
Proceedings of the 10th Conference on Parsing Technologies, pages 109–120,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Modular and Efficient Top-Down Parsing for Ambiguous Left-Recursive
Grammars

Richard A. Frost and Rahmatullah Hafiz
School of Computer Science

University of Windsor
Canada

rfrost@cogeco.ca

Paul C. Callaghan
Department of Computer Science

University of Durham
U.K.

P.C.Callaghan@durham.ac.uk

Abstract

In functional and logic programming,
parsers can be built as modular executable
specifications of grammars, using parser
combinators and definite clause grammars
respectively. These techniques are based on
top-down backtracking search. Commonly
used implementations are inefficient for
ambiguous languages, cannot accommodate
left-recursive grammars, and require expo-
nential space to represent parse trees for
highly ambiguous input. Memoization is
known to improve efficiency, and work by
other researchers has had some success in
accommodating left recursion. This paper
combines aspects of previous approaches
and presents a method by which parsers can
be built as modular and efficient executable
specifications of ambiguous grammars
containing unconstrained left recursion.

1 Introduction

Top-down parsers can be built as a set of mutually-
recursive processes. Such implementations are mod-
ular in the sense that parsers for terminals and simple
non-terminals can be built and tested first. Subse-
quently, parsers for more complex non-terminals can
be constructed and tested. Koskimies (1990), and
Nederhof and Koster (1993) discuss this and other
advantages of top-down parsing.

In functional and logic programming, top-down
parsers can be built using parser combinators (e.g.
see Hutton 1992 for a discussion of the origins of

parser combinators, and Frost 2006 for a discussion
of their use in natural-language processing) and def-
inite clause grammars (DCGs) respectively. For ex-
ample, consider the following grammar, in which
s stands for sentence,np for nounphrase,vp for
verbphrase, anddet for determiner:

s ::= np vp
np ::= noun | det noun
vp ::= verb np
det ::= ’a’ | ’t’
noun ::= ’i’ | ’m’ | ’p’ | ’b’
verb ::= ’s’

A set of parsers for this grammar can be con-
structed in the Haskell functional programming lan-
guage as follows, whereterm, ‘orelse‘, and

‘thenS‘ are appropriately-defined higher-order
functions called parser combinators. (Note that
backquotes surround infix functions in Haskell).

s = np ‘thenS‘ vp
np = noun ‘orelse‘ (det ‘thenS‘ noun)
vp = verb ‘thenS‘ np
det = term ’a’ ‘orelse‘ term ’t’
noun = term ’i’ ‘orelse‘ term ’m’

‘orelse‘ term ’p’
‘orelse‘ term ’b’

verb = term ’s’

Note that the parsers are written directly in the
programming language, in code which is similar in
structure to the rules of the grammar. As such,
the implementation can be thought of as an exe-
cutable specification with all of the associated ad-
vantages. In particular, this approach facilitates
modular piecewise construction and testing of com-
ponent parsers. It also allows parsers to be defined
to return semantic values directly instead of inter-
mediate parse results, and parsers to be parameter-
ized in order to accommodate context-sensitive lan-

109

guages (e.g. Eijck 2003). Also, in functional pro-
gramming, the type checker can be used to catch er-
rors in parsers attributed with semantic actions.

Parser combinators and DCGs have been used ex-
tensively in applications such as prototyping of com-
pilers, and the creation of natural language inter-
faces to databases, search engines, and web pages,
where complex and varied semantic actions are
closely integrated with syntactic processing. How-
ever, both techniques are based on top-down re-
cursive descent search with backtracking. Com-
monly used implementations have exponential com-
plexity for ambiguous languages, cannot handle left-
recursion, and do not produce compact representa-
tions of parse trees. (Note, a left-recursive grammar
is one in which a non-terminalp derives an expan-
sion p .. headed with ap either directly or indi-
rectly. Application of a parser for such a grammar
results in infinite descent.) These shortcomings limit
the use of parser combinators and DCGs especially
in natural-language processing.

The problem of exponential time complexity in
top-down parsers constructed as sets of mutually-
recursive functions has been solved by Norvig
(1991) who uses memotables to achieve polynomial
complexity. Norvig’s technique is similar to the use
of dynamic programming and state sets in Earley’s
algorithm (1970), and tables in the CYK algorithm
of Cocke, Younger and Kasami. The basic idea in
Norvig’s approach is that when a parser is applied
to the input, the result is stored in a memotable for
subsequent reuse if the same parser is ever reapplied
to the same input. In the context of parser combina-
tors, Norvig’s approach can be implemented using a
functionmemoize to selectively “memoize” parsers.

In some applications, the problem of left-
recursion can be overcome by transforming the
grammar to a weakly equivalent non-left-recursive
form. (i.e. to a grammar which derives the same set
of sentences). Early methods of doing this resulted
in grammars that are significantly larger than the
original grammars. This problem of grammar size
has been solved by Moore (2000) who developed a
method, based on a left-corner grammar transforma-
tion, which produces non-left recursive grammars
that are not much larger than the originals. How-
ever, although converting a grammar to a weakly-
equivalent form is appropriate in some applications

(such as speech recognition) it is not appropriate in
other applications. According to Aho, Sethi, and
Ullman (1986) converting a grammar to non-left re-
cursive form makes it harder to translate expressions
containing left-associative operators. Also, in NLP
it is easier to integrate semantic actions with parsing
when both leftmost and rightmost parses of ambigu-
ous input are being generated. For example, con-
sider the first of the following grammar rules:

np ::= noun | np conj np
conj ::= "and" | "or"
noun ::= "jim" | "su" | "ali"

and its non-left-recursive weakly equivalent form:
np ::= noun np’
np’ ::= conj np np’ | empty

The non-left-recursive form loses the leftmost
parses generated by the left-recursive form. Inte-
grating semantic actions with the non-left-recursive
rule in order to achieve the two correct interpre-
tations of input such as["john", "and", "su",

"or", "ali"] is significantly harder than with the
left-recursive form.

Several researchers have recognized the impor-
tance of accommodating left-recursive grammars in
top-down parsing, in general and in the context of
parser combinators and DCGs in particular, and have
proposed various solutions. That work is described
in detail in section 3.

In this paper, we integrate Norvig’s technique
with aspects of existing techniques for dealing with
left recursion. In particular: a) we make use of the
length of the remaining input as does Kuno (1965),
b) we keep a record of how many times each parser
is applied to each input position in a way that is
similar to the use of cancellation sets by Neder-
hof and Koster (1993), c) we integrate memoization
with a technique for dealing with left recursion as
does Johnson (1995), and d) we store “left-recursion
counts” in the memotable, and encapsulate the mem-
oization process in a programming construct called
a monad, as suggested by Frost and Hafiz (2006).

Our method includes a new technique for accom-
modating indirect left recursion which ensures cor-
rect reuse of stored results created through curtail-
ment of left-recursive parsers. We also modify the
memoization process so that the memotable repre-
sents the potentially exponential number of parse
trees in a compact polynomial sized form using a

110

technique derived from the chart parsing methods of
Kay (1980) and Tomita (1986).

As an example use of our method, consider the
following ambiguous left-recursive grammar from
Tomita (1985) in whichpp stands for prepositional
phrase, andprep for preposition. This grammar is
left recursive in the rules fors andnp. Experimental
results using larger grammars are given later.

s ::= np vp | s pp
np ::= noun | det noun | np pp
pp ::= prep np
vp ::= verb np
det ::= ’a’ | ’t’
noun ::= ’i’ | ’m’ | ’p’ | ’b’
verb ::= ’s’
prep ::= ’n’ | ’w’

The Haskell code below defines a parser for the
above grammar, using our combinators:

s = memoize "s" ((np ‘thenS‘ vp)
‘orelse‘ (s ‘thenS‘ pp))

np = memoize "np" (noun
‘orelse‘ (det ‘thenS‘ noun)
‘orelse‘ (np ‘thenS‘ pp))

pp = memoize "pp" (prep ‘thenS‘ np)
vp = memoize "vp" (verb ‘thenS‘ np)
det = memoize "det" (term ’a’

‘orelse‘ term ’t’)
noun = memoize "noun" (term ’i’

‘orelse‘ term ’m’
‘orelse‘ term ’p’
‘orelse‘ term ’b’)

verb = memoize "verb" (term ’s’)
prep = memoize "prep" (term ’n’

‘orelse‘ term ’w’)

The following shows the output when the
parser functions is applied to the input string
"isamntpwab", representing the sentence “I saw a
man in the park with a bat”. It is a compact rep-
resentation of the parse trees corresponding to the
several ways in which the whole input can be parsed
as a sentence, and the many ways in which subse-
quences of it can be parsed as nounphrases etc. We
discuss this representation in more detail in subsec-
tion 4.4.
apply s "isamntpwab" =>

"noun"
1 ((1,2), [Leaf "i"])
4 ((4,5), [Leaf "m"])
7 ((7,8), [Leaf "p"])

10 ((10,11), [Leaf "b"])
"det"

3 ((3,4), [Leaf "a"])
6 ((6,7), [Leaf "t"])
9 ((9,10), [Leaf "a"])

"np"
1 ((1,2), [SubNode ("noun", (1,2))])
3 ((3,5), [Branch [SubNode ("det", (3,4)),

SubNode ("noun",(4,5))]])
((3,8), [Branch [SubNode ("np", (3,5)),

SubNode ("pp", (5,8))]])
((3,11),[Branch [SubNode ("np", (3,5)),

SubNode ("pp", (5,11))],
Branch [SubNode ("np", (3,8)),

SubNode ("pp", (8,11))]])
6 ((6,8), [Branch [SubNode ("det", (6,7)),

SubNode ("noun",(7,8))]])
((6,11),[Branch [SubNode ("np", (6,8)),

SubNode ("pp", (8,11))]])
9 ((9,11),[Branch [SubNode ("det", (9,10)),

SubNode ("noun",(10,11))]])
"prep"

5 ((5,6), [Leaf "n"])
8 ((8,9), [Leaf "w"])

"pp"
8 ((8,11),[Branch [SubNode ("prep",(8,9)),

SubNode ("np", (9,11))]])
5 ((5,8), [Branch [SubNode ("prep",(5,6)),

SubNode ("np", (6,8))]])
((5,11),[Branch [SubNode ("prep",(5,6)),

SubNode ("np", (6,11))]])
"verb"

2 ((2,3), [Leaf "s"])
"vp"

2 ((2,5), [Branch [SubNode ("verb",(2,3)),
SubNode ("np", (3,5))]])

((2,8), [Branch [SubNode ("verb",(2,3)),
SubNode ("np", (3,8))]])

((2,11),[Branch [SubNode ("verb",(2,3)),
SubNode ("np", (3,11))]])

"s"
1 ((1,5), [Branch [SubNode ("np", (1,2)),

SubNode ("vp", (2,5))]])
((1,8), [Branch [SubNode ("np", (1,2)),

SubNode ("vp", (2,8))],
Branch [SubNode ("s", (1,5)),

SubNode ("pp", (5,8))]])
((1,11),[Branch [SubNode ("np", (1,2)),

SubNode ("vp", (2,11))],
Branch [SubNode ("s", (1,5)),

SubNode ("pp", (5,11))],
Branch [SubNode ("s", (1,8)),

SubNode ("pp", (8,11))]]

Our method has two disadvantages: a) it has
O(n4) time complexity, for ambiguous grammars,
compared with O(n3) for Earley-style parsers (Ear-
ley 1970), and b) it requires the length of the input
to be known before parsing can commence.

Our method maintains all of the advantages of
top-down parsing and parser combinators discussed
earlier. In addition, our method accommodates ar-
bitrary context-free grammars, terminates correctly
and correctly reuses results generated by direct and
indirect left recursive rules. It parses ambiguous lan-
guages in polynomial time and creates polynomial-
sized representations of parse trees.

In many applications the advantages of our ap-
proach will outweigh the disadvantages. In particu-
lar, the additional time required for parsing will not
be a major factor in the overall time required when
semantic processing, especially of ambiguous input,
is taken into account.

111

We begin with some background material, show-
ing how our approach relates to previous work by
others. We follow that with a detailed description of
our method. Sections 5, 6, and 7 contain informal
proofs of termination and complexity, and a brief
description of a Haskell implementation of our al-
gorithm. Complete proofs and the Haskell code are
available from any of the authors.

We tested our implementation on four natural-
language grammars from Tomita (1986), and on
four abstract highly-ambiguous grammars. The re-
sults, which are presented in section 8, indicate that
our method is viable for many applications, espe-
cially those for which parser combinators and defi-
nite clause grammars are particularly well-suited.

We present our approach with respect to parser
combinators. However, our method can also be im-
plemented in other languages which support recur-
sion and dynamic data structures.

2 Top-Down Backtracking Recognition

Top-down recognizers can be implemented as a set
of mutually recursive processes which search for
parses using a top-down expansion of the gram-
mar rules defining non-terminals while looking for
matches of terminals with tokens on the input. To-
kens are consumed from left to right. Backtrack-
ing is used to expand all alternative right-hand-sides
of grammar rules in order to identify all possible
parses. In the following we assume that the input
is a sequence of tokensinput, of length l input

the members of which are accessed through an in-
dex j. Unlike commonly-used implementations of
parser combinators, which produce recognizers that
manipulate subsequences of the input, we assume,
as in Frost and Hafiz (2006), that recognizers are
functions which take an indexj as argument and
which return a set of indices as result. Each index
in the result set corresponds to the position at which
the recognizer successfully finished recognizing a
sequence of tokens that began at positionj . An
empty result set indicates that the recognizer failed
to recognize any sequence beginning at j. Multiple
results are returned for ambiguous input.

According to this approach, a recognizerterm t

for a terminalt is a function which takes an index
j as input, and ifj is greater thanl input, the rec-

ognizer returns an empty set. Otherwise, it checks
to see if the token at positionj in the input corre-
sponds to the terminalt. If so, it returns a singleton
set containingj + 1, otherwise it returns the empty
set. For example, a basic recognizer for the termi-
nal’s’ can be defined as follows (note that we use a
functional pseudo code throughout, in order to make
the paper accessible to a wide audience. We also use
a list lookup offset of 1):

term_s = term ’s’
where term t j
= {} , if j > l_input
= {j + 1}, if jth element of input = t
= {} , otherwise

Theempty recognizer is a function which always
succeeds returning its input index in a set:

empty j = {j}

A recognizer corresponding to a constructp | q

in the grammar is built by combining recognizers
for p andq, using the parser combinator‘orelse‘.
When the composite recognizer is applied to index
j, it appliesp to j, then it appliesq to j, and subse-
quently unites the resulting sets.:

(p ‘orelse‘ q) j = unite (p j) (q j)

e.g, assuming that the input is"ssss", then
(empty ‘orelse‘ term_s) 2 => {2, 3}

A composite recognizer corresponding to a se-
quence of recognizersp q on the right hand side of
a grammar rule, is built by combining those recog-
nizers using the parser combinator‘thenS‘. When
the composite recognizer is applied to an indexj, it
first appliesp to j, then it appliesq to each index in
the set of results returned byp. It returns the union
of these applications ofq.

(p ‘thenS‘ q) j = union (map q (p j))

e.g., assuming that the input is"ssss", then
(term_s ‘thenS‘ term_s) 1 => {3}

The combinators above can be used to define
composite mutually-recursive recognizers. For ex-
ample, the grammarsS ::= ’s’ sS sS | empty

can be encoded as follows:
sS = (term_s ‘thenS‘ sS ‘thenS‘ sS)

‘orelse‘ empty

Assuming that the input is"ssss", the recognizer
sS returns a set of five results, the first four corre-
sponding to proper prefixes of the input being rec-
ognized as ansS. The result5 corresponds to the
case where the whole input is recognized as ansS.

112

sS 1 => {1, 2, 3, 4, 5}

The method above does not terminate for left-
recursive grammars, and has exponential time
complexity with respect tol input for non-left-
recursive grammars. The complexity is due to the
fact that recognizers may be repeatedly applied to
the same index during backtracking induced by the
operator‘orelse‘. We show later how complexity
can be improved, using Norvig’s memoization tech-
nique. We also show, in section 4.4, how the com-
binatorsterm, ‘orelse‘, and ‘thenS‘ can be re-
defined so that the processors create compact repre-
sentations of parse trees in the memotable, with no
effect on the form of the executable specification.

3 Left Recursion and Top-Down Parsing

Several researchers have proposed ways in which
left-recursion and top-down parsing can coexist:

1) Kuno (1965) was the first to use the length of
the input to force termination of left-recursive de-
scent in top-down parsing. The minimal lengths of
the strings generated by the grammar on the contin-
uation stack are added and when their sum exceeds
the length of the remaining input, expansion of the
current non-terminal is terminated. Dynamic pro-
gramming in parsing was not known at that time,
and Kuno’s method has exponential complexity.

2) Shiel (1976) recognized the relationship be-
tween top-down parsing and the use of state sets
and tables in Earley and SYK parsers and developed
an approach in which procedures corresponding to
non-terminals are called with an extra parameter in-
dicating how many terminals they should read from
the input. When a procedure corresponding to a
non-terminaln is applied, the value of this extra pa-
rameter is partitioned into smaller values which are
passed to the component procedures on the right of
the rule definingn. The processor backtracks when
a procedure defining a non-terminal is applied with
the same parameter to the same input position. The
method terminates for left-recursion but has expo-
nential complexity.

3) Leermakers (1993) introduced an approach
which accommodates left-recursion through “recur-
sive ascent” rather than top-down search. Although
achieving polynomial complexity through memoiza-
tion, the approach no longer has the modularity and

clarity associated with pure top-down parsing. Leer-
makers did not extend his method to produce com-
pact representations of trees.

4) Nederhof and Koster (1993) introduced “can-
cellation” parsing in which grammar rules are trans-
lated into DCG rules such that each DCG non-
terminal is given a “cancellation set” as an extra
argument. Each time a new non-terminal is de-
rived in the expansion of a rule, this non-terminal
is added to the cancellation set and the resulting set
is passed on to the next symbol in the expansion.
If a non-terminal is derived which is already in the
set then the parser backtracks. This technique pre-
vents non-termination, but loses some parses. To
solve this, for each non-terminaln, which has a left-
recursive alternative 1) a function is added to the
parser which places a special tokenn at the front
of the input to be recognized, 2) a DCG correspond-
ing to the rulen ::= n is added to the parser, and
3) the new DCG is invoked after the left-recursive
DCG has been called. The approach accommodates
left-recursion and maintains modularity. An exten-
sion to it also accommodates hidden left recursion
which can occur when the grammar contains rules
with empty right-hand sides. The shortcoming of
Nederhof and Koster’s approach is that it is expo-
nential in the worst case and that the resulting code
is less clear as it contains additional production rules
and code to insert the special tokens.

5) Lickman (1995) defined a set of parser com-
binators which accommodate left recursion. The
method is based on an idea by Philip Wadler in an
unpublished paper in which he claimed that fixed
points could be used to accommodate left recursion.
Lickman implemented Wadler’s idea and provided
a proof of termination. The method accommodates
left recursion and maintains modularity and clarity
of the code. However, it has exponential complex-
ity, even for recognition.

6) Johnson (1995) appears to have been the first
to integrate memoization with a method for dealing
with left recursion in pure top-down parsing. The
basic idea is to use the continuation-passing style
of programming (CPS) so that the parser computes
multiple results, for ambiguous cases, incrementally.
There appears to have been no attempt to extend
Johnson’s approach to create compact representa-
tions of parse trees. One explanation for this could

113

be that the approach is somewhat convoluted and ex-
tending it appears to be very difficult. In fact, John-
son states, in his conclusion, that “an implemen-
tation attempt (to create a compact representation)
would probably be very complicated.”

7) Frost and Hafiz (2006) defined a set of parser
combinators which can be used to create polynomial
time recognizers for grammars with direct left recur-
sion. Their method stores left-recursive counts in the
memotable and curtails parses when a count exceeds
the length of the remaining input. Their method does
not accommodate indirect left recursion, nor does it
create parse trees.

Our new method combines many of the ideas de-
veloped by others: as with the approach of Kuno
(1965) we use the length of the remaining input to
curtail recursive descent. Following Shiel (1976),
we pass additional information to parsers which is
used to curtail recursion. The information that we
pass to parsers is similar to the cancellation sets
used by Nederhof and Koster (1993) and includes
the number of times a parser is applied to each input
position. However, in our approach this informa-
tion is stored in a memotable which is also used to
achieve polynomial complexity. Although Johnson
(1995) also integrates a technique for dealing with
left recursion with memoization, our method dif-
fers from Johnson’s O(n3) approach in the technique
that we use to accommodate left recursion. Also,
our approach facilitates the construction of com-
pact representations of parse trees whereas John-
son’s appears not to. In the Haskell implementation
of our algorithm, we use a functional programming
structure called a monad to encapsulate the details
of the parser combinators. Lickman’s (1995) ap-
proach also uses a monad, but for a different pur-
pose. Our algorithm stores “left-recursion counts”
in the memotable as does the approach of Frost
and Hafiz (2006). However, our method accommo-
dates indirect left recursion and can be used to create
parsers, whereas the method of Frost and Hafiz can
only accommodate direct left recursion and creates
recognizers not parsers.

4 The New Method

We begin by describing how we improve complex-
ity of the recognizers defined in section 2. We then

show how to accommodate direct and indirect left
recursion. We end this section by showing how rec-
ognizers can be extended to parsers.

4.1 Memoization

As in Norvig (1991) a memotable is constructed dur-
ing recognition. At first the table is empty. During
the process it is updated with an entry for each rec-
ognizer ri that is applied. The entry consists of a set
of pairs, each consisting of an indexj at which the
recognizer ri has been applied, and a set of results
of the application of ri to j.

The memotable is used as follows: whenever a
recognizer ri is about to be applied to an indexj,
the memotable is checked to see if that recognizer
has ever been applied to that index before. If so,
the results from the memotable are returned. If not,
the recognizer is applied to the input at indexj, the
memotable is updated, and the results are returned.
For non-left-recursive recognizers, this process en-
sures that no recognizer is ever applied to the same
index more than once.

The process of memoization is achieved through
the functionmemoize which is defined as follows,
where theupdate function stores the result of rec-
ognizer application in the table:

memoize label r_i j
= if lookup label j succeeds,

return memotable result
else apply r_i to j,

update table, and return results

Memoized recognizers, such as the following,
have cubic complexity (see later):

msS = memoize "msS"((ms ‘thenS‘ msS
‘thenS‘ msS)

‘orelse‘ empty)
ms = memoize "ms" term_s

4.2 Accommodating direct left recursion

In order to accommodate direct left recursion, we in-
troduce a set of values cij denoting the number of
times each recognizer ri has been applied to the in-
dexj. For non-left-recursive recognizers this “left-
rec count” will be at most one, as the memotable
lookup will prevent such recognizers from ever be-
ing applied to the same input twice. However, for
left-recursive recognizers, the left-rec count is in-
creased on recursive descent (owing to the fact that
the memotable is only updated on recursive ascent

114

after the recognizer has been applied). Application
of a recognizerr to an indexj is failed whenever the
left-rec count exceeds the number of unconsumed
tokens of the input plus 1. At this point no parse is
possible (other than spurious parses which could oc-
cur with circular grammars — which we want to re-
ject). As illustration, consider the following branch
being created during the parse of two remaining to-
kens on the input (whereN, P andQ are nodes in the
parse search space corresponding to non-terminals,
andA, B andC to terminals or non-terminals):

N
/ \

N A
/ \

N B
/ \

P C
/
Q

/
N

The last call of the parser forN should be failed
owing to the fact that, irrespective of whatA, B, and
C are, either they must require at least one input to-
ken, otherwise they must rewrite toempty. If they
all require a token, then the parse cannot succeed. If
any of them rewrite toempty, then the grammar is
circular (N is being rewritten toN) and the last call
should be failed in either case.

Note that failing a parse when a branch is longer
than the length of the remaining input is incorrect as
this can occur in a correct parse if recognizers are
rewritten into other recognizers which do not have
“token requirements to the right”. For example, we
cannot fail the parse atP or Q as these could rewrite
to empty without indicating circularity. Also note
that we curtail the recognizer when the left-rec count
exceeds the number of unconsumed tokensplus 1.
The plus 1 is necessary to accommodate the case
where the recognizer rewrites to empty on applica-
tion to the end of the input.

To make use of the left-rec counts, we simply
modify the memoize function to refer to an addi-
tional table calledctable which contains the left-
rec counts cij, and to check and increment these
counters at appropriate points in the computation:
if the memotable lookup for the recognizer ri and
the indexj produces a result, that result is returned.
However, if the memotable does not contain a result

for that recognizer and that index, cij is checked
to see if the recognizer should be failed because
it has descended too far through left-recursion. If
so,memoize returns an empty set as result with the
memotable unchanged. Otherwise, the counter cij

is incremented and the recognizer ri is applied toj,
and the memotable is updated with the result before
it is returned. The functionmemoize defined below,
can now be applied to rules with direct left recursion.

memoize label r_i j =
if lookup label j succeeds

return memotable results
else if c_ij > (l_input)-j+1, return {}

else increment c_ij, apply r_i to j,
update memotable,

and return results

4.3 Accommodating indirect left recursion

We begin by illustrating how the method described
above may return incomplete results for grammars
containing indirect left recursion.

Consider the following grammar, and subset of
the search space, where the left and right branches
represent the expansions of the first two alternate
right-hand-sides of the rule for the non terminalS,
applied to the same position on the input:

S ::= S then ..| Q | P | x S
P ::= S then . / \
Q ::= T S then .. Q
T ::= P | |

S then .. T
| |
P P
| |

S then.. S then ..
|

fail S

Suppose that the left branch occurs before the
right branch, and that the left branch was failed due
to the left-rec count forS exceeding its limit. The
results stored forP on recursive ascent of the left
branch would be an empty set. The problem is that
the later call ofP on the right branch should not reuse
the empty set of results from the first call ofP as they
are incomplete with respect to the position ofP on
the right branch (i.e. ifP were to be re-applied to the
input in the context of the right branch, the results
would not necessarily be an empty set). This prob-
lem is a result of the fact thatS caused curtailment
of the results forP as well as for itself. This problem
can be solved as follows:

115

1) Pass left-rec contexts down the parse space. We
need additional information when storing and con-
sidering results for reuse. We begin by defining the
“left-rec-context” of a node in the parse search space
as a list of the following type, containing for each in-
dex, the left-rec count for each recognizer, including
the current recognizer, which have been called in the
search branch leading to that node:

[(index,[(recog label,left rec count)])]

2) Generate the reasons for curtailment when
computing results. For each result we need to know
if the subtrees contributing to it have been curtailed
through a left-rec limits, and if so, which recogniz-
ers, at which indices, caused the curtailment. A list
of (recog label, index) pairs which caused cur-
tailment in any of the subtrees is returned with the
result.‘orelse‘ and‘thenS‘ are modified, accord-
ingly, to merge these lists, in addition to merging the
results from subtrees.

3) Store results in the memotable together with a
subset of the current left-rec context corresponding
to those recognizers which caused the curtailment.
When a result is to be stored in the memotable for
a recognizerP, the list of recognizers which caused
curtailment (if any) in the subtrees contributing to
this result is examined. For each recognizerS which
caused curtailment at some index, the current left-
rec counter forS at that index (in the left-rec context
for P) is stored with the result forP. This means that
the only part of the left-rec context of a node, that is
stored with the result for that node, is a list of those
recognizers and current left-rec counts which had an
effect on curtailing the result. The limited left-rec
context which is stored with the result is called the
“left-rec context of the result”.

4) Consider results for reuse. Whenever a mem-
otable result is being considered for reuse, the left-
rec-context of that result is compared with the left-
rec-context of the current node in the parse search.
The result is only reused if, for each recognizer and
index in the left-rec context of the result, the left-rec-
count is smaller than or equal to the left-rec-count
of that recognizer and index in the current context.
This ensures that a result stored for some application
P of a recognizer at indexj is only reused by a sub-
sequent applicationP’ of the same recognizer at the
same position, if the left-rec context forP’ would
constrain the result more, or equally as much, as it

had been constrained by the left-rec context forP at
j. If there were no curtailment, the left-rec context
of a result would be empty and that result can be
reused anywhere irrespective of the current left-rec
context.

4.4 Extending recognizers to parsers

Instead of returning a list of indices representing
successful end points for recognition, parsers also
return the parse trees. However, in order that these
trees be represented in a compact form, they are con-
structed with reference to other trees that are stored
in the memotable, enabling the explicit sharing of
common subtrees, as in Kay’s (1980) and Tomita’s
(1986) methods. The example in section 1 illustrates
the results returned by a parser.

Parsers for terminals return a leaf value together
with an endpoint, stored in the memotable as illus-
trated below, indicating that the terminal"s" was
identified at position 2 on the input:

"verb" 2 ((2,3),[Leaf "s"])

The combinator‘thenS‘ is extended so that
parsers constructed with it return parse trees which
are represented using reference to their immediate
subtrees. For example:

"np"
3 ((3,5),[Branch[SubNode("det", (3,4)),

SubNode("noun",(4,5))]])

This memotable entry shows that a parse tree for a
nounphrase"np" has been identified, starting at po-
sition 3 and finishing at position5, and which con-
sists of two subtrees, corresponding to a determiner
and a noun.

The combinator‘orelse‘ unites results from two
parsers and also groups together trees which have
the same begin and end points. For example:

"np"
3 ((3,5),[Branch[SubNode("det", (3,4)),

SubNode("noun",(4,5))]])
((3,8), [Branch[SubNode("np", (3,5)),

SubNode("pp", (5,8))]])
((3,11),[Branch[SubNode("np", (3,5)),

SubNode("pp", (5,11))],
Branch[SubNode("np", (3,8)),

SubNode("pp", (8,11))]])

116

which shows that four parses of a nounphrase"np"

have been found starting at position 3, two of which
share the endpoint 11.

An important feature is that trees for the same
syntactic category having the same start/end points
are grouped together and it is the group that is re-
ferred to by other trees of which it is a constituent.
For example, in the following the parse tree for a
"vp" spanning positions 2 to 11 refers to a group of
subtrees corresponding to the two parses of an"np"

both of which span positions 3 to 11:
"vp" 2 (["np"],[])
((2,5), [Branch[SubNode("verb",(2,3)),

SubNode("np", (3,5))]])
((2,8), [Branch[SubNode("verb",(2,3)),

SubNode("np", (3,8))]])
((2,11),[Branch[SubNode("verb",(2,3)),

SubNode("np", (3,11))]])

5 Termination

The only source of iteration is in recursive function
calls. Therefore, proof of termination is based on
the identification of a measure function which maps
the arguments of recursive calls to a well-founded
ascending sequence of integers.

Basic recognizers such asterm ’i’ and the rec-
ognizerempty have no recursion and clearly termi-
nate for finite input. Other recognizers that are de-
fined in terms of these basic recognizers, through
mutual and nested recursion, are applied by the
memoize function which takes a recognizer and an
indexj as input and which accesses thememotable.
An appropriate measure function maps the index and
the set of left–rec values to an integer, which in-
creases by at least one for each recursive call. The
fact that the integer is bounded by conditions im-
posed on the maximum value of the index, the max-
imum values of the left-rec counters, and the max-
imum number of left-rec contexts, establishes ter-
mination. Extending recognizers to parsers does
not involve any additional recursive calls and conse-
quently, the proof also applies to parsers. A formal
proof is available from any of the authors.

6 Complexity

The following is an informal proof. A formal proof
is available from any of the authors.

We begin by showing that memoized non-left-
recursive and left-recursive recognizers have a

worst-case time complexities of O(n3) and O(n4) re-
spectively, where n is the number of tokens in the
input. The proof proceeds as follows:‘orelse‘
requires O(n) operations to merge the results from
two alternate recognizers provided that the indices
are kept in ascending order.‘then‘ involves O(n2)
operations when applying the second recognizer in
a sequence to the results returned by the first rec-
ognizer. (The fact that recognizers can have mul-
tiple alternatives involving multiple recognizers in
sequence increases cost by a factor that depends on
the grammar, but not on the length of the input). For
non-left-recursive recognizers,memoize guarantees
that each recognizer is applied at most once to each
input position. It follows that non-left recursive rec-
ognizers have O(n3) complexity. Recognizers with
direct left recursion can be applied to the same input
position at mostn times. It follows that such recog-
nizers have O(n4) complexity. In the worst case a
recognizer with indirect left recursion could be ap-
plied to the same input positionn * nt times where
nt is the number of nonterminals in the grammar.
This worst case would occur when every nontermi-
nal was involved in the path of indirect recursion for
some nonterminal. Complexity remains O(n4).

The only difference between parsers and recog-
nizers is that parsers construct and store parts of
parse trees rather than end points. We extend the
complexity analysis of recognizers to that of parsers
and show that for grammars in Chomsky Normal
Form (CNF) (i.e. grammars whose right-hand-sides
have at most two symbols, each of which can be ei-
ther a terminal or a non-terminal), the complexity
of non-left recursive parsers is O(n3) and of left-
recursive parsers it is O(n4). The analysis begins by
defining a “parse tuple” consisting of a parser name
p, a start/end point pair(s, e), and a list of parser
names and end/point pairs corresponding to the first
level of the parse tree returned byp for the sequence
of tokens froms to e. (Note that this corresponds to
an entry in the compact representation). The anal-
ysis then considers the effect of manipulating sets
of parse tuples, rather than endpoints which are the
values manipulated by recognizers. Parsers corre-
sponding to grammars in CNF will return, in the
worst case, for each start/end point pair (s, e) ,(((e -

s) + 1) * t2) parse tuples, wheret is the number of ter-
minals and non-terminals in the grammar. It follows

117

that there are O(n) parse tuples for each parser and
begin/endpoint pair. Each parse tuple corresponds
to a bi-partition of the sequence starting ats and fin-
ishing ate by two parsers (possibly the same) from
the set of parsers corresponding to terminals and
non-terminals in the grammar. It is these parse tu-
ples that are manipulated by‘orelse‘ and‘thenS‘.
The only effect on complexity of these operations is
to increase the complexity of‘orelse‘ from O(n)
to O(n2), which is the same as the complexity of
‘thenS‘. Owing to the fact that the complexity of
‘thenS‘ had the highest degree in the application of
a compound recognizer to an index, increasing the
complexity of‘orelse‘ to the same degree in pars-
ing has no effect on the overall complexity of the
process.

The representation of trees in the memotable has
one entry for each parser. In the worst case, when
the parser is applied to every index, the entry has
n sub-entries, corresponding ton begin points. For
each of these sub-entries there are up ton sub-sub-
entries, each corresponding to an end point of the
parse. Each of these sub-entries contains O(n) parse
tuples as discussed above. It follows that the size of
the compact representation is O(n3).

7 Implementation

We have implemented our method in the pure func-
tional programming language Haskell. We use a
monad (Wadler 1995) to implement memoization.
Use of a monad allows the memotable to be sys-
tematically threaded through the parsers while hid-
ing the details of table update and reuse, allowing
a clean and simple interface to be presented to the
user. The complete Haskell code is available from
any of the authors.

8 Experimental Results

In order to provide evidence of the low-order poly-
nomial costs and scalability of our method, we con-
ducted a limited evaluation with respect to four
practical natural-language grammars used by Tomita
(Appendix F, 1986) when comparing his algorithm
with Earley’s, and four variants of an abstract highly
ambiguous grammar from Aho and Ullman (1972).
Our Haskell program was compiled using the Glas-
gow Haskell Compiler 6.6 (the code has not yet been

tuned to obtain the best performance from this pat-
form). We used a 3GHz/1GB PC in our experiments.

8.1 Tomita’s Grammars

The Tomita grammars used were: G1 (8 rules), G2
(40 rules), G3 (220 rules), and G4 (400 rules). We
used two sets of input: a) the three most-ambiguous
inputs from Tomita’s sentence set 1 (Appendix G)
of lengths19, 26, and 26 which we parsed with
G3 (as did Tomita), and b) three inputs of lengths
4, 10, and 40, with systematically increasing
ambiguity, chosen from Tomita’s sentence set 2,
which he generated automatically using the formula:

noun verb det noun (prep det noun)∗

The results, which are tabulated in figure 1,
show our timings and those recorded by Tomita for
his original algorithm and for an improved Earley
method, using a DEC-20 machine (Tomita 1986,
Appendix D).

Considered by themselves our timings are low
enough to suggest that our method is feasible for
use in small to medium applications, such as NL in-
terfaces to databases or rhythm analysis in poetry.
Such applications typically have modest grammars
(no more than a few hundred rules) and are not re-
quired to parse huge volumes of input.

Clearly there can be no direct comparison against
years-old DEC-20 times, and improved versions of
both of these algorithms do exist. However, we point
to some relevant trends in the results. The increases
in times for our method roughly mirror the increases
shown for Tomita’s algorithm, as grammar complex-
ity and/or input size increase. This suggests that our
algorithm scales adequately well, and not dissimi-
larly to the earlier algorithms.

8.2 Highly ambiguous abstract grammars

We defined four parsers as executable specifica-
tions of four variants of a highly-ambiguous gram-
mar introduced by Aho and Ullman (1972) when
discussing ambiguity: an unmemoized non-left–
recursive parsers, a memoized versionms, a memo-
ized left–recursive versionsml, and a left–recursive
version with all parts memoized. (This improves
efficiency similarly to converting the grammar to
Chomsky Normal Form.):

118

Input No. of Our algorithm (complete parsing)-PC Tomitas (complete parsing)-DEC 20 Earleys (recognition only)-DEC 20
length Parses G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4
Input from Tomitas sentence set 1. Timings are in seconds.
19 346 0.02 4.79 7.66
26 1,464 0.03 8.66 14.65
Input from Tomitas sentence set 2. Timings are in seconds.
22 429 0.00 0.00 0.03 0.05 2.80 6.40 4.74 19.93 2.04 7.87 7.25 42.75
31 16,796 0.00 0.02 0.05 0.09 6.14 14.40 10.40 45.28 4.01 14.09 12.06 70.74
40 742,900 0.03 0.08 0.11 0.14 11.70 28.15 18.97 90.85 6.75 22.42 19.12 104.91

Figure 1: Informal comparison with Tomita/Earley results

s = (term ’a’ ‘thenS‘ s ‘thenS‘ s)
‘orelse‘ empty

sm = memoize "sm"
((term ’a’ ‘thenS‘ sm ‘thenS‘ sm)
‘orelse‘ empty)

sml = memoize "sml"
((sml ‘thenS‘ sml

‘thenS‘ term ’a’)
‘orelse‘ empty)

smml = memoize "smml"
((smml ‘thenS‘
(memoize "smml_a"

(smml ‘thenS‘ term ’a’)))
‘orelse‘ empty)

We chose these four grammars as they are highly
ambiguous. According to Aho and Ullman (1972),
s generates over128 billion complete parses of an
input consisting of 24‘a’’s. Although the left-
recursive grammar does not generate exactly the
same parses, it generates the same number of parses,
as it matches a terminal at the end of the rule rather
than at the start.

Input No. of parses Seconds to generate the
length excluding packed representation

partial parses of full and partial parses
s sm sml smml

6 132 1.22 0.00 0.00 0.00
12 208,012 out of 0.00 0.00 0.02

space
24 1.29e+12 0.08 0.13 0.06
48 1.313e+26 0.83 0.97 0.80

Figure 2: Times to compute forest for n

These results show that our method can accom-
modate massively-ambiguous input involving the
generation of large and complex parse forests. For
example, the full forest forn=48 contains 1,225
choice nodes and 19,600 branch nodes. Note also
that the use of more memoization insmml reduces
the cost of left-rec checking.

9 Concluding Comments

We have extended previous work of others on mod-
ular parsers constructed as executable specifica-
tions of grammars, in order to accommodate am-
biguity and left recursion in polynomial time and
space. We have implemented our method as a set of
parser combinators in the functional programming
language Haskell, and have conducted experiments
which demonstrate the viability of the approach.

The results of the experiments suggest that our
method is feasible for use in small to medium ap-
plications which need parsing of ambiguous gram-
mars. Our method, like other methods which use
parser combinators or DCGs, allows parsers to be
created as executable specifications which are “em-
bedded” in the host programming language. It is
often claimed that this embedded approach is more
convenient than indirect methods which involve the
use of separate compiler tools such as yacc, for rea-
sons such as support from the host language (includ-
ing type checking) and ease of use. The major ad-
vantage of our method is that it increases the type
of grammars that can be accommodated in the em-
bedded style, by supporting left recursion and ambi-
guity. This greatly increases what can be done in
this approach to parser construction, and removes
the need for non-expert users to painfully rewrite
and debug their grammars to avoid left recursion.
We believe such advantages balance well against any
reduction in performance, especially when an appli-
cation is being prototyped.

The Haskell implementation is in its initial stage.
We are in the process of modifying it to improve ef-
ficiency, and to make better use of Haskell’s lazy
evaluation strategy (e.g. to return only the firstn

successful parses of the input).
Future work includes proof of correctness, analy-

sis with respect to grammar size, testing with larger
natural language grammars, and extending the ap-

119

proach so that language evaluators can be con-
structed as modular executable specifications of at-
tribute grammars.

Acknowledgements

Richard Frost acknowledges the support provided
by the Natural Sciences and Engineering Research
Council of Canada in the form of a discovery grant.

References
1. Aho, A. V. and Ullman, J. D. (1972)The Theory of

Parsing, Translation, and Compiling. Volume I: Parsing.
Prentice-Hall.

2. Aho, A. V., Sethi, R. and Ullman, J. D. (1986)Compil-
ers: Principles, Techniques and Tools. Addison-Wesley
Longman Publishing Co.

3. Camarao, C., Figueiredo, L. and Oliveira, R.,H. (2003)
Mimico: A Monadic Combinator Compiler Generator.
Journal of the Brazilian Computer Society9(1).

4. Earley, J. (1970) An efficient context-free parsing algo-
rithm.Comm. ACM13(2) 94–102.

5. Eijck, J. van (2003) Parser combinators for extraction. In
Paul Dekker and Robert van Rooy, editors,Proceedings
of the Fourteenth Amsterdam ColloqiumILLC, Univer-
sity of Amsterdam. 99–104.

6. Frost, R. A. (2006) Realization of Natural-Language In-
terfaces using Lazy Functional Programming.ACM Com-
put. Surv.38(4).

7. Frost, R. A. and Hafiz, R. (2006) A New Top-Down Pars-
ing Algorithm to Accommodate Ambiguity and Left Re-
cursion in Polynomial Time.SIGPLAN Notices42 (5)
46–54.

8. Hutton, G. (1992) Higher-order functions for parsing.J.
Functional Programming2 (3) 323–343.

9. Johnson, M. (1995) Squibs and Discussions: Memo-
ization in top-down parsing.Computational Linguistics
21(3) 405–417.

10. Kay, M. (1980) Algorithm schemata and data structures in
syntactic processing.Technical Report CSL-80–12,XE-
ROX Palo Alto Research Center.

11. Koskimies, K. (1990) Lazy recursive descent parsing for
modular language implementation.Software Practice
and Experience20 (8) 749–772.

12. Kuno, S. (1965) The predictive analyzer and a path elim-
ination technique.Comm. ACM8(7) 453–462.

13. Leermakers, R. (1993)The Functional Treatment of Pars-
ing. Kluwer Academic Publishers, ISBN0–7923–9376–
7.

14. Lickman, P. (1995) Parsing With Fixed Points.Master’s
Thesis, University of Cambridge.

15. Moore, R. C. (2000) Removing left recursion from
context-free grammars. InProceedings, 1st Meeting
of the North American Chapter of the Association for
Computational Linguistics, Seattle, Washington, ANLP–
NAACL 2000. 249–255.

16. Nederhof, M. J. and Koster, C. H. A. (1993) Top-Down
Parsing for Left-recursive Grammars.TechnicalReport
93–10 Research Institute for Declarative Systems, De-
partment of Informatics, Faculty of Mathematics and In-
formatics, Katholieke Universiteit, Nijmegen.

17. Norvig, P. (1991) Techniques for automatic memoisation
with applications to context-free parsing.Computational
Linguistics17(1) 91–98.

18. Shiel, B. A. (1976) Observations on context-free pars-
ing. Technical ReportTR 12–76, Center for Research
in Computing Technology, Aiken Computational Labo-
ratory, Harvard University.

19. Tomita, M. (1986)Efficient Parsing for Natural Lan-
guage: A Fast Algorithm for Practical Systems.Kluwer
Academic Publishers, Boston, MA.

20. Wadler, P. (1995) Monads for functional programming,
Proceedings of the Baastad Spring School on Advanced
Functional Programming,ed J. Jeuring and E. Meijer.
Springer Verlag LNCS 925.

120

