
A Standoff Annotation Interface between DELPH-IN Components

Benjamin Waldron and Ann Copestake
University of Cambridge Computer Laboratory

JJ Thomson Avenue
Cambridge CB3 0FD, UK

{bmw20,aac10}@cl.cam.ac.uk

Abstract

We present a standoff annotation frame-
work for the integration of NLP compo-
nents, currently implemented in the con-
text of the DELPH-IN tools1. This pro-
vides a flexible standoff pointer scheme
suitable for various types of data, a lat-
tice encodes structural ambiguity, intra-
annotation relationships are encoded, and
annotations are decorated with structured
content. We provide an XML serialization
for intercomponent communication.

1 Background

An NLP system aims to map linguistic data to
a description at some suitable level of represen-
tation. To achieve this various component pro-
cesses must perform complex tasks. Increasingly
these individual processes are performed by dis-
tinct software components in cooperation. The
expressiveness of communication between such
components hence becomes an issue. For exam-
ple: we may wish to preserve a linkage from a
final semantic analysis to the raw data input; we
may wish to pass ambiguity to some later stage
where it is more appropriately resolved; we may
wish to represent the dependence of certain analy-
ses on other analyses; and we require sufficient ex-
pressiveness for the content of individual analyses
(henceforth ‘annotations’). This work addresses
these issues.

Annotations are often associated with a doc-
ument inline. This provides a convenient and
straightforward method of annotating many doc-
uments, but suffers from well-known drawbacks.
We adopt standoff annotation as an alternative.

1http://wiki.delph-in.net

Here annotations live in a separate standoff anno-
tation document, and are anchored in the raw data
via standoff pointers.

2 The DELPH-IN collaboration

DELPH-IN is a loose international collaboration
of researchers developing open-source software
components for language processing. These com-
ponents include deep parsers, deep grammars for
various natural languages, and tools for shallower
processing. The HOG system (Callmeier et al.,
2004) for the integration of shallow and deep lin-
guistic processors (using a pipeline making use of
XML plus XSLT transformations to pass data be-
tween processors) was developed during the Deep
Thought project, as was a standard for the inte-
gration of semantic analyses produced by diverse
components: RMRS (Copestake, 2003) allows un-
derspecification of semantic analyses in such a
way that the analysis produced by a shallow com-
ponent may be considered an underspecification of
a fuller semantic analysis produced by a deeper
component. Other work (Waldron et al., 2006) has
provided a representation of partial analyses at the
level of tokenization/morphology – using a mod-
ification of MAF (Clement and de la Clergerie,
2005). Current work within the SciBorg project2

is investigating more fine-grained integration of
shallow and deep processors.

3 Standoff Annotation Framework
(SAF)

Our standoff annotation framework borrows heav-
ily from the MAF proposal. The key components
of our framework are (i) grounding in primary lin-
guistic data via flexible standoff pointers, (ii) dec-

2http://www.sciborg.org.uk/

97

<?xml version=’1.0’ encoding=’UTF8’?>
<!DOCTYPE saf SYSTEM ’saf.dtd’>
<saf addressing=’char’>
<olac:olac xmlns:olac=’http://www.language-archives.org/OLAC/1.0/’ xml

ns=’http://purl.org/dc/elements/1.1/’ xmlns:xsi=’http://www.w3.org/2001
/XMLSchema-instance’ xsi:schemaLocation=’http://www.language-archives.o
rg/OLAC/1.0/ http://www.language-archives.org/OLAC/1.0/olac.xsd’>
<creator>LKB x-preprocessor</creator>
<created>18:11:31 1/31/2006 (UTC)</created>
</olac:olac>
<fsm init=’v0’ final=’v9’>
<state id=’v0’/>...<state id=’v9’/>
<annot type=’token’ id=’t1’ from=’0’ to=’6’ value=’Gutten’ source=’

v0’ target=’v1’/>
...
<annot type=’token’ id=’t11’ from=’30’ to=’31’ value=’.’ source=’v8

’ target=’v9’/>
</fsm>

</saf>

Figure 1: SAF XML (containing token lattice)

Figure 2: Parse tree (LKB)

oration of individual annotations with structured
content, (iii) representation of structural ambigu-
ity via a lattice of annotations and (iv) a structure
of intra-annotation dependencies. In each case we
have generalized heavily in order to apply the SAF
framework to a wide domain. The basic unit of the
SAF framework is the annotation. An annotation
possesses properties as outlined below.

Each annotation describes a given span in the
raw linguistic data. This span is specified byfrom
andto standoff pointers. In order to cope with dif-
ferent possible data formats (e.g. audio files, XML

<saf document=’/home/bmw20/b110865
b.xml’ addressing=’xpoint’>
<annot type=’sentence’ id=’s93’ fr
om=’/1/3/54.3’ to=’/1/3/58.89’ val
ue=’The results of this study are
depicted in Table 2<p/>’/>
</saf>

Figure 3: A ’sentence’ annotation

text, pdf files) we make the pointer scheme a prop-
erty of each individual SAF object. So annotations
with respect to an audio file may use frame off-
sets, whilst for an XML text file we may use char-
acter (or more sophisticated xpoint-based) point-
ers. When processing XML text files, we have
found it easiest to work with a hybrid approach to
the standoff pointer scheme. Existing non-XML-
aware processing components can often be easily
adapted to produce (Unicode) character pointers;
for XML-aware components it is easier to work
with XML-aware pointing schemes – here we use
an extension of the xpoint scheme described in the
XPath specification3. A mapping between these
two sets of points provides interconversion suffi-
cient for our needs.

3For example:/1/3.2 specifies the second point in the third
element of the first element of the root node, and an extension
allows text nodes in non-elements to be referenced also.

98

<fs type="ne-organisation">
<f name="OrgName">National Aerona

utics and Space Administration</f>
<f name="OrgType">institution</f>

</fs>

Figure 4: Named entity FSR content

Each annotation possesses acontent, provid-
ing a (structured) description of the linguistic data
covered by the annotation. E.g. thecontent of an
annotation describing a token may be the text of
the token itself (see fig. 1); thecontent of an anno-
tation describing a named entity may be a feature
structure describing properties of the entity (see
fig. 4); thecontent of an annotation describing the
semantics of a sentence may be an RMRS descrip-
tion (see fig. 6). In most cases we describe this
content via a simple text string, or a feature struc-
ture following the TEI/ISO specification4. But in
some cases other representations are more appro-
priate (such cases are signalled by thetype prop-
erty on annotations). Thecontent will generally
contain meta-information in addition to the pure
content itself. The precise specification for the
content of different annotation types is a current
thrust of development.

Each annotation lives in a globallattice. Use of
a lattice (consisting of a set of nodes – including
a special start node and end node – and a set of
edges each with a source node and a target node)
allows us to handle the ambiguity seen in linguistic
analyses of natural languages. E.g. an automatic
speech recognition system may output a word lat-
tice, and a lattice representation can be very useful
in other contexts where we do not wish to collapse
the space of alternative hypotheses too early.

Fig. 2 shows a Norwegian sentence5 for which
the token lattice is very useful. Here the posses-
sive s clitic may attach to any word, but unlike in
English no apostrophe is used. Hence it not fea-
sible for the tokenizer to resolve this ambiguity
in tokenisation. The token lattice (produced by a
regex-based SAF-aware preprocessor) provides an
elegant solution to this problem: between nodes 2
and 4 (and nodes 4 and 6) the lattice provides alter-
native paths.6 The parser is able to resolve the am-

4http://www.tei-c.org/release/doc/tei-p5-
doc/html/FS.html

5Translation:The boy who is sitting’s house is yellow.
6The sentence also exhibits the same phenomena for the

final period – it could form part of an abbreviation.

0-1 [1] Gutten <0 c 6>
1-2 [2] som <7 c 10>
2-3 [3] sitter <11 c 17>
2-4 [5] sitters <11 c 18>
3-4 [4] s <16 c 18>
4-5 [6] hu <19 c 21>
4-6 [8] hus <19 c 22>
5-6 [7] s <20 c 22>
6-7 [9] er <23 c 25>
7-8 [10] gult <26 c 30>
7-9 [12] gult. <26 c 31>
8-9 [11] . <30 c 31>

Figure 5: Token lattice with character-point stand-
off pointers

biguity with lexical and syntactic knowledge un-
available to the preprocessor component. See fig.
5 for a simple representation of the token lattice,
and fig. 1 for the equivalent SAF XML.

Each annotation also lives in a hierarchy of an-
notation dependencies built over thelattice. E.g.
sentence splitting may be the lowest level; then
from each sentence we obtain a set (lattice) of to-
kens; for individual tokens (or each set of tokens
on a partial path through the lattice) we may ob-
tain an analysis from a named-entity component.
A parser may build on top of this, producing per-
haps a semantic analysis for certain paths in the
lattice. Each such level consists of a set of annota-
tions each of which may be said to build on a set
of lower annotations. This is encoded by means of
adepends on property on each annotation. The an-
notation in fig. 6 exhibits the use of thedepends on
property to mark its dependency on the annotation
shown in fig. 3.

A number of well-formedness constrains apply
to SAF objects. For example, the ordering of
standoff pointers must be consistent with the or-
dering of annotation elements through all paths in
the lattice. Sets of annotations related (directly or
indirectly) via thedepends on property must lie on
a single path through the lattice.

4 XML Serialization

Our SAF XML serialization is provided both for
inter-component communication and for persis-
tent storage. XML provides a clean standards-
based framework in which to serialize our SAF
objects. Our serialization was heavily influenced
by the MAF XML serialization.

99

<annot type=’rmrs’ deps=’s93’>
<label vid=’1’/>
<ep cfrom=’18476’ cto=’18526’>
<gpred>prpstn_m_rel</gpred>
<label vid=’1’/>
<var sort=’e’ vid=’2’

tense=’present’/>
</ep>
...
<rarg>
<rargname>MARG</rargname>
<label vid=’1’/>
<var sort=’h’ vid=’3’/>
</rarg>

</annot>

Figure 6: An annotation with RMRS content

The SAF XML serialization is contained within
the topsaf XML element. Here the pointer ad-
dressing scheme used (e.g.char for charac-
ter point offsets,xpoint for our xpoint-based
scheme), and the location of the primary data are
specified as attributes. This element may contain
an optionalolac element7 to specify metadata
(e.g. creator) and a singlefsm element holds the
rest of the object (as shorthand we also allow a se-
quence of theannot elements defined below in
place of thefsm). Thefsm element consists of
a number ofstate elements (with attributeid)
declaring the available lattice nodes, followed by
annot annotation definitions.

Each annotation (annot) element possesses
the following attributes:from andto give stand-
off pointers into the primary data, encoded accord-
ing to the scheme specified by thesaf element’s
addressing attribute; source and target
each give astate id (absent if the annotations
are listed sequentially outside of anfsr element);
deps is a set of idrefs;value is shorthand for
a string-valued content;type is shorthand for a
particular type of annotation content. The annota-
tion content, if not avalue string, is represented
using the TEI/ISO FSR XML format or the appro-
priate XML format corresponding to the annota-
tion type.

5 Summary

We are in the process of SAF-enabling a num-
ber of the DELPH-IN processing components.

7http://www.language-archives.org/OLAC/metadata.html

A SAF-aware sentence splitter produces SAF
XML describing the span of each sentence, from
which a SAF-aware (and XML-aware) preproces-
sor/tokeniser maps raw sentence text into a SAF
XML token lattice (with some additional annota-
tion to describe tokens such as digit sequences).
External preprocessor components (such as a mor-
phological analyser for Japanese) may also be ma-
nipulated in order to provide SAF input to the
parser. SAF is integrated into the parser of the
LKB grammar development environment (Copes-
take, 2002) and can also be used with the PET run-
time parser (Callmeier, 2000). The MAF XML
format (compatible with SAF) is also integrated
into the HOG system, and we hope to generalize
this to the full SAF framework.

6 Acknowledgements

The authors wish to thank Bernd Kiefer, Ul-
rich Schaefer, Dan Flickinger, Stephan Oepen and
other colleagues within the DELPH-IN collabo-
ration for many informative discussions. This
work was partly funded by a grant from Boeing
to Cambridge University, partly by the NorSource
Grammar Project8 at NTNU, and partly by EPSRC
project EP/C010035/1.

References
Ulrich Callmeier, Andreas Eisele, Ulrich Schaefer, and

Melanie Siegel. 2004. The DeepThought Core Ar-
chitecture Framework. InProceedings of the 4th In-
ternational Conference on Language Resources and
Evaluation, LREC’04, Lisbon, Portugal.

Ulrich Callmeier. 2000. PET. A Platform for Exper-
imentation with Efficient HPSG Processing Tech-
niques. Journal of Natural Language Engineering,
6(1):99–108.

Lionel Clement and Eric Villemonte de la Clergerie.
2005. MAF: a morphosyntactic annotation frame-
work. In Proceedings of the 2nd Language and
Technology Conference, Poznan, Poland.

Ann Copestake. 2002.Implementing Typed Feature
Structure Grammars. CSLI Publications, Stanford.

Ann Copestake. 2003. Report on the Design of RMRS.
Technical Report D1.1a, University of Cambridge,
UK.

Benjamin Waldron, Ann Copestake, Ulrich Schaefer,
and Bernd Kiefer. 2006. Preprocessing and Tokeni-
sation Standards in DELPH-IN Tools. InProceed-
ings of the 5th International Conference On Lan-
guage Resources and Evaluation, LREC’06, Genoa,
Italy.

8http://www.ling.hf.ntnu.no/forskning/norsource/

100

