
Proceedings of the Third Workshop on Issues in Teaching Computational Linguistics (TeachCL-08), pages 71–79,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Combining Open-Source with Research to Re-engineer
a Hands-on Introductory NLP Course

Nitin Madnani Bonnie J. Dorr
Laboratory for Computational Linguistics and Information Processing

Institute for Advanced Computer Studies
Department of Computer Science

University of Maryland, College Park
{nmadnani,bonnie}@umiacs.umd.edu

Abstract

We describe our first attempts to re-engineer
the curriculum of our introductory NLP course
by using two important building blocks: (1)
Access to an easy-to-learn programming lan-
guage and framework to build hands-on pro-
gramming assignments with real-world data
and corpora and, (2) Incorporation of interest-
ing ideas from recent NLP research publica-
tions into assignment and examination prob-
lems. We believe that these are extremely im-
portant components of a curriculum aimed at a
diverse audience consisting primarily of first-
year graduate students from both linguistics
and computer science. Based on overwhelm-
ingly positive student feedback, we find that
our attempts were hugely successful.

1 Introduction

Designing an introductory level natural language
processing course for a class of first year computer
science and linguistics graduate students is a chal-
lenging task. It is important to strive for balance be-
tween breadth and depth—it is important not only
to introduce the students to a variety of language
processing techniques and applications but also to
provide sufficient detail about each. However, we
claim that there is another important requirement for
a successful implementation of such a course. Like
any other graduate-level course offered to first year
students, it should encourage them to approach so-
lutions to problems as researchers. In order to meet
such a requirement, the course should have two im-
portant dimensions:

1. Access to a programming framework that pro-
vides the tools and data used in the real world
so as to allow the students to explore each topic
hands-on and easily attempt creative solutions
to problems. The framework should be simple
enough to use so that students are not bogged
down in its intricacies and can focus on the
course concepts.

2. Exposure to novel and innovative research in
each topic. One of the most valuable contribu-
tions of a large community, such as the NLP
and CL community, is the publicly accessible
repository of research publications for a range
of topics. While the commonly used textbooks
describe established and mainstream research
methods for each topic in detail, more recent
research papers are usually omitted. By using
such papers as the bases for programming
assignments—instantiated in the framework
described earlier—and exam questions, stu-
dents can gain important insights into how new
solutions to existing problems are formulated;
insights that can only come from a hands-on
approach to problem solving.

In this paper, we describe our attempts to engineer
such a course. In section 2, we describe the specific
goals we had in mind for such a course and how it
differs from the previous version of the introductory
course we taught at our institution. Section 3 dis-
cusses how we fully integrated an open-source pro-
gramming framework into our curriculum and used
it for programming assignments as well as in-class

71



sessions. In a similar vein, section 4 describes our
preliminary efforts to combine interesting research
ideas for various topics with the framework above.
We also have definite plans to expand the course cur-
riculum to take more novel ideas from recent NLP
literature for each topic and adapt them to instructive
hands-on assignments. Furthermore, we are devel-
oping extensions and add-ons for the programming
framework that we plan to contribute to the project.
We outline these plans in section 6 and conclude in
section 7.

2 Goals

We wanted our course curriculum to fulfill some
specific goals that we discuss below, provide moti-
vation wherever appropriate.

• A Uniform Programming Framework. The
previous version of our introductory course
took a more fragmented approach and used dif-
ferent programming languages and tools for
different assignments. For example, we used
an in-house HMM library written in C for any
HMM-based assignments and Perl for some
other assignments. As expected, such an ap-
proach requires students to familiarize them-
selves with a different programming interface
for each assignment and discourages students
to explore on their own. To address this con-
cern, we chose the Python (Python, 2007) pro-
gramming language and the Natural Language
Toolkit (Loper and Bird, 2002), written entirely
in Python, for all our assignments and program-
ming tasks. We discuss our use of NLTK in
more detail in the next section.

• Real-world Data & Corpora. In our previ-
ous course, students did not have access to any
of the corpora that are used in actual NLP re-
search. We found this to be a serious short-
coming and wanted to ensure that our new cur-
riculum allowed students to use real corpora for
evaluating their programming assignments.

• Exposure to Research. While we had cer-
tainly made it a point to introduce recent re-
search work in our lectures for all topics in
the previous course, we believed that a much

richer integration was required in order to al-
low a more realistic peek into NLP research.

• Satisfying a Diverse Audience. We wanted the
curriculum to appeal to both computer science
and linguistics students since they the course
was cross-listed in both departments.

• Continuing Interest. A large number of the
students enrolled in the course were undecided
about what research area to pursue. We wanted
to present a fair picture of what NLP research
actually entails and encourage any interested
students to take the more advanced part of the
course being offered later in the year.

3 Incorporating Open Source

We use the Python programming language and
NLTK as our programming framework for the
curriculum. Python is currently one of the most
popular programming languages—it is fully object
oriented and multi-platform, natively supports
high-level dynamic data types such as lists and
hashes (termed dictionaries in Python), has very
readable syntax and, most importantly, ships with
an extensive standard library for almost every con-
ceivable task. Although Python already has most
of the functionality needed to perform very simple
NLP tasks, its still not powerful enough for most
standard ones. This is where the Natural Language
Toolkit (NLTK) comes in. NLTK1, written entirely
in Python, is a collection of modules and corpora,
released under an open-source license, that allows
students to learn and conduct research in NLP (Bird
et al., 2008). The most important advantage of
using NLTK is that it is entirely self-contained.
Not only does it provide convenient functions
and wrappers that can be used as building blocks
for common NLP tasks, it also provides raw and
pre-processed versions of standard corpora used
frequently in NLP literature. Together, Python and
NLTK constitute one of the most potent tools for
instruction of NLP (Madnani, 2007) and allow us
to develop hands-on assignments that can appeal
to a broad audience including both linguistics and
computer science students.

1http://nltk.org

72



Figure 1: An Excerpt from the output of a Python script used for an in-class exercise demonstrating the simplicity of
the Python-NLTK combination.

In order to illustrate the simplicity and utility of
this tool to the students, we went through an in-class
exercise at the beginning of the class. The exercise
asked the students to solve the following simple
language processing problem:

Find the frequency of occurrences of the following
words in the state-of-the-union addresses of the last
6 American Presidents: war, peace, economy & aid.
Also draw histograms for each word.

We then went through a step-by-step process of how
one would go about solving such a problem. The
solution hinged on two important points:

(a) NLTK ships with a corpus of the last 50 years
of state-of-the-union addresses and provides a
native conditional frequency distribution object
to easily keep track of conditional counts.

(b) Drawing a histogram in Python is as simple as
the statement print ’#’*n where n is the
count for each query word.

Given these two properties, the Python solution for
the problem was only 20 lines long. Figure 1 shows
an excerpt from the output of this script. This ex-
ercise allowed us to impress upon the students that
the programming framework for the course is sim-
ple and fun so that they may start exploring it on
their own. We describe more concrete instances of
NLTK usage in our curriculum below.

3.1 HMMs & Part-of-speech Tagging

Hidden Markov Models (Rabiner, 1989) have
proven to be a very useful formalism in NLP
and have been used in a wide range of problems,
e.g., parsing, machine translation and part-of-speech
(POS) tagging. In our previous curriculum, we
had employed an in-house C++ implementation of
HMMs for our assignments. As part of our new
curriculum, we introduced Markov models (and
HMMs) in the context of POS tagging and in a much
more hands-on fashion. To do this, we created an
assignment where students were required to imple-
ment Viterbi decoding for an HMM and output the
best POS tag sequence for any given sentence. There
were several ways in which NLTK made this ex-
tremely simple:

• Since we had the entire source code of the
HMM module from NLTK available, we fac-
tored out the part of the code that handled the
HMM training, parameterized it and provided
that to students as a separate module they they
could use to train the HMMs. Such refactor-
ing not only allows for cleaner code boundaries
but it also allows the students to use a variety
of training parameters (such as different forms
of smoothed distributions for the transition and
emission probabilities) and measure their ef-
fects with little effort. Listing 1 shows how
the refactoring was accomplished: the train-
ing code was put into a separate module called
hmmtrainer and automatically called in the

73



Listing 1: A skeleton of the refactored NLTK HMM code
used to build a hands-on HMM assignment

import hmmtrainer
import nltk.LidStoneProbDist as lidstone
class hmm:

def __init__(self):
params = hmmtrainer.train(smooth=lidstone)
self.params = params

def decode(self, word_sequence)

def tag(self, word_sequence)

main hmm class when instantiating it. The stu-
dents had to write the code for the decode and
tag methods of this class. The HMM train-
ing was setup to be able to use a variety of
smoothed distributions, e.g. Lidstone, Laplace
etc., all available from NLTK.

• NLTK ships with the tokenized and POS tagged
version of the Brown corpus—one of the most
common corpora employed for corpus linguis-
tics and, in particular, for evaluating POS tag-
gers. We used Section A of the corpus for train-
ing the HMMs and asked the students to evalu-
ate their taggers on Section B.

Another advantage of this assignment was that the if
students were interested in how the supervised train-
ing process actually worked, they could simply ex-
amine the hmmtrainer module that was also writ-
ten entirely in Python. An assignment with such
characteristics in our previous course would have
required knowledge of C++, willingness to wade
through much more complicated code and would
certainly not have been as instructive.

3.2 Finite State Automata

Another topic where we were able to leverage the
strengths of both NLTK and Python was when
introducing the students to finite state automata.
Previously, we only discussed the fundamentals of
finite state automata in class and then asked the
students to apply this knowledge to morphological
parsing by using PC-Kimmo (Koskenniemi, 1983).
However, working with PC-Kimmo required the
students to directly fill entries in transition tables

Listing 2: An illustration of the simple finite state trans-
ducer interface in NLTK

from nltk_contrib.fst import fst
f = fst.FST(’test’) #instantiate
f.add_state(’1’) # add states
f.add_state(’2’)
f.add_state(’3’)
f.initial_state = 1 # set initial
f.set_final(’2’) # set finals
f.set_final(’3’)
f.add_arc(’1’,’2’,’a’, ’A’) # a −> A
f.add_arc(’1’,’3’,’b’, ’B’) # b −> B
print f.transduce([’a’, ’a’, ’b’, ’b’])

using a very rigid syntax.

In the new curriculum, we could easily rely on
the finite state module that ships with NLTK to use
such automata in a very natural way as shown in
Listing 2. With such an easy to use interface, we
could concentrate instead on the more important
concepts underlying the building and cascading of
transducers to accomplish a language processing
task.

As our example task, we asked the students
to implement the Soundex Algorithm, a phonetic
algorithm commonly used by libraries and the
Census Bureau to represent people’s names as they
are pronounced in English. We found that not only
did the students easily implement such a complex
transducer, they also took the time to perform some
analysis on their own and determine the short-
comings of the Soundex algorithm. This was only
possible because of the simple interface and short
development cycle provided by the Python-NLTK
combination. In addition, NLTK also provides a
single method2 that can render the transducer as a
postscript or image file that can prove extremely
useful for debugging.

In our new version of the course, we consciously
chose to use primarily open-source technologies in
the curriculum. We feel that it is important to say a
few words about this choice: an open-source project

2This method interfaces with an existing installation of
Graphviz, a popular open-source graph drawing software (Ell-
son et al., 2004).

74



not only allows instructors to examine the source
code and re-purpose it for their own use (as we
did in section 3.1) but it also encourages students
to delve deep into the programming framework
if they are curious about how something works.
In fact, a few of our students actually discovered
subtle idiosyncrasies and bugs in the NLTK source
while exploring on their own, filed bug reports
where necessary and shared the findings with the
entire class. This experience allowed all students
to understand the challenges of language processing.

More importantly, we believe an open-source
project fosters collaboration in the community that
it serves. For example, a lot of the functionality of
NLTK hinges on important technical contributions,
such as our SRILM interface described in section 6,
from the large academic NLP community that can be
used by any member of the community for research
and for teaching.

4 Incorporating Research

Besides employing a uniform programming frame-
work that the students could pick up easily and learn
to explore on their own, the other important goal
of the new curriculum was to incorporate ideas and
techniques from interesting NLP research publica-
tions into assignments and exams. The motivation,
of course, was to get our students to think about
and possibly even implement these ideas. Since we
cannot discuss all instances in the curriculum where
we leveraged research publications (due to space
considerations), we only discuss two such instances
in detail below.

The first topic for which we constructed a more
open-ended research-oriented assignment was lex-
ical semantics. We focused, in particular, on the
WordNet (Fellbaum, 1998) database. WordNet is
a very popular lexical database and has been used
extensively in NLP literature over the years. In the
previous course, our assignment on lexical seman-
tics asked the students to use the online interface to
WordNet to learn the basic concept of a synset and
the various relations that are defined over synsets
such as hyponymy, hypernymy etc. A very sim-
ple change would have been to ask the students to

use the WordNet interface included with NLTK to
perform the same analysis. However, we thought
that a more interesting assignment would be to ex-
plore the structure of the four WordNet taxonomies
(Noun, Verb, Adjective and Adverb). This taxon-
omy can be simplified and thought of as a directed
acyclic graph G = (V,E) where each synset u ∈ V
is a node and each edge (u, v) ∈ E represents that
v is a hypernym of u. Given such a graph, some
very interesting statistics can be computed about the
topology of WordNet itself (Devitt and Vogel, 2004).
In our assignment, we asked the students to use the
NLTK WordNet interface to compute some of these
statistics automatically and answer some interesting
questions:

(a) What percentage of the nodes in the Noun tax-
onomy are leaf nodes?

(b) Which are the nine most general root nodes in
the Noun taxonomy and what is the node dis-
tribution across these roots?

(c) Compute the branching factor (number of de-
scendants) for each node in the Noun taxonomy
both including and excluding leaf nodes. What
percentage of nodes have a branching factor
less than 5? Less than 20? Does this tell some-
thing you about the shallowness/depth of the
taxonomy?

(d) If we plot a graph with the number of senses
of each verb in the Verb taxonomy against its
polysemy rank, what kind of graph do we get?
What conclusion can be drawn from this graph?

(e) Compare the four taxonomies on average pol-
ysemy, both including and excluding monose-
mous words. What conclusions can you draw
from this?

Of course, the assignment also contained the usual
questions pertaining to the content of the WordNet
database rather than just its structure. We believe
that this assignment was much more instructive
because not only did it afford the students a close
examination into the usage as well as structure of a
valuable NLP resource, but also required them to
apply their knowledge of graph theory.

75



The second instance where we used a research pa-
per was when writing the HMM question for the fi-
nal exam. We thought it would be illuminating to
ask the students to apply what they had learned in
class about HMMs to an instance of HMM used in
an actual NLP scenario. For this purpose, we chose
the HMM described in (Miller et al., 1999) and as
shown in Figure 2. As part of the question, we ex-

qS

qD

qGE

qE

∏s = 1.0

1.0

1.0a0

a1

bqD
(ui)

bqGE
(ui)

1.0

Figure 2: An HMM used and described in a popular re-
search publication formed the basis of a question in the
final exam.

plained the information retrieval task: generate a
ranked list of documents relevant to a user query
U = 〈ui〉, where the rank of the document D is
based on the probability P (D is relevant|U). We
further explained that by applying Bayes’ theorem
to this quantity and assuming a uniform prior over
document selection, the only important quantity was
the probability of the query U being generated by a
relevant document D, or P (U |D is relevant). The
rest of the question demonstrated how this genera-
tive process could be modeled by the HMM in Fig-
ure 2:

• Start at the initial state qS .

• Transition with the probability a0 to state qD

which represents choosing a word directly from
document D OR transition with probability a1

to state qGE which represents choosing a word
from “General English”, i.e., a word unrelated
to the document but that occurs commonly in
other queries.

• If in state qD, emit the current, say ith, query
word either directly from document D with
emission probability bqD(ui). Otherwise, if in
state qGE , emit the current query word from
“General English” with emission probability
bqGE (ui).

• Transition to the end state qE .

• If we have generated all the words in the query,
then stop here. If not, transition to qS and
repeat.

Given this generative process, we then asked the stu-
dents to answer the following questions:

(a) Derive a simplified closed-form expression for
the posterior probability P (U |D is relevant)
in terms of the transition probabilities
{a0, a1} and the emissions probabilities
{bqD(ui), bqGE (ui)}. You may assume that
U = 〈ui〉ni=1.

(b) What HMM algorithm will you use to com-
pute P (U |D is relevant) when implementing
this model?

(c) How will you compute the maximum like-
lihood estimate for the emission probability
bqD(ui) ?

(d) What about bqGE (ui) ? Is it practical to com-
pute the actual value of this estimate? What
reasonable approximation might be used in
place of the actual value?

This question not only required the students to apply
the concepts of probability theory and HMMs that
they learned in class but also to contemplate more
open-ended research questions where there may be
no one right answer.

For both these and other instances where we used
ideas from research publications to build assign-
ments and exam questions, we encouraged the stu-
dents to read the corresponding publications after
they had submitted their solutions. In addition, we
discussed possible answers with them in an online
forum set up especially for the course.

76



5 Indicators of Success

Since this was our first major revision of the curricu-
lum for an introductory NLP course, we were inter-
ested in getting student feedback on the changes that
we made. To elicit such feedback, we designed a
survey that asked all the students in the class (a total
of 30) to rate the new curriculum on a scale of one
to five on various criteria, particularly for the expe-
rience of using NLTK for all programming assign-
ments and on the quality of the assignments them-
selves.

 0

 20

 40

 60

 80

 100

Excellent Good Satisfactory Fair Poor

pe
rc

en
ta

ge
 o

f s
tu

de
nt

s

Figure 3: Histogram of student feedback on the experi-
ence of using the Python-NLTK combination.

 0

 20

 40

 60

 80

 100

Excellent Good Satisfactory Fair Poor

pe
rc

en
ta

ge
 o

f s
tu

de
nt

s

Figure 4: Histogram of student feedback on the quality
of course assignments.

Figures 3 and 4 show the histograms of the stu-
dents’ survey responses for these two criteria. The
overwhelmingly positive ratings clearly indicate
that we were extremely successful in achieving the
desired goals for our revised curriculum. As part of
the survey, we had also asked the students to provide
any comments they had about the curriculum. We

received a large number of positive comments some
of which we quote below:

“Using Python and NLTK for assignments removed
any programming barriers and enabled me to focus
on the course concepts.”

“The assignments were absolutely fantastic and
supplemented the material presented in class.”

“A great experience for the students.”

The first comment—echoed by several linguistics
as well as computer science students—validates
our particular choice of programming language
and framework. In the past, we had observed
that linguistics students with little programming
background spent most of their time figuring out
how to wield the programming language or tool to
accomplish simple tasks. However, the combination
of Python and NLTK provided a way for them to
work on computational solutions without taking
too much time away from learning the core NLP
concepts.

While it is clearly apparent to us that the students
really liked the new version of the curriculum, it
would also have been worthwhile to carry out a
comparison of students’ reviews of the old and new
curricula. The most frequent comments that we saw
in older versions of the course were similar to the
following:

“Although I feel you did a decent job repeating and
pointing out the interesting facts of the book, I don’t
think you really found many compelling examples of
using these techniques in practice.”

The feedback we received for the revamped curricu-
lum, such as the second comment above, clearly in-
dicated that we had addressed this shortcoming of
the older curriculum. However, due to significant
format changes in the review forms between various
offerings of this course, it is not possible to conduct
a direct, retroactive comparison. It is our intent to
offer such comparisons in the future.

77



6 Future Plans

Given the success that we had in our first attempt
to re-engineer the introductory NLP course, we plan
to continue: (1) our hands-on approach to program-
ming assignments in the NLTK framework and, (2)
our practice of adapting ideas from research publi-
cations as the bases for assignment and examination
problems. Below we describe two concrete ideas for
the next iteration of the course.

1. Hands-on Statistical Language Modeling.
For this topic, we have so far restricted our-
selves to the textbook (Jurafsky and Mar-
tin, 2000); the in-class discussion and pro-
gramming assignments have been missing a
hands-on component. We have written a
Python interface to the SRI Language Model-
ing toolkit (Stolcke, 2002) for use in our re-
search work. This interface uses the Simpli-
fied Wrapper & Interface Generator (SWIG) to
generate a Python wrapper around our C code
that does all the heavy lifting via the SRILM
libraries. We are currently working on integrat-
ing this module into NLTK which would allow
all NLTK users, including our students in the
next version of the course, to build and query
statistical language models directly inside their
Python code. This module, combined with the
large real-world corpora, would provide a great
opportunity to perform hands-on experiments
with language models and to understand the
various smoothing methods. In addition, this
would also allow a language model to be used
in an assignment for any other topic should we
need it.

2. Teaching Distributional Similarity. The
idea that a language possesses distributional
structure—first discussed at length by Har-
ris (1954)—says that one can describe a lan-
guage in terms of relationships between the oc-
currences of its elements (words, morphemes,
phonemes). The name for the phenomenon
is derived from an element’s distribution—sets
of other elements in particular positions that
occur with the element in utterances or sen-
tences. This work led to the concept of distribu-
tional similarity—words or phrases that share

the same distribution, i.e., the same set of words
or in the same context in a corpus, tend to have
similar meanings. This is an extremely popular
concept in corpus linguistics and forms the ba-
sis of a large body of work. We believe that this
is an important topic that should be included in
the curriculum. We plan to do so in the context
of lexical paraphrase acquisition or synonyms
automatically from corpora, a task that relies
heavily on this notion of distributional similar-
ity. There has been a lot of work in this area in
the past years (Pereira et al., 1993; Gasperin et
al., 2001; Glickman and Dagan, 2003; Shimo-
hata and Sumita, 2005), much of which can be
easily replicated using the Python-NLTK com-
bination. This would allow for a very hands-on
treatment and would allow the students to gain
insight into this important, but often omitted,
idea from computational linguistics.

7 Conclusion

Our primacy goal was to design an introductory level
natural language processing course for a class of first
year computer science and linguistics graduate stu-
dents. We wanted the curriculum to encourage the
students to approach solutions to problems with the
mind-set of a researcher. To accomplish this, we re-
lied on two basic ideas. First, we used a program-
ming framework which provides the tools and data
used in the real world so as to allow hands-on ex-
ploration of each topic. Second, we adapted ideas
from recent research papers into programming as-
signments and exam questions to provide students
with insight into the process of formulating a solu-
tion to common NLP problems. At the end of the
course, we asked all students to provide feedback
and the verdict from both linguistics and computer
science students was overwhelmingly in favor of the
new more hands-on curriculum.

References

Steven Bird, Ewan Klein, Edward Loper, and Jason
Baldridge. 2008. Multidisciplinary Instruction with
the Natural Language Toolkit. In Proceedings of the
Third ACL Workshop on Issues in Teaching Computa-
tional Linguistics.

Ann Devitt and Carl Vogel. 2004. The Topology of

78



WordNet: Some metrics. In Proceedings of the Sec-
ond International WordNet Conference (GWC2004).

J. Ellson, E.R. Gansner, E. Koutsofios, S.C. North, and
G. Woodhull. 2004. Graphviz and Dynagraph – Static
and Dynamic Graph Drawing Tools. In Graph Draw-
ing Software, pages 127–148. Springer-Verlag.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. Bradford Books.

Caroline Gasperin, P. Gamallo, A. Agustini, G. Lopes,
and Vera de Lima. 2001. Using syntactic contexts for
measuring word similarity. In Workshop on Knowl-
edge Acquisition Categorization, ESSLLI.

Oren Glickman and Ido Dagan. 2003. Identifying lex-
ical paraphrases from a single corpus: A case study
for verbs. In Recent Advantages in Natural Language
Processing (RANLP’03).

Zellig Harris. 1954. Distributional Structure. Word,
10(2):3.146–162.

Daniel Jurafsky and James H. Martin. 2000. Speech
and Language Processing: An Introduction to Natu-
ral Language Processing, Computational Linguistics,
and Speech Recognition. Prentice Hall.

Kimmo Koskenniemi. 1983. Two-level morphology: a
general computational model for word-form recogni-
tion and production. Publication No. 11, University of
Helsinki: Department of General Linguistics.

Edward Loper and Steven Bird. 2002. NLTK: The Nat-
ural Language Toolkit. In Proceedings of ACL Work-
shop on Effective Tools and Methodologies for Teach-
ing NLP and CL, pages 62–69.

Nitin Madnani. 2007. Getting Started on Natural Lan-
guage Processing with Python. ACM Crossroads,
13(4).

D. R. Miller, T. Leek, and R. M. Schwartz. 1999. A
hidden Markov model information retrieval system. In
Proceedings of SIGIR, pages 214–221.

Fernando Pereira, Naftali Tishby, and Lillian Lee. 1993.
Distributional clustering of english words. In Proceed-
ings of ACL, pages 183–190.

Python. 2007. The Python Programming Language.
http://www.python.org.

Lawrence R. Rabiner. 1989. A tutorial on hidden markov
models and selected applications in speech recogni-
tion. Proceedings of the IEEE, 77(2):257–286.

Mitsuo Shimohata and Eiichiro Sumita. 2005. Acquir-
ing synonyms from monolingual comparable texts. In
Proceedings of IJCNLP, pages 233–244.

Andreas Stolcke. 2002. SRILM – an extensible language
modeling toolkit. In Proceedings of International
Conference on Spoken Language Processing (ICSLP).

79


