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Abstract

Importing large amounts of data into
databases does not always go without the
loss of important information. In this work,
methods are presented that aim to rediscover
this information by inferring it from the in-
formation that is available in the database.
From and animal specimen database, the
information to which expedition an ani-
mal that was found belongs is rediscovered.
While the work is in an early stage, the ob-
tained results are promising, and prove that
it is possible to rediscover expedition infor-
mation from the database.

1 Introduction

Databases made up of textual material tend to con-
tain a wealth of information that remains unexplored
with simple keyword-based search. Maintainers of
the databases are often not aware of the possibilities
offered by text mining methods to discover hidden
information to enrich the basic data. In this work
several machine learning methods are explored to
investigate whether ‘hidden information’ can be ex-
tracted from an animal specimen database belonging
to the Dutch National Museum for Natural History,
Naturalis1. The database is a combination of infor-
mation about objects in the museum collection from
handwritten data sources in the museum, such as
journal-like entries that are kept by biologists while
collecting animal or plant specimens on expedition

1http://www.naturalis.nl

and tables that link the journal entries to the mu-
seum register. What is not preserved in the transition
from the written sources to the database is the name
of the expedition druing which an animal specimen
was found.

By expedition, the following event is implied: a
group of biologists went on expedition together in
a country during a certain time period. Entries in
the database that belong to this expedition can be
collected by one or a subset of the participating bi-
ologists. For researchers at the natural history mu-
seum it would be helpful to have access to expedi-
tion information in their database, as for biodiver-
sity research they sometimes need overviews of ex-
peditions. It may also help further enrichment of
the database and cleansing, because if the expedi-
tion information is available, missing information in
certain fields, such as the country where a specimen
was found, may be inferred from the information on
other specimens found during the same expedition.
Currently, if one wants to retrieve all objects from
the database that belong to an expedition, one would
have to create a database query that contains the ex-
act data boundaries of the expeditions and the names
of all collectors involved. Either one of these bits of
information is not enough, as the same group of bi-
ologists may have participated in an expedition more
than once, and the database may also contain expe-
ditions that overlap in time. In this paper a series
of experiments is described to find a way to infer
expedition information from the information avail-
able in the database. To this end, three approaches
are compared: supervised machine learning, unsu-
pervised machine learning, and rule-based methods.
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The obtained results vary, but prove that it is pos-
sible to extract the expedition information from the
data at hand.

2 Related Work

The field of data mining, which is concerned with
the extraction of implicit, previously unknown and
potentially useful information from data (Frawley et
al., 1992), is a branch of research that has become
quite important recently as every day the world is
flooded with larger amounts of information that are
impossible to analyse manually. Data mining can,
for instance, help banks identify suspicious trans-
actions among the millions of transactions that are
executed daily (Fayyad and Uthurusamy, 1996), or
automatically classify protein sequences in genome
databases (Mewes et al., 1999), or aid a company
in creating better customer profiles to present cus-
tomers with personalised ads and notifications (Lin-
den et al., 2003). Knowledge discovery approaches
often rely on machine learning techniques as these
are particularly well suited to process large amounts
of data to find similarities or dissimilarities between
instances (Mitchell, 1997).

Traditionally, governments and companies have
been interested in gaining more insight into their
data by applying data mining techniques. Only re-
cently , digitisation of data in the cultural heritage
domain has taken off, which means that there has
not been much work done on knowledge discovery
in this domain. Databases in this domain are often
created and maintained manually and are thus of-
ten significantly smaller than automatically gener-
ated databases from, for example, customers’ pur-
chase information in a large company.

This means it is not clear whether data mining
techniques, aimed at analysing enormous amounts
of data, will work for the data at hand. This is in-
vestigated here. Manual data typically also contains
more spelling variations/errors and other inconsis-
tencies than automatically generated databases, due
to different persons entering data into the database.
Therefore, before one can start the actual process of
knowledge discovery, it is very important to care-
fully select, clean and model the data one wants
to use in order to avoid using data that is too
sparse (Chapman, 2003). This applies in particular

to databases that contain large amounts of textual in-
formation, which are quite prevalent in the cultural
heritage domain. Examples of textual databases can
be found freely on the internet, such as the databases
of the Global Biodiversity Information Facility2, the
University of St. Andrews Photographic Collec-
tion3, and the Internet Movie Database4.

3 Data

The data that has been used in this experiment is an
animal specimen database from the Dutch National
Museum for Natural History. The database currently
contains 16,870 entries that each represent an object
stored in the museum’s reptiles and amphibians col-
lection. The entries provide a variety of information
about the objects in 37 columns, such as the scien-
tific name of the object, how the specimen is kept
(in alcohol, stuffed, pinned) and under which regis-
tration number, where it was found, by whom and
under which circumstances, the name of the person
who determined the species of the animal and the
name of the person who first described the species.
Most fields are rather compact; they only contain a
numeric value or a textual value consisting of one or
several words. The database also contains fields of
which the entries consist of longer stretches of text,
such as the ‘special remarks’ field, describing any-
thing about the object that did not fit in the other
database fields and ‘biotope’, describing the biotic
and abiotic components of the habitat from which
the object was collected. Dutch is the most frequent
language in the database, followed by English. Also
some Portuguese and German entries occur. Taxo-
nomic values, i.e., the scientific names of the animal
specimens, are in a restricted type of Latin. A snip-
pet of the database can be found in Figure 1.

3.1 Data Construction

In order to be able the measure the performance of
the approaches used in the experiments, the database
was annotated manually with expedition informa-
tion. Adding this information was possible because
there was access to the original field books from
which the database is made up. Annotating 8166

2http://www.gbif.org/
3http://special.st-andrews.ac.uk/saspecial/
4http://www.imdb.com/
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Collector Coll. Date Coll. # Class Genus Species Country Expedition
Buttikofer, J. 30-07-1881 424 Reptilia Lamprolepis lineatus 132 buttikoferliberia1881
Buttikofer, J. & Sala 09-10-1881 504 Amphibia Bufo regularis 132 buttikoferliberia1881
M. Dachsel 02-05-1971 971-MSH186 Reptilia Blanus mettetali 156 mshbrazil71
Hoogmoed, M.S. 04-05-1971 1971-MSH187 Reptilia Quendenfeldtia trachyblepharus 156 mshbrazil71
Hoogmoed, M.S. 09-05-1971 1971-MSH202 Reptilia Lacerta hispanica 156 mshbrazil71
C. Schuil 14-03-1972 1972-MSH35 Amphibia Ptychadaena sp. 92 mshghana72
P. Lavelle -03-1972 1972-MSH40 Reptilia Crotaphopeltis hotamboeia 92 mshghana72
Hoogmoed, M.S. 23-03-1972 1972-MSH55 Amphibia Phrynobatrachus plicatus 92 mshghana72

Figure 1: Snippet of the animal specimen database

entries with this information took one person about
2 days. There were 8704 entries to which no ex-
pedition is assigned, either because these specimens
were not collected during an expedition or because it
was not possible to determine the expedition. These
entries were excluded from the experiments . Ex-
peditions which contained 10 or fewer entries were
also excluded because these would make the data
set too sparse. A total of 7831 database entries
were used in this work, divided into 60 expeditions.
Although the ‘smallest’ expeditions were excluded
from the experiments, the sizes of the expeditions
still vary greatly: between 2170 and 11 items (σ =
310.04). This is mainly due to the fact that new
items are still added to the database continuously, in
a rather random order, hence some expeditions are
more completely represented than others.

The database contains several fields that contain
information that will probably not be that useful for
this work. Information that was excluded was the
specimen’s sex, the number of specimens (in cases
where one database entry refers to several speci-
mens, for instance kept together in a jar), how the
animal is preserved, and fields that contain informa-
tion not on the specimen itself or how it was found
but on the database (e.g., when the database entry
was added and by whom). Values from the ‘alti-
tude’ and ‘coordinates’ fields were also not included
in the experiments as this is information is too of-
ten missing in the database to be of any use (altitude
information is missing in 85% of the entries and co-
ordinates in 96%).

Some information in the database is repetitive;
there is for instance a field called ‘country’ contain-
ing the name of the country in which a specimen was
found, but there is also a field called ‘country-id’ in
which the same information is encoded as a numer-
ical value. The latter is more often filled than the
‘country’ field, which also contains values in differ-

ent languages, and thus it makes more sense to only
include values from the ‘country-id’ field. A small
conversion is applied to rule out that an algorithm
will interpret the intervals between the different val-
ues as a measure of geographical proximity between
the values, as the country values are chosen alpha-
betically and do not encode geographical location.

In some cases it seemed useful to have an al-
gorithm employ interval relations between num-
bers. The fields ‘registration number’ and ‘collec-
tion number’ were used as such. These fields some-
times contain some alphabetical values: certain col-
lectors, for instance, included their initials in their
series of collection registration numbers. These
were converted to a numeric code to obtain com-
pletely numeric values with preservation of the col-
lector information. This also goes for the fields in
the database that contain information on dates, i.e.,
the ‘date of determination’, the ‘date the specimen
came into the museum’ and the ‘collection date’
fields. The collection date is the most important
date here as this directly links to an expedition. The
other dates might provide indirect information, for
instance if the collection date is missing (which is
the case in 14%). To aid clustering, the dates were
normalised to a number, possibly the algorithm ben-
efits from the fact that a small numerical interval
means that the dates are close together.

Person names from the ‘author’, ‘collector’, ‘de-
terminer’, and ‘donator’ fields were normalised to
a ‘first name - last name’ format. From values
from the taxonomic fields (‘class’, ‘order’, ‘fam-
ily’, ‘genus’, ‘species’, and ‘sub species’), and
‘town/village’ and ‘province/state’ fields, as well as
from the person name fields, capitals, umlauts, ac-
cents and any other non-alphanumerical characters
were removed.

It proved that certain database fields were not suit-
able for inclusion in the experiments. This goes for
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the free text fields ‘biotope’, ‘location’ and ‘special
remarks’. Treating these values as they are will re-
sult in data that is too sparse, as their values are ex-
tremely varied. Preliminary experiments to see if
it was possible to select only certain parts of these
fields did not yield any satisfying results and was
therefore abandoned.

This resulted in feature vectors containing 18 fea-
tures, plus the manually assigned expedition class.

4 Methodology

The majority of the experiments that were carried
out in an attempt to infer the expedition informa-
tion from the database involved machine learning.
Therefore in this section three algorithms for super-
vised learning are described, followed by a cluster-
ing algorithm for unsupervised learning. This sec-
tion is concluded with a description of the evaluation
metrics for clusters used by the different approaches.

Algorithms

The first algorithm that was used is the k-Nearest
Neighbour algorithm (k-NN) (Aha et al., 1991;
Cover and Hart, 1967; DeVijver and Kittler, 1982).
This algorithm is an example of a lazy learner: it
does not model the training data it is given, but sim-
ply stores each instance of the training data in mem-
ory. During classification it compares the item it
needs to classify to each item in its memory and
assigns the majority class of the closest k (in these
experiments k=1) instances to the new item. To
determine which instances are closest, a variety of
distance metrics can be applied. In this experi-
ment the standard settings in the TiMBL implemen-
tation (Daelemans et al., 2004), developed at the
ILK research group at Tilburg University, were used.
The standard distance metric in the TiMLB imple-
mentation of k-NN is the Overlap metric, given in
Equations1 and 2. ∆(X,Y) is the distance between
instances X and Y, represented by n features, where
δ is the distance between the features.

∆(X, Y ) =
n∑

i=1

δ(xi, yi) (1)

where:

δ(xi, yi) =


abs if numeric, else
0 ifxi = yi

1 ifxi 6= yi

(2)

The second algorithm that was used is the C4.5
decision tree algorithm (Quinlan, 1986). In the
learning phase, it creates a decision tree in a re-
cursive top-down process in which the database is
partitioned according to the feature that separates
the classes best; each node in the tree represents
one partition. Deeper nodes represent more class-
homogeneous partitions. During classification, C4.5
traverses the tree in a deterministic top-down pass
until it meets a class-homogeneous end node, or a
non-ending node when a feature-value test is not
represented in the tree.

Naive Bayes is the third algorithm that was used
in the experiments. It computes the probability
of a certain expedition, given the observed train-
ing data according to the formula given in Equa-
tion 3. In this formula υNB is the target expedition
value, chosen from the maximally probably hypoth-
esis (argmax

υjεV P (υj), i.e., the expedition with the high-
est probability) given the product of the probabilities
of the features (

Q
i
P (ai|υj)).

υNB = argmax
υjεV P (υj)

∏
i

P (ai|υj) (3)

For both the C4.5 algorithm and Naive Bayes the
WEKA machine learning environment (Witten and
Frank, 2005), that was developed at the University
of Waikato, New Zealand, was used.

A quite different machine learning approach that
was applied to try to identify expeditions in the rep-
tiles and amphibians database is clustering. Clus-
tering methods are unsupervised, i.e., they do not
require annotated data, and in some cases not even
the number of expeditions that are in the data. Items
in the data set are grouped according to similarity.
A maximum dissimilarity between the group mem-
bers may be specified to steer the algorithm, but
other than that it runs on its own. For an exten-
sive overview of clustering methods see Jain et al.,
(1999). For this work, the options in choosing an
implementation of a clustering algorithm were lim-
ited because many data mining tools are designed
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only for numerical data, therefore the WEKA ma-
chine learning environment was also used for the
clustering experiments. As clustering is computa-
tionally expensive, it was only possible to run ex-
periments with WEKA’s implementation of the Ex-
pectation Maximisation (EM) algorithm (Dempster
et al., 1977). Preliminary experiments with other al-
gorithms indicated execution times in the order of
months. The EM algorithm iteratively tries to con-
verge to a maximum likelihood by first computing
an expectation of the likelihood of a certain cluster-
ing, then maximising this likelihood by computing
the maximum likelihood estimates of the features.
Termination of the algorithm occurs when the pre-
defined number of iterations has been carried out,
or when the overall likelihood (the measure of how
‘good’ a clustering is) does not increase significantly
with each iteration.

Cluster Evaluation

Since the data is annotated with expedition in-
formation it was possible to use external quality
measures (Steinbach et al., 2000). Three differ-
ent evaluation measures were used: accuracy, en-
tropy (Shannon, 1948), and the F-measure (van Ri-
jsbergen, 1979).

The evaluation of results for the supervised learn-
ing algorithms was calculated in a straightforward
way: because the classifier knows which expedi-
tions there are and which entries belong to which
expedition, it checks the expeditions it assigned to
the database entries to the manually assigned expe-
ditions and reports the overlap as accuracy.

It gets a little bit more complicated with entropy.
Entropy is a measure of informativity, i.e., the min-
imum number of bits of information needed to en-
code the classification of each instance. If the ex-
pedition clusters are uniform, i.e., all items in the
cluster are very similar, the entropy will be low. The
main problem with using entropy for evaluation of
clusters is that the best score (an entropy of 0) is
reached when every cluster contains exactly on in-
stance. Entropy is calculated as follows: first, the
main class distribution, i.e., per cluster the probabil-
ity that a member of that cluster belongs to a certain
cluster, is computed. Using that distribution the en-
tropy of each cluster is calculated via the formula in
Equation 4. For a set of clusters the total entropy

is then computed via the formula in Equation 5, in
which m is the total number of clusters, sy the size
of cluster y and n the total number of instances.

Ey = −
∑

x

Pxylog(Pxy) (4)

Etotal =
m∑

y−1

sy · Ey

n
(5)

The F-measure is the harmonic mean of precision
and recall, and is commonly used in information re-
trieval. In information retrieval recall is the propor-
tion of relevant documents retrieved out of the total
set of relevant documents. When applied to clus-
tering a ‘relevant document’ is an instance that is
assigned correctly to a certain expedition, the set of
all relevant documents is the set of all instances be-
loning to that expedition. Precision is the number of
relevant documents retrieved from the total number
of documents. So when applied to cluster evalua-
tion this means the number of instances of an expe-
dition that were retrieved from the total number of
instances (Larsen and Aone, 1999). This boils down
to Equations 6 and 7 in which x stands for expedi-
tion, y for cluster, nxy for the number of instances
belonging to expedition x that were assigned to clus-
ter y, and nx is the number of items in expedition x.

Recall(x, y) =
nxy

nx
(6)

Precision(x, y) =
nxy

ny
(7)

The F-measure for a cluster y with respect to ex-
pedition x is then computed via Equation 8. The
F-measure of the entire set of clusters is computed
through the function in Equation 9, which takes the
weighted average of the maximum F-measure per
expedition.

F (x, y) =
2 · Recall(x, y) · Precision(x, y)
Precision(x, y) + Recall(x, y)

(8)

F =
∑

x

nx

n
max{F (x, y)} (9)
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5 Experiments and Results

First, two baselines were set to illustrate the situation
if no machine learning or other techniques would be
applied to the database. if one were to randomly
assign one of the 60 expeditions t the entries this
would go well in 1.7% of the cases. If all entries
were labelled as belonging to the largest expedition
this would yield an accuracy of 28%. In all ma-
chine learning experiments 10-fold cross validation
was used for testing performance.

A series of supervised machine learning experi-
ments was carried out first to investigate whether it
is possible to extract the expeditions during which
the animal specimens were found at all. Three
learning algorithms were applied to the complete
data set, which yielded accuracies between 88%
and 98%. Feature selection experiments with the
C4.5 decision tree algorithm indicated that fea-
tures ‘town/village’, ‘collection number’, ‘registra-
tion number’, ‘collector’ and ‘collection date’ were
considered most informative for this task, hence the
experiments were repeated with a data set contain-
ing only those features. The results of both series
of experiments are to be found in Table 1. For
the C4.5 and Naive Bayes experiments the accu-
racy deteriorates significantly when using only the
selected features (α = 0.05, computing using McNe-
mar’s test (McNemar, 1962)), but it stays stable for
the k-NN classifier. This indicates that not all data
is needed to infer the expeditions, but that it mat-
ters greatly which approach is taken. However, as
neither of the algorithm benefits from it, feature se-
lection was not further explored.

Algorithm All feat. Sel. feat.
k-NN 95.9% 95.9%
C.4.5 98.3% 94.4%

NaiveBayes 88.1% 73.5%

Table 1: Accuracy of supervised machine learning
experiments using all features and selected features

In these experiments all database entries were an-
notated with expedition information, which in a real
setting is of course not the case. Through running
a series of experiments with significantly smaller
amounts of training data it was found that by us-
ing only as little as 5% of the training data (amount-

ing to 392 instances) already an accuracy of 85% is
reached. Annotating this amount of data with expe-
dition information would take on person less than an
hour. By only using 45% of the training data an ac-
curacy of 97% is reached5. In Figure 2 the complete
learning curve of the k-NN classifier is shown.

Annotating this amount of data with expedition in-
formation would take one person less than an hour.
By only using 45% of the training data an accuracy
of 97% is reached5. In Figure 2 the complete learning
curve of the k -NN classifier is shown.

Fig. 2: Accuracy of k-NN per percentage of training
data

Ideally, one does not want to annotate data at all,
therefore the use of clustering algorithms was explored.
For this, the EM algorithm from the WEKA Machine
Learning environment was used. The results, as shown
in Table 2, are not quite satisfying, but still well above
the set baselines. As can be seen in Table 2, the clus-
tering algorithms do not come up with anywhere near
as many clusters as needed and unfortunately WEKA
does not present the user with many options to remedy
this. An intermediate experiment between completely
supervised and unsupervised was attempted, i.e., pre-
specifying a number of clusters for the algorithm to
define, but this was computationally too expensive to
carry out.

Algorithm # Clusters Accuracy
EM 7 46.0%

Table 2: Results of clustering experiments

Since clustering algorithms do not achieve an accu-
racy that is satisfying enough to use in a real setting
and supervised learning requires annotated data, also
a traditional, and quite different approach was tried,
namely finding expeditions via rules. Via a couple
of simple rules the dataset was split into possible ex-
peditions using only information on collection dates,
collector information and country information.

1. Sort dates in ascending order, start a new ex-
pedition when the distance between two dates is
greater than the average distance of the collection
dates

2. First sort collector information in ascending or-
der, then sort collection dates in ascending order,
start a new expedition when the distance between
two dates is greater than the average distance be-
tween dates or when a new collector is encoun-
tered

5 The slightly higher achieved accuracy in the learning curve
experiments is due to the fact the learning curve was not
computed via cross-validation

3. First sort by country information, then by collec-
tor, and finally by collection dates, start a new
expedition when country or collector change, or
when the distance between two dates is greater
than the average distance between dates

Surprisingly, only grouping collection dates already
yields an F-measure of .83, this includes 1299 en-
tries that contain no information on the collection
date, leaving this data out would increase precision
on the entries whose date is not missing to an F-
measure of .94. In Table 3 results of the rule-based
experiments are shown. It is expected that when the
database is further populated, the date-rule will work
less well as there will be expeditions that overlap, the
date+collector-rule should remedy this, although it
does not work very well yet as spelling variations in
the collector names are not taken into account.

Rules # clusters Fmeasure entropy
1 78 .83 .16
2 199 .75 .15
3 216 .73 .11

Table 3: Results of rule-based experiments

6 Conclusions and Future Work

In this work we have presented various approaches
to rediscover expedition information from an animal
specimen database. As expected, the supervised learn-
ing algorithms performed best, but the disadvantage in
using such an approach is the requirement to provide
annotated data; however, a series of experiments to
gain more insight into the quantities of data necessary
for a supervised approach to perform well indicate that
only a small set of annotated data is required to ob-
tain very reasonable accuracies. If no training data is
available, a rule-based approach is a more realistic al-
ternative. Although it must be kept in mind that rules
need to be created manually for every new data set.
For this data set relatively simple rules already proved
to be quite effective, but for other data sets deriving
rules can be much more complicated and thus more
expensive. This particular set of rules is also expected
to behave differently when the database is extended
with entries from overlapping expeditions.

For the experiments presented in this work, only
entries from the database of which the expedition
they belonged to was known were used, which con-
stitutes only half of the database entries. Researchers
at the natural history museum estimate that about
30% of the database entries do not belong to an ex-
pedition, while the other 20% not included here be-
long to unknown expeditions. The decision to exclude
the expedition-less entries was made as these entries
would imbalance the data and impair evaluation as it
would not be possible to check predictions against a
‘real value’. If all database entries would belong to a
known expedition the performance of the approaches
described in this paper show that satisfactory results
should be achieved over the complete data set. To
prove this hypothesis one would need to test the ap-
proaches on other data sets which can be completely

5

Figure 2: Accuracy of k-NN per percentage of train-
ing data

Ideally, one does not want to annotate data at all,
therefore the use of a clustering algorithm was ex-
plored. For this, the EM algorithm from the WEKA
machine learning environment was used. The re-
sult, as shown in Table 2, is not quite satisfying, but
still well above the set baselines. As can be seen in
Table 2, the clustering algorithm does not come up
with anywhere near as many clusters as needed and
unfortunately WEKA does not present the user with
many options to remedy this. An intermediate ex-
periment between completely supervised and unsu-
pervised machine learning was attempted, i.e., pre-
specifying a number of clusters for the algorithm to
define, but this was computationally too expensive
to carry out.

Algorithm # Clusters Accuracy
EM 7 46.0%

Table 2: Result of clustering experiment

Since the clustering algorithm does not achieve an
accuracy that is satisfying enough to use in a real
setting and supervised learning requires annotated
data, also a traditional, and quite different approach

5The slightly higher achieved accuracy in the learning curve
experiments is due to the fact that the learning curve was not
computed via cross-validation
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was tried: namely finding expeditions via rules. Via
a couple of simple rules the data set was split into
possible expeditions using only information on col-
lection dates, collector information and country in-
formation.

1. Sort dates in ascending order, start a new expe-
dition when the distance between two sequen-
tial dates is greater than the average distance of
the collection dates

2. First, sort collector information in ascending
order, then sort collection dates in ascending
order, start a new expeditions when the distance
between two dates is greater than the average
distance between dates or when a new collector
is encountered

3. First, sort by country information, then by col-
lector, and finally by collection date, start a new
expedition when country or collectors change,
or when the distance between two dates is
greater than the average distance between dates

Surprisingly, only grouping collection dates al-
ready yields an F-measure of .83. This includes
1299 entries that contain no information on the col-
lection date, leaving those out would increase preci-
sion on the entries whose collection date is not miss-
ing to an F-measure of .94. In Table 3 results of
the rule-based experiments are shown. It is expected
that when the database is further populated the date-
rule will work less well as there will be more expe-
ditions that overlap. The date+collector-rule should
remedy this, although it does not work very well yet
as spelling variations in the collector names are not
taken into account at the moment.

Rules # Clusters F-measure Entropy
1 78 .83 .16
2 199 .75 .15
3 216 .73 .11

Table 3: Results of the rule-based experiments

6 Conclusions and Future Work

In this work various approaches were presented to
rediscover expedition information from an animal

specimen database. As expected, the supervised
learning algorithms performed best, but the disad-
vantage in using such an approach is the require-
ment to provide annotated data. However, a series
of experiments to gain more insight into the quanti-
ties of data necessary for a supervised approach to
perform well, indicate that only a small set of an-
notated data is required in this case to obtain very
reasonable results. If no training data is available,
a rule-based approach is a realistic alternative. Al-
though it must be kept in mind that rules need to be
created manually for every new data set. For this
data set relatively simple rules already proved to be
quite effective, but for other data sets deriving rules
can be much more complicated and thus more ex-
pensive. This particular set of rules is also expected
to behave differently when the database is extended
with more entries from overlapping expeditions.

For the experiments presented in this work, only
entries from the database of which the expedition
they belonged to was known were used, which
constitutes only half of the database entries. Re-
searchers at Naturalis estimate that about 30% of
the database entries do not belong to an expedi-
tion, while the other 20% not included here belong
to unknown expeditions. The decision to exclude
the expedition-less entries was made as these en-
tries would imbalance the data and impair evalua-
tion as it would not be possible to check predictions
against a ‘real value’. If all database entries would
belong to a known expedition the performance of
the approaches described in this paper that satisfac-
tory results could be achieved over the complete data
set. To prove this hypothesis one would need to
test the approaches on other data sets which can be
completely annotated. Performing such tests might
provide more insight into how well the approaches
would deal with a data set where all entries have
an associated expedition. The natural history mu-
seum has several other similar (but smaller) data
sets, which might be suitable for this task, and which
will be tested as part of future work for evaluating
the approaches described here. It may also be inter-
esting to investigate what can be inferred from the
other fields defined in other data sets.

A less satisfying aspect of the research described
in this paper is that many of the intended experi-
ments with unsupervised machine learning were too
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computationally expensive to be executed. Potential
workarounds to the limitation of certain implemen-
tations of clustering algorithms, in that they only
work on numeric data, are sought in converting the
textual data to numeric values and in the investi-
gations into implementations of algorithms that can
deal with textual data.

A particular peculiarity of textual data, from
which the rule-based approach suffers, is the fact
that the same name or meaning can be conveyed in
several ways. Spelling variations and errors were
for instance not normalised. Hence the approaches
treated ‘Hoogmoed’ and ‘M S Hoogmoed’ as two
different values whereas they may very well refer to
the same entity.

From this work it can be concluded that the ex-
pedition information can definitely be reconstructed
from the animal specimen database that was used
here, but for it to be used in a real world applica-
tion it still needs to be tested and fine-tuned on other
data sets and extended to be able to deal with entries
that are not associated with any expedition.
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