
Proceedings of the 5th Workshop on Important Unresolved Matters, pages 49–56,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Finding Variants of Out-of-Vocabulary Words in Arabic

Abdusalam F.A. Nwesri S.M.M. Tahaghoghi Falk Scholer
School of Computer Science and Information Technology

RMIT University, GPO Box 2476V, Melbourne 3001, Australia
{nwesri,saied,fscholer}@cs.rmit.edu.au

Abstract

Transliteration of a word into another lan-
guage often leads to multiple spellings. Un-
less an information retrieval system recog-
nises different forms of transliterated words,
a significant number of documents will be
missed when users specify only one spelling
variant. Using two different datasets, we
evaluate several approaches to finding vari-
ants of foreign words in Arabic, and show
that the longest common subsequence (LCS)
technique is the best overall.

1 Introduction

The pronunciation of a word in one language is
converted into the phonemes of another language
through transliteration. This is particularly com-
mon with proper nouns. However, phonetics dif-
fer across languages, and transliteration usually re-
sults in many spellings for the same word. This
is an issue even across languages that use substan-
tially the same character set; simple examples would
be “colour” and “color” across British and Ameri-
can usage, and “ambience” and “ambiance” across
French and English.

A change in character sets compounds the prob-
lem: for instance, there are at least 32 English
forms for the Arabic name of the Libyan leader
“Kaddafi”,1 and Nwesri et al. (2006) have identi-
fied 28 different spellings for the name of the for-
mer Serbian president Milosevic in the eleventh Text
REtrieval Conference (TREC) Arabic newswire col-
lection. Users typically submit only one spelling
variant in their query, and current Arabic text re-
trieval systems return only documents that contain
that variant (Abdelali et al., 2004). We apply tech-

1http://www.geocities.com/Athens/8744/
spelling.htm

niques used to identify similar strings in other lan-
guages such as English, and present a novel ap-
proach to identify and retrieve different variants of
foreign words in Arabic.

2 The Arabic Language

Arabic is a Semitic language written from right to
left, with most words derived from three-character
root words. The Arabic alphabet has 28 characters,
each with a distinct sound. Short vowels do not have
any associated characters, but are instead indicated
by diacritics attached to other characters. For ex-
ample, the letter

	¬ /f/ with the diacritic Fatha
�	¬

is pronounced /fa/,2 with the diacritic Kasra
	¬� is

pronounced /fI/, and with the diacritic Damma
�	¬ is

pronounced /fU/.
In general written Arabic, diacritics are not in-

dicated; readers must rely on context to determine
implicit diacritics, and so how the word should be
pronounced. For example, some of the variants of
the word I. �J» are �I.

��J
�
» /kataba/ 〈he wrote〉, I.

��J
�
» /kU-

tUb/ 〈books〉, or �I. �J�
�
» /kUtIba/ 〈is written〉.

There are also three long vowels — represented
by the letters { @ ø
 ð} — that are more pronounced

than short vowels. For instance, the letter
	¬ can

be followed by the long vowel @ /a:/ to form A 	̄ /fa:/,
byð /u:/ to form ñ 	̄ /fu:/, and by ø
 /i:/ to form ú

	̄ /fi:/.

2.1 Foreign Words
From an information retrieval (IR) perspective, for-
eign words in Arabic can be classified into two gen-
eral categories: translated and transliterated (Nwesri
et al., 2006). Translated words, sometimes referred
to as Arabised words, are foreign words that are
modified or remodelled to conform to Arabic word

2We use the International Phonetic Alphabet.

49

paradigms, and are well assimilated into the lan-
guage. The assimilation process includes changes
in the structure of the borrowed word, including
segmental and vowel changes, addition or dele-
tion of syllables, and modification of stress pat-
terns (Al-Qinal, 2002). Foreign words of this cate-
gory usually have a single consistent spelling vari-
ant, for example �ðQ�

	̄
〈virus〉, 	J
 ��P@ 〈archive〉,

and ñK
X@P 〈radio〉.
Where equivalent native terms are not available

early enough for widespread adoption, foreign terms
are used directly with their original pronunciation
represented using Arabic letters. As these do not
appear in standard Arabic lexicons — that may in-
clude adopted words — they are considered to be
Out-Of-Vocabulary (OOV) words.

With transliterated words, the phonemes of a for-
eign word are replaced with their nearest Arabic
equivalents. Since Arabic phonemes cannot repre-
sent all phonemes found in other languages, the orig-
inal phonemes are usually not represented uniformly
by different transliterators, resulting in multiple
spelling variants for the same foreign word (Stalls
and Knight, 1998).

Faced with the need to use new foreign terms, na-
tive speakers often cannot wait for formal equiva-
lents to be defined. This is particularly true for news
agencies, which encounter new foreign nouns and
technical terms daily. This urgency leads to more
transliteration than translation, with the associated
problem of multiple spellings.

2.2 Spelling Variants
In Arabic, short vowels must be indicated using dia-
critics, but these are rarely used in general text, and
there are no standard rules on when and where di-
acritics must be indicated. Context does not help
in predicting diacritics for foreign words such as
proper nouns or technical terms, and so long vowels
are often used to make the pronunciation explicit in
the spelling of the word without relying on diacrit-
ics. This, too, is subject to variation; some translit-
erators add a long vowel after each consonant in the
word, while others add just enough long vowels to
clarify word segments with ambiguous pronuncia-
tion.

The absence of certain sounds in Arabic, and

varying pronunciations across dialects, also con-
tributes to the multiplicity of spellings. For instance,
the sound /g/ has no standard equivalent in Ara-
bic, since transliterators represent it according to
how they pronounce it. For instance, the English
letter G /g/ is at times mapped to the Arabic let-
ters � 	« /G/, ��̄ /q/, or �k. /Z/ (Abduljaleel and Larkey,
2003); we have also observed it mapped to the let-
ter �» /k/:

	¬ñ ����AK. Pñ
	«,

	¬ñ ����AK. Pñ
�̄, 	¬ñ ����AK. Pñk. ,

and
	¬ñ ����AK. Pñ» are transliterations of 〈Gorbachev〉

we have found on the Web.
Similarly, the interpretation of character combi-

nations varies between transliterators. Moreover,
Typographical and phonetic errors during translit-
eration may add even more variants (Borgman and
Siegfried, 1992).

2.3 Retrieval of Variants
When different variants of a word exist, only a sub-
set of related documents can be found when the
search uses only one variant. Typical search en-
gine users are unlikely to recognise the problem and
hence do not add other variants to their query. Cur-
rently, major search engines such as Google, Yahoo,
and MSN search use exact match for Arabic search,
and no publicly available Arabic Information Re-
trieval (AIR) system has been reported to retrieve
different spelling variants (Abdelali et al., 2004).

In this paper we explore how the different vari-
ants of a foreign word may be captured. We test
existing similarity techniques, and introduce three
techniques to search for variants of foreign words
in Arabic. In the first technique, we convert differ-
ent variants to a single normalised form by remov-
ing vowels and conflating homophones. In the sec-
ond technique, we extend the well-known Soundex
technique — commonly used to identify variants of
names in English — to the OOV problem in Arabic,
and in the third technique, we modify the English
Editex algorithm to identify similar foreign words
in Arabic.

3 Related Work

Approaches to identify similar-sounding but differ-
ently spelt words have been heavily investigated in
English; among these are techniques that make use
of string or phonetic similarity.

50

String similarity approaches include the Edit Dis-
tance (Hall and Dowling, 1980), used to measure
the similarity of two strings by counting the minimal
number of character insertions, deletions, or replace-
ments needed to transform one string into another.
To transpose a string s of length n into a string t
of length m, edit(m,n) computes the minimal steps
required as follows:

edit(0, 0) = 0
edit(i, 0) = i
edit(0, j) = j
edit(i, j) = min[edit(i − 1, j) + 1,

edit(i, j − 1) + 1,
edit(i − 1, j − 1) + d(si, ti)]

where d(si, ti) = 1 if si = ti, 0 otherwise.
This measure can be used to rank words in the

collection with respect to a query word. Zobel and
Dart (1995) showed that Edit Distance performed
the best among the techniques they evaluated for
matching English names. It is not known how this
technique will perform with Arabic words.

Another candidate approach that can be used
to identify similar foreign words in Arabic is
n-grams (Hall and Dowling, 1980). This approach
is language independent; the strings are divided into
grams (substrings) of length n, and the similarity of
the strings is computed on the basis of the similarity
of their n-grams. Pfeifer et al. (1996) compute the
similarity as the number of shared grams divided by
the total number of distinct grams in the two strings.

gramCount =
| Gs ∩ Gt |

| Gs ∪ Gt |

where Gs is the set of grams in string s. For ex-
ample, with n=2, the similarity of “ahmed” and
“ahmmed” using this measure is 0.8 because both
strings contain the four 2-grams ah, hm, me, and
ed, while there are five distinct 2-grams across the
two strings.

Gram distance (Ukkonen, 1992) is another string
similarity technique. When grams are not repeated
– which is the case in names — the similarity is
computed as (Zobel and Dart, 1996):
gramDist(s, t) =| Gs | + | Gt | −2 | Gs ∩ Gt |

According to this measure, the similarity between
“ahmed” and “ahmmed” is 1.

With the Dice (1945) measure, the similarity of
strings s and t is computed as twice the number of

common n-grams between s and t, divided by the
total number of n-grams in the two strings:

Dice(s, t) =
2× | Gs ∩ Gt |

| Gs | + | Gt |

where Gs denotes the set of n-grams in s, and Gt

denotes the set of n-grams in t.
The longest common subsequence (LCS) algo-

rithm measures the similarity between two strings
based on the common characters in the two
strings (Wagner and Fischer, 1974; Stephen, 1992).
Similarity is normalised by dividing the length of
the common subsequence by the length of the longer
string (Melamed, 1995). The similarity between be-
tween “ahmed” and “ahmmed” is (5/6=0.833).

Phonetic approaches to determine similarity be-
tween two words include the well-known Soundex
algorithm developed by Odell and Russell, patented
in 1918 and 1922 (Hall and Dowling, 1980). This
has predefined codes for the sounds in a language,
with similar-sounding letters grouped under one
code. During comparisons, all letters in a word bar
the first one are encoded, and the resulting represen-
tation is truncated to be at most four characters long.
A variant of Soundex is the Phonix algorithm (Gadd,
1990), which transforms letter groups to letters and
then to codes; the actual mappings are different from
Soundex. Both Soundex and Phonix have been re-
ported to have poorer precision in identifying vari-
ants of English names than both Edit Distance and
n-grams (Zobel and Dart, 1995).

Aqeel et al. (2006) propose an Arabic version of
English Soundex (Asoundex-final). They include di-
acritics in a list of Arabic names, and created queries
by altering some of these names by adding, deleting,
or inserting characters.

Most Arabic names are meaningful words — for
example, YÒm× 〈the praised one〉 — and rarely do
have spelling variants. This leads to morphological
ambiguity as names may match verbs, pronouns and
other categories of the language. We have found that
using Asoundex-final with the misspelt query 	á�
�î�E
on an Arabic collection with 35 949 unique
words returns Õæ
j. m�

�' 〈exaggeration〉, 	à 	Qm��' 〈she

becomes sad〉, Õæ�m��' 〈she resolves〉, 	á�m��' 〈she

helps〉, 	á�
�m��' 〈improvement〉, 	á�
�m��' 〈immun-
isation〉, Õºm��' 〈she governs〉, Ð 	Qî�E 〈she defeats〉.
Moreover, it is not clear when and how diacritics

51

are removed, nor where the long vowel ø
 belongs
in their implementation.

Editex, developed by Zobel and Dart (1996),
enhances the Edit Distance technique by incorpo-
rating the letter-grouping strategy used by Soundex
and Phonix, and has been shown to have better
performance than these two algorithms, as well as
Edit Distance, on a collection of 30 000 distinct
English names. The similarity between two strings
s and t is computed as:
edit(0, 0) = 0
edit(i, 0) = edit(i − 1, 0) + d(si − 1, s1)
edit(0.j) = edit(0, j − 1) + d(tj − 1, tj)
edit(i.j) = min[edit(i − 1, j) + d(si − 1, si),

edit(i, j − 1) + d(tj − 1, tj),
edit(i − 1, j − 1) + r(si, tj)]

where: r(si, tj) is 0 if si=tj , 1 if
group(si)=group(tj), and 2 otherwise; and
d(si, tj) is 1 if si 6= tj and si is “h” or “w”, and
r(si, tj) otherwise.

4 Data

We used two different data sets. The first set is gen-
erated from text crawled from the Web, and the sec-
ond is prepared by manual transliteration of foreign
words from English to Arabic.

4.1 Crawled Data
This set is derived from a one-gigabyte crawl of Ara-
bic web pages from twelve different online news
sites. From this data we extracted 18 873 073 Ara-
bic words, 383 649 of them unique. We used the
Microsoft Office 2003 Arabic spellchecker to build
a reference list of OOV words. To avoid dupli-
cates in the 40 514 OOV words returned by the
spellchecker, we removed the first character if it is
an Arabic preposition, and if the string remaining
after that character exists in the collectionWe also
removed the definite article “Al” to obtain a list
of 32 583 words. Through manual inspection, we
identified 2 039 foreign words.

To evaluate alternative techniques, we use a ref-
erence list of foreign words and their variants. To
identify variants, we generated all possible spelling
variants of each word according to the patterns we
describe in Section 4.1.1, and kept only the patterns
that exist in our collection; 556 clusters of foreign

Table 1: Variants of the word “Beckham” generated
by adding vowels

ÕºK. Õ» AK. Õ»ñK. ÕºJ
K.
ÐñºK. Ðñ» AK. Ðñ»ñK. ÐñºJ
K.
ÐA¾K. ÐA¿ AK. ÐA¿ñK. ÐA¾J
K.
Õæ
ºK. Õæ
» AK. Õæ
»ñK. Õæ
ºJ
K.

words remain.

4.1.1 Generation of Variants
To generate foreing words variants, we first re-

move any vowels and then reinsert vowel combi-
nations of the three long vowels {ð ø
 @} between
the consonants that remain. For a word of length n,
this process generates 4(n−1) variants. Consider the
word ÐA¾J
K. 〈Beckham〉. We remove vowels to ob-
tain ÕºK. , and then add all possible vowels to obtain
the variants shown in Table 1.

As discussed in Section 2.2, inconsistent repre-
sentation of sounds between transliterators adds to
the variations in spelling. Thus, the number of
possible transliterations for a foreign word is given
by 4(n−1) multiplied by the number of possible
transliterations for each of its consonants. In our ex-
ample, the letter � �®� /q/ may also be used in place
of �º� /k/, and so we generate another set; since the
representation tends to be consistent within a given
word, we need to create only as many sets as there
are Arabic representations for the sound.

We validate the generated variants against our
collection and keep only those that appear in the
crawled text. For our example word “Beckham”,
we found only two correct variants: ÐA¾J
K. and ÕºJ
K. .
Some of the generated variants could be correct Ara-
bic words that would be valid when checked against
the collection. Many of the generated clusters were
found to be noisy – that is, they included many na-
tive Arabic words. We manually corrected these
clusters by removing unrelated Arabic words. The
average cluster length is 2.8 words; the smallest
cluster has two variants, and the largest has nine,
with a total of 1 718 words.

4.2 Transliterated Data
Our second collection reflects one pattern in which
OOV words are introduced by ordinary users

52

transliterating English words into Arabic. We ex-
tracted a list of 1 134 foreign words from the
TREC 2002 Arabic collection, and passed these to
the Google translation engine to obtain their En-
glish equivalents. We manually inspected these and
corrected any incorrect translations. We also re-
moved the 57 words mapped by Google to multi-
ple English words. These are usually a word and
a possible conjunction or preposition. For example
the word h. Q�.Ò�»ñË 〈Luxembourg〉 is transliterated

to 〈For June〉. We passed the English list to seven
Arabic native speakers and asked them to translit-
erate each word in the list back into Arabic, even
if the word has an Arabic equivalent. Four of the
translators are PhD candidates in the sciences or en-
gineering, and have finished an advanced-level En-
glish course; the other three are currently enrolled
in an intermediate-level English course. Participants
were asked to type in their transliteration next to
each English word. We noticed that some translit-
erators had only basic computing skills, and made
many spelling mistakes. For example, instead of
typing the character @, we found that transliterators
sometimes mistakenly type �Ë.

We clustered transliterations by the original En-
glish words, removed duplicates from each cluster,
and also removed 103 clusters where all transliter-
ators agreed on the same version of transliteration.
This left 3 582 words in 207 clusters of size 2, 252
clusters of size 3, 192 clusters of size 4, 149 clus-
ters of size 5, 93 clusters of size 6, and 47 clusters
of size 7. Finally, we incorporated these transliter-
ations into a list with 35 949 unique Arabic native
words prepared by Nwesri et al. (2006).

5 Algorithms

We propose three algorithms to identify foreign
words in Arabic text. The first is normalisation,
which aims to handle different types of typograph-
ical errors described in Section 2.1. The second
and third techniques are extensions to the English
Soundex and Editex techniques.

5.1 Normalisation
To deal with different typographical styles in writ-
ing foreign words, we first remove vowels from ev-
ery foreign term. We keep vowels unchanged if they

Table 2: Normalisation of equivalent consonants to
a single form

Original Normalised
� �� 	P � �
�H
h.

	̈ ¼ �� 	̈
�H �H

are the first or the last characters of the word, since
they are generally pronounced in Arabic. The long
vowel letters are sometimes used as consonants, and
these may be followed immediately by another long
vowel. For example, the vowel letter ø
 /i/ may be

followed by the long vowel ð /u:/ to form ñK
 /ju:/.
For such cases, we keep the first vowel and remove
the second. Two vowels can also be used together
as diphthongs, as in ð@ /aw/ and ø
 @ /aj/. We re-
tain vowels that are followed by another vowel or
preceded by a vowel that forms a diphthong. We
also conflate similar consonants based on statisti-
cal analysis of letter mappings between English and
Arabic (Abduljaleel and Larkey, 2003; Stalls and
Knight, 1998), and confirming through a web search
that these consonants are used interchangeably in
web documents.3 Table 2 shows all consonants we
consider to be equivalent.

Our process may lead to ambiguity where a simi-
lar native word exists; for instance, the spelling vari-
ants ÐA¾J
K. and ÕºJ
K. for 〈Beckham〉 are normalised

to ÕºK. , which is identical to the Arabic word mean-
ing either 〈how much〉 or 〈in you〉. Adding a cus-
tom prefix to the normalised form is one way to ad-
dress this issue; we add the letter “ �è” to the begin-
ning of each normalised word. For example, variants
for Beckham are thus normalised to ÕºK.

�è. Since the

letter �è never occurs at the beginning of any Arabic
word, no ambiguity remains.

5.2 Phonetic Approach
Our phonetic algorithm aims to replace similar
sounds with a single code. As noted earlier, we do
not envisage that this algorithm has use for native
Arabic words, as these are usually distinct, and pro-

3All phonetic groups are created based on transliteration
mapping between English and Arabic letters

53

Table 3: Mappings for our phonetic approach
Characters Code
@ ð ø
 0
�è �H �H 	 	� 1
� �� 	P � 2
X 	X 3
h.

	̈ ¼ �� 4

¨ è h 5
	à 6
Ð 7	¬ 8
È 9
H. A
P B
p C

nunciation is rarely ambiguous. Table 3 shows Ara-
bic letters and their corresponding codes. To nor-
malise foreign words, we replace each letter but the
first by its phonetic code, and drop any vowels. We
have found — as have (Aqeel et al., 2006) and (Zo-
bel and Dart, 1996) — that it is better to encode all
letters, rather than only the first four characters; for
brevity, we show only the results for coding all char-
acters, under the label “Soutex”.

5.3 Arabic Editex
Based on groups identified in Table 4, we have mod-
ified the Editex algorithm of Zobel and Dart (1996).
It works as in English except that we drop the func-
tionality used to consider the two silent characters
in the English version as silent characters in Arabic
are rare and usually occur at the beginning or at the
end of the word. Specifically, we replace d(si, tj)
by r(si, tj). We call the Arabic version of this algo-
rithm “AEditex”.

6 Evaluation

To evaluate the effectiveness of our approaches, we
consider each word in the list to be a query, and
pose this to the entire collection. The query result
should be other words in the same cluster. We con-
sider every word to be a query to avoid any bias to-
wards string similarity techniques as phonetic based

Table 4: AEditex letter groups
Characters Group
@ ð ø
 0
�H �H 1
�H 2
	 	� 3
� �� 4
� � 5
	P � 6
X 	X 7
h.

	̈ ¼ �� 8

techniques fail to capture misspelled words whereas
string similarity techniques do.

The results returned by the different algorithms
described in the previous section are not directly
comparable, as some algorithms return ranked
results and others return unranked results. Ranked
results could also form a weak ordering in which
multiple results belong to the same rank (Ragha-
van et al., 1989). Standard information retrieval
measures are not appropriate for evaluating such
techniques. Zobel and Dart (1996) address this by
using standard precision and recall, but randomly
permute results of equal ranks and calculate the
average of recall and precision over ten different
permutations. Raghavan et al (1989) propose
a different measure called Probability of Rele-
vance (PRR). This measure assumes that the user
randomly selects a document from the topmost
ranks. At any point the precision is defined as the
probability that the random examined document is
relevant. Recall is the number of relevant documents
that the user has seen so far. If we require NR
relevant documents — in our case, words — from a
ranked result, we start by looking at the top answer
and continue until we get to the NRth relevant
word at rank k. The PRR measure is calculated
as (Raghavan et al., 1989):

PRR =
NR

NR + j + (i.s)/(r + 1)

Where j is the number of non-relevant words found
in ranks before k, s is the number of remaining rel-
evant words still to be retrieved in rank k, i is the
number of non-relevant words in rank k, and r is the

54

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

ci
si

on

Recall

NORM
Soutex

LCS
AEditex

Edit Distance
gramCount

Dice
Asoundex-Final

gramDist
Exact match

Figure 1: Results on the crawled data

number of relevant words in rank k. Interpolation
is used to smooth results and calculate an average
across all queries.

6.1 Results and Discussion
Results from running algorithms using queries in
both datasets against their respective collection are
shown in Figure 1 and Figure 2. The average preci-
sion (average PRR in our case) for each algorithm is
shown in Table 5. The algorithms produce signifi-
cantly better results than exact match (p<0.0001).

On the first data set, NORM performs the best.
LCS is the second best algorithm, followed by AEdi-
tex and Edit Distance. Soutex shows better perfor-
mance than all other algorithms except NORM af-
ter 50% recall, but performs poorly at lower recall
levels. Both the gramCount and Dice algorithms
have similar performance with average precision at
around 46%. Asoundex-final and gramDist show
poorer performance than other algorithms, with av-
erage precision at 38%.

Asoundex-final performs poorly; As mentioned
earlier, the absence of diacritics in typical Arabic
text makes it hard to generalise this technique to re-
trieve names.

Results from the transliterated dataset generally
favour the string similarity algorithms. LCS outper-
forms all other techniques with an average precision
of 78%, followed by Edit Distance at 70%, and then
AEditex at 62%. Soutex performs better than both

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

ci
si

on

Recall

LCS
Edit Distance

AEditex
Soutex

gramCount
Dice

NORM
Asoundex-Final

gramDist
Exact match

Figure 2: Results on the transliterated data

Table 5: Average precision results
Data set

Algorithm First Second
NORM 0.660 0.536
LCS 0.619 0.782
Edit Distance 0.572 0.700
AEditex 0.576 0.624
Soutex 0.530 0.590
gramCount 0.451 0.595
Dice 0.457 0.568
Asoundex-final 0.368 0.446
gramDist 0.376 0.401
Exact Match 0.300 0.261

the gramCount and Dice algorithms. It performs
better than AEditex at 50% and higher recall lev-
els. NORM performs better than the Asoundex-final
and gramDist algorithms. The gramDist algorithm
is again the worst. All algorithms showed signifi-
cant improvements above the baseline (p<0.0001).

Although NORM and Soutex algorithms do not
produce the best performance, they have the advan-
tage of being run at index time to encode foreign
words which can be later used in retrieval. The al-
ternative algorithms such as Edit Distance are more
computationally expensive and can only be used at
query time.

55

7 Conclusion

Foreign words transliterated into Arabic can appear
with multiple spellings, hindering effective recall in
a text-retrieval system. In this work, we have eval-
uated nine techniques to find such variants. Edit
Distance, Gram Count, Dice, Asoundex-final, Gram
Distance, and Longest Common Subsequence are
language independent techniques used to find vari-
ant names in other languages; Soutex and AEdi-
tex are extended techniques to accommodate Ara-
bic Words; and NORM is a novel technique to find
OOV variants in Arabic. We show that these tech-
niques are effective for finding foreign word vari-
ants. The phonetic approaches generally perform
better on a collection of newswire text than on a
manually transliterated word list, although our Sou-
tex algorithm performs well on both datasets. LCS
was the best of the string-similarity techniques, es-
pecially with the manually transliterated dataset, and
is the most robust choice overall.

The way the transliterated dataset was created af-
fected the results of phonetic approaches; the dataset
has many spelling mistakes, with words interpreted
differently and often wrongly by users not fluent in
English. Often users only hear these words in the
news, and are not even familiar with the spelling of
the word in the original language. To construct a
more realistic data set, we could ask Arabic writers
to transliterate words from a recording; this would
allow pronunciation to be accurately captured by
users not fluent in English.

Information retrieval systems must cater for com-
mon spelling variants; our results help understand
how to identify these in Arabic text.

References
Ahmed Abdelali, Jim Cowie, and Hamdy S. Soliman. 2004.

Arabic information retrieval perspectives. In Proceedings
of the 11th Conference on Natural Language Processing,
Journes d’Etude sur la Parole - Traitement Automatique des
Langues Naturelles (JEP-TALN), Fez, Morocco.

Nasreen Abduljaleel and Leah S. Larkey. 2003. Statistical
transliteration for English-Arabic cross-language informa-
tion retrieval. In Proceedings of the International Confer-
ence on Information and Knowledge Management, pages
139–146, New Orleans, LA, USA. ACM Press.

Jamal B. S. Al-Qinal. 2002. Morphophonemics of loanwords
in translation. Journal of King Saud University, 13:1–132.

Syed Uzair Aqeel, Steve Beitzel, Eric Jensen, David Grossman,
and Ophir Frieder. 2006. On the development of name
search techniques for Arabic. Journal of the American Soci-
ety for Information Science and Technology, 57(6):728–739.

Christine L. Borgman and Susan L. Siegfried. 1992. Getty’s
synoname and its cousins: A survey of applications of per-
sonal name-matching algorithms. Journal of the American
Society for Information Science, 43(7):459–476.

Lee R. Dice. 1945. Measures of the amount of ecologic associ-
ation between species. Ecology, 26(3):297–302, July.

T. Gadd. 1990. Phonix: the algorithm. Program, 24(4):363–
369.

Patrick A. V. Hall and Geoff R. Dowling. 1980. Approximate
string matching. ACM Computing Surveys, 12(4):381–402.

Dan Melamed. 1995. Automatic evaluation and uniform filter
cascades for inducing N-best translation lexicons. In David
Yarovsky and Kenneth Church, editors, Proceedings of the
Third Workshop on Very Large Corpora, pages 184–198,
Somerset, New Jersey. Association for Computational Lin-
guistics.

Abdusalam F Ahmad Nwesri, S. M. M. Tahaghoghi, and Falk
Scholer. 2006. Capturing out-of-vocabulary words in Ara-
bic text. In Proceedings of the 2006 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP
2006), pages 258–266, Sydney, Australia, 22–23 July. Asso-
ciation for Computational Linguistics.

Ulrich Pfeifer, Thomas Poersch, and Norbert Fuhr. 1996. Re-
trieval effectiveness of proper name search methods. Inf.
Process. Manage., 32(6):667–679.

Vijay Raghavan, Peter Bollmann, and Gwang S. Jung. 1989.
A critical investigation of recall and precision as measures
of retrieval system performance. ACM Trans. Inf. Syst.,
7(3):205–229.

Bonnie Glover Stalls and Kevin Knight. 1998. Translating
names and technical terms in Arabic text. In COLING/ACL
Workshop on Computational Approaches to Semitic Lan-
guages, pages 34–41, Montreal, Quebc, Canada.

Graham A Stephen. 1992. String search. Technical report,
School of Electronic Engineering Science, University Col-
lege of North Wales.

Esko Ukkonen. 1992. Approximate string-matching with
q-grams and maximal matches. Theor. Comput. Sci.,
92(1):191–211.

Robert A. Wagner and Michael J. Fischer. 1974. The string-to-
string correction problem. J. ACM, 21(1):168–173.

Justin Zobel and Philip Dart. 1995. Finding approximate
matches in large lexicons. Software - Practice and Expe-
rience, 25(3):331–345.

Justin Zobel and Philip Dart. 1996. Phonetic string matching:
lessons from information retrieval. In The 19th annual in-
ternational ACM SIGIR conference on Research and devel-
opment in information retrieval, pages 166–172, New York,
NY, USA. ACM Press.

56

