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Abstract

How can proteins fold so quickly into their
unique native structures? We show here
that there is a natural analogy between
parsing and the protein folding problem,
and demonstrate that CKY can find the na-
tive structures of a simplified lattice model
of proteins with high accuracy.

1 Introduction

In statistical parsing, the task is to find the most
likely syntactic structure for an input string of
words, given a grammar and a probability model
over the analyses defined by that grammar. Pro-
teins are sequences of amino acids (polypeptide
chains) that form unique, sequence-specific three-
dimensional structures. The structure into which a
particular protein folds has a lower energy than all
other possible structures. In protein structure pre-
diction, the task is thus to find the lowest-energy
physical structure for an input sequence of amino
acids, given a representation of possible structures
and a function that assigns an energy score to these
structures. There is therefore a natural analogy
between these two seemingly unrelated computa-
tional problems. Based on this analogy, we pro-
pose an adaptation of the CKY chart parsing algo-
rithm to protein structure prediction, using a well-
known simplified model of proteins as proof of
concept.

Models of protein folding additionally aim to
explain the process by which this structure for-
mation takes place, and their validity depends not
only on the accuracy of the predicted structures,
but also on their physical plausibility. One com-
mon proposal in the biophysical literature is that
the folding process is hierarchical, and that folding
routes are tree-shaped. CKY provides an explicit
computational recipe to efficiently search (and re-
turn) all possible folding routes. This sets it apart

from existing folding algorithms, which are typi-
cally based on Monte Carlo simulations, and can
only sample one possible trajectory.

Since we believe that there is much scope for
future work in applying statistical parsing tech-
niques to more detailed models of proteins, a sec-
ondary aim of this paper is to provide an introduc-
tion to the research questions that arise in protein
folding to the NLP community.

Proteins are essential components of the cells of
any living organism, and their biological function
(eg. as enzymes that catalyze certain reactions) de-
pends on their three-dimensional structure. How-
ever, genes only specify the linear, sequence of the
amino acids, and the ribosome (the cell’s “pro-
tein factory”) uses this information to assemble
the polypeptide chain. Under “natural” condi-
tions, these polypeptide chains then fold rapidly
and spontaneously into their unique final struc-
tures, or native states. Therefore, protein folding is
often referred to as the second half of the genetic
code, and the ability to predict the native state for
a primary sequence is great practical importance,
eg. in drug design, or in our understanding of the
genome.

Levinthal (1968), who was the first to frame the
folding process as a search problem, showed that
folding cannot be guided by a random, exhaus-
tive search: he argued that a chain of 150 amino
acids has on the order of 10300 possible structures,
but since folding takes only a few seconds, not
more 108 of these structures can be searched. Un-
der the assumption that a better understanding of
the physical folding process will ultimately be re-
quired to design accurate structure prediction tech-
niques, this observation has lead researchers to
try to identify sequence-specific pathways along
which folding may proceed or a general mecha-
nism that makes this process so fast and reliable.

Our aim of understanding the folding process is
different from a number of approaches which have
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used formal grammars to represent the structure
of biological molecules such as RNAs or proteins
(Searls, 2002; Durbin et al., 1998; Chiang, 2004).
These studies have typically focused on a specific
classes of protein folds, and are not generally ap-
plicable yet. Our folding algorithm restricts the
possible order of folding events, but places no ex-
plicit restrictions on the structures it can account
for (other than those imposed by the spatial model
used to represent them, and those that are implied
by the hierarchical nature of the folding process).

2 A brief introduction to protein folding

2.1 Protein structure

The primary structure describes the linear se-
quence of amino acids that are linked via pep-
tide bonds (and form the backbone of the polypep-
tide chain). Each amino acid has one side chain
which branches off the backbone. Proteins con-
tain twenty different kinds of amino acids, which
differ only in the size and chemical properties
of their side-chains. One important distinction
is that between hydrophobic (water-repelling) and
hydrophillic (polar) amino acids.

The secondary structure refers to patterns of lo-
cal structures such as α-helices or β-sheets, which
occur in many different folded structures. These
secondary structure elements often assemble into
larger domains. The tertiary structure represents
the fully folded three-dimensional conformation
of a single-chain protein, and typically consists of
multiple domains. Since proteins in the cell are
surrounded by water, hydrophobic side-chains are
typically inside this structure and in close con-
tact to each other, forming a hydrophobic core,
whereas polar side-chains are more likely to be on
the surface of this structure. This hydrophobic ef-
fect is known to be the main driving force for the
folding process.

Computational models of protein folding often
use a very simplified representation of these struc-
tures. Ultimately, models which explicitly capture
all atoms and their physical interactions are re-
quired to study the folding of real proteins. How-
ever, since such models often require huge compu-
tational resources such as supercomputers or dis-
tributed systems, novel search strategies and other
general properties of the folding problem are usu-
ally first studied with coarse-grained, simplified
representations, such as the HP model (Lau and
Dill, 1989; Dill et al., 1995) used here.

2.2 Folding and thermodynamics

As first shown by Anfinsen (1973), protein folding
is a reversible process: under “denaturing” condi-
tions, proteins typically unfold into a random state
(which still preserves the chain connectivity of the
primary amino acid sequence), and refold again
into their unique native state if the natural folding
conditions are restored. Thus, all the information
that is necessary to determine the folded structure
has to be encoded in the primary sequence. This
is analogous to natural language, where the mean-
ing of sentences such as I drink coffee with milk
vs. I drink coffee with friends is also determined
by their words.

Since folding occurs spontaneously, the native
state has to be the thermodynamically optimal
structure (under folding conditions), ie. the struc-
ture that results in the lowest free energy. The free
energy G � H � TS of a system depends on its en-
ergy H , its entropy S (the amount of disorder in
the system), and the temperature T . A computa-
tional model therefore requires an energy function
φ : Rn � R, which maps n-dimensional vectors that
describe the structure of a polypeptide chain (eg.
in terms of the coordinates of its atoms) to the free
energies of the corresponding structures. The na-
tive state is assumed to be the global minimum of
this function. This is again analogous to statisti-
cal parsing, where the correct analysis is assumed
to be the structure with the highest probability. In
the case of proteins, we can use the laws of physics
to determine the energy function, whereas in lan-
guage, the “energies” have to be estimated from
corpora.1

The energy H of a single protein structure de-
pends essentially on the interactions (contacts) be-
tween side-chains and on the bond angles along
the backbone, whereas the entropy S also depends
on the surrounding solvent (water). It is this im-
pact on S which creates the hydrophobic effect.
For simplicity’s sake most computational models
use an implicit solvent energy function, which cap-
tures the hydrophobic effect by assuming that the
contact energies between hydrophobic side-chains
are particularly favorable. Since bond angles alone
cannot capture the hydrophobic effect (Dill, 1999),
simplified models typically ignore their impact
and represent the energy of a conformation only

1We note, however, that so-called “knowledge-based” or
“statistical potentials”, whose parameters are also estimated
from known structures, are often used as well.
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in terms of the side chain contacts. One par-
ticularly well-known example is the Miyazawa-
Jernigan (1996) energy function, a 20x20 matrix
of contact potentials whose parameters are esti-
mated from the Protein Data Bank, a database of
experimentally verified protein structures. These
simplified energy functions are therefore very sim-
ilar to the bi-lexical dependency models that are
commonly used in statistical parsing.

It is this similarity between inter-residue con-
tacts and word-word dependencies that grammar-
based approaches (Searls, 2002) exploit. The set
of contacts for a given structure can be represented
as a polymer graph, although often only the edges
of this graph are given in the form of a contact map
(a triangular matrix whose entry Cij corresponds
to the contact between the ith and jth residue).
The edges in this graph are inherently undirected.
In α-helices and parallel β-sheets, the edges are
crossing. Although grammars that capture the “de-
pendencies” in specific kinds of protein structures
have been written (Chiang, 2004), it is at present
unclear whether such an approach can be gener-
alized. The difficulty for all approximations to
structural representations (grammar-based or oth-
erwise) lies in accounting for excluded volume or
steric clashes (the fact that no two amino acids can
occupy the same point in space).

The so-called “New View” of protein folding
(Dill and Chan, 1997) assumes that the speed of
the folding process can be explained by the shape
of the energy landscape (ie. the surface of the
energy function for all possible structures of a
given chain). Folding is fastest if the landscape
is funnel-shaped (ie. has no local minima, and
there is a direct downward path from all points to
the native state). If the energy landscape is rugged
(ie. has many local minima) or golf-course shaped
(ie. all structures except for the native state have
the same, high, energy), folding is slow. In the
first case, energetic barriers slow down the fold-
ing process: the chain gets stuck in local minima,
or kinetic traps. Such traps correspond to struc-
tures that contain “incorrect” (non-native) contacts
which have to be broken (thus increasing the en-
ergy) before the native state can be reached. In
the case of a plateau in the landscape, the search
for the native state is slowed down by entropic
barriers, i.e. a situation where a large number of
equivalent structures with the same energy are ac-
cessible. Implicit in the landscape perspective is
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Figure 1: A conformation in the HP model with a
“Greek key” β-sheet (1-17) and α-helix (17-24)

the assumption that folding is a greedy search –
that local moves in the landscape can successfully
identify the global minimum. Not all amino acid
sequences have such landscapes, and in fact, most
random amino acid sequences are unlikely to fold
into a unique structure. This is again similar to
language, where random sequences of words are
also unlikely to form a grammatical sentence.

Computational simulations of the folding pro-
cess are typically based on Monte Carlo or re-
lated techniques. These approaches require an en-
ergy function as well as a “move set” (a set of
rules which describe how one conformation can
be transformed into another). However, since each
individual simulation can only capture the folding
trajectory of a single chain, many runs are typi-
cally required to sample the entire landscape to a
sufficient degree.

2.3 The HP model

The HP model (Lau and Dill, 1989; Dill et al.,
1995) is one of the most simplified protein models.
Here, proteins are short chains that are placed onto
a 2-dimensional square lattice (Figure 1). Each HP
sequence consists of two kinds of monomers, hy-
drophobic (H) and polar (P), and each monomer
is represented as a single bead on a lattice site.
The chain is placed onto the lattice such that each
lattice site is occupied by at most one bead, and
beads that are adjacent in the sequence are on ad-
jacent lattice sites, so that it forms a self-avoiding
walk (SAW) on the lattice. Such lattice models
are commonly used in polymer physics, since they
capture excluded volume effects, and the proper-
ties of such SAWs on different types of lattices are
a well-studied problem in combinatorics.

Each distinct SAW corresponds to one “con-
formation”, or possible structure. The energy of
a conformation is determined by the contacts be-
tween two H monomers i and j that are not adja-
cent in the sequence. Contacts arise if the chain
is in a configuration such that monomers i and j
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Figure 2: Trees describe folding routes. Tree cuts describe the state of the chain at any point in time.

(i � j) are located on adjacent lattice sites. Each
HH-contact contributes � 1 to the energy. The en-
ergy E

�
c � of a conformation c with n HH con-

tacts is therefore � n. We consider only sequences
that have a single lowest-energy conformation (na-
tive state), since these are the most protein-like.
All unique-folding sequences up to a length of
25 monomers and their natives states are known
(Irbäck and Troein, 2002). In our experiments, we
will concentrate on the set of all unique-folding
HP sequences of length 20, of which there are
24,900. These 20-residue chains have 41,889,578
viable conformations on the 2D lattice.

Despite its simplicity, the HP model is com-
monly used to test protein folding algorithms,
since it captures essential physical properties of
proteins such as chain connectivity and the hy-
drophobic effect, and since finding the lowest en-
ergy conformation is an NP-complete problem
(Crescenzi et al., 1998; Berger and Leighton,
1998), as in real proteins.

3 Folding as hierarchical search

3.1 Evidence for hierarchical folding

There is substantial evidence in the experi-
mental literature (starting with Crippen (1978)
and Rose (1979); but see also Baldwin and
Rose (1999a; 1999b)) that the folding process is
guided by a hierarchical search strategy, whereby
folding begins simultaneously and independently
in different parts of the chain, leading initially
to the formation of local structures which either
grow larger, or assemble with other local struc-
ture. Folded protein structures can typically be
recursively decomposed, and in many proteins,
small, contiguous parts of the chain form near-
native structures during early stages of the folding
process. On the theoretical side, Dill et al. (1993)
demonstrate that local contacts are easiest to form
when the chain is unfolded, and facilitate the sub-
sequent formation of less local contacts, leading
to a “zipping” effect, where small, local structures
grow larger before being assembled.

3.2 Folding routes as trees

Folding routes describe how individual chains
move from the unfolded to the native state. If
protein folding is a recursive, parallel process,
as assumed here, folding routes are trees whose
leaf nodes represent substrings of the primary
sequence, and whose root represents the folded
structure of the entire chain (Figure 2). The nodes
in between the leaves and root correspond to chain
segments whose length lies between that of the
shortest initial segments and the final complete
chain. Folding begins independently and simulta-
neously at each of the leaves, and moves toward
the root. Each internal node of a folding route
tree represents a set of partially folded confor-
mations of the corresponding chain segment that
is found by combining conformations of smaller
pieces formed in previous steps.

Figure 2 also shows that the state of the entire
chain at different stages during the folding pro-
cess is given by a horizontal treecut, a set of nodes
whose segments span the entire chain, but do not
overlap.

Because we assume that folding routes are trees,
contacts between two adjacent segments A and B
can only be formed when A and B are combined to
form their parent C. Our assumption also implies
that in a sequence uvw, contacts between v and w
or between v and u have to be formed before or at
the same time as contacts between u and w.

Trees provide a unified representation of the
growth and assembly process assumed by hierar-
chical folding theories: A growth step corresponds
to a local tree in which a non-terminal node and
a leaf node are combined, whereas an assembly
step corresponds to a local tree in which two non-
terminal nodes are combined.

Folding route trees thus play a very different
role from the traditional phrase structure trees
in natural language, since they represent merely
the process by which the desired structure was
formed, and not the structure itself. This is more
akin to the role of syntactic derivations in for-
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malisms such as CCG (Steedman, 2000): in CCG,
syntactic derivation trees do not constitute an au-
tonomous level of representation, but only specify
how the semantic interpretation of a sentence is
constructed. We will see below that proteins, like
sentences in CCG, have a “flexible” constituent
structure, with multiple folding routes leading to
the native state.

4 Protein folding as chart parsing

Here, we show how the CKY algorithm (Kasami,
1965; Younger, 1967) can be adapted to protein
folding in the HP model. Although we use a
simplified lattice model, our technique is suffi-
ciently general to be applicable to other represen-
tations. As in standard CKY, structures for sub-
strings i ��� j are formed from pairs of previously
identified structures for substrings i ����� k and k

�
1 ��� j,

and, as in standard probabilistic CKY, we use a
pruning strategy akin to Viterbi search, and only
retain the lowest energy structures in each cell.

The complexity of standard CKY is O
�
n3 � G � � ,

where n is the length of the input string and � G �
the “size” of the grammar. Since we do not have
a grammar with a fixed set of nonterminals, which
would allow us to compactly represent all possible
structures for a given substring, the constant factor
� G � is replaced by an exponential factor nc, repre-
senting the number of possible conformations of a
chain of length n. Our pruning strategy captures
the physical assumption that only locally optimal
structures are stable enough not to unfold before
further contacts can be made. With a larger set of
amino acids and a corresponding energy function,
a beam search strategy (with threshold pruning)
may be more appropriate. Pruning is an essential
part of our algorithm – without it, it would amount
to exhaustive enumeration, repeated O

�
n3 � times.

The chart Since only HH contacts contribute
to the energy of a conformation, the dimensions
of the chart are determined by the number of H
monomers in the sequence. We segment every
HP sequence into h substrings that contain one H
each (splitting long substrings of Ps in the mid-
dle). For efficiency reasons, non-empty prefixes
or suffixes of P monomers (eg. in sequences of
the form PPPH ��������� HP) may also be split off as
additional substrings (and are then only combined
with the rest of the chain once the substring from
the first to the last H monomer has been analyzed).
These substrings correspond to the leaf nodes in

the folding trees. Other regimes are also conceiv-
able. Since no adjacent H monomers can form a
contact, up to three consecutive Hs may be kept in
the same substring. While this typically leads to
an increase in efficiency, it comes at a slight cost in
accuracy with our current pruning strategy. Long
substrings of Ps could also be treated as separate
substrings in a manner similar to P pre- and suf-
fixes.

Chart items The items in our chart represent
the lowest-energy conformations that are found
for the corresponding substring. Unlike in stan-
dard CKY, each cell contains the full set of struc-
tures for its substring (which leads to the exponen-
tial worst-case behavior observed above). There-
fore, the chart does not need to be unpacked to
obtain the desired output structure. Backpoint-
ers from items in chart � i ��� j � to pairs of items in
chart � i ��� k � and chart � k �

1 ��� j � represent the folding
route trees, and thus record the history of the fold-
ing process. Each item can only have at most j � i
pairs of backpointers, since it can only be con-
structed from one pair of conformations in each
pair of cells.

Initializing the chart The chart is initialized by
filling the cells chart � i ��� i � which correspond to the
ith substring. Since each initial substring has at
most one H, all its conformations are equivalent
(and the size of chart � i ��� i � is thus exponential in
the length of its substring). This exhaustive enu-
meration can be performed off-line.

Filling the chart As in standard CKY, the in-
ternal cells chart � i ��� j � are filled by combining the
entries of cells chart � i ��� k � and chart � k �

1 ��� j � for
i � k � j. Two conformations l � chart � i ��� k � and
r � chart � i ��� k � are combined like two pieces of a
jigsaw puzzle where the only constraint is that two
pieces may not overlap. That is, we append all (ro-
tational and translational) variants of r to any free
site adjacent to the site of l’s last monomer, and
add all resulting viable conformations c (ie. those
where no two monomers occupy the same lattice
site) into chart � i ��� j � .

With our current pruning strategy, only the
lowest-energy conformations in each cell are kept.

CKY terminates when the top cell, chart � 1 ��� n � ,
is filled. It has succeeded if the top cell contains an
item with only one conformation, the native state.
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CSN=4689 CSN=26541

CSN=26818 CSN=544,892CSN=6962

CSN=1,815,790

Figure 3: The amount of search depends on the shape of the ”chart energy landscapes”

Contact maps as node labels We have also de-
veloped a variant of this algorithm where the en-
tries in a cell correspond to contact maps (sets of
HH-contacts), and where each entry corresponds
in turn to the set of conformations that corresponds
to this contact map. Conformations that have the
same contact map are assumed to be physically
equivalent. While the number of possible contact
maps is also exponential in the length of the sub-
string (Vendruscolo et al., 1999), it is obviously
much smaller than the number of actual conforma-
tions. In our current implementation, the amount
of search required is identical in both variants; but
in extending this approach beyond the lattice, it
may be possible to use a more efficient sampling
approach to speed up the combination of confor-
mations in two cells.

5 Results

5.1 Folding accuracy

With our current pruning strategy, CKY finds the
native state of 96.7% of all 24,900 unique-folding
20mers, confirming our hypothesis that the hierar-
chical greedy search that is implemented in CKY
is a viable strategy. With exhaustive search, the
“conformational search number” (CSN), ie. total
number of conformations searched per sequence
(summed over all cells), corresponds on average to
2.5% of all possible conformations for a sequence
of length 20. We have also explored restrictions
where an initial contact is only allowed between
H monomers whose distance along the backbone
is smaller than or equal to a given threshold ∆. For
∆ � 7, accuracy drops slightly to 95.2%, but the
number of searched conformations corresponds to
only 1% of the search space.

5.2 The chart landscape

Since we employ a beam search strategy, all con-
formations that remain in a cell after pruning have
the same energy level. Therefore, CKY identi-
fies the substring or chart energy landscape of
each sequence, a function f

�
i � j � which maps sub-

strings
�
i � j � to their lowest accessible energy level.

Since the energy of a conformation in the HP
model is determined by the number of HH con-
tacts, f

�
i � j � � f

�
i

�

� j
� � for all i

� � i � j � j
�

. That
is, unlike standard energy functions, f has no lo-
cal minima. As shown in figure 3 (where the size
of the cells is adjusted to reflect the length of the
corresponding substrings), the “slope” of f deter-
mines the amount of search required to fold a se-
quence. Sequence that require little search have a
steep funnel, whereas sequence that require a lot
of search have a flat, golf-course like landscape.
HH contacts impoose constraints on the number of
conformations, therefore a cell with lower energy
will also have fewer entries than a cell with higher
energy that spans a string of the same length. This
is analogous to standard energy landscapes (Dill
and Chan, 1997), where a plateau corrresponds to
an entropic barrier, which requires a lot of search.

5.3 The “constituent structure” of proteins

We can extract the set of all folding routes
(all trees which lead to the native state) from
the chart, visualize the ensemble-averaged “con-
stituent structure” of a chain by coloring each cell
in the (adjusted) chart by the posterior probabil-
ity that native routes go through it (here black:p=1
and white:p=0). A probability of one corresponds
to a structure that has to be formed by all routes,
whereas a probability of zero represents a set of
misfolded structures. Misfolding arises if the low-
est energy structures contain non-native (incor-
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Figure 4: CKY identifies the “constituent structures” of proteins, which correspond to their folding routes

rect) contacts. Since these contacts have to be bro-
ken before the native state can be reached, requir-
ing an uphill step in energy, they correspond to en-
ergetic barriers.

Figure 4 shows the “constituent structure” of
the conformation shown in Figure 1, and one of
its corresponding folding routes. Many sequences
show very specific patterns of folding routes, as in
the example given here, where the β-strands 7-10
and 11-16 and the α-helix from 17-24 “grow” onto
the hairpin from 1-5.

A number of proteins are known to form so-
called “foldons” (Maity et al., 2005). These are
substrings of the chain which can be found in their
near-native conformation before the entire chain is
completely folded. In our parsing perspective on
protein folding, these foldons correspond to nodes
that are shared by sufficiently many native routes
that they can be detected experimentally.

6 Conclusions and future work

This paper has demonstrated that an adaptation
of the CKY chart parsing algorithm can be suc-
ccessfully applied to protein folding in the 2D
HP model, a commonly used simplified lattice
model which captures essential physical and com-
putational properties of the real folding process.
Both syntactic parsing and protein folding algo-
rithms search for the globally optimal structure
for a given input string. And any given sentence
has a large number of possible interpretations, just
as any amino acid sequence has an astronomical
number of possible spatial conformations. There-
fore it is not surprising if similar techniques can
be applied to both tasks. In both cases, it seems
to be possible to exploit locally available infor-
mation with a greedy, hierarchical search strategy,
which starts with local, independent searches for
small substrings (to first determine which small
phrases might make sense, or to find partially sta-

ble peptide structures) and then either: (a) ‘grows’
one substring into a larger substring, or (b) ‘as-
sembles’ two substrings together into a larger sub-
string. More interestingly, in the protein folding
case, such recursive hierarchical search strategies,
which imply tree-shaped folding routes, have been
postulated independently for biological and bio-
physical reasons. This may indicate a deeper, nat-
ural connection between these two processes.

Given that hierarchical search strategies for pro-
tein folding have been proposed in the biologi-
cal literature, our primary interest here has been
the question of whether a greedy, hierarchical
search as implemented in CKY is able to iden-
tify the native state of proteins in the HP model.
The research presented here aims to verify these
predictions with an explicit computational model.
Therefore, we were less concerned with improv-
ing efficiency, and more with the properties of this
algorithm, which we consider a baseline method
upon which more sophisticated techniques such as
best-first parsing (Caraballo and Charniak, 1998)
or A

�

search (Klein and Manning, 2003) may well
be able to improve.

We also plan to adapt this technique to other,
more realistic, representations of proteins, and to
longer sequences. For longer sequences, we will
take advantage of the fact that CKY is easily paral-
lelizable, since any operation which combines the
entries of two cells chart � i ��� k � and chart � k �

1 ��� j � is
completely independent of other parts of the chart.

If the routes by which proteins fold really are
trees, a dynamic programming technique such as
CKY is inherently suited to model this process,
since it is the most efficient way to search all pos-
sible trees. This distinguishes it from more estab-
lished techniques such as Monte Carlo, which can
only follow one trajectory at a time, and require
multiple runs to sample the underlying landscape
to a sufficient degree. What CKY by itself does
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not give us is an accurate prediction of the rates
that govern the folding process, including misfold-
ing and unfolding events. However, we believe
that it is possible to obtain this information from
the chart by extracting all tree cuts (which cor-
resond to the states of the chain at different stages
during the folding process) and calculating folding
rates between them.

Our work is only the beginning of a larger re-
search program: eventually we would like to be
able to model the folding process of real pro-
teins. One aim of this paper was therefore to point
out the fundamental similarities between statisti-
cal parsing and protein folding. We believe that
this is a fertile area for future work where other
natural language processing techniques may also
prove to be useful.
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