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Abstract

We present a standoff annotation frame-
work for the integration of NLP compo-
nents, currently implemented in the con-
text of the DELPH-IN tools1. This pro-
vides a flexible standoff pointer scheme
suitable for various types of data, a lat-
tice encodes structural ambiguity, intra-
annotation relationships are encoded, and
annotations are decorated with structured
content. We provide an XML serialization
for intercomponent communication.

1 Background

An NLP system aims to map linguistic data to
a description at some suitable level of represen-
tation. To achieve this various component pro-
cesses must perform complex tasks. Increasingly
these individual processes are performed by dis-
tinct software components in cooperation. The
expressiveness of communication between such
components hence becomes an issue. For exam-
ple: we may wish to preserve a linkage from a
final semantic analysis to the raw data input; we
may wish to pass ambiguity to some later stage
where it is more appropriately resolved; we may
wish to represent the dependence of certain analy-
ses on other analyses; and we require sufficient ex-
pressiveness for the content of individual analyses
(henceforth ‘annotations’). This work addresses
these issues.

Annotations are often associated with a doc-
ument inline. This provides a convenient and
straightforward method of annotating many doc-
uments, but suffers from well-known drawbacks.
We adopt standoff annotation as an alternative.

1http://wiki.delph-in.net

Here annotations live in a separate standoff anno-
tation document, and are anchored in the raw data
via standoff pointers.

2 The DELPH-IN collaboration

DELPH-IN is a loose international collaboration
of researchers developing open-source software
components for language processing. These com-
ponents include deep parsers, deep grammars for
various natural languages, and tools for shallower
processing. The HOG system (Callmeier et al.,
2004) for the integration of shallow and deep lin-
guistic processors (using a pipeline making use of
XML plus XSLT transformations to pass data be-
tween processors) was developed during the Deep
Thought project, as was a standard for the inte-
gration of semantic analyses produced by diverse
components: RMRS (Copestake, 2003) allows un-
derspecification of semantic analyses in such a
way that the analysis produced by a shallow com-
ponent may be considered an underspecification of
a fuller semantic analysis produced by a deeper
component. Other work (Waldron et al., 2006) has
provided a representation of partial analyses at the
level of tokenization/morphology – using a mod-
ification of MAF (Clement and de la Clergerie,
2005). Current work within the SciBorg project2

is investigating more fine-grained integration of
shallow and deep processors.

3 Standoff Annotation Framework
(SAF)

Our standoff annotation framework borrows heav-
ily from the MAF proposal. The key components
of our framework are (i) grounding in primary lin-
guistic data via flexible standoff pointers, (ii) dec-

2http://www.sciborg.org.uk/
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<?xml version=’1.0’ encoding=’UTF8’?>
<!DOCTYPE saf SYSTEM ’saf.dtd’>
<saf addressing=’char’>
<olac:olac xmlns:olac=’http://www.language-archives.org/OLAC/1.0/’ xml

ns=’http://purl.org/dc/elements/1.1/’ xmlns:xsi=’http://www.w3.org/2001
/XMLSchema-instance’ xsi:schemaLocation=’http://www.language-archives.o
rg/OLAC/1.0/ http://www.language-archives.org/OLAC/1.0/olac.xsd’>
<creator>LKB x-preprocessor</creator>
<created>18:11:31 1/31/2006 (UTC)</created>
</olac:olac>
<fsm init=’v0’ final=’v9’>
<state id=’v0’/>...<state id=’v9’/>
<annot type=’token’ id=’t1’ from=’0’ to=’6’ value=’Gutten’ source=’

v0’ target=’v1’/>
...
<annot type=’token’ id=’t11’ from=’30’ to=’31’ value=’.’ source=’v8

’ target=’v9’/>
</fsm>

</saf>

Figure 1: SAF XML (containing token lattice)

Figure 2: Parse tree (LKB)

oration of individual annotations with structured
content, (iii) representation of structural ambigu-
ity via a lattice of annotations and (iv) a structure
of intra-annotation dependencies. In each case we
have generalized heavily in order to apply the SAF
framework to a wide domain. The basic unit of the
SAF framework is the annotation. An annotation
possesses properties as outlined below.

Each annotation describes a given span in the
raw linguistic data. This span is specified byfrom
andto standoff pointers. In order to cope with dif-
ferent possible data formats (e.g. audio files, XML

<saf document=’/home/bmw20/b110865
b.xml’ addressing=’xpoint’>
<annot type=’sentence’ id=’s93’ fr
om=’/1/3/54.3’ to=’/1/3/58.89’ val
ue=’The results of this study are
depicted in Table 2&lt;p/&gt;’/>
</saf>

Figure 3: A ’sentence’ annotation

text, pdf files) we make the pointer scheme a prop-
erty of each individual SAF object. So annotations
with respect to an audio file may use frame off-
sets, whilst for an XML text file we may use char-
acter (or more sophisticated xpoint-based) point-
ers. When processing XML text files, we have
found it easiest to work with a hybrid approach to
the standoff pointer scheme. Existing non-XML-
aware processing components can often be easily
adapted to produce (Unicode) character pointers;
for XML-aware components it is easier to work
with XML-aware pointing schemes – here we use
an extension of the xpoint scheme described in the
XPath specification3. A mapping between these
two sets of points provides interconversion suffi-
cient for our needs.

3For example:/1/3.2 specifies the second point in the third
element of the first element of the root node, and an extension
allows text nodes in non-elements to be referenced also.
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<fs type="ne-organisation">
<f name="OrgName">National Aerona

utics and Space Administration</f>
<f name="OrgType">institution</f>

</fs>

Figure 4: Named entity FSR content

Each annotation possesses acontent, provid-
ing a (structured) description of the linguistic data
covered by the annotation. E.g. thecontent of an
annotation describing a token may be the text of
the token itself (see fig. 1); thecontent of an anno-
tation describing a named entity may be a feature
structure describing properties of the entity (see
fig. 4); thecontent of an annotation describing the
semantics of a sentence may be an RMRS descrip-
tion (see fig. 6). In most cases we describe this
content via a simple text string, or a feature struc-
ture following the TEI/ISO specification4. But in
some cases other representations are more appro-
priate (such cases are signalled by thetype prop-
erty on annotations). Thecontent will generally
contain meta-information in addition to the pure
content itself. The precise specification for the
content of different annotation types is a current
thrust of development.

Each annotation lives in a globallattice. Use of
a lattice (consisting of a set of nodes – including
a special start node and end node – and a set of
edges each with a source node and a target node)
allows us to handle the ambiguity seen in linguistic
analyses of natural languages. E.g. an automatic
speech recognition system may output a word lat-
tice, and a lattice representation can be very useful
in other contexts where we do not wish to collapse
the space of alternative hypotheses too early.

Fig. 2 shows a Norwegian sentence5 for which
the token lattice is very useful. Here the posses-
sive s clitic may attach to any word, but unlike in
English no apostrophe is used. Hence it not fea-
sible for the tokenizer to resolve this ambiguity
in tokenisation. The token lattice (produced by a
regex-based SAF-aware preprocessor) provides an
elegant solution to this problem: between nodes 2
and 4 (and nodes 4 and 6) the lattice provides alter-
native paths.6 The parser is able to resolve the am-

4http://www.tei-c.org/release/doc/tei-p5-
doc/html/FS.html

5Translation:The boy who is sitting’s house is yellow.
6The sentence also exhibits the same phenomena for the

final period – it could form part of an abbreviation.

0-1 [1] Gutten <0 c 6>
1-2 [2] som <7 c 10>
2-3 [3] sitter <11 c 17>
2-4 [5] sitters <11 c 18>
3-4 [4] s <16 c 18>
4-5 [6] hu <19 c 21>
4-6 [8] hus <19 c 22>
5-6 [7] s <20 c 22>
6-7 [9] er <23 c 25>
7-8 [10] gult <26 c 30>
7-9 [12] gult. <26 c 31>
8-9 [11] . <30 c 31>

Figure 5: Token lattice with character-point stand-
off pointers

biguity with lexical and syntactic knowledge un-
available to the preprocessor component. See fig.
5 for a simple representation of the token lattice,
and fig. 1 for the equivalent SAF XML.

Each annotation also lives in a hierarchy of an-
notation dependencies built over thelattice. E.g.
sentence splitting may be the lowest level; then
from each sentence we obtain a set (lattice) of to-
kens; for individual tokens (or each set of tokens
on a partial path through the lattice) we may ob-
tain an analysis from a named-entity component.
A parser may build on top of this, producing per-
haps a semantic analysis for certain paths in the
lattice. Each such level consists of a set of annota-
tions each of which may be said to build on a set
of lower annotations. This is encoded by means of
adepends on property on each annotation. The an-
notation in fig. 6 exhibits the use of thedepends on
property to mark its dependency on the annotation
shown in fig. 3.

A number of well-formedness constrains apply
to SAF objects. For example, the ordering of
standoff pointers must be consistent with the or-
dering of annotation elements through all paths in
the lattice. Sets of annotations related (directly or
indirectly) via thedepends on property must lie on
a single path through the lattice.

4 XML Serialization

Our SAF XML serialization is provided both for
inter-component communication and for persis-
tent storage. XML provides a clean standards-
based framework in which to serialize our SAF
objects. Our serialization was heavily influenced
by the MAF XML serialization.
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<annot type=’rmrs’ deps=’s93’>
<label vid=’1’/>
<ep cfrom=’18476’ cto=’18526’>
<gpred>prpstn_m_rel</gpred>
<label vid=’1’/>
<var sort=’e’ vid=’2’

tense=’present’/>
</ep>
...
<rarg>
<rargname>MARG</rargname>
<label vid=’1’/>
<var sort=’h’ vid=’3’/>
</rarg>

</annot>

Figure 6: An annotation with RMRS content

The SAF XML serialization is contained within
the topsaf XML element. Here the pointer ad-
dressing scheme used (e.g.char for charac-
ter point offsets,xpoint for our xpoint-based
scheme), and the location of the primary data are
specified as attributes. This element may contain
an optionalolac element7 to specify metadata
(e.g. creator) and a singlefsm element holds the
rest of the object (as shorthand we also allow a se-
quence of theannot elements defined below in
place of thefsm). Thefsm element consists of
a number ofstate elements (with attributeid)
declaring the available lattice nodes, followed by
annot annotation definitions.

Each annotation (annot) element possesses
the following attributes:from andto give stand-
off pointers into the primary data, encoded accord-
ing to the scheme specified by thesaf element’s
addressing attribute; source and target
each give astate id (absent if the annotations
are listed sequentially outside of anfsr element);
deps is a set of idrefs;value is shorthand for
a string-valued content;type is shorthand for a
particular type of annotation content. The annota-
tion content, if not avalue string, is represented
using the TEI/ISO FSR XML format or the appro-
priate XML format corresponding to the annota-
tion type.

5 Summary

We are in the process of SAF-enabling a num-
ber of the DELPH-IN processing components.

7http://www.language-archives.org/OLAC/metadata.html

A SAF-aware sentence splitter produces SAF
XML describing the span of each sentence, from
which a SAF-aware (and XML-aware) preproces-
sor/tokeniser maps raw sentence text into a SAF
XML token lattice (with some additional annota-
tion to describe tokens such as digit sequences).
External preprocessor components (such as a mor-
phological analyser for Japanese) may also be ma-
nipulated in order to provide SAF input to the
parser. SAF is integrated into the parser of the
LKB grammar development environment (Copes-
take, 2002) and can also be used with the PET run-
time parser (Callmeier, 2000). The MAF XML
format (compatible with SAF) is also integrated
into the HOG system, and we hope to generalize
this to the full SAF framework.
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