
Software Engineering, Testing, and Quality Assurance for Natural Language Processing, pages 68–76,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Reengineering a domain-independent framework
for Spoken Dialogue Systems

Filipe M. Martins, Ana Mendes, Márcio Viveiros, Joana Paulo Pardal,
Pedro Arez, Nuno J. Mamede and João Paulo Neto

Spoken Language Systems Laboratory, L2F – INESC-ID
Department of Computer Science and Engineering,

Instituto Superior Técnico, Technical University of Lisbon
R. Alves Redol, 9 - 2◦ – 1000-029 Lisboa, Portugal

{fmfm,acbm,mviveiros,joana,pedro,njm,jpn}@l2f.inesc-id.pt
http://www.l2f.inesc-id.pt

Abstract

Our work in this area started as a re-
search project but when L2F joined TecnoVoz,
a Portuguese national consortium including
Academia and Industry partners, our focus
shifted to real-time professional solutions.
The integration of our domain-independent
Spoken Dialogue System (SDS) framework
into commercial products led to a major
reengineering process.

This paper describes the changes that the
framework went through and that deeply af-
fected its entire architecture. The communi-
cation core was enhanced, the modules inter-
faces were redefined for an easier integration,
the SDS deployment process was optimized
and the framework robustness was improved.
The work was done according to software en-
gineering guidelines and making use of design
patterns.

1 Introduction

Our SDS framework was created back in
2000 (Mourão et al., 2004), as the result of
three graduation theses (Cassaca and Maia, 2002;
Mourão et al., 2002; Viveiros, 2004), one of which
evolved into a masters thesis (Mourão, 2005).
The framework is highly inspired on the TRIPS
architecture (Allen et al., 2000): it is a frame-based
domain-independent framework that can be used
to build domain-specific dialogue systems. Every
domain is described by a frame, composed by
domain slots that are filled with user requests.
When a set of domain slots is filled, a service is

executed. In order to do so, the dialogue system
interacts with the user until enough information is
provided.

From the initial version of the framework two
systems were created for two different domains: a
bus ticket vending system, which provides an in-
terface to access bus timetables; and a digital vir-
tual butler named Ambrósio that controls home de-
vices, such as TVs (volume and channel), acclima-
tization systems, and lights (switch on/off and in-
tensity) through the X10 electrical protocol and the
IrDA (Infrared Data Association) standard. Since
2003, Ambrósio is publicly available in the “House
of the Future”1, on the Portuguese Telecommunica-
tions Museum2.

As proof of concept, we have also built a pro-
totype system that helps the user while performing
some task. This was tested for the cooking domain
and the automobile reparation domain.

After the successful deployment of the mentioned
systems, we began developing two new automatic
telephone-based systems: a home banking system
and a personal assistant. These are part of a project
of the TecnoVoz3 consortium technology migration
to enterprises. To answer to the challenges that the
creation of those new systems brought to light, the
focus of the framework shifted from academic issues
to interactive use, real-time response and real users.
Since our goal was to integrate our SDS framework
into enterprise products, we started the development
of a commercial solution. Nevertheless, despite this

1http://www.casadofuturo.org/
2http://www.fpc.pt/
3http://www.tecnovoz.pt/

68



new focus, we wanted to maintain the research fea-
tures of the framework. This situation led to deep
changes in the framework development process: as
more robust techniques needed to be used to ensure
that new systems could easily be created to respond
to client requests. From this point of view, the goal
of the reengineering process was to create a frame-
work that provides means of rapid prototyping simi-
lar to those of Nuance4, Loquendo5 or Artificial So-
lutions6.

Also, the new systems we wanted to built carried
a significant change on the paradigm of the frame-
work: while in the first systems the effects of users’
actions were visible (as they could watch the lights
turning on and off, for instance) and a virtual agent
face provided feedback, in the new scenarios com-
munication is established only through a phone and,
being so, voice is the only feedback.

The new paradigm was the trigger to this pro-
cess and whenever a new issue needed to be solved
the best practices in similar successful systems were
studied. Not all can be mentioned. The most rele-
vant are described in what follows.

As it was previously mentioned, TRIPS was
the main inspiration for this framework. It is a
well known and stable architecture that has proven
its merits in accommodating a range of different
tasks (Allen et al., 2007; Jung et al., 2007). The
main modules of the system interact through a
Facilitator (Ferguson et al., 1996), similar to the
Galaxy HUB7 (Polifroni and Seneff, 2000) with
KQML (Labrou and Finin, 1997) messages. How-
ever, in TRIPS, the routing task is decentralized
since the sender modules decide where to send its
messages. At the same time, any module can sub-
scribe to selected messages through the Facilitator
according to the sender, the type of message or its
contents. This mechanism makes it easier to inte-
grate new modules that subscribe the relevant mes-
sages without the senders’ acknowledgment.

Like our framework, the CMU Olympus is a clas-
sical pipeline dialog system architecture (Bohus et

4http://www.nuance.com/
5http://www.loquendo.com/
6http://www.artificial-solutions.com/
7The Galaxy Hub maintains connections to modules (parser,

speech recognizer, back-end, etc.), and routes messages among
them. See http://communicator.sourceforge.net/

al., 2007) where the modules are connected via a
Galaxy HUB that uses a central hub and a set of
rules for relaying messages from one component to
the other. It has the three usual main blocks: Lan-
guage Understanding, through Phoenix parser and
Helios confidence-based annotation module, Dia-
logue Management, through RavenClaw (Raux et
al., 2005; Bohus, 2004), and Language Generation,
through Rosetta. Recognition is made with Sphinx
and synthesis with Theta. The back-end applications
are directly connected to the HUB through an in-
cluded stub.

Some of our recent developments are also inspired
in Voice XML8, in an effort to simplify the frame-
work parameterization and development, required in
the enterprise context. Voice XML provides stan-
dard means of declarative configuration of new sys-
tems reducing the need of coding to the related de-
vices implementation (Nyberg et al., 2002).

Our reengineering work aimed at: i) making the
framework more robust and flexible, enhancing the
creation of new systems for different domains; ii)
simplifying the system’s development, debug and
deployment processes through common techniques
from software engineering areas, such as design pat-
terns (Gamma et al., 1994; Freeman et al., 2004).

By doing this, we are trying to promote the de-
velopment and deployment of new dialogue systems
with our framework.

This paper is organized as follows: Section 2
presents the initial version of the framework; Sec-
tion 3 describes its problems and limitations, as well
as the techniques we adopted to solve them; Sec-
tion 4 describes a brief empirical evaluation of the
reengineering work; finally, Section 5 closes the pa-
per with conclusions and some remarks about future
work directions.

2 Framework description

This section briefly presents our architecture, at its
initial stage, before the reengineering process. We
also introduce some problems of the initial architec-
ture, as they will be later explained in the next sec-
tion.

8http://www.w3.org/Voice/

69



2.1 Domain Model
The domain model that characterizes our framework
is composed by the following entities:

Domain, which includes a frame realization and
generalizes the information about several de-
vices;

Frame, which states the subset of slots to fill for a
given domain;

Device, which represents a real device with several
states and services. Only one active state exists,
at each time, for each device;

State, which includes a subset of services that are
active when the state is active;

Service, which instantiates a defined frame and
specifies a set of slots type of data and restric-
tions for that service.

When developing a new domain all these entities
have to be defined and instantiated.

2.2 Framework architecture
Our initial framework came into existence as the re-
sult of the integration of three main modules:

Input/Output Manager, that controls an Automatic
Speech Recognition (ASR) module (Meinedo,
2008), a Text-To-Speech (TTS) module (Paulo
et al., 2008) and provides a virtual agent
face (Viveiros, 2004);

Dialogue Manager, that interprets the user inten-
tions and generates output messages (Mourão
et al., 2002; Mourão, 2005);

Service Manager, that provides a dialogue man-
ager interface to execute the requested services,
and an external application interface through
the device concept (Cassaca and Maia, 2002).

2.3 Input/Output Manager
The Input/Output Manager (IOManager) controls an
ASR module and a TTS module. It also integrates
a virtual agent face, providing a more realistic in-
teraction with the user. The synchronization be-
tween the TTS output and the animated face is done
by an audio–face synchronization manager, which

generates the visemes9 for the corresponding TTS
phonemes information. The provided virtual agent
face is based on a state machine that informs, among
others, when the system is “thinking” or when what
the user said was not understood.

Besides, a Graphical User Interface (GUI) exists
for text interactions between the user and the system.
Although this input interface is usually only used for
test and debug proposes (as it skips the ASR mod-
ule), it could be used in combination with speech,
if requested by any specific multi-modal system im-
plementation.

The IOManager provides an interface to the Di-
alogue Manager that only includes text input and
output functions. However, the Dialogue Manager
needs to rely on other information, such as the in-
stant the user starts to speak or the moment a syn-
thesized sentence ends. These events are useful, for
instance, to set and trigger for user input timeouts.

2.4 Dialogue Manager

The architecture of the Dialogue Manager (Figure 1)
has seven main modules: a Parser, an Interpretation
Manager, a Task Manager, a Behavior Agent, a Gen-
eration Manager, a Surface Generation and a Dis-
course Context.

HUB

Surface
Generation

[16, 19]

Generation
Manager
[13, 15]

Discourse
Context
[4, 14]

Input/
Output

Manager
[1, 20]

Service
Manager
[7,10,18]

Behavior
Agent

[12]

Parser
[2]

Interpretation 
Manager

[3, 5, 8, 11]

Task
Manager
[6, 9, 17]

External
Applications

Figure 1: Dialogue Manager architecture through the
central HUB. Numbers show the execution sequence.

9A viseme is the visual representation of a phoneme and is
usually associated with muscles positioned near the region of
the mouth (Neto et al., 2006).

70



These modules have specific code from the im-
plementations of the two first systems (the bus ticket
vending system and the butler). When building a
generic dialogue framework, this situation turns out
to be a problem since domain-dependent code was
being used that was not appropriate in new systems.
Also, the modules have many code for HUB messag-
ing, which makes debug and development harder.

2.5 Service Manager

The Service Manager (Figure 2) was initially devel-
oped to handle all domain specific information. It
has the following components:

Service Manager Galaxy Server, that works like a
HUB stub, managing the interface with the de-
vices and the Dialogue Manager;

Device Manager, that stores information related to
all devices. This information is used by the Di-
alogue Manager to find the service that should
be executed after an interaction;

Access Manager, that controls the user access to
some devices registered in the system;

Domain Manager, that stores all the information
about the domains. This information is used to
build interpretations and for the language gen-
eration process;

Object Recognition Manager, that recognizes the
discourse objects associated with a device;

Device Proxy, abstracts all communication with
the Device Core and device specific informa-
tion protocol. This is done through the Virtual
Proxy design pattern

Device Core, that implements the other part of the
communication protocol with the Service Man-
ager and the Dialogue Manager.

Since the Service Manager interface is shared by
the Dialogue Manager and all devices, a device can
execute a service that belongs to another device or
even access to internal Dialogue Manager informa-
tion.

External
Application

HUB

Database

Service
Manager

Galaxy
Server

Domain
Manager

Device
Manager

Access
Manager

Object
Recognition

Manager

Device
Proxy

Device Core

Device
specific

Implementation

Figure 2: Service Manager architecture.

3 Reengineering a framework

When the challenge of building two new SDSs on
our framework appeared, some of the mentioned ar-
chitectural problems were highlighted. A reengi-
neering process was critical. A starting point for the
reengineering process was needed, even though that
decision was not clear.

By observing the framework’s data and control
flow, we noticed that part of the code in the different
modules was related with HUB messaging, namely
the creation of messages to send, and the conversion
of received messages into internal structures (mar-
shalling). A considerable amount of time was spent
in this task that was repeated across the framework.

Based on that, we decided that the first step should
be the analysis of the Galaxy HUB communication
flow and the XML structures used to encode those
messages, replacing them with more appropriate and
efficient protocols.

3.1 Galaxy HUB and XML

The Galaxy HUB protocol is based in generic XML
messages. That allows new modules to be easily
plugged into the framework, written in any program-
ming language, without modifying any line of code.
However, we needed to improve the development
and debugging processes of the existing modules,

71



and having a time consuming task that was repeated
whenever two modules needed to communicate was
a serious drawback.

Considering this, we decided to remove the
Galaxy HUB. This decision was enforced by the
fact that all the framework modules were written
in the Java programming language, which already
provides direct invocations and objects serialization
through Java Remote Method Invocation (RMI).

The major advantage associated with the use of
this protocol, was the possibility of removing all the
XML-based messaging that repeatedly forced the
creation and interpretation of generic messages in
execution time. With the use of RMI, these struc-
tures were replaced by Java objects that are inter-
changed between modules transparently. Not only
RMI is native to Java.

This was not a simple task, as the team that was
responsible for this process was not the team who
originally developed the framework. Because of
this, the new team lacked familiarity with the overall
code structure. In order to reduce the complexity of
the process, it was necessary to create a proper in-
terface for each module removing the several entry
points that each one had. To better understand the
real flow and to minimize the introduction of new
bugs while refactoring the code we made the infor-
mation flow temporarily synchronous.

The internal structure of each module was re-
designed and every block of code with unknown
functionality was commented out.

This substitution improved the code quality and
both the development and the debugging processes.
We believe that it also improved the runtime effi-
ciency of the system, even though no evaluation of
the performance was made. Empirically, we can say
that in the new version of the system less time is
needed to complete a task since no explicit conver-
sion of the objects into generic messages is made.

3.2 Domain dependent code
The code of the Parser, the Interpretation Manager
and the Surface Generation modules had domain de-
pendent code and it was necessary to clean it out.
Since we were modifying the Galaxy HUB code,
we took the opportunity and redesigned that code in
the aforementioned modules to make it more generic
(and, consequently less domain dependent). Being

so, the code cleaning process took place while the
Galaxy HUB was being replaced.

We were unable to redesign the domain dependent
code. Cases like hard-coded word replacement, used
both to provide a richer interpretation of the user ut-
terances and to allow giving a natural response to the
user. In such cases, we either isolated the domain
specific portions of the code or deleted them, even if
the interpretation or generation processes were de-
graded. It can be recovered in the future by includ-
ing the domain specific knowledge in the dynamic
configuration of the Interpretation and Generation
managers as suggested by Paulo Pardal (2007)

An example of this process is the split-
ting of the parser specific code into several
parsers: some domain-dependent, some domain-
independent, while creating a mechanism to com-
bine them in a configurable chain (through a pipes
and filters architecture). This allows the building
of smaller data-type specific parsers that the Inter-
pretation Manager selects to achieve the best pars-
ing result, according to the expectations of the sys-
tem (Martins et al., 2008). These expectations are
created according to the assumption that the user
will follow the mixed-initiative dialogue flow that
the system “suggests” during its turn in the interac-
tion. The strategy also handles those cases were the
user does not keep up with those expectations.

3.3 Dialogue Manager Interface
The enhancements introduced at the IOManager
level augmented the amount of the information in-
terchanged between this module and the Dialogue
Manager, as it could deal with more data coming
from the ASR, TTS and the virtual agent face.

However, the Dialogue Manager Interface was
continuously evolving and changing. This lack of
stability made it harder to maintain the successive
versions completely functional during the process.

Following the software engineering practices, and
using the Template Method design pattern, we
started with the definition of modules interfaces and
only after that the implementation code of the meth-
ods was written. This allows the simultaneous de-
velopment of different modules that interact. Only
when some conflict is reported, the parallel develop-
ment processes need to be synchronized resulting in
the possible revision of the interfaces. Even when

72



an interface was not fully supported by the Dialogue
Manager, it was useful since it lead the IOManager
continuous improvements and allowed simultaneous
developments in the Dialogue Manager.

In order to ease the creation of this interface,
an Input/Output adapter was created. This adapter
makes the conversion of the information sent by the
IOManager to the Dialogue Manager specific for-
mat. Having this, when the information exchanged
with the Dialogue Manager changes, the Dialogue
Manager Interface does not need any transforma-
tion. In addition, the Dialogue Manager is able to
interact with other Input/Output platforms without
the need of internal changes.

This solution for the interfaces follows the Facade
design pattern, which provides an unique interface
for several internal modules.

3.4 File system reorganization
When the different dialogue systems were fully im-
plemented in the new version of the framework, we
wanted to keep providing simultaneous access to the
several available domains during the same execution
of the system.

In fact, in our initial framework it was already
possible to have several different domains running in
parallel. When an interaction is domain ambiguous,
the system tries to solve the ambiguity by asking the
user which domain is being referred.

User: Ligar
System: O que deseja fazer:

ligar um electrodoméstico
ou fazer um telefonema?

Figure 3: Example of a domain ambiguous interaction
while running with two different running domains. In
Portuguese “ligar” means “switch on” and “call”

Consider the example on Figure 3: an user inter-
action with two different running domains, the but-
ler and the personal digital assistant. In Portuguese,
the verb “ligar” means “to switch something on” or
“to make a phone call”. Since there are two running
domains, and the user utterance is domain ambigu-
ous, the systems requests for a disambiguation in its
next turn (O que deseja fazer), by asking if the user
wants to switch on a home device (ligar um elec-
trodoméstico) or make a phone call (fazer um tele-

fonema).
While using this feature, it came to our attention

that it was necessary to reorganize the file system:
the system folder held the code of all domains, and
every time we needed to change a specific domain
property, we had hundreds of properties files to look
at. This situation was even harder for novice frame-
work developers, since it was difficult to find ex-
actly which files needed to be modified in that dense
file system structure. Moreover, the ASR, TTS and
virtual agent configurations were shared by all do-
mains.

To solve this problem we applied the concept
of system–instance. A system–instance has one or
more domains. When the system starts, it receives
a parameter that specifies which instance we want
to run. The configuration of the existing instances
is split across different folders. A library folder
was created and organized in external libraries (li-
braries from an external source), internal libraries
(library developed internally at our laboratory) and
instance specific libraries (specific libraries of a
system–instance).

With this organization we improved the version-
ing management and updates. The conflicting con-
figuration was removed since each system–instance
has now its own configuration. The configuration
files are organized and whenever we need to deliver
a new version of a system–instance, we simply need
to select the files related with it.

3.5 Service Manager redesign
The Service Manager code had too many dependen-
cies with different modules. The Service Manager
design was based on the Virtual Proxy design pat-
tern. However, it was not possible to develop new
devices without creating dependencies on all of the
Service Manager code, as the Device Core code re-
lied heavily on some classes of the Service Manager.

This situation created difficulties in the SDSs de-
velopment process and affected new developments
since the Service Manager code needed to be copied
whenever a Device Core was running in another
computer or in a web container. This is a known
bad practice in software engineering, since the code
is scattered, making it harder to maintain updated
code in all the relevant locations.

It was necessary to split the Service Manager code

73



for the communication protocol between communi-
cation itself and the device specific code.

Also, the Service Manager class10 interface was
shared by the Dialogue Manager and all devices. Be-
ing so, it was possible that a device requested the
execution of a service in other device, as well as to
access the internal information exchanged between
the Service Manager and the Dialogue Manager.

Example Device

Device Core

Device
specific

Implementation

Dialogue
Manager

Service Manager

Dialogue
Manager
Interface

Devices
Interface

Service
Manager

Class

Access
Manager

Device
Manager

Figure 4: Service Manager architecture.

Like we did with the Dialogue Manager, we spec-
ified a coherent interface for the different Service
Manager modules, removing the unwanted entry
points. The Service Manager class interface was
split and the Device Manager is now the interface
between the Service Manager and the devices (Fig-
ure 4). Also, the Service Manager class interface is
only accessed by the Dialogue Manager. The classes
between the Service Manager and the Device imple-
mentation were organized in a small library, contain-
ing the classes and the Device Core code. This li-
brary is all what is needed to create a new device
and to connect it to both the Service Manager and
the Dialogue Manager.

Finally, we changed the Access Manager to con-
trol not only user access to registered devices, but
also the registry of devices in the system. This
prevents a device which is running on a specific
system–instance to be registered in some other run-
ning system–instance. This module changed its po-
sition in the framework architecture: now it is be-

10The Service Manager Galaxy Server was renamed to Ser-
vice Manager. However, we decided to call it here by Service
Manager class so it will not be mistaken with the Service Man-
ager module.

tween the Service Manager class and the Device
Manager.

3.6 Event Manager
In the initial stage, when the Galaxy HUB was
removed, all the communication was made syn-
chronous. After that, to enhance the framework and
allow mixed initiative interactions, a mechanism that
provides asynchronous communication was needed.
Also, it was necessary to propagate information be-
tween the ASR, TTS, GUI and the Dialogue System,
crucial for the error handling and recovery tasks.

We came to the conclusion that most of the frame-
works deal with these problems by using event man-
agement dedicated modules. Although TRIPS, the
framework that initially inspired ours, has an Event
Manager, that was not available in ours. The ASR
and TTS modules provided already an event-based
information propagation, and we needed to imple-
ment a dedicated module to make the access to this
sort of information simpler. This decision was en-
forced by the existence of a requirement on han-
dling events originated by an external Private Branch
eXchange (PBX) system, like incoming call and
closed call events. The PBX system was integrated
with the personal assistant that is available through
a phone connection. SDS.

We decided to create an Event Manager in the
IOManager. The Dialogue Manager implements an
event handler that receives events from the Event
Manager and knows where to deliver them. Quickly
we understood that the event handler needed to be
dependent of the system–instance since the events
and their handling are different across systems (like
a telephone system and kiosk system). With this in
mind, we implemented the event handler module,
following the Simple Factory design pattern, by del-
egating the events handling to the specific system-
instance handler. If this specific system–instance
event handler is not specified, the system will use
a default event handler with “generic” behavior.

This developments were responsible for the con-
tinuous developments in the IOManager, referred in
section 3.3, and occurred at the same time.

With this approach, we can propagate and handle
all the ASR events, the TTS events, GUI events and
external applications events.

The Event Manager has evolved to a decentral-

74



ized HUB. Through this, the sender can set identi-
fiers in some events. These identifiers are used by
other modules to identify messages relevant to them.
In TRIPS a similar service is provided by the Facil-
itator, that routes messages according to the recipi-
ents specified by the sender, and following the sub-
scriptions that modules can do by informing the Fa-
cilitator. This approach eases the integration of new
modules without changing the existing ones, just by
subscribing the relevant type of messages.

3.7 Dialogue Manager distribution

Currently, there are some clients interested in our
framework to create their own SDS. However, since
the code is completely written in Java, distributions
are made available through jar files that can be eas-
ily decoded, giving access to the source of our code.
To avoid this we need to obfuscate the code.

Even though obfuscation is an interesting solu-
tion, our code used Java’s reflexion in several points.
This technique enables dynamic retrieval of classes
and data structures by name. By doing so, it needs to
know the specific name of the classes being reflected
so that the Java class loader knows where to find
them. Obfuscation, among other things, changes
class names and locations, preventing the Java class
loader from finding them.

To cope with this additional challenge, the code
that makes use of reflexion was replaced using the
Simple Factory design pattern. This change allows
the translation of the hard-coded names to the new
obfuscated names in obfuscation time. After that,
when some class needs to instantiate one of those
classes that used reflection, that instance can be cre-
ated through the proper factory.

4 Evaluation

Although a SDS was successfully deployed in our
initial framework, which is publicly available at a
Museum since 2003, no formal evaluation was made
at that initial time. Due to this, effective or numeric
comparison between the framework as it was before
the reengineering work and as it is now, is not possi-
ble. Previous performance parameters are not avail-
able. However, some empirical evaluation is pos-
sible, based on generic principles of Software (re)
Engineering.

In the baseline framework, each improvement,
like modifications in the dialogue flow or at the
parser level, was a process that took more than two
weeks of work, of two software engineers. With the
new version, similar changes are done in less than
one week, by the same team. This includes internal
improvements, and external developments made by
entities using the system. The system is more stable
and reliable now: in the beginning, the system had
an incorrect behavior after some hours of running
time; currently with a similar load, it runs for more
than one month without needing to be restarted.

This is one great step for the adoption of our
framework. This stability, reliability and develop-
ment speed convinced our partners to create their
Spoken Dialogue Systems with our framework.

5 Conclusions and Future Work

Currently, our efforts are concentrated on interpreta-
tion improvement and on error handling and recov-
ery (Harris et al., 2004).

Currently, we are working on representing emo-
tions within the SDS framework. We want to test
the integration, and how people will react to a sys-
tem with desires and moods.

The next big step will be the inclusion of an ef-
ficient morpho-syntactic parser which generates and
provides more information (based on speech acts) to
the Interpretation Manager.

Another step we have in mind is to investigate
how the events and probabilistic information that the
ASR module injects in the system can be used to re-
cover recognition errors.

The integration of a Question-Answering (QA)
system (Mendes et al., 2007) in this framework is
also in our horizon. This might require architectural
changes in order to bring together the interpretation
and disambiguation features from the SDS with the
Information Retrieval (IR) features of QA systems.
This would provide information-providing systems
through voice interaction (Mendes, 2008).

Another ongoing work is the study of whether
ontologies can enrich a SDS. Namely, if they can
be used to abstract knowledge sources allowing the
system to focus only on dialogue phenomena rather
than architecture adaptation, when including new
domains (Paulo Pardal, 2007).

75



Acknowledgments

This work was partially funded by TECNOVOZ,
PRIME National Project number 03/165.

It was also partially funded by DIGA, project
POSI/PLP/14319/2001 of Fundação para a
Ciência e Tecnologia (FCT).

Joana Paulo Pardal is supported by a PhD fellow-
ship from FCT (SFRH/BD/30791/2006).

References

James Allen, Donna Byron, Myroslava Dzikovska,
George Ferguson, Lucian Galescu, and Amanda Stent.
2000. An architecture for a generic dialogue shell.
Natural Language Engineering, Cambridge Univer-
sity Press, 6.

James Allen, Nathanael Chambers, George Ferguson,
Lucian Galescu, Hyuckchul Jung, Mary Swift, and
William Taysom. 2007. Plow: A collaborative task
learning agent. In Proc. 22th AAAI Conf. AAAI Press.

Dan Bohus, Antoine Raux, Thomas Harris, Maxine Es-
kenazi, and Alexander Rudnicky. 2007. Olympus:
an open-source framework for conversational spoken
language interface research. In Workshop on Bridging
the Gap: Academic and Industrial Research in Dialog
Technology, HLT-NAACL.

Dan Bohus. 2004. Building spoken dialog systems with
the RavenClaw/Communicator architecture. Presenta-
tion at Sphinx Lunch Talk, CMU, Fall.

Renato Cassaca and Rui Maia. 2002. Assistente electró-
nica. Instituto Superior Técnico (IST), Universidade
Técnica de Lisboa (UTL), Graduation Thesis.

George Ferguson, James Allen, Brad Miller, and Eric
Ringger. 1996. The design and implementation of
the TRAINS-96 system: A prototype mixed-initiative
planning assistant. Technical Report TN96-5.

Elisabeth Freeman, Eric Freeman, Bert Bates, and Kathy
Sierra. 2004. Head First Design Patterns. O’Reilly.

Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. 1994. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley
Professional Computing Series.

Thomas Harris, Satanjeev Banerjee, Alexander Rud-
nicky, June Sison, Kerry Bodine, and Alan Black.
2004. A research platform for multi-agent dialogue
dynamics. In 13th IEEE Intl. Workshop on Robot and
Human Interactive Communication (ROMAN).

Hyuckchul Jung, James Allen, Nathanael Chambers, Lu-
cian Galescu, Mary Swift, and William Taysom. 2007.
Utilizing natural language for one-shot task learning.
Journal of Logic and Computation.

Yannis Labrou and Tim Finin. 1997. A proposal for a
new KQML specification. Technical Report CS-97-
03, Computer Science and Electrical Engineering De-
partment, Univ. of Maryland Baltimore County.

Filipe M. Martins, Ana Mendes, Joana Paulo Pardal,
Nuno J. Mamede, and João Paulo Neto. 2008. Us-
ing system expectations to manage user interactions.
In Proc. PROPOR 2008 (to appear), LNCS. Springer.

Hugo Meinedo. 2008. Audio Pre-processing and Speech
Recognition for Broadcast News. Ph.D. thesis, IST,
UTL.

Ana Mendes, Luı́sa Coheur, Nuno J. Mamede, Luı́s
Romão, João Loureiro, Ricardo Daniel Ribeiro, Fer-
nando Batista, and David Martins de Matos. 2007.
QA@L2F@QA@CLEF. In Cross Language Evalua-
tion Forum: Working Notes - CLEF 2007 Workshop.

Ana Mendes. 2008. Introducing dialogue in a QA sys-
tem. In Doctoral Symposium of 13th Intl. Conf. Apps.
Nat. Lang. to Information Systems, NLDB (to appear).

Márcio Mourão, Pedro Madeira, and Miguel Rodrigues.
2002. Dialog manager. IST, UTL, Graduation Thesis.

Márcio Mourão, Renato Cassaca, and Nuno J. Mamede.
2004. An independent domain dialogue system
through a service manager. In EsTAL, volume 3230
of LNCS. Springer.

Márcio Mourão. 2005. Gestão e representação de do-
mı́nios em sistemas de diálogo. Master’s thesis, IST,
UTL.

João Paulo Neto, Renato Cassaca, Márcio Viveiros, and
Márcio Mourão. 2006. Design of a Multimodal Input
Interface for a Dialogue System. In Proc. PROPOR
2006, volume 3960 of LNCS. Springer.

Eric Nyberg, Teruko Mitamura, and Nobuo Hataoka.
2002. DialogXML: extending Voice XML for dy-
namic dialog management. In Proc. 2th Int. Conf.
on Human Language Technology Research. Morgan
Kaufmann Publishers Inc.

Sérgio Paulo, Luı́s C. Oliveira, Carlos Mendes, Luı́s
Figueira, Renato Cassaca, Céu Viana, and Helena Mo-
niz. 2008. DIXI - A Generic Text-to-Speech System
for European Portuguese. In Proc. PROPOR 2008 (to
appear), LNCS. Springer.

Joana Paulo Pardal. 2007. Dynamic use of ontologies in
dialogue systems. In NAACL-HLT Doctoral Consor-
tium.

Joseph Polifroni and Stephanie Seneff. 2000. GALAXY-
II as an architecture for spoken dialogue evaluation. In
Proc. 2nd Int. Conf. Language Resources and Evalua-
tion (LREC).

Antoine Raux, Brian Langner, Dan Bohus, Alan Black,
and Maxine Eskenazi. 2005. Let’s go public! tak-
ing a spoken dialog system to the real world. In Proc.
INTERSPEECH.

Márcio Viveiros. 2004. Cara falante – uma interface vi-
sual para um sistema de diálogo falado. IST, UTL,
Graduation Thesis.

76


