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Abstract

In this paper we describe a novel dis-
tributed language model forN -best list
re-ranking. The model is based on the
client/server paradigm where each server
hosts a portion of the data and provides
information to the client. This model al-
lows for using an arbitrarily large corpus
in a very efficient way. It also provides
a natural platform for relevance weighting
and selection. We applied this model on
a 2.97 billion-word corpus and re-ranked
theN -best list from Hiero, a state-of-the-
art phrase-based system. Using BLEU as a
metric, the re-ranked translation achieves
a relative improvement of 4.8%, signifi-
cantly better than the model-best transla-
tion.

1 Introduction

Statistical language modeling has been widely
used in natural language processing applications
such as Automatic Speech Recognition (ASR),
Statistical Machine Translation (SMT) (Brown et
al., 1993) and Information Retrieval (IR) (Ponte
and Croft, 1998).

Conventional n-gram language modeling
counts the frequency of all then-grams in a
corpus and calculates the conditional probabilities
of a word given its history ofn − 1 words
P (wi|wi−1

i−n+1). As the corpus size increases,
building a high order language model offline
becomes very expensive if it is still possible
(Goodman, 2000).

In this paper, we describe a new approach of
language modeling using a distributed comput-
ing paradigm. Distributed language modeling can

make use of arbitrarily large training corpora and
provides a natural way for language model adap-
tation.

We applied the distributed LM to the task of re-
ranking theN -best list in statistical machine trans-
lation and achieved significantly better translation
quality when measured by the BLEU metric (Pap-
ineni et al., 2001).

2 N -best list re-ranking

When translating a source language sentencef
into English, the SMT decoder first builds a trans-
lation lattice over the source words by applying the
translation model and then explores the lattice and
searches for an optimal path as the best translation.
The decoder uses different models, such as the
translation model,n-gram language model, fertil-
ity model, and combines multiple model scores to
calculate the objective function value which favors
one translation hypothesis over the other (Och et
al., 2004).

Instead of outputting the top hypothesise(1)

based on the decoder model, the decoder can out-
put N (usuallyN = 1000) alternative hypotheses
{e(r)|r = 1, . . . , N} for one source sentence and
rank them according to their model scores.

Figure 1 shows an example of the output from a
SMT system. In this example, alternative hypoth-
esise(2) is a better translations thane(1) according
to the reference (Ref) although its model score is
lower.

SMT models are not perfect, it is unavoidable
to have a sub-optimal translation output as the
model-best by the decoder. The objective ofN -
best list re-ranking is then to re-rank the trans-
lation hypotheses using features which are not
used during decoding so that better translations
can emerge as “optimal” translations. Our exper-
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f : �, 2001#�)ûI9]Ôâ{/G��

Ref: Since the terrorist attacks on the United States in 2001

e(1): since 200 year , the united states after the terrorist
attacks in the incident

e(2): since 2001 after the incident of the terrorist attacks on
the united states

e(3): since the united states 2001 threats of terrorist attacks
after the incident

e(4): since 2001 the terrorist attacks after the incident

e(5): since 200 year , the united states after the terrorist
attacks in the incident

Figure 1: An example ofN -best list.

iments (section 5.1) have shown that the oracle-
best translation from a typicalN -best list could be
6 to 10 BLEU points better than the model-best
translation.

In this paper we use the distributed language
model on very large data to re-rank theN -best list.

2.1 Sentence likelihood

The goal of a language model is to determine
the probability, or in general the “likelihood” of
a word sequencew1 . . . wm (wm

1 for short) given
some training data. The standard language model-
ing approach breaks the sentence probability down
into:

P (wm
1 ) =

∏

i

P (wi|wi−1
1 ) (1)

Under the Markov or higher order Markov process
assumption that only the closestn− 1 words have
real impact on the choice ofwi, equation 1 is ap-
proximated to:

P (wm
1 ) =

∏

i

P (wi|wi−1
i−n+1) (2)

The probability of a word given its history can be
approximated with the maximum likelihood esti-
mate (MLE) without any smoothing:

P (wi|wi−1
i−n+1) ≈

C(wi
i−n+1)

C(wi−1
i−n+1)

(3)

In addition to the standardn-gram probability
estimation, we propose 3 sentence likelihood met-
rics.

• L0: Number ofn-grams matched.

The simplest metric for sentence likelihood is
to count how manyn-grams in this sentence
can be found in the corpus.

L0(wm
1 ) =

∑
i,j
i≤j

δ(wj
i ) (4)

δ(wj
i ) =

{
1 : C(wj

i ) > 0
0 : C(wj

i ) = 0
(5)

For example,L0 for sentence in figure 2 is 52
because 52n-grams have non-zero counts.

• Ln
1 : Average interpolatedn-gram conditional

probability.

Ln
1 (wm

1 ) =

(
m∏

i=1

n∑

k=1

λkP (wi|wi−1
i−k+1)

) 1
m

(6)

P (wi|wi−1
i−k+1) is approximated from then-

gram counts (Eq. 3) without any smoothing.
λk is the weight fork-gram conditional prob-
ability,

∑
λk = 1.

Ln
1 is similar to the standardn-gram LM

except the probability is averaged over the
words in the sentence to prevent shorter sen-
tences being favored unfairly.

• L2: Sum ofn-gram’s non-compositionality

For each matchedn-gram, we consider all
the possibilities to cut/decompose it into two
shortn-grams, for example “the terrorist at-
tacks on the united states” could be decom-
posed into (“the”, “terrorist attacks on the
united states”) or (“the terrorist”, “attacks
on the united states”), ... , or (“the ter-
rorist attacks on the united”, “states”). For
each cut, calculate the point-wise mutual in-
formation (PMI) between the two shortn-
grams. The one with the minimal PMI
is the most “natural” cut for thisn-gram.
The PMI over the natural cut quantifies the
non-compositionalityInc of an n-gram wj

i .
The higher the value ofInc(w

j
i ) the more

likely wj
i is a meaningful constituent, in other

words, it is less likely thatwj
i is composed

from two shortn-grams just by chance (Ya-
mamoto and Church, 2001).

DefineL2 formally as:

L2(wm
1 ) =

∑
i,j
i≤j

Inc(w
j
i ) (7)
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Inc(w
j
i ) =





min
k

I(wk
i ; wj

k+1) : C(wj
i ) > 0

0 : C(wj
i ) = 0

(8)

I(wk
i ; wj

k+1) = log
P (wj

i )
P (wk

i )P (wj
k+1)

(9)

3 Distributed language model

The fundamental information required to calculate
the likelihood of a sentence is the frequency ofn-
grams in the corpus. In conventional LM train-
ing, all the counts are collected from the corpusD
and saved to disk for probability estimation. When
the size ofD becomes large and/orn is increased
to capture more context, the count file can be too
large to be processed.

Instead of collectingn-gram counts offline, we
indexD using a suffix array (Manber and Myers,
1993) and count the occurrences ofwi

i−n+1 in D
on the fly.

3.1 Calculaten-gram frequency using suffix
array

For a corpusD with N words, locating all the oc-
currences ofwi

i−n+1 takesO(logN ). Zhang and
Vogel (2005) introduce a search algorithm which
locates all them(m + 1)/2 embeddedn-grams in
a sentence ofm words withinO(m · logN ) time.

Figure 2 shows the frequencies of all the embed-
dedn-grams in sentence “since 2001 after the in-
cident of the terrorist attacks on the united states”
matched against a 26 million words corpus. For
example, unigram “after” occurs4.43×104 times,
trigram “after the incident” occurs 106 times. The
longestn-gram that can be matched is the 8-gram
“of the terrorist attacks on the united states” which
occurs 7 times in the corpus.

3.2 Client/Server paradigm

To load the corpus and its suffix array index into
the memory, each word token needs 8 bytes. For
example, if the corpus has 50 million words,
400MB memory is required. For the English1 Gi-
gaWord2 corpus which has 2.7 billion words, the

1Though we used English data for our experiments in this
paper, the approach described here is language independent.

2http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?
catalogId=LDC2005T12

total memory required is 22GB. It is practically
impossible to fit such data into the memory of any
single machine.

To make use of the large amount of data, we
developed a distributed client/server architecture
for language modeling. Client/server is the most
common paradigm of distributed computing at
present (Leopold, 2001). The paradigm describes
an asymmetric relationship between two type of
processes, of which one is the client, and the other
is the server. The server process manages some re-
sources and offers a service which can be used by
other processes. The client is a process that needs
the service in order to accomplish its task. It sends
a request to the server and asks for the execution
of a task that is covered by the service.

We split the large corpusD into d non-
overlapping chunks. One can easily verify that for
anyn-gramwi

i−n+1 the count of its occurrences in
D is the sum of its occurrences in all the chunks,
i.e.,

C(wi
i−n+1)|D =

∑

d

C(wi
i−n+1)|Dd (10)

Each server3 loads one chunk of the corpus with
its suffix array index. The client sends an English
sentencew1 . . . wm to each of the servers and re-
quests for the count information of all then-grams
in the sentence. The client collects the count infor-
mation from all the servers, sums up the counts for
eachn-gram and then calculates the likelihood of
the sentence.

The client communicates with the servers via
TCP/IP sockets. In our experiments, we used
150 servers running on 26 computers to serve one
client. Multiple clients can be served at the same
time if needed. The process of collecting counts
and calculating the sentence probabilities takes
about 1 to 2ms for each English sentence (average
length 23.5 words). With this architecture, we can
easily make use of larger corpora by adding addi-
tional data servers. In our experiments, we used all
the 2.7 billion word data in the English Gigaword
corpus without any technical difficulties.

3A server is a special program that provides services to
client processes. It runs on a physical computer but the con-
cept of server should not be confused with the actual machine
that runs it. In practice, one computer usually hosts multiple
servers at the same time.
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n since 2001 after the incident of the terrorist attacks on the united states

1 2.19×104 7559 4.43×104 1.67×106 2989 6.9×105 1.67×106 6160 9278 2.7×105 1.67×106 5.1×104 3.78×104

2 165 105 1.19×104 1892 34 2.07×105 807 1398 1656 5.64×104 3.72×104 3.29×104

3 6 56 106 6 3 162 181 216 545 605 2.58×104

4 0 0 0 1 0 35 67 111 239 424
5 0 0 0 0 0 15 34 77 232
6 0 0 0 0 0 10 23 76
7 0 0 0 0 0 7 23
8 0 0 0 0 0 7

Figure 2: Frequencies of all the embeddedn-grams in sentence “since 2001 after the incident of the
terrorist attacks on the united states.”

4 “More data is better data” or
“Relevant data is better data”

Although statistical systems usually improve with
more data, performance can decrease if additional
data does not fit the test data. There have been
debates in the data-driven NLP community as to
whether “more data is better data” or “relevant
data is better data”. ForN -best list re-ranking, the
question becomes: “should we use all the data to
re-rank the hypotheses for one source sentence, or
select some corpus chunks that are believed to be
relevant to this sentence?”

Various relevance measures are proposed in
(Iyer and Ostendorf, 1999) including content-
based relevance criteria and style-based criteria. In
this paper, we use a very simple relevance metric.
Define corporaDd’s relevance to a source sentence
ft as:

R(Dd, ft) =
N∑

r=1

L0(e
(r)
t )|Dd (11)

R(Dd, ft) estimates how well a corpusDd can
cover then-grams in theN -best list of a source
sentence. The higher the coverage, the more rele-
vantDd is.

In the distributed LM architecture, the client
first sendsN translations offt to all the servers.
From the returnedn-gram matching information,
client calculatesR(Dd, ft) for each server, and
choose the most relevant (e.g., 20) servers forft.
The n-gram counts returned from these relevant
servers are summed up for calculating the likeli-
hood offt. One could also assign weights to then-
gram counts returned from different servers during
the summation so that the relevant data has more
impact than the less-relevant ones.

5 Experiments

We used theN -best list generated by the Hiero
SMT system (Chiang, 2005). Hiero is a statis-
tical phrase-based translation model that uses hi-
erarchical phrases. The decoder uses a trigram

language model trained with modified Kneser-Ney
smoothing (Kneser and Ney, 1995) on a 200 mil-
lion words corpus. The 1000-best list was gen-
erated on 919 sentences from the MT03 Chinese-
English evaluation set.

All the data from the English Gigaword corpus
plus the English side of the Chinese-English bilin-
gual data available from LDC are used. The 2.97
billion words data is split into 150 chunks, each
has about 20 million words. The original order
is kept so that each chunk contains data from the
same news source and a certain period of time.
For example, chunkXinhua2003has all the Xin-
hua News data from year 2003 andNYT9499038
has the last 20 million words from the New York
Times 1994-1999 corpus. One could split the
data into larger(smaller) chunks which will require
less(more) servers. We choose 20 million words as
the size for each chunk because it can be loaded by
our smallest machine and it is a reasonable granu-
larity for selection.

In total, 150 corpus information servers run on
26 machines connected by the standard Ethernet
LAN. One client sends each English hypothesis
translations to all 150 servers and uses the returned
information to re-rank. The whole process takes
about 600 seconds to finish.

We use BLEU scores to measure the transla-
tion accuracy. A bootstrapping method is used to
calculate the 95% confidence intervals for BLEU
(Koehn, 2004; Zhang and Vogel, 2004).

5.1 Oracle score of theN -best list

Because of thespurious ambiguity, there are only
24,612 unique hypotheses in the1000-best list, on
average 27 per source sentence. This limits the po-
tential of N -best re-ranking.Spurious ambiguity
is created by the decoder where two hypotheses
generated from different decoding path are con-
sidered different even though they have identical
word sequences. For example, “the terrorist at-
tacks on the united states” could be the output of
decoding path [the terrorist attacks][on the united
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states] and [the terrorist attacks on] [the united
states].

We first calculate the oracle score from theN -
best list to verify that there are alternative hypothe-
ses better than the model-best translation. The or-
acle best translations are created by selecting the
hypothesis which has the highest sentence BLEU
score for each source sentence. Yet a critical prob-
lem with BLEU score is that it is a function of
the entire test set and does not give meaningful
scores for single sentences. We followed the ap-
proximation described in (Collins et al., 2005) to
get around this problem. Given a test set withT
sentences,N hypotheses are generated for each
source sentenceft. Denotee(r)

t as ther-th ranked

hypothesis forft. e(1)
t is the model-best hypoth-

esis for this sentence. The baseline BLEU scores
are calculated based on the model-best translation
set{e(1)

t |t = 1, . . . , T}.
Define the BLEU sentence-level gain fore(r)

t

as:

GBLEUe(r)
t =

BLEU{e(1)
1 , e(1)

2 , . . . , e(r)
t , . . . , e(r)

T }
− BLEU{e(1)

1 , e(1)
2 , . . . , e(1)

t , . . . , e(r)
T }

GBLEUe(r)
t calculates the gain if we switch the

model-best hypothesise(1)
t usinge(r)

t for sentence
ft and keep the translations for the rest of the test
set untouched.

With the estimated sentence level gain for each
hypothesis, we can construct the oracle best trans-
lation set by selecting the hypotheses with the
highest BLEU gain for each sentence. Oracle best

BLEU translation set is:{e(r∗t )
t |t = 1, . . . , T}

wherer∗t = arg maxr GBLEUe(r)
t .

Model-best

Score Confidence Interval
Oracle

BLEU 31.44 [30.49, 32.33] 37.48

Table 1: BLEU scores for the model-best and
oracle-best translations.

Table 1 shows the BLEU score of the approxi-
mated oracle best translation. The oracle score is
7 points higher than the model-best scores even
though there are only 27 unique hypotheses for

each sentence on average. This confirms our ob-
servation that there are indeed better translations
in theN -best list.

5.2 Training standard n-gram LM on large
data for comparison

Besides comparing the distributed language model
re-ranked translations with the model-best transla-
tions, we also want to compare the distributed LM
with the the standard3-gram and4-gram language
models on theN -best list re-ranking task.

Training a standardn-gram model for a 2.9 bil-
lion words corpora is much more complicated and
tedious than setting up the distributed LM. Be-
cause of the huge size of the corpora, we could
only manage to train a test-set specificn-gram LM
for this experiment.

First, we split the corpora into smaller chunks
and generaten-gram count files for each chunk.
Each count file is then sub-sampled to entries
where all the words are listed in the vocabulary
of theN -best list (5,522 word types). We merge
all the sub-sampled count files into one and train
the standard language model based on it.

We manage to train a3-gram LM using the
2.97 billion-word corpus. Resulting LM requires
2.3GB memory to be loaded for the re-ranking ex-
periment.

A 4-gram LM for thisN -best list is of 13 GB
in size and can not be fit into the memory. We
split theN -best list into 9 parts to reduce the vo-
cabulary size of each subN -best list to be around
1000 words. The4-gram LM tailored for each sub
N -best list is around 1.5 to 2 GB in size.

Training higher order standardn-gram LMs
with this method requires even more partitions of
theN -best list to get smaller vocabularies. When
the vocabulary becomes too small, the smoothing
could fail and results in unreliable LM probabili-
ties.

Adapting the standardn-gram LM for each in-
dividual source sentence is almost infeasible given
our limited computing resources. Thus we do not
have equivalentn-gram LMs to be compared with
the distributed LM for conditions where the most
relevant data chunks are used to re-rank theN -best
list for a particular source sentence.

5.3 Results

Table 2 lists results of the re-ranking experiments
under different conditions. The re-ranked trans-
lation improved the BLEU score from 31.44 to
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32.64, significantly better than the model-best
translation.

Different metrics are used under the same data
situation for comparison.L0, though extremely
simple, gives quite nice results onN -best list re-
ranking. With only one corpus chunk (the most
relevant one) for each source sentence,L0 im-
proved the BLEU score to 32.22. We suspect that
L0 works well because it is inline with the nature
of BLEU score. BLEU measures the similarity be-
tween the translation hypothesis and human refer-
ence by counting how manyn-grams in MT can
be found in the references.

Instead of assigning weights 1 to all the
matchedn-grams inL0, L2 weights eachn-gram
by its non-compositionality. For all data condi-
tions,L2 consistently gives the best results.

Metric familyL1 is close to the standardn-gram
LM probability estimation. Because no smoothing
is used,L3

1 performance (32.00) is slightly worse
than the standard3-gram LM result (32.22). On
the other hand, increasing the length of the history
in L1 generally improves the performance.

Figure 3 shows the BLEU score of the re-ranked
translation when using different numbers of rele-
vant data chunks for each sentence. The selected
data chunks may differ for each sentences. For
example, the 2 most relevant corpora for sentence
1 areXinhua2002andXinhua2003while for sen-
tence 2APW2003AandNYT2002Dare more rel-
evant. When we use the most relevant data chunk
(about 20 million words) to re-rank theN -best list,
36 chunks of data will be used at least once for
919 different sentences, which accounts for about
720 million words in total. Thus thex-axis in fig-
ure 3 should not be interpreted as the total amount
of data used but the number of the most relevant
corpora used for each sentence.

All three metrics in figure 3 show that using
all data together (150 chunks, 2.97 billion words)
does not give better discriminative powers than us-
ing only some relevant chunks. This supports our
argument in section 4 that relevance selection is
helpful in N -best list re-ranking. In some cases
the re-rankedN -best list has a higher BLEU score
after adding a supposedly “less-relevant” corpus
chunk and a lower BLEU score after adding a
“more-relevant” chunk. This indicates that the rel-
evance measurement (Eq. 11) is not fully reflect-
ing the real “relevance” of a data chunk for a sen-
tence. With a better relevance measurement one
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Figure 3: BLEU score of the re-ranked best hy-
pothesis vs. the number of the most relevant cor-
pus chunks used to re-rank then-best list for each
sentences.L0: number ofn-grams matched;L1:
average interpolatedn-gram conditional probabil-
ity; L2: sum ofn-grams’ non-compositionality.

would expect to see the curves in figure 3 to be
much smoother.

6 Related work and discussion

Yamamoto and Church (2001) used suffix arrays
to compute the frequency and location of ann-
gram in a corpus. The frequencies are used to find
“interesting” substrings which have high mutual
information.

Soricut et al. (2002) build a Finite State Ac-
ceptor (FSA) to compactly represent all possible
English translations of a source sentence accord-
ing to the translation model. All sentences in a
big monolingual English corpus are then scanned
by this FSA and those accepted by the FSA are
considered as possible translations for the source
sentence. The corpus is split into hundreds of
chunks for parallel processing. All the sentences
in one chunk are scanned by the FSA on one pro-
cessor. Matched sentences from all chunks are
then used together as possible translations. The
assumption of this work that possible translations
of a source sentence can be found as exact match
in a big monolingual corpus is weak even for very
large corpus. This method can easily fail to find
any possible translation and return zero proposed
translations.

Kirchhoff and Yang (2005) used a factored3-
gram model and a4-gram LM (modified KN
smoothing) together with seven system scores to
re-rank an SMTN -best. They improved the
translation quality of their best baseline (Spanish-
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# of Relevant Chunks per. Sent 1 2 5 10 20 150

3-gram KN 32.22 32.08
4-gram KN 32.22 32.53

L0 32.27 32.38 32.40 32.47 32.51 32.48

L3
1 32.00 32.14 32.14 32.15 32.16

L4
1 32.18 32.36 32.28 32.44 32.41

L5
1 32.21 32.33 32.35 32.41 32.37

L6
1 32.19 32.22 32.37 32.45 32.40 32.41

L7
1 32.22 32.29 32.37 32.44 32.40

L2 32.29 32.52 32.61 32.55 32.64 32.56

Table 2: BLEU scores of the re-ranked translations. Baseline score = 31.44

English) from BLEU 30.5 to BLEU 31.0.
Iyer and Ostendorf (1999) select and weight

data to train language modeling for ASR. The data
is selected based on its relevance for a topic or the
similarity to data known to be in the same domain
as the test data. Each additional document is clas-
sified to be in-domain or out-of-domain accord-
ing to cosine distance with TF-IDF term weights,
POS-tag LM and a 3-gram word LM.n-gram
counts from the in-domain and the additionally se-
lected out-of-domain data are then combined with
an weighting factor. The combined counts are
used to estimate a LM with standard smoothing.

Hildebrand et al. (2005) use information re-
trieval to select relevant data to train adapted trans-
lation and language models for an SMT system.

Si et al. (2002) use unigram distribution simi-
larity to select the document collection which is
most relevant to the query documents. Their work
is mainly focused on information retrieval appli-
cation.

7 Conclusion and future work

In this paper, we presented a novel distributed
language modeling solution. The distributed LM
is capable of using an arbitrarily large corpus
to estimate then-gram probability for arbitrarily
long histories. We applied the distributed lan-
guage model toN -best re-ranking and improved
the translation quality by 4.8% when evaluated by
the BLEU metric. The distributed LM provides a
flexible architecture for relevance selection, which
makes it possible to select data for each individual
test sentence. Our experiments have shown that
relevant data has better discriminative power than
using all the data.

We will investigate different relevance weight-

ing schemes to better combinen-gram statistics
from different data sources. We are planning to
integrate the distributed LM in the statistical ma-
chine translation decoder in the near future.
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