interpret the magnitude
of the component as the probability of that par-
ticular parse, thus the context theory describes a
probabilistic variation of link grammar.

3.5 Uncertainty in Logical Semantics

For the sake of brevity, we summarise our ap-
proach to representing uncertainty in logical se-
mantics, which is described in full elsewhere. Our
aim is to be able to reason with probabilistic infor-
mation about uncertainty in logical semantics. For
example, in order to represent a natural language
sentence as a logical statement, it is necessary
to parse it, which may well be with a statistical
parser. We may have hundreds of possible parses
and logical representations of a sentence, and as-
sociated probabilities. Alternatively, we may wish

to describe our uncertainty about word-sense dis-
ambiguation in the representation. Incorporating
such probabilistic information into the representa-
tion of meaning may lead to more robust systems
which are able to cope when one component fails.

The basic principle we propose is to first repre-
sent unambiguous logical statements as a context
theory. Our uncertainty about the meaning of a
sentence can then be represented as a probability
distribution over logical statements, whether the
uncertainty arises from parsing, word-sense dis-
ambiguation or any other source. Incorporating
this information is then straightforward: the rep-
resentation of the sentence is the weighted sum
of the representation of each possible meaning,
where the weights are given by the probability dis-
tribution.

Computing the degree of entailment using this
approach is computationally challenging, however
we have shown that it is possible to estimate the
degree of entailment by computing a lower bound
on this value by calculating pairwise degrees of
entailment for each possible logical statement.

4 Related Work

Mitchell and Lapata (2008) proposed a framework
for composing meaning that is extremely gen-
eral in nature: there is no requirement for linear-
ity in the composition function, although in prac-
tice the authors do adopt this assumption. Indeed
their “multiplicative models” require composition
of two vectors to be a linear function of their ten-
sor product; this is equivalent to our requirement
of distributivity with respect to vector space addi-
tion.

Various ways of composing vector based repre-
sentations of meaning were investigated by Wid-
dows (2008), including the tensor product and di-
rect sum. Both of these are compatible with the
context theoretic framework since they are dis-
tributive with respect to the vector space addition.

Clark et al. (2008) proposed a method of com-
posing meaning that generalises Montague seman-
tics; further work is required to determine how
their method of composition relates to the context-
theoretic framework.

Erk and Pado (2008) describe a method of com-
position that allows the incorporation of selec-
tional preferences; again further work is required
to determine the relation between this work and
the context-theoretic framework.
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5 Conclusion

We have given an introduction to the context-
theoretic framework, which provides mathemat-
ical guidelines on how vector-based representa-
tions of meaning should be composed, how en-
tailment should be determined between these rep-
resentations, and how probabilistic information
should be incorporated.

We have shown how the framework can be ap-
plied to a wide range of problems in computational
linguistics, including subsequence matching, vec-
tor based representations of taxonomies and statis-
tical parsing. The ideas we have presented here are
only a fraction of those described in full in (Clarke,
2007), and we believe that even that is only the tip
of the iceberg with regards to what it is possible to
achieve with the framework.
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Rothenhäusler, Klaus, 17

Sagi, Eyal, 104
Scheible, Christian, 91
Schütze, Hinrich, 17
Speelman, Dirk, 9

Utt, Jason, 91

Van de Cruys, Tim, 83
Varga, Andrea, 49
Vlachos, Andreas, 74

Wild, Fridolin, 41

Zanzotto, Fabio Massimo, 66
Zhang, Lidan, 25

121


	Conference Program
	One Distributional Memory, Many Semantic Spaces
	Word Space Models of Lexical Variation
	Unsupervised Classification with Dependency Based Word Spaces
	A Study of Convolution Tree Kernel with Local Alignment
	BagPack: A General Framework to Represent Semantic Relations
	Positioning for Conceptual Development using Latent Semantic Analysis
	Semantic Similarity of Distractors in Multiple-Choice Tests: Extrinsic Evaluation
	Paraphrase Assessment in Structured Vector Space: Exploring Parameters and Datasets
	SVD Feature Selection for Probabilistic Taxonomy Learning
	Unsupervised and Constrained Dirichlet Process Mixture Models for Verb Clustering
	A Non-negative Tensor Factorization Model for Selectional Preference Induction
	A Graph-Theoretic Algorithm for Automatic Extension of Translation Lexicons
	Handling Sparsity for Verb Noun MWE Token Classification
	Semantic Density Analysis: Comparing Word Meaning across Time and Phonetic Space
	Context-theoretic Semantics for Natural Language: an Overview

