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Abstract

We describe the WHY2-ATLAS intelligent
tutoring system for qualitative physics that
interacts with students via natural lan-
guage dialogue. We focus on the is-
sue of analyzing and responding to multi-
sentential explanations. We explore an ap-
proach that combines a statistical classi-
fier, multiple semantic parsers and a for-
mal reasoner for achieving a deeper under-
standing of these explanations in order to
provide appropriate feedback on them.

1 Introduction

Most natural language tutorial applications have fo-
cused on coaching either problem solving or proce-
dural knowledge (e.g. Steve (Johnson and Rickel,
1997), Circsim-tutor (Evens and Michael, 2006),
Atlas (Rosé et al., 2001), BEETLE (Zinn et al.,
2002), SCoT (Peters et al., 2004), inter alia). When
coaching problem solving, simple short answer anal-
ysis techniques are frequently sufficient because the
primary goal is to lead a trainee step-by-step through
problem solving. There is a narrow range of possi-
ble responses and the context of the previous dia-
logue and questions invite short answers. But when
the instructional objectives shift and a tutorial sys-
tem attempts to explore a student’s chain of reason-
ing behind an answer or decision, deeper analysis
techniques can begin to pay off. Having the student
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construct more on his own is important for learning
perhaps in part because it reveals what the student
does and does not understand (Chi et al., 2001).

When the student is invited to provide a longer
chain of reasoning, the explanations become multi-
sentential. Compare the short explanation in Fig-
ure 1 to the longer ones in Figures 2 and 3. The ex-
planation in Figure 2 is part of an actual initial stu-
dent response and Figure 3 shows the explanation
from the same student after a follow-up dialogue
with the WHY2-ATLAS tutoring system.

WHY2-ATLAS: Fine. Using this principle, what is the value
of the horizontal component of the acceleration of the egg?
Please explain your reasoning.
Student: zero because there is no horizontal force acting on
the egg [3 propositions expressed]

Figure 1: Eliciting a one sentence explanation from
a student.

WHY2-ATLAS: Suppose a man is in an elevator that is
falling without anything touching it (ignore the air, too). He
holds his keys motionless right in front of his face and then
just releases his grip on them. What will happen to them?
Explain.

Student: [omitted 15 correct propositions]... Yet the gravita-
tional pull on the man and the elevator is greater because they
are of a greater weight and therefore they will fall faster then
the keys. I believe that the keys will float up to the cieling as
the elevator continues falling.

Figure 2: An initial elicitation of a multi-sentence
explanation from a student.

The only previous tutoring system that has at-
tempted to address longer explanations is AUTOTU-
TOR (Graesser et al., 2004). It uses a latent semantic
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[omitted 16 correct propositions]... Since <Net force
= mass * acceleration> and <F= mass*g> therefore
<mass*acceleration= mass*g> and acceleration and grav-
itational force end up being equal. So mass does not ef-
fect anything in this problem and the acceleration of both the
keys and the man are the same. [omitted 46 correct proposi-
tions]...we can say that the keys will remain right in front of
the man’s face.

Figure 3: A subsequent response from the same stu-
dent in Figure 2 after some interaction with WHY2-
ATLAS.

analysis (LSA) approach where the structure of sen-
tences is not considered. Thus the degree to which
details of the explanation are understood is limited.

As can be seen from the examples, a student’s ex-
planation about a formal domain such as qualitative
physics may involve a number of phenomena: al-
gebraic formulas, NL renderings of formulas, vari-
ous degrees of formality, and conveying the logical
structure of an argument (Makatchev et al., 2005).

Tutoring goals involve eliciting correct statements
of the appropriate degree of formality and their jus-
tifications to address possible gaps and errors in the
explanation. To achieve these goals the NL under-
standing is required to answer the following ques-
tions:

• Does the student explanation contain errors? If
yes, what are the likely buggy assumptions that
have led the student to these errors?

• What required statements have not been cov-
ered by the student? Does the explanation con-
tain statements that are logically close to the
required statements?

These requirements imply that a logical structure
needs to be imposed on the space of possible do-
main statements. Considering such a structure to
be a model of the student’s reasoning about the do-
main, the two requirements correspond to a solution
of a model-based diagnosis problem (Forbus and de
Kleer, 1993).

How does one build such a model? A desire to
make the process scalable and feasible necessitates
an automated procedure. The difficulty is that this
automated reasoner has to deal with the NL phe-
nomena that are relevant for our application. In turn,
this means that the knowledge representation (KR)

would have to be able to express these phenomena
(e.g. NL renderings of formulas, various degrees of
formality). The reasoner has to account for common
reasoning fallacies, have flexible consistency con-
straints and perform within the tight requirements of
a real-time dialogue application.

In this paper, we present a hybrid of symbolic
and statistical approaches that attempts to robustly
provide a model-based diagnosis of a student’s ex-
planation. In the next section, we provide a brief
sketch of the KR used in WHY2-ATLAS. Section 3
describes our hybrid approach for analyzing student
explanations while section 4 covers our most recent
evaluations of the system and its explanation analy-
sis components. Section 5 presents our conclusions
along with future directions.

2 Knowledge representation

We selected an order-sorted first-order predicate
logic (FOPL) as a base KR for our domain since
it is expressive enough to reflect the hierarchy of
concepts from the qualitative mechanics ontology
(Ploetzner and VanLehn, 1997) and has a straight-
forward proof theory (Walther, 1987). Follow-
ing the representation used in the abductive rea-
soner Tacitus-lite (Thomason et al., 1996), our KR
is function-free, does not have quantifiers, Skolem
constants or explicit negation. Instead all variables
in facts or goals are assumed to be existentially
quantified, and all variables in rules are either uni-
versally quantified (if they appear in premises) or ex-
istentially quantified (if they appear in conclusions
only).

Although our KR has no explicit negation, some
types of negative statements are represented by us-
ing (a) complimentary sorts, for example constant

and nonconstant; (b) the value nonequal as a filler
of the respective argument of comparison predicates.

Instead of parsing arbitrary algebraic expressions,
an equation identifier module attempts shallow pars-
ing of equation candidates and maps them into a fi-
nite set of anticipated equation labels (Makatchev et
al., 2005).

NL understanding needs to distinguish formal
versus informal physics expressions so that the tu-
toring system can coach on proper use of terminol-
ogy. Many qualitative mechanics phenomena may
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be described informally, for example “speed up” in-
stead of “accelerate” and “push” instead of “apply
a force.” The relevant informal expressions fall into
the following categories:

• relative position: “keys are behind (in front of,
above, under, close, far from, etc.) man”

• motion: “move slower,” “slow down,” “moves
along a straight line”

• dependency: “horizontal speed will not depend
on the force”

• direction: “the force is downward”
• interaction: “the man pushes the keys,” “the

gravity pulls the keys”

Each of these categories (except for the last one)
has a dedicated representation. While represent-
ing push and pull expressions via a dedicated predi-
cate seems straightforward, we are still assessing the
utility of distinguishing “man pushes the keys” and
“man applies a force on the keys” for our tutoring
application and currently represent both expressions
as a nonzero force applied by the man to the keys.

One of the tutoring objectives of WHY2-ATLAS

is to encourage students to provide argumentative
support for their conclusions. This requires recog-
nizing and representing the justification-conclusion
clauses in student explanations. Recognizing such
clauses is a challenging NLP problem due to the is-
sue of quantifier and causality scoping. It is also dif-
ficult to achieve a compromise between two compet-
ing requirements for a suitable representation. First,
the KR should be flexible enough to account for a
variable number of justifications. Second, reasoning
with the KR should be computationally feasible. We
leave representing the logical structure of explana-
tions for future work.

3 Analyzing Student Explanations

When analyzing a student explanation, first an equa-
tion identifier tags any physics equations in the stu-
dent’s response and then the explanation is classified
to complete the assessment. Explanation classifica-
tion is done by using either (a) a statistical classi-
fier that maps the explanation directly into a set of
known facts, principles and misconceptions, or (b)
two competing semantic parsers that each generate
an FOPL representation that is then matched against

known facts, principles or misconceptions, as well
as against pre-computed correct and buggy chains
of reasoning. We present the approaches at a high-
level in order to focus on how the approaches work
when combined and our evaluation results.

3.1 Statistical classifier

RAINBOW is a tool for developing bag of words
(BOW) text classifiers (McCallum and Nigam,
1998). The classes of interest must first be identified
and then a text corpus annotated for example sen-
tences for each class. From this training data a bag
of words representation is derived for each class and
a number of algorithms can be tried for measuring
similarity of a new input segment’s BOW represen-
tation to each class.

For WHY2-ATLAS, the classes are a subset of
nodes in the correct and buggy chains of reason-
ing. Limiting the number of classes allows us to
alleviate the problem of sparseness of training data,
but the side-effect is that there are many misclassi-
fications of sentences due to overlap in the classes;
that is, words that discriminate between classes are
shared by many other classes (Pappuswamy et al.,
2005). We alleviate this problem some by aggre-
gating classes and building three tiers of BOW text
classifiers that use a kNN measure. By doing so, we
obtain a 13% improvement in classification accuracy
over a single classifier approach (Pappuswamy et al.,
2005). The upper two tiers of classification describe
the topic of discussion and the lower tier describes
the specific principle or misconception related to the
topic and subtopic. The first tier classifier identifies
which second tier classifier to use and so on. The
third tier then identifies which node (if any) in the
chain of reasoning a sentence expresses.

But because the number of classes is limited,
BOW has problems dealing with many of the NL
phenomena we described earlier. For example, al-
though it can deal with some informal language use
(i.e. ‘push the container’ maps to ‘apply force on
the container’), it cannot provide accurate syntactic-
semantic mappings between informal and formal
language on the fly. This is because the informal
language use is so varied that it is difficult to cap-
ture representative training data in sufficient quanti-
ties. Hence, a large portion of student statements ei-
ther cannot be classified with high confidence or are
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erroneously classified. We use a post-classification
heuristic to try to filter out the latter cases. The filter-
ing heuristic depends on the system’s representation
language and not on the classification technique.
Given a classification of which node in the chain
of reasoning the sentence represents, the heuris-
tic estimates whether the node’s FOPL representa-
tion either over- or under-represents the sentence by
matching the root forms of the words in the natural
language sentence to the constants in the system’s
representation language.

For those statements BOW cannot classify or that
the heuristic filters out, we attempt classification us-
ing an FOPL representation derived from semantic
parsing, as described in the next two subsections.

3.2 Converting NL to FOPL

Two competing methods of sentence analysis each
generate a FOPL candidate. The two candidates
are then passed to a heuristic selection process that
chooses the best one (Jordan et al., 2004). The ra-
tionale for using competing approaches is that the
techniques available vary considerably in accuracy,
processing time and whether they tend to be brittle
and produce no analysis vs. a partial one. There
is also a trade-off between these performance mea-
sures and the amount of domain specific setup re-
quired for each technique.

The first method, CARMEL, provides combined
syntactic and semantic analysis using the LCFlex
syntactic parser along with semantic constructor
functions (Rosé, 2000). Given a specification of
the desired representation language, it then maps the
analysis to this language. Then discourse level pro-
cessing attempts to resolve nominal and temporal
anaphora and ellipsis to produce the candidate FOPL
representation for a sentence (Jordan and VanLehn,
2002).

The second method, RAPPEL, uses MINIPAR (Lin
and Pantel, 2001) to parse the sentence. It then ex-
tracts syntactic dependency features from the parse
to use in mapping the sentence to its FOPL repre-
sentation (Jordan et al., 2004). Each predicate in
the KR language is assigned a predicate template
and a separate classifier is trained for each predicate
template. For example, there is a classifier that spe-
cializes in predicate instantiations (atoms) involving
the velocity predicate and another for instantiations

of the acceleration predicate. Classes for each tem-
plate represent combinations of constants that can
fill a predicate template’s slots to cover all possible
instantiations of that predicate. Each predicate tem-
plate classifier returns either a nil which indicates
that there is no instantiation involving that predicate
or a class label that corresponds to an instantiation
of that predicate. The candidate FOPL representa-
tion for a statement is the union of the output of all
the predicate template classifiers.

Finally, either the CARMEL or RAPPEL candidate
FOPL output is selected using the same heuristic as
for the BOW filtering. The surviving FOPL repre-
sentation is then assessed for correctness and com-
pleteness, as described next.

3.3 Analyzing correctness and completeness

As the final step in analyzing a student’s explana-
tion, an assessment of correctness and complete-
ness is performed by matching the FOPL represen-
tations of the student’s response to nodes of an aug-
mented assumption-based truth maintenance system
(ATMS) (Makatchev and VanLehn, 2005).

An ATMS for each physics problem is generated
off-line. The ATMS compactly represents the de-
ductive closure of a problem’s givens with respect
to a set of both good and buggy physics rules. That
is, each node in the ATMS corresponds to a propo-
sition that follows from a problem statement. Each
anticipated student misconception is treated as an as-
sumption (in the ATMS sense), and all conclusions
that follow from it are tagged with a label that in-
cludes it as well as any other assumptions needed
to derive that conclusion. This labeling allows the
ATMS to represent many interwoven deductive clo-
sures, each depending on different misconceptions,
without inconsistency. The labels allow recovery of
how a conclusion was reached. Thus a match with
a node containing a buggy assumption indicates the
student has a common error or misconception and
which error or misconception it is.

The completeness of an explanation is relative to
a two-column proof generated by a domain expert.
A human creates the proof that is used for check-
ing completeness since it is probably less work for
a person to write an acceptable proof than to find
one in the ATMS. Part of the proof for the prob-
lem in Figure 2 is shown in Figure 4 where facts

20



Step Fact Justification
1 The only force on the keys and the man is the force of

gravity
Forces are either contact forces or the gravitational force

... ... ...
12 The keys and the man have the same displacements at all

times
<Average velocity = displacement / elapsed time>, so if av-
erage velocity and time are the same, so is displacement.

13 The keys and the man have the same initial vertical po-
sition

given

14 The keys and the man have the same vertical position at
all times

<Displacement = difference in position>, so if the initial
positions of two objects are the same and their displacements
are the same, then so is their final position

15 The keys stay in front of the man’s face at all times

Figure 4: Part of the proof used in WHY2-ATLAS for the Elevator problem in Figure 2.

appear in the left column and justifications that are
physics principles appear in the right column. Justi-
fications are further categorized as vector equations
(e.g. <Average velocity = displacement / elapsed
time>, in step (12) of the proof), or qualitative rules
(e.g. “so if average velocity and time are the same,
so is displacement” in step (12)). A two-column
proof is represented in the system as a directed graph
in which nodes are facts, vector equations, or qual-
itative rules that have been translated to the FOPL
representation language off-line. The edges of the
graph represent the inference relations between the
premise and conclusion of modus ponens.

Matches of an FOPL input against the ATMS and
the two-column proof (we collectively referred to
these earlier as the correct and buggy chains of rea-
soning) do not have to be exact. In addition, fur-
ther flexibility in the matching process is provided
by examining a neighborhood of radius N (in terms
of graph distance) from matched nodes in the ATMS
to determine whether it contains any of the nodes of
the two-column proof. This provides an estimate of
the proximity of a student’s utterance to the facts that
are of interest.

Although matching against the ATMS deductive
closure has been implemented, the current version of
the system does not yet fully utilize this capability.
Instead, the correctness and completeness of expla-
nations is evaluated by flexibly matching the FOPL
input against targeted relevant facts, principles and
misconceptions in the chains of reasoning, using a
radius of 0. This kind of matching is referred to as
direct matching in Section 4.2.

4 Evaluations

WHY2-ATLAS, as we’ve just described it, has been
fully implemented and was evaluated in the context
of testing the hypothesis that even when content is
equivalent, students who engage in more interac-
tive forms of instruction learn more. To test this
hypothesis we compared students who received hu-
man tutoring with students who read a short text.
WHY2-ATLAS and WHY2-AUTOTUTOR provided a
third type of condition that served as an interactive
form of instruction where the content is better con-
trolled than with human tutoring in that only some
subset of the content covered in the text condition
can be presented. In all conditions the students had
to solve four problems that require multi-sentential
explanations, one of which is shown in Figure 2.

In earlier evaluations, we found that overall stu-
dents learn and learn equally well in all three types
of conditions when the content is appropriate to the
level of the student (VanLehn et al., 2005), i.e. the
learning gains for human tutoring and the content
controlled text were the same. For the latest eval-
uation of WHY2-ATLAS, which excluded a human
tutoring condition, the learning gains on multiple-
choice and essay post-tests were the same as for
the other conditions. However, on fill-in-the-blank
post-tests, the WHY2-ATLAS students scored higher
than the text students (p=0.010; F(1,74)=6.33), and
this advantage persisted when the scores were ad-
justed by factoring out pre-test scores in an AN-
COVA (p=0.018; F(1,72)=5.83). Although this dif-
ference was in the expected direction, it was not ac-
companied by similar differences for the other two
post-tests.

These learning measures show that, relative to the
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text, the two systems’ overall performance at se-
lecting content is good. A system could perform
worse than the text condition if it too frequently
misinterprets multi-sentential answers and skips ma-
terial covered in the text that a student may need.
But since the dialogue strategies in the two systems
are different and selected relative to the understand-
ing techniques used, we next need to do a detailed
corpus analysis of the language data collected to
track successes and failures of understanding and di-
alogue strategy selection relative to knowledge com-
ponents in the post-test. Next we will describe some
component-level evaluations that focus on the parts
of the system we just described.

4.1 Evaluating the Benefit of Combining Single
Sentence Approaches

This first component-level evaluation focuses on the
benefits of heuristically choosing between the re-
sults of BOW, CARMEL and RAPPEL. This partic-
ular evaluation used a prior version of the system
which used BOW without tiers and hand-crafted
pattern-matching rules instead of the ATMS ap-
proach to assessment. But this evaluation still re-
flects the potential benefits of combining single sen-
tence approaches.

We used a test suite of 35 held-out multi-sentence
student explanations (235 sentences total) that are
annotated for the elicitation topics that are to be dis-
cussed with the student. We computed recall (R),
precision (P) and false alarm rate (FAR) against the
full corpus instead of averaging these measures for
each explanation. Since F-measure does not allow
error skewing as can be done with ROC areas (Flach,
2003) we instead look for cases of high recall with a
low false alarm rate.

The top part of Table 1 compares the baseline of
tutoring all possible topics and the individual perfor-
mances of the three approaches when each is used
in isolation from the others. We see that only the
statistical approach lowers the false alarm rate but
does so by sacrificing recall. The rest are not signif-
icantly different from tutoring all topics. The poor
performances of CARMEL and RAPPEL is not totally
unexpected because there are three potential failure
points for these classification approaches; the syn-
tactic analysis, the semantic mapping and the hand-
crafted pattern matching rules for assessing correct-

ness and completeness. While the syntactic anal-
ysis results for both approaches are good, the se-
mantic mapping and assessment of correctness and
completeness are still big challenges. The results of
BOW, while better than that of the other two ap-
proaches, are clearly not good enough.

Table 1: Performance of NL to FOPL for actions
taken in WHY2-ATLAS system.

Approach R P FAR

tutor all topics 1.0 .61 1.0

CARMEL 1.0 .61 1.0
BOW without tiers .60 .93 .07
RAPPEL .94 .59 1.0

satisficing heuristic .67 .80 .26
highest ranked heuristic .73 .76 .36

The bottom part of Table 1, shows the results of
combining the approaches and choosing one output
heuristically. The satisficing1 version of the heuris-
tic checks each output in the order 1) CARMEL 2)
BOW 3) RAPPEL, and stops with the first repre-
sentation that is acceptable according to the filtering
heuristic. This heuristic selection process modestly
improves recall but at the sacrifice of a higher false
alarm rate. The highest ranking heuristic scores each
output and selects the best one. It provides the most
balanced results of the combined or individual ap-
proaches. It provides the largest increase in recall
and the false alarm rate is still modest compared to
the baseline of tutoring all possible topics. It is clear,
that a combined approach has a positive impact.

4.2 Completeness and Correctness Evaluation

The component-level evaluation for completeness
and correctness was completed after the student
learning evaluation. It focuses on the performance
of just the direct matching procedure. Figure 5
shows the results of classifying 62 student utterances
for one physics problem with respect to 46 stored
statement representations using only direct match-
ing. To generate these results, the data is manually
divided into 7 groups based on the quality of the NL

1According to Newell & Simon (1972), satisficing is the
process by which an individual sets an acceptable level as the
final criterion and simply takes the first acceptable move instead
of seeking an optimal one.
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Figure 5: Average recall and precision of utterance
classification. The size of a group of entries is shown
relative to the size of the overall data set. Average
processing time is 0.011 seconds per entry on a 1.8
GHz Pentium 4 machine with 2Gb of RAM.

to FOPL conversion, such that group 7 consists only
of perfectly formalized entries, and for 1 ≤ n ≤ 6
group n includes entries of group n+1 and addition-
ally entries of somewhat lesser representation qual-
ity, so that group 1 includes all the entries of the
data set. The flexibility of the direct matching al-
gorithm even allows classification of utterances that
have mediocre representations, resulting in 70% av-
erage recall and 82.9% average precision for 56.5%
of all entries (group 4). However, large numbers
of inadequately represented utterances (38.7% of all
entries did not make it into group 3 of the data set)
result in 53.2% average recall and 59.7% average
precision for the whole data set (group 1). These
results are still significantly better compared to the
two baseline classifiers the best of which peaks at
22.2% average recall and precision. The first base-
line classifier always assigns the single label that is
dominant in the training set (average number of la-
bels per entry of the training set is 1.36). The sec-
ond baseline classifier independently and randomly
picks labels according to their distributions in the
training set. The most frequent label in the training
set corresponds to the answer to the problem. Since
in the test set the answer always appears as a sepa-
rate utterance (sentence), recall and precision rates
for the first baseline classifier are the same.

Although the current evaluation did not involve
matching against the ATMS, we did evaluate the
time required for such a match in order to make a
rough comparison with our earlier approach. Match-

ing a 12 atom input representation against a 128
node ATMS that covers 55% of relevant problem
facts takes around 30 seconds, which is a consid-
erable improvement over the 170 seconds required
for the on-the-fly analysis performed by the Tacitus-
lite+ abductive reasoner (Makatchev et al., 2004)—
the technique used in the previous version of WHY2-
ATLAS. The matching is done by a version of
a largest common subgraph-based graph-matching
algorithm (due to the need to account for cross-
referencing atoms via shared variables) proposed
in (Shearer et al., 2001), that has a time complex-
ity O(2nn3), where n is the size of an input graph.
The efficiency can be further improved by using an
approximation of the largest common subgraph in
order to evaluate the match.

5 Conclusion

In this paper, we discussed an application that in-
tegrates a hybrid of semantic parsers and a sym-
bolic reasoner with a statistical classifier to analyze
student explanations. We attempted to address the
problem that the leap made by statistical classifiers
from NL to a feasible classification is too big since
too many details of what was actually said by the
student are lost. On the other hand, we showed
that the hybrid semantic parsers allow for a slightly
smaller leap by mapping to a symbolic representa-
tion that is sufficient for domain reasoning. Using
deductive closure of problem givens and buggy as-
sumptions, the correctness and completeness ana-
lyzer allows us to reason about the correctness of
student statements that cannot be confidently clas-
sified statistically. Although formal and informal
language expressions have unique underlying se-
mantics, we attempt to paraphrase informal NL into
formal NL by using the forward-chaining rules in-
volved in creating the deductive closure for a prob-
lem from its givens. Our current symbolic represen-
tation is still too coarse to distinguish some fine nu-
ances allowed by the domain of mechanics. We con-
jecture that extending our knowledge representation
with more language-specific predicates would allow
us to represent more fine-grained differences in stu-
dent statements while still allowing feasible reason-
ing with the ATMS.
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Carolyn Rosé, Pamela Jordan, Michael Ringenberg,
Stephanie Siler, Kurt VanLehn, and Anders Weinstein.
2001. Interactive conceptual tutoring in atlas-andes.
In Proceedings of AI in Education 2001 Conference.

Carolyn P. Rosé. 2000. A framework for robust seman-
tic interpretation. In Proceedings of the First Meeting
of the North American Chapter of the Association for
Computational Linguistics, pages 311–318.

Kim Shearer, Horst Bunke, and Svetha Venkatesh. 2001.
Video indexing and similarity retrieval by largest com-
mon subgraph detection using decision trees. Pattern
Recognition, 34(5):1075–1091.

Richmond H. Thomason, Jerry Hobbs, and Johanna D.
Moore. 1996. Communicative goals. In K. Jokinen,
M. Maybury, M. Zock, and I. Zukerman, editors, Pro-
ceedings of the ECAI 96 Workshop Gaps and Bridges:
New Directions in Planning and Natural Language
Generation.

K. VanLehn, A. Graesser, G. T. Jackson, P. Jordan, A. Ol-
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