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Abstract

We discuss how deep interpretation and
generation can be integrated with a know-
ledge representation designed for question
answering to build a tutorial dialogue sys-
tem. We use a knowledge representa-
tion known to perform well in answering
exam-type questions and show that to sup-
port tutorial dialogue it needs additional
features, in particular, compositional rep-
resentations for interpretation and struc-
tured explanation representations.

1 Introduction

Human tutoring is known to help students learn
compared with reading textbooks, producing up to
two standard deviations in learning gain (Bloom,
1984). Tutorial systems, in particular cognitive
tutors which model the inner state of a student’s
knowledge, help learning but result in only up to 1
standard deviation learning gain (Anderson et al.,
1995). One current research hypothesis is that this
difference is accounted for by interactive dialogue,
which allows students to ask questions freely, and
tutors to adapt their direct feedback and presenta-
tion style to the individual student’s needs.

Adding natural language dialogue to a tutorial
system is a complex task. Many existing tuto-
rial dialogue systems rely on pre-authored curricu-
lum scripts (Person et al., 2000) or finite-state ma-
chines (Rośe et al., 2001) without detailed knowl-
edge representations. These systems are easy to
design for curriculum providers, but offer limited
flexibility because the writer has to predict all pos-
sible student questions and answers.

We argue that the ability to interpret novel,
context-dependent student questions and answers,

and offer tailored feedback and explanations is
important in tutorial dialogue, and that a domain
knowledge representation and reasoning engine is
necessary to support these applications. We dis-
cuss our knowledge representation, and the issues
of integrating it with state-of-the-art interpretation
and generation components to build a knowledge-
based tutorial dialogue system.

Our application domain is in basic electricity
and electronics, specifically teaching a student
how to predict the behavior and interpret measure-
ments in series and parallel circuits. This is a con-
ceptual domain - that is, students are primarily fo-
cused on learning concepts such as voltage and
current, and their relationships with the real world.
The students use a circuit simulator to build cir-
cuits, and their questions and answers depend on
the current context.

There are various sources of context-
dependency in our domain. Students and
tutors refer to specific items in the simulation
(e.g., “Which lightbulbs will be lit in these
circuits?”), and may phrase their answers in an
unexpected way, for example, by saying “the
lightbulbs in 2 and 4 will be out” instead of
naming the lit lightbulbs. Moreover, students
may build arbitrary circuits not included in the
question, either because they make mistakes, or
because a tutor instructs them to do so as part of
remediation. Thus it would be difficult to produce
and maintain a finite-state machine to predict all
possible situations, both for interpreting the input
and for generating feedback based on the state
of the environment and the previous dialogue
context: a domain reasoner is necessary to handle
such unanticipated situations correctly.

We describe a tutorial system which uses a de-
scription logic-based knowledge representation to
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generate intelligent explanations and answers to
a student’s questions, as well as to interpret the
student’s language at all stages of the dialogue.
Our approach relies on using an existing wide-
coverage parser for domain-independent syntactic
parsing and semantic interpretation, as well as a
wide-coverage deep generation system. We dis-
cuss the issues which arise in connecting such re-
sources to a domain knowledge representation in a
practical system.

2 Motivation

A good teaching method for basic electricity
and electronics is eliciting cognitive dissonance
(Schaffer and McDermott, 1992; Arnold and
Millar, 1987) which we are implementing as a
“predict-verify-evaluate” (PVE) cycle. The stu-
dents are asked to make predictions about the be-
havior of a schematic circuit and then build it in a
simulation environment. If the observed results do
not match their predictions, a discussion ensues,
where the computer tutor helps a student learn the
relevant concepts. The PVE exercises are comple-
mented with exercises asking the students to iden-
tify properties of circuits in diagrams and to inter-
pret a circuit’s behavior.

Thus, the system has to answer questions about
circuits which students build and manipulate dy-
namically in a simulation environment, and pro-
duce explanations and feedback tailored to that in-
dividual context. This relies on the following sys-
tem capabilities:

• Understanding and giving explanations.
Since the system relies on inducing cognitive
dissonance, it should be able to explain to the
student why their prediction for a specific cir-
cuit was incorrect, and also verify explana-
tions given by a student.

• Unrestricted language input with reference
resolution. Similar to other conceptual do-
mains (VanLehn et al., 2002) the language
observed in corpus studies is varied and syn-
tactically complex. Additionally, in our do-
main students refer to items on screen, e.g.
“the lightbulb in 5”, which requires the sys-
tem to make the connection between the lan-
guage descriptions and the actual objects in
the environment.

• Tailored generation. The level of detail in
the explanations offered should be sensitive

to student knowledge of the domain. Tutorial
utterances should be natural and use correct
terminology even if a student doesn’t.

To support answering questions and giving ex-
planations, we chose the KM knowledge represen-
tation environment (Clark and Porter, 1999) as a
basis for our implementation. KM is a description-
logic based language which has been used to rep-
resent facts and rules in a HALO system for AP
chemistry tests (Barker et al., 2004). It supports
the generation of explanations and obtained the
highest explanation scores in an independent eval-
uation based on an AP chemistry exam (Friedland
et al., 2004). Thus it is a good choice to provide
reasoning support for explanations and answering
novel questions in a tutorial system. However, KM
has not been used previously in connection with
natural language input for question answering, and
we discuss how the limitations of KM representa-
tions affect the interpretation process in Section 4.

We use a deep domain-independent parser and
grammar to support language interpretation, and
a deep generator to provide natural sounding and
context-dependent text. Both deep parsing and
generation provide the context adaptivity we need,
but they are time-consuming to build for a spe-
cific domain. Now that a number of deep domain-
independent parsing and generation systems are
available in the community, our research goal is to
investigate the issues in integrating them with the
knowledge representation for question answering
to support the requirements of a tutorial dialogue
system. We focus on context-dependent explana-
tion understanding and generation as a primary tu-
toring task in our domain. Section 3 discusses
our representations, Section 4 presents the issues
arising in knowledge representation to support in-
terpretation, and Section 5 discusses the require-
ments for appropriate explanation generation and
how it can be integrated into the system.

3 Representations

From the point of view of tutoring, the most im-
portant requirement on the knowledge representa-
tion is that system reasoning should closely match
human reasoning, so that it can be explained to
students in meaningful terms. Thus, for exam-
ple, a numerical circuit simulator is well suited for
dynamically displaying circuit behaviors, but not
for conceptually tutoring basic circuits, because it
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hides physics principles behind complex mathe-
matical equations that are not suitable for learners.

To design our knowledge representation we
started with a set of lessons for our domain de-
signed by psychologists experienced in designing
training courses for physics and simulated envi-
ronments. The lessons were used in a data col-
lection environment with experienced tutors con-
ducting tutoring sessions over a text chat interface.
Each student and tutor were required to go through
the materials presented as a set of slides and solve
pre-defined exercises, but the students asked ques-
tions to get help with problem-solving. The tutor
had complete freedom to choose how to answer
student questions and how to remediate when stu-
dents made mistakes. We are using this data set
to study the types of errors that students make as
well as the language used by both students and tu-
tors. The latter serves as a guide to developing our
interpretation and generation components.

In addition to the set of materials, the course
designers provided a “glossary” of concepts and
facts that students need to learn and use in expla-
nations, containing approximately 200 concepts
and rules in a form which should be used in model
explanations. We then developed our knowledge
representation so that concepts listed in the glos-
sary were represented as KM concepts, and facts
are represented as rules for computing slots.

An example KM representation for our domain
is shown in Figure 1. It represents the fact that a
lightbulb will be on if it is in a complete path (i.e. a
closed path containing a battery). The explanation
is generated using the comment structure[light-
bulbstate]shown in Figure 2 (slightly simplified
for readability). Explanations are generated sepa-
rately from reasoning in the KM system because
reasoning in general contains too many low-level
details. For example, our rule for computing a
lightbulb state includes two facts: that the light-
bulb has to be in a complete path with a battery,
and that a lightbulb is always in one state only (i.e.
it cannot be broken and on at the same time). The
latter is required for proof completeness, but is too
trivial to be mentioned to students. KM therefore
requires knowledge engineers to explicitly desig-
nate the facts to be used in explanations.

This representation allows KM to generate de-
tailed explanations by using a template string and
then explaining the supporting facts. An example
of a full explanation, together with the adjustments

needed to use it in dialogue rather than as a com-
plete answer, is given in Section 5.

Currently, KM only supports generating expla-
nations, but not verifying them. The explanation
mechanism produces explanations as text directly
from the knowledge representation, as shown in
Figure 2(a). This generation method is not well
suited for a tutorial dialogue system, because it
does not take context into account, as discussed
in Section 5. Therefore, we are designing a struc-
tured representation for explanations to be pro-
duced by the KM explanation mechanism instead
of using English sentences, shown in Figure 2(b).
This will allow us to generate more flexible ex-
planations (Section 5) and also to interpret student
explanations (Section 4).

4 Interpretation

The interpretation process consists of parsing,
reference resolution, dialogue act recognition
and diagnosing student answers. We discuss
reference resolution and diagnosis here as these
are the two steps impacted by the knowledge
representation issues. As a basic example we will
use the student answer from the following pair:1

Problem: For each circuit, which lightbulbs will
be lit? Explain.

Student: the bulbs in 1 and 3 are lit because they
are in a closed path with a battery

To respond to this answer properly, the system
must complete at least the following tasks. First, it
must resolve “the bulbs in 1 and 3” to correspond-
ing object IDs in the knowledge base, for exam-
ple, LB-13-1-1andLB-13-3-1. Then, it must ver-
ify that the student statement is factually correct.
This includes verifying that the lightbulbs in 1 and
3 will be lit, and that each of them is in a closed
path with a battery. Finally, it must verify that
the student explanation is correct. This is sepa-
rate from verifying factual correctness. For exam-
ple, a statement “because they are in a closed path”
is true for both of those lightbulbs, but it is not a
complete explanation, because a lightbulb may be
in a closed path which does not contain a battery,
where it won’t be lit.

1These utterances come from our corpus, though most of
the student answers are not as easy to parse. We are working
on robust parsing methods to address the issues in parsing
less coherent utterances.
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(every LightBulb has
(state ((must-be-a Electrical-Usage-State) (exactly 1 Electrical-Usage-State)

(if (the is-damaged of Self) then *Broken-Usage-State
else (if (has-value (oneof ?batt in (the powered-by of Self)))

where ((the state of ?batt) = *Charged-Power-State)))
then *On-Usage-State else *Off-Usage-State) [lightbulbstate])))

Figure 1: The representation of a lightbulb in our KM database

(a)(comment [lightbulbstate]
(:sentence (”a working lightbulb is on if it is in a complete path with a charged battery”))
(:supporting-facts (:triple Self powered-by *) (forall (the powered-by of Self) (:triple It state *)))

(b)(comment [lightbulbstate]
(:rule :object LightBulb :fact (?lb state *On-Usage-State)

:requires ((?lb powered-by ?v1) (?v1 instance-of Battery) (?v1 state *Charged-Power-State))
:bindings ((?lb〈 Self 〉) (?v1〈 the powered-by of Self〉)) )

Figure 2: A sample comment structure to generate an explanation for a lit lightbulb (a) The KM text
template (b) a new structured representation. Items in angle brackets are computed dynamically

4.1 Interpreting Factual Statements

We use the TRIPS dialogue parser (Dzikovska,
2004) for interpretation. The TRIPS parser pro-
vides a two-layer architecture where the utter-
ance meaning is represented using a domain-
independent semantic ontology and syntax. The
domain-independent representation is used for dis-
course processing tasks such as reference reso-
lution, but it is connected to the domain-specific
knowledge representation by mapping between
the domain-independent and domain-specific on-
tologies (Dzikovska et al., 2003; Dzikovska,
2004). This architecture allows us to separate lin-
guistic and domain-specific knowledge and easily
specialize to new domains.

When applied in our domain, the TRIPS inter-
pretation architecture was helpful in getting the
interpretation started quickly, because we only
needed to extend the lexicon with specific terms
related to basic electricity and electronics (e.g.,
“multimeter”), while other lexical items and syn-
tactic constructions were provided in the domain-
independent part.

The reference resolution module operates on
TRIPS domain-independent representations send-
ing queries to KM as necessary, because the
TRIPS representations offer linguistic features to
guide reference resolution not available in the rep-
resentations used for reasoning. We use a recur-
sive reference resolution algorithm similar to By-
ron (2002) which first resolves “1 and 3” are re-

solved as names forCircuit-13-1 andCircuit-13-
3,2 and then queries KM to find all lightbulbs in
those circuits. Dialogue context is used to inter-
pret the reference resolution results. In this case,
the context does not matter because the question
sets up all lightbulbs on screen as contextually rel-
evant. But if the student had said “the ones in 1
and 3”, the query would be for all components in
circuits 1 and 3, and then our algorithm will filter
the query results based on the question context to
retain only lightbulbs.

Once the references are resolved, the whole sen-
tence is converted to a KM statement which repre-
sents the student utterance, in our case(the state
of LB13-1-1) = *On-Usage-State, whereLB13-1-
1 is the lightbulb obtained by reference resolution.
This statement is sent to the KM system, which
verifies that it is correct. This procedure allows us
to use dialogue context in understanding, and also
to check correctness of answers easily, even if they
are phrased in an unanticipated way.

However, even with the layer of separation of
linguistic and domain knowledge provided by the
TRIPS architecture, we found that the need to sup-
port interpretation in a compositional way influ-
ences the interaction with knowledge representa-
tion. There are many ways to express the same
query to KM, which differ in efficiency. Two ex-

2This step is not trivial, because on other slides the label
“1” refers to terminals or other components rather than whole
circuits, and therefore there is no 1-to-1 correspondence be-
tween names and objects in the environment.
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(a) (allof ?x in (the all-instances of LightBulb) where ((the components of Circuit-13-1) include ?x))
(allof ?x (LightBulb ?x) and (components Circuit-13-1 ?x))

(b) (allof ?comp in (the components of Circuit-13-1) where (?comp isa LightBulb))
(allof ?x (components Circuit-13-1 ?x) and (LightBulb ?x) )

Figure 3: KM Queries to to retrieve all lightbulbs in a circuit with corresponding first-order logic glosses.

ample queries to ask the same question are given in
Figure 3. While their first order logic semantics is
equivalent except for the order of conjuncts, they
are expressed in a very different way in the KM
syntax. Version (b) is more efficient to ask, be-
cause it retrieves the components of circuit 1 first,
a smaller set than the set of all lightbulbs.

This asymmetry presents a challenge to both
language interpretation and knowledge engineer-
ing. Existing reference resolution algorithms (By-
ron, 2002; Bos, 2004) expect the queries for “the
lightbulb” and “the lightbulb in 1” to be strictly
compositional in the sense that the phrase “the
lightbulb” will be represented identically in both
cases, and “in 1” is represented as an additional
constraint on the lightbulbs. This corresponds to
the query variant (a) in the system. Otherwise
a large amount of query-specific transformations
may be required to produce queries for complex
noun phrase descriptions, diminishing the scala-
bility of the approach.

We had to spend a significant portion of time
in the project developing an efficient and com-
positional knowledge representation. Our cur-
rent solution is to prefer compositionality over ef-
ficiency, even though it impacts performance in
some cases, but we are working on a more gen-
eral solution. Instead of converting directly to
KM from domain-independent language represen-
tations, we will convert all queries in a FOL-like
syntax shown in Figure 3 which uses concepts
from the KM representation, but where all con-
juncts are treated identically in the syntax. The
problem of converting this representation to the
optimal KM form can then be seen as an instance
of query optimization. For example, we can re-
order the conjuncts putting the relations which in-
clude an instance constant (e.g., (the components
of Circuit-13-1)) first in the query, because they
are more likely to limit the search to small sets
of objects. This representation can be easily con-
verted in the KM syntax, and is also useful for
explanation understanding and generation as dis-
cussed below.

4.2 Explanation Understanding

While KM has facilities for generating explana-
tions, it does not have support for reading in a stu-
dent explanation and verifying it. We devised a
method to support this functionality with the aid of
KM explanation generation mechanism. Any time
a student offers an explanation, the KM reasoner
will be called to generate its own explanation for
the same fact, in the structured format shown in
Figure 2(b). Then the student explanation (con-
verted into the same intermediate syntax) can be
matched against the KM-generated explanation to
verify that it is complete, or else that certain parts
are missing.

In our example, the student explanation “be-
cause they are in a closed path with a battery” will
be represented as(?pa instance-of Path) (?pa is-
closed t) (?b instance-of Battery) (?pa contains
?b) (?pa contains LB-13-1-1).3 This explanation
does not directly match into the explanation struc-
ture from Figure 2(b), because it uses the more
specific term “in closed path with a battery” rather
than the more general term “in complete path”
(represented by thepowered-byslot). However,
as part of generating the explanation, an explana-
tion structure for thepowered-bywill be gener-
ated, and it will include the facts(?pa is-closed
t) (?pa contains ?b). This will match the student
explanation. It will be up to the tutorial module to
decide whether to accept the explanation “as is”,
or lead the student to use the more precise termi-
nology, as discussed in Section 5.

This method can address student explanations
as long as they correspond to parts of typical ex-
planations, and identify missing parts. The biggest
open problem we face is equivalent inferences.
For example, a student may say “A lightbulb is
not on” instead of “a lightbulb is off”. KM rea-
soning handles those differences when verifying
factual correctness, but KM does not support sim-
ilar reasoning for matching explanations (which

3Here “they” would be resolved first to a set of lightbulbs,
and each instance will be treated separately to verify that the
explanation applies.
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would correspond to verifying full proofs rather
than individual facts). We are considering bring-
ing a theorem prover to reason over intermediate
representations together with KM axioms to help
interpret explanations, as done in (Makatchev et
al., 2004; Bos, 2005).

5 Generation

The task of the utterance generation component is
to produce tutorial dialogue, such as asking new
questions of the student, conveying the correctness
of their answers, and giving explanations. Expla-
nations may be given in response to a student’s di-
rect ’why’ question or when a student has erred
and the pedagogical reasoner has decided that an
explanation is the best remediation strategy. In
each case, the utterance generator must not only
provide a correct, thorough and coherent explana-
tion, but must tailor it so that the student doesn’t
receive too much or too little information. To
be tailorable, explanations must be derived from
the represented domain knowledge and from what
the tutoring system knows about the student (e.g.,
their recent performance).

Directly producing explanations by appending
together pieces of hand-written strings as in Fig-
ure 2(a) usually results in long explanations that
contain little detail of interest to the student. Fig-
ure 4 contains one such example explanation gen-
erated by the KM system in our domain and de-
rived from a query based on the production rule in
Figure 1. This explanation makes sense in answer-
ing an exam question, as intended in the KM sys-
tem, but it is not necessarily helpful in dialogue.

As an example, suppose the student had incor-
rectly answered the question in Section 4, and the
tutoring system decides to correctly explain why
the lightbulbs are lit. Usually, a full explanation
is not necessary in these cases. In the case where
a student gave an incomplete explanation, namely
leaving out the necessary mention of the battery,
a simple response of the form “Yes, but don’t for-
get the battery” will be infinitely more helpful than
the full explanation. If the student’s explanation is
completely correct, but they have failed to notice
a change in the environment, the more appropriate
explanation is “The lightbulb is in a closed path,
as well as the battery, but the battery is not oper-
ational”. Furthermore, if a student has shown that
they are knowledgeable about certain fundamen-
tal facts, such as what states a lightbulb may be

in, statements like “A lightbulb can be on, off or
broken” should be removed.

Adding this reasoning directly to the knowledge
base would make it unwieldy and unmodifiable,
and the string-based generation in KM comments
does not allow for adapting explanations based on
external knowledge such as a student model. To
adapt the KM explanation mechanism to support
such context-dependent generation, instead of cre-
ating explanations via template strings, we have
devised the representation presented in Figure 2(b)
that is based on semantics and allows us to mod-
ify an explanation after it has been produced by
the KM reasoning process but before it has been
converted into a string representation.

Based on this semantic representation, explana-
tion content can be selected more appropriately. If
the interpreter discussed in Section 4.2 determines
that parts of the explanation from the:requires
field are missing, the generation can focus only on
that part of the explanation. The requirements list
would also be used to determine if the student is
not aware of environment properties, such as that a
battery is damaged. Finally, the facts known to the
student can be removed if the corresponding se-
mantic forms were used in previous explanations.

In addition to selecting the explanation content
properly, it is important that the responses given to
the student sound fluid and are easy to understand.
In dialogue, in particular, it is important that pro-
nouns can be generated based on references im-
portant for the student, and avoid repetitiveness in
syntax. Knowledge of linguistic features such as
number and gender, and also knowledge of what
was previously mentioned in the discourse, is nec-
essary to support such natural text generation.

Deep generation utilizes this represented
knowledge along with grammatical and lexical
knowledge of a language, rather than hand-written
strings, to produce utterances. Our current im-
plementation uses a custom utterance generation
component and the STORYBOOK (Callaway and
Lester, 2002) deep text generator modified to
work in a dialogue context. Once the explanation
content is selected, it is passed to the STORYBOOK

system to produce the actual utterance text.

6 Discussion and Related Work

Existing tutorial dialogue systems most often rely
on one of two approaches for interpretation: they
either use wide coverage but shallow language
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A lightbulb can be on, off or broken.
A working lightbulb is on if it is in a complete path with a charged battery.

The complete paths of a component are those which are valid, closed, and complete.
A path is complete if it is a closed path with at least one battery and at least...

A path is closed if it is a valid path, a sequence of more than two terminals, ...
A path is valid if it is a single sequence with more than one terminal, all ...
The path (:seq t1-13-1-3 t1-13-1-2 t1-13-1-1 t1-13-1-4) is valid.

The path (:seq t1-13-1-3 t1-13-1-2 t1-13-1-1 t1-13-1-4) is closed.
... 6 lines showing that the path contains both L1-13-1-1 and B1-13-1-1 ...

The path (:seq t1-13-1-3 t1-13-1-2 t1-13-1-1 t1-13-1-4) is complete.
L1-13-1-1 is in a complete path with B1-13-1-1.
A battery is charged unless it is damaged.
B1-13-1-1 is charged.

L1-13-1-1 is on.

Figure 4: Untailored text produced by appending strings from production rules.

interpretation techniques (e.g. LSA (Person et
al., 2000), finite-state parsing (Glass, 2001)) in
combination with shallow knowledge represen-
tations (tutorial scripts or FSA-based knowledge
construction dialogues), or they use deep KR&R
systems but with highly domain-specific parsing
and semantic interpretation (e.g. ATLAS-ANDES
(Rośe et al., 2001), PACT (Aleven et al., 2002)).

The Why2-Atlas system (VanLehn et al., 2002)
makes progress on combining wide coverage in-
terpretation with deep knowledge representation
by utilizing a wide-coverage syntactic grammar
(Rośe, 2000) and a theorem prover to interpret stu-
dent essays (Makatchev et al., 2004). However,
once the misconceptions are diagnosed, the reme-
diation is done via KCDs, with very limited lan-
guage input and pre-authored responses, and with-
out allowing students to ask questions. Our ap-
proach attempts to address issues which arise in
making remediation more flexible and dependent
on context, while still relying on wide-coverage
language interpretation and generation.

The issues we encountered in integrating com-
positional interpretation and reference resolution
with efficient knowledge representation is simi-
lar to a known problem in natural language inter-
faces to databases which may contain slots with
complex meanings. (Stallard, 1986) solves this
problem by providing inference schemas linking
complex-valued slots with compositional repre-
sentations. Our solution in mapping domain-
independent to domain-specific representation is
similar, but stricter compositionality is needed for
reference resolution support, placing additional
constraints on knowledge engineering as we dis-
cussed in Section 4.

We glossed over the interpretation issues related
to metonymy and other imprecise formulations in
questions (Aleven et al., 2002). A taxonomy of

imprecise manual question encodings by domain
experts is presented in (Fan and Porter, 2004).
They also propose an algorithm to address loosely
encoded questions using ontological knowledge.
This algorithm in effect performs question inter-
pretation, and we are planning to incorporate it
into our interpretation mechanism to help inter-
pret question representations obtained automati-
cally during language interpretation.

Text generation of the type that can handle the
necessary linguistic phenomena needed have not
been implemented in tutoring systems that use di-
alogue. The DIAG-NLP tutorial dialogue sys-
tem (Eugenio et al., 2005) shows that structured
explanations from deep generation supported by
knowledge representation and reasoning improve
learning. However, it does not engage in a dia-
logue with the user, and in this paper we showed
that explanations need to be further adjusted in di-
alogue based on previous student responses and
knowledge. Deep generation using context has
been used in some other types of dialogue sys-
tems such as collaborative problem solving (Stent,
2001), and we expect that the approaches used in
content selection and planning in those systems
will also transfer to our deep generation system.

7 Conclusions

We discussed the implementation of a tutorial di-
alogue system which relies on a domain knowl-
edge representation to verify student answers and
offer appropriate explanations. Integration with
domain-independent interpretation and generation
components places additional requirements on
knowledge representation, and we showed how
an existing knowledge representation mechanisms
used in answering exam questions can be adapted
to the more complex task of tutoring, including in-
terpreting student explanations and generating ap-
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propriate feedback.
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