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Abstract

Discriminative learning methods are
widely used in natural language process-
ing. These methods work best when their
training and test data are drawn from the
same distribution. For many NLP tasks,
however, we are confronted with new
domains in which labeled data is scarce
or non-existent. In such cases, we seek
to adapt existing models from a resource-
rich source domain to a resource-poor
target domain. We introduce structural
correspondence learning to automatically
induce correspondences among features
from different domains. We test our tech-
nique on part of speech tagging and show
performance gains for varying amounts
of source and target training data, as well
as improvements in target domain parsing
accuracy using our improved tagger.

1 Introduction

Discriminative learning methods are ubiquitous in
natural language processing. Discriminative tag-
gers and chunkers have been the state-of-the-art
for more than a decade (Ratnaparkhi, 1996; Sha
and Pereira, 2003). Furthermore, end-to-end sys-
tems like speech recognizers (Roark et al., 2004)
and automatic translators (Och, 2003) use increas-
ingly sophisticated discriminative models, which
generalize well to new data that is drawn from the
same distribution as the training data.

However, in many situations we may have a
source domain with plentiful labeled training data,
but we need to process material from a target do-
main with a different distribution from the source
domain and no labeled data. In such cases, we
must take steps to adapt a model trained on the
source domain for use in the target domain (Roark
and Bacchiani, 2003; Florian et al., 2004; Chelba

and Acero, 2004; Ando, 2004; Lease and Char-
niak, 2005; Daumé III and Marcu, 2006). This
work focuses on using unlabeled data from both
the source and target domains to learn a common
feature representation that is meaningful across
both domains. We hypothesize that a discrimi-
native model trained in the source domain using
this common feature representation will general-
ize better to the target domain.

This representation is learned using a method
we call structural correspondence learning (SCL).
The key idea of SCL is to identify correspon-
dences among features from different domains by
modeling their correlations with pivot features.
Pivot features are features which behave in the
same way for discriminative learning in both do-
mains. Non-pivot features from different domains
which are correlated with many of the same pivot
features are assumed to correspond, and we treat
them similarly in a discriminative learner.

Even on the unlabeled data, the co-occurrence
statistics of pivot and non-pivot features are likely
to be sparse, and we must model them in a com-
pact way. There are many choices for modeling
co-occurrence data (Brown et al., 1992; Pereira
et al., 1993; Blei et al., 2003). In this work we
choose to use the technique of structural learn-
ing (Ando and Zhang, 2005a; Ando and Zhang,
2005b). Structural learning models the correla-
tions which are most useful for semi-supervised
learning. We demonstrate how to adapt it for trans-
fer learning, and consequently the structural part
of structural correspondence learning is borrowed
from it.1

SCL is a general technique, which one can ap-
ply to feature based classifiers for any task. Here,

1Structural learning is different from learning with struc-
tured outputs, a common paradigm for discriminative nat-
ural language processing models. To avoid terminologi-
cal confusion, we refer throughout the paper to a specific
structural learning method, alternating structural optimiza-
tion (ASO) (Ando and Zhang, 2005a).
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(a) Wall Street Journal
DT JJ VBZ DT NN IN DT JJ NN
The clash is a sign of a new toughness
CC NN IN NNP POS JJ JJ NN .
and divisiveness in Japan ’s once-cozy financial circles .

(b) MEDLINE
DT JJ VBN NNS IN DT NN NNS VBP
The oncogenic mutated forms of the ras proteins are
RB JJ CC VBP IN JJ NN NN .

constitutively active and interfere with normal signal transduction .

Figure 1: Part of speech-tagged sentences from both corpora

we investigate its use in part of speech (PoS) tag-
ging (Ratnaparkhi, 1996; Toutanova et al., 2003).
While PoS tagging has been heavily studied, many
domains lack appropriate training corpora for PoS
tagging. Nevertheless, PoS tagging is an impor-
tant stage in pipelined language processing sys-
tems, from information extractors to speech syn-
thesizers. We show how to use SCL to transfer a
PoS tagger from the Wall Street Journal (financial
news) to MEDLINE (biomedical abstracts), which
use very different vocabularies, and we demon-
strate not only improved PoS accuracy but also
improved end-to-end parsing accuracy while using
the improved tagger.

An important but rarely-explored setting in do-
main adaptation is when we have no labeled
training data for the target domain. We first
demonstrate that in this situation SCL significantly
improves performance over both supervised and
semi-supervised taggers. In the case when some
in-domain labeled training data is available, we
show how to use SCL together with the classifier
combination techniques of Florian et al. (2004) to
achieve even greater performance.

In the next section, we describe a motivating
example involving financial news and biomedical
data. Section 3 describes the structural correspon-
dence learning algorithm. Sections 6 and 7 report
results on adapting from the Wall Street Journal to
MEDLINE. We discuss related work on domain
adaptation in section 8 and conclude in section 9.

2 A Motivating Example

Figure 1 shows two PoS-tagged sentences, one
each from the Wall Street Journal (hereafter WSJ)
and MEDLINE. We chose these sentences for two
reasons. First, we wish to visually emphasize the
difference between the two domains. The vocab-
ularies differ significantly, and PoS taggers suf-
fer accordingly. Second, we want to focus on the

(a) An ambiguous instance

JJ vs. NN
with normal signal transduction

(b) MEDLINE occurrences of
signal, together with pivot
features

the signal required to
stimulatory signal from
essential signal for

(c) Corresponding WSJ
words, together with pivot
features

of investment required
of buyouts from buyers
to jail for violating

Figure 2: Correcting an incorrect biomedical tag.
Corresponding words are in bold, and pivot fea-
tures are italicized

phrase “with normal signal transduction” from the
MEDLINE sentence, depicted in Figure 2(a). The
word “signal” in this sentence is a noun, but a tag-
ger trained on the WSJ incorrectly classifies it as
an adjective. We introduce the notion of pivot fea-
tures. Pivot features are features which occur fre-
quently in the two domains and behave similarly
in both. Figure 2(b) shows some pivot features
that occur together with the word “signal” in our
biomedical unlabeled data. In this case our pivot
features are all of type <the token on the
right>. Note that “signal” is unambiguously a
noun in these contexts. Adjectives rarely precede
past tense verbs such as “required” or prepositions
such as “from” and “for”.

We now search for occurrences of the pivot fea-
tures in the WSJ. Figure 2(c) shows some words
that occur together with the pivot features in the
WSJ unlabeled data. Note that “investment”,
“buy-outs”, and “jail” are all common nouns in the
financial domain. Furthermore, since we have la-
beled WSJ data, we expect to be able to label at
least some of these nouns correctly.

This example captures the intuition behind
structural correspondence learning. We want to
use pivot features from our unlabeled data to put
domain-specific words in correspondence. That is,
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Input: labeled source data {(xt, yt)
T
t=1},

unlabeled data from both domains {xj}

Output: predictor f : X → Y

1. Choose m pivot features. Create m binary
prediction problems, p`(x), ` = 1 . . . m

2. For ` = 1 to m

ŵ` = argmin
w

“

P

j
L(w · xj , p`(xj))+

λ||w||2
”

end

3. W = [ŵ1| . . . |ŵm], [U D V T ] = SVD(W ),
θ = UT

[1:h,:]

4. Return f , a predictor trained

on

(

„»

xt

θxi

–

, yt

«T

t=1

)

Figure 3: SCL Algorithm

we want the pivot features to model the fact that in
the biomedical domain, the word signal behaves
similarly to the words investments, buyouts and
jail in the financial news domain. In practice, we
use this technique to find correspondences among
all features, not just word features.

3 Structural Correspondence Learning

Structural correspondence learning involves a
source domain and a target domain. Both domains
have ample unlabeled data, but only the source do-
main has labeled training data. We refer to the task
for which we have labeled training data as the su-
pervised task. In our experiments, the supervised
task is part of speech tagging. We require that the
input x in both domains be a vector of binary fea-
tures from a finite feature space. The first step of
SCL is to define a set of pivot features on the unla-
beled data from both domains. We then use these
pivot features to learn a mapping θ from the orig-
inal feature spaces of both domains to a shared,
low-dimensional real-valued feature space. A high
inner product in this new space indicates a high de-
gree of correspondence.

During supervised task training, we use both
the transformed and original features from the
source domain. During supervised task testing, we
use the both the transformed and original features
from the target domain. If we learned a good map-
ping θ, then the classifier we learn on the source
domain will also be effective on the target domain.
The SCL algorithm is given in Figure 3, and the
remainder of this section describes it in detail.

3.1 Pivot Features

Pivot features should occur frequently in the un-
labeled data of both domains, since we must esti-
mate their covariance with non-pivot features ac-
curately, but they must also be diverse enough
to adequately characterize the nuances of the su-
pervised task. A good example of this tradeoff
are determiners in PoS tagging. Determiners are
good pivot features, since they occur frequently
in any domain of written English, but choosing
only determiners will not help us to discriminate
between nouns and adjectives. Pivot features cor-
respond to the auxiliary problems of Ando and
Zhang (2005a).

In section 2, we showed example pivot fea-
tures of type <the token on the right>.
We also use pivot features of type <the token
on the left> and <the token in the
middle>. In practice there are many thousands
of pivot features, corresponding to instantiations
of these three types for frequent words in both do-
mains. We choose m pivot features, which we in-
dex with `.

3.2 Pivot Predictors

From each pivot feature we create a binary clas-
sification problem of the form “Does pivot fea-
ture ` occur in this instance?”. One such ex-
ample is “Is <the token on the right>
required?” These binary classification problems
can be trained from the unlabeled data, since they
merely represent properties of the input. If we rep-
resent our features as a binary vector x, we can
solve these problems using m linear predictors.

f`(x) = sgn(ŵ` · x), ` = 1 . . . m

Note that these predictors operate on the original
feature space. This step is shown in line 2 of Fig-
ure 3. Here L(p, y) is a real-valued loss func-
tion for binary classification. We follow Ando and
Zhang (2005a) and use the modified Huber loss.

Since each instance contains features which are
totally predictive of the pivot feature (the feature
itself), we never use these features when making
the binary prediction. That is, we do not use any
feature derived from the right word when solving
a right token pivot predictor.

The pivot predictors are the key element in SCL.
The weight vectors ŵ` encode the covariance of
the non-pivot features with the pivot features. If
the weight given to the z’th feature by the `’th
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pivot predictor is positive, then feature z is posi-
tively correlated with pivot feature `. Since pivot
features occur frequently in both domains, we ex-
pect non-pivot features from both domains to be
correlated with them. If two non-pivot features are
correlated in the same way with many of the same
pivot features, then they have a high degree of cor-
respondence. Finally, observe that ŵ` is a linear
projection of the original feature space onto R.

3.3 Singular Value Decomposition

Since each pivot predictor is a projection onto R,
we could create m new real-valued features, one
for each pivot. For both computational and statis-
tical reasons, though, we follow Ando and Zhang
(2005a) and compute a low-dimensional linear ap-
proximation to the pivot predictor space. Let W

be the matrix whose columns are the pivot pre-
dictor weight vectors. Now let W = UDV T be
the singular value decomposition of W , so that
θ = UT

[1:h,:] is the matrix whose rows are the top
left singular vectors of W .

The rows of θ are the principal pivot predictors,
which capture the variance of the pivot predictor
space as best as possible in h dimensions. Further-
more, θ is a projection from the original feature
space onto R

h. That is, θx is the desired mapping
to the (low dimensional) shared feature represen-
tation. This is step 3 of Figure 3.

3.4 Supervised Training and Inference

To perform inference and learning for the super-
vised task, we simply augment the original fea-
ture vector with features obtained by applying the
mapping θ. We then use a standard discrimina-
tive learner on the augmented feature vector. For
training instance t, the augmented feature vector
will contain all the original features xt plus the
new shared features θxt. If we have designed the
pivots well, then θ should encode correspondences
among features from different domains which are
important for the supervised task, and the classi-
fier we train using these new features on the source
domain will perform well on the target domain.

4 Model Choices

Structural correspondence learning uses the tech-
niques of alternating structural optimization
(ASO) to learn the correlations among pivot and
non-pivot features. Ando and Zhang (2005a) de-
scribe several free paramters and extensions to

ASO, and we briefly address our choices for these
here. We set h, the dimensionality of our low-rank
representation to be 25. As in Ando and Zhang
(2005a), we observed that setting h between 20
and 100 did not change results significantly, and a
lower dimensionality translated to faster run-time.
We also implemented both of the extensions de-
scribed in Ando and Zhang (2005a). The first is
to only use positive entries in the pivot predictor
weight vectors to compute the SVD. This yields
a sparse representation which saves both time and
space, and it also performs better. The second is to
compute block SVDs of the matrix W , where one
block corresponds to one feature type. We used
the same 58 feature types as Ratnaparkhi (1996).
This gave us a total of 1450 projection features for
both semisupervised ASO and SCL.

We found it necessary to make a change to the
ASO algorithm as described in Ando and Zhang
(2005a). We rescale the projection features to al-
low them to receive more weight from a regular-
ized discriminative learner. Without any rescaling,
we were not able to reproduce the original ASO
results. The rescaling parameter is a single num-
ber, and we choose it using heldout data from our
source domain. In all our experiments, we rescale
our projection features to have average L1 norm on
the training set five times that of the binary-valued
features.

Finally, we also make one more change to make
optimization faster. We select only half of the
ASO features for use in the final model. This
is done by running a few iterations of stochas-
tic gradient descent on the PoS tagging problem,
then choosing the features with the largest weight-
variance across the different labels. This cut in
half training time and marginally improved perfor-
mance in all our experiments.

5 Data Sets and Supervised Tagger

5.1 Source Domain: WSJ

We used sections 02-21 of the Penn Treebank
(Marcus et al., 1993) for training. This resulted in
39,832 training sentences. For the unlabeled data,
we used 100,000 sentences from a 1988 subset of
the WSJ.

5.2 Target Domain: Biomedical Text

For unlabeled data we used 200,000 sentences that
were chosen by searching MEDLINE for abstracts
pertaining to cancer, in particular genomic varia-
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company

transaction

investors

officials yourpretty

short-term

political

receptors mutation

assays

lesions functional

transientneuronal

metastatic

WSJ Only

MEDLINE Only

Figure 4: An example projection of word features onto R. Words on the left (negative valued) behave
similarly to each other for classification, but differently from words on the right (positive valued). The
projection distinguishes nouns from adjectives and determiners in both domains.

tions and mutations. For labeled training and test-
ing purposes we use 1061 sentences that have been
annotated by humans as part of the Penn BioIE
project (PennBioIE, 2005). We use the same 561-
sentence test set in all our experiments. The part-
of-speech tag set for this data is a superset of
the Penn Treebank’s including the two new tags
HYPH (for hyphens) and AFX (for common post-
modifiers of biomedical entities such as genes).
These tags were introduced due to the importance
of hyphenated entities in biomedical text, and are
used for 1.8% of the words in the test set. Any
tagger trained only on WSJ text will automatically
predict wrong tags for those words.

5.3 Supervised Tagger

Since SCL is really a method for inducing a set
of cross-domain features, we are free to choose
any feature-based classifier to use them. For
our experiments we use a version of the discrim-
inative online large-margin learning algorithm
MIRA (Crammer et al., 2006). MIRA learns and
outputs a linear classification score, s(x,y;w) =
w · f(x,y), where the feature representation f can
contain arbitrary features of the input, including
the correspondence features described earlier. In
particular, MIRA aims to learn weights so that
the score of correct output, yt, for input xt is
separated from the highest scoring incorrect out-
puts2, with a margin proportional to their Ham-
ming losses. MIRA has been used successfully for
both sequence analysis (McDonald et al., 2005a)
and dependency parsing (McDonald et al., 2005b).

As with any structured predictor, we need to
factor the output space to make inference tractable.
We use a first-order Markov factorization, allow-
ing for an efficient Viterbi inference procedure.

2We fix the number of high scoring incorrect outputs to 5.

6 Visualizing θ

In section 2 we claimed that good representations
should encode correspondences between words
like “signal” from MEDLINE and “investment”
from the WSJ. Recall that the rows of θ are pro-
jections from the original feature space onto the
real line. Here we examine word features under
these projections. Figure 4 shows a row from
the matrix θ. Applying this projection to a word
gives a real value on the horizontal dashed line
axis. The words below the horizontal axis occur
only in the WSJ. The words above the axis occur
only in MEDLINE. The verticle line in the mid-
dle represents the value zero. Ticks to the left or
right indicate relative positive or negative values
for a word under this projection. This projection
discriminates between nouns (negative) and adjec-
tives (positive). A tagger which gives high pos-
itive weight to the features induced by applying
this projection will be able to discriminate among
the associated classes of biomedical words, even
when it has never observed the words explicitly in
the WSJ source training set.

7 Empirical Results

All the results we present in this section use the
MIRA tagger from Section 5.3. The ASO and
structural correspondence results also use projec-
tion features learned using ASO and SCL. Sec-
tion 7.1 presents results comparing structural cor-
respondence learning with the supervised baseline
and ASO in the case where we have no labeled
data in the target domain. Section 7.2 gives results
for the case where we have some limited data in
the target domain. In this case, we use classifiers
as features as described in Florian et al. (2004).
Finally, we show in Section 7.3 that our SCL PoS
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(b) Accuracy on 561-sentence test set
Words

Model All Unknown
Ratnaparkhi (1996) 87.2 65.2

supervised 87.9 68.4
semi-ASO 88.4 70.9

SCL 88.9 72.0

(c) Statistical Significance (McNemar’s)
for all words

Null Hypothesis p-value
semi-ASO vs. super 0.0015

SCL vs. super 2.1 × 10−12

SCL vs. semi-ASO 0.0003

Figure 5: PoS tagging results with no target labeled training data
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(b) 500 target domain training sentences
Model Testing Accuracy

nosource 94.5

1k-super 94.5
1k-SCL 95.0

40k-super 95.6
40k-SCL 96.1

(c) McNemar’s Test (500 training sentences)
Null Hypothesis p-value

1k-super vs. nosource 0.732

1k-SCL vs. 1k-super 0.0003

40k-super vs. nosource 1.9 × 10−12

40k-SCL vs. 40k-super 6.5 × 10−7

Figure 6: PoS tagging results with no target labeled training data

tagger improves the performance of a dependency
parser on the target domain.

7.1 No Target Labeled Training Data

For the results in this section, we trained a
structural correspondence learner with 100,000
sentences of unlabeled data from the WSJ and
100,000 sentences of unlabeled biomedical data.
We use as pivot features words that occur more
than 50 times in both domains. The supervised
baseline does not use unlabeled data. The ASO
baseline is an implementation of Ando and Zhang
(2005b). It uses 200,000 sentences of unlabeled
MEDLINE data but no unlabeled WSJ data. For
ASO we used as auxiliary problems words that oc-
cur more than 500 times in the MEDLINE unla-
beled data.

Figure 5(a) plots the accuracies of the three
models with varying amounts of WSJ training
data. With one hundred sentences of training
data, structural correspondence learning gives a
19.1% relative reduction in error over the super-
vised baseline, and it consistently outperforms
both baseline models. Figure 5(b) gives results
for 40,000 sentences, and Figure 5(c) shows cor-
responding significance tests, with p < 0.05 be-
ing significant. We use a McNemar paired test for
labeling disagreements (Gillick and Cox, 1989).
Even when we use all the WSJ training data avail-
able, the SCL model significantly improves accu-
racy over both the supervised and ASO baselines.

The second column of Figure 5(b) gives un-
known word accuracies on the biomedical data.
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Of thirteen thousand test instances, approximately
three thousand were unknown. For unknown
words, SCL gives a relative reduction in error of
19.5% over Ratnaparkhi (1996), even with 40,000
sentences of source domain training data.

7.2 Some Target Labeled Training Data

In this section we give results for small amounts of
target domain training data. In this case, we make
use of the out-of-domain data by using features of
the source domain tagger’s predictions in training
and testing the target domain tagger (Florian et al.,
2004). Though other methods for incorporating
small amounts of training data in the target domain
were available, such as those proposed by Chelba
and Acero (2004) and by Daumé III and Marcu
(2006), we chose this method for its simplicity and
consistently good performance. We use as features
the current predicted tag and all tag bigrams in a
5-token window around the current token.

Figure 6(a) plots tagging accuracy for varying
amounts of MEDLINE training data. The two
horizontal lines are the fixed accuracies of the
SCL WSJ-trained taggers using one thousand and
forty thousand sentences of training data. The five
learning curves are for taggers trained with vary-
ing amounts of target domain training data. They
use features on the outputs of taggers from sec-
tion 7.1. The legend indicates the kinds of features
used in the target domain (in addition to the stan-
dard features). For example, “40k-SCL” means
that the tagger uses features on the outputs of an
SCL source tagger trained on forty thousand sen-
tences of WSJ data. “nosource” indicates a tar-
get tagger that did not use any tagger trained on
the source domain. With 1000 source domain sen-
tences and 50 target domain sentences, using SCL
tagger features gives a 20.4% relative reduction
in error over using supervised tagger features and
a 39.9% relative reduction in error over using no
source features.

Figure 6(b) is a table of accuracies for 500 tar-
get domain training sentences, and Figure 6(c)
gives corresponding significance scores. With
1000 source domain sentences and 500 target do-
main sentences, using supervised tagger features
gives no improvement over using no source fea-
tures. Using SCL features still does, however.

7.3 Improving Parser Performance

We emphasize the importance of PoS tagging in a
pipelined NLP system by incorporating our SCL

100  500  1k 5k 40k
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62

66

70

74

78

82

Dependency Parsing for 561 Test Sentences

Number of WSJ Training Sentences

A
cc

ur
ac

y

supervised
SCL
gold

Figure 7: Dependency parsing results using differ-
ent part of speech taggers

tagger into a WSJ-trained dependency parser and
and evaluate it on MEDLINE data. We use the
parser described by McDonald et al. (2005b). That
parser assumes that a sentence has been PoS-
tagged before parsing. We train the parser and PoS
tagger on the same size of WSJ data.

Figure 7 shows dependency parsing accuracy on
our 561-sentence MEDLINE test set. We parsed
the sentences using the PoS tags output by our
source domain supervised tagger, the SCL tagger
from subsection 7.1, and the gold PoS tags. All
of the differences in this figure are significant ac-
cording to McNemar’s test. The SCL tags consis-
tently improve parsing performance over the tags
output by the supervised tagger. This is a rather in-
direct method of improving parsing performance
with SCL. In the future, we plan on directly incor-
porating SCL features into a discriminative parser
to improve its adaptation properties.

8 Related Work

Domain adaptation is an important and well-
studied area in natural language processing. Here
we outline a few recent advances. Roark and Bac-
chiani (2003) use a Dirichlet prior on the multi-
nomial parameters of a generative parsing model
to combine a large amount of training data from a
source corpus (WSJ), and small amount of train-
ing data from a target corpus (Brown). Aside
from Florian et al. (2004), several authors have
also given techniques for adapting classification to
new domains. Chelba and Acero (2004) first train
a classifier on the source data. Then they use max-
imum a posteriori estimation of the weights of a
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maximum entropy target domain classifier. The
prior is Gaussian with mean equal to the weights
of the source domain classifier. Daumé III and
Marcu (2006) use an empirical Bayes model to es-
timate a latent variable model grouping instances
into domain-specific or common across both do-
mains. They also jointly estimate the parameters
of the common classification model and the do-
main specific classification models. Our work fo-
cuses on finding a common representation for fea-
tures from different domains, not instances. We
believe this is an important distinction, since the
same instance can contain some features which are
common across domains and some which are do-
main specific.

The key difference between the previous four
pieces of work and our own is the use of unlabeled
data. We do not require labeled training data in
the new domain to demonstrate an improvement
over our baseline models. We believe this is essen-
tial, since many domains of application in natural
language processing have no labeled training data.
Lease and Charniak (2005) adapt a WSJ parser
to biomedical text without any biomedical tree-
banked data. However, they assume other labeled
resources in the target domain. In Section 7.3 we
give similar parsing results, but we adapt a source
domain tagger to obtain the PoS resources.

To the best of our knowledge, SCL is the first
method to use unlabeled data from both domains
for domain adaptation. By using just the unlabeled
data from the target domain, however, we can view
domain adaptation as a standard semisupervised
learning problem. There are many possible ap-
proaches for semisupservised learning in natural
language processing, and it is beyond the scope
of this paper to address them all. We chose to
compare with ASO because it consistently outper-
forms cotraining (Blum and Mitchell, 1998) and
clustering methods (Miller et al., 2004). We did
run experiments with the top-k version of ASO
(Ando and Zhang, 2005a), which is inspired by
cotraining but consistently outperforms it. This
did not outperform the supervised method for do-
main adaptation. We speculate that this is because
biomedical and financial data are quite different.
In such a situation, bootstrapping techniques are
likely to introduce too much noise from the source
domain to be useful.

Structural correspondence learning is most sim-
ilar to that of Ando (2004), who analyzed a

situation with no target domain labeled data.
Her model estimated co-occurrence counts from
source unlabeled data and then used the SVD of
this matrix to generate features for a named en-
tity recognizer. Our ASO baseline uses unlabeled
data from the target domain. Since this consis-
tently outperforms unlabeled data from only the
source domain, we report only these baseline re-
sults. To the best of our knowledge, this is the first
work to use unlabeled data from both domains to
find feature correspondences.

One important advantage that this work shares
with Ando (2004) is that an SCL model can be
easily combined with all other domain adaptation
techniques (Section 7.2). We are simply induc-
ing a feature representation that generalizes well
across domains. This feature representation can
then be used in all the techniques described above.

9 Conclusion

Structural correspondence learning is a marriage
of ideas from single domain semi-supervised
learning and domain adaptation. It uses unla-
beled data and frequently-occurring pivot features
from both source and target domains to find corre-
spondences among features from these domains.
Finding correspondences involves estimating the
correlations between pivot and non-pivot feautres,
and we adapt structural learning (ASO) (Ando and
Zhang, 2005a; Ando and Zhang, 2005b) for this
task. SCL is a general technique that can be ap-
plied to any feature-based discriminative learner.

We showed results using SCL to transfer a PoS
tagger from the Wall Street Journal to a corpus
of MEDLINE abstracts. SCL consistently out-
performed both supervised and semi-supervised
learning with no labeled target domain training
data. We also showed how to combine an SCL
tagger with target domain labeled data using the
classifier combination techniques from Florian et
al. (2004). Finally, we improved parsing perfor-
mance in the target domain when using the SCL
PoS tagger.

One of our next goals is to apply SCL directly
to parsing. We are also focusing on other po-
tential applications, including chunking (Sha and
Pereira, 2003), named entity recognition (Florian
et al., 2004; Ando and Zhang, 2005b; Daumé III
and Marcu, 2006), and speaker adaptation (Kuhn
et al., 1998). Finally, we are investigating more
direct ways of applying structural correspondence
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learning when we have labeled data from both
source and target domains. In particular, the la-
beled data of both domains, not just the unlabeled
data, should influence the learned representations.
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