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Abstract

Algorithms that generate expressions to 
identify a referent are mostly tailored 
towards objects which are in some sense 
conceived as holistic entities, describing 
them in terms of their properties and 
relations to other objects. This approach 
may prove not fully adequate when 
referring to components of structured 
objects, specifically for abstract objects 
in formal domains, where scope and 
relative positions are essential features. 
In this paper, we adapt the standard Dale 
and Reiter algorithm to specifics of such 
references as observed in a corpus about  
mathematical proofs. Extensions incor-
porated include an incremental speciali-
zation of property values for metonymic 
references, local and global positions 
reflecting group formations and impli-
cature-based scope preferences to justify 
unique identification of the intended 
referent. The approach is primarily 
relevant for domains where abstract 
formal objects are prominent, but some 
of its features are also useful to extend 
the expressive repertoire of reference 
generation algorithms in other domains.

1 Introduction

Over the past two decades, a number of algo-
rithms for generating referring expressions 
have been proposed. Almost all of these 
algorithms conceive objects in some sense as 
holistic entities, describing them in terms of 
their properties and relations to other objects, 
but not treating components of an object as 
objects in their own rights. This approach may 
yield inadequate results for references to 
components of recursively structured objects. 

Consider, for instance, a Rubic's cube where 
one side is currently visible, and reference is 
intended to a square consisting of the visible 
squares of four white subcubes, which are the 
only white elements on the visible side. The 
best way to refer to this composed structure is 
the concise “the white square”, which exploits 
a preference for maximum scope objects, 
typical for such recursive structures. However, 
most reference generation algorithms would 
attempt to disambiguate the intended referent 
from its four components, producing an unne-
cessarily long expression, such as “the big 
white square” or “the white square which is 
composed of four squares”. These expressions 
are not really bad, especially the first one, but 
things might turn out really awkward for more 
complex structural compositions, where the 
maximum scope preference often allows the 
identification in a surprisingly concise form.

In this paper, we address this problem by 
examining referring expressions produced by 
humans in domains with recursively structured 
objects playing a prominent role. Specifically, 
we have studied referring expressions in a 
corpus of simulated human-computer dialogs 
about tutoring mathematical problem-solving 
(Wolska et al. 2004, with recent additions in 
this paper). We express the criteria and prefer-
ences observed in a way compatible with the 
incremental reference generation algorithm of 
Dale and Reiter (1995), and we extend their 
algorithm by adapting the property selection 
and discrimination testing criteria accordingly.

This paper is organized as follows. First, we 
motivate our approach. Then we describe our 
corpus and the relevant phenomena observed 
in it. Next, we present extensions to the incre-
mental algorithm that allow the generation of 
this kind of referring expressions. Finally, we 
illustrate how some examples from the corpus 
are handled and discuss our achievements.
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2 Previous Work

Within this paper, we adopt Dale's terminology 
(1988). A referential description (Donellan 
1966) serves the purpose of letting the hearer 
or reader identify a particular object or set of 
objects in a situation. Referring expressions to 
be generated are required to be distinguishing 
descriptions, that is, descriptions of the entities 
being referred to, but not to any other object in 
the context set. A context set is defined as the 
set of the entities the addressee is currently 
assumed to be attending to – this is similar to 
the concept of focus spaces of the discourse 
focus stack in Grosz' & Sidner's (1986) theory 
of discourse structure. Moreover, the contrast 
set (the set of potential distractors (McDonald 
1981)) is defined to entail all elements of the 
context set except the intended referents.

Generating referring expressions is pursued 
since the eighties (e.g., (Appelt 1985), among 
several others). Subsequent years were charac-
terized by a debate about computational effi-
ciency versus minimality of the elements 
appearing in the resulting referring expression 
(Dale 1988, Reiter 1990, and several others). In 
the mid-nineties, this debate seemed to be 
settled in favor of the incremental approach 
(Dale and Reiter 1995) – motivated by results 
of psychological experiments (e.g., Levelt 
1989), certain non-minimal expressions are 
tolerated in favor of adopting the fast strategy 
of incrementally selecting ambiguity-reducing 
attributes from a domain-dependent preference 
list. Complementary activities include the 
generation of vague descriptions (van Deemter, 
2000) and extensions to multimodal 
expressions (Van der Sluis 2005). Recently, 
algorithms have also been developed to the 
identification of sets of objects rather than 
individuals (Bateman 1999, Stone 2000, 
Krahmer, v. Erk, and Verweg 2001), and the 
repertoire of descriptions has been extended to 
boolean combinations of attributes, including 
negations (van Deemter 2002). To avoid the 
generation of redundant descriptions what 
incremental approaches typically do, Gardent 
(2002) and Horacek (2003) proposed exhaust-
ive resp. best-first searches.

All these procedures more or less share the 
design of the knowledge base which bears 
influence on the descriptor selection. Objects 
are conceived as atomic entities, which can be 
described in terms of sets of attributes and 

relations to other objects. In such a setting, a 
structured object can be represented, among 
others, by a set of relations to its components, 
which are themselves conceived as objects. An 
exception to this method is the work by Para-
boni and van Deemter (2002) who use hierar-
chical object representations to refer to parts of 
a book (figures, sections., etc.). Reference to 
such a component is made identifiable by iter-
atively adding a description of embedding 
structures until obtaining uniqueness. There 
are, however, no approaches addressing identi-
fication of objects or their components when 
the structures in these objects are of a recursive 
nature. Objects of this kind are mostly abstract 
ones, such as formulas, but also some sorts of 
geometric objects. Typical applications where 
such objects are prominent include scientific-
technical documentation and tutoring systems. 
As we will see in the next section, naturally 
observed references to such objects have a 
number of particularities which are not 
addressed by existing generation algorithms.

3 A Corpus with References to Formulas

In this paper, we analyze some phenomena in 
the context of references to mathematical 
formulas and their components, as observed in 
a corpus on simulated man-machine tutoring 
dialogs (Wolska et al., 2004). These dialogs 
constitute the result of Wizard-of-Oz exper-
iments in teaching students mathematical 
theorem proving in naive set theory resp. 
mathematical relations. In these experiments, a 
human wizard took the role of the tutor, with 
constraints on tutoring strategy and on use of 
natural language, although the constraints on 
natural language use were relaxed to encour-
age natural behavior on behalf of the student.

In the corpus obtained this way, a number 
of quite particular expressions referring to 
components of recursively structured objects – 
the formulas – showed up. Consequently, it is 
our goal to automate the production of these 
kinds of referring expressions in a more elab-
orate version of the simulated tutoring system, 
with full-fledged natural language generation.

Representative examples originating from 
our corpus appear in Figure 1. Each example 
consists of two parts: 1. a student utterance, 
mostly a formula, labeled by (#a), which is the 
context for interpreting subsequent referring 
expressions, the intended referent appearing in 
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1. Reference to the typographic order

(1a) (R°S)-1 = {(x,y) | (y,x) ∈ R°S} = {(x,y) | ∃z (z ∈ M ^ (x,z) ∈ R-1 ^ (z,y) ∈ S-1)} = R-1°S-1

(1b) Das geht ein wenig schnell. Woher nehmen Sie die zweite Gleichheit?
(That was a little too fast. How did you find the second equality?)

(2a) Nach 9 ⇒ ((y,z) ∈ R ^ (z,y) ∈ S)
(2b) Fast korrekt. Das zweite Vorkommen von y muß durch x ersetzt werden.

Almost correct. The second occurrence of y must be replaced by x.
(3a) (R ∪ S)°T ist dann {(x,y) | ∃z (z ∈ M ^ ((x,y) ∈ R ∨ (x,y) ∈ S) ^ (y,z) ∈ T)}
(3b) Nicht korrekt. Vermutlich liegt der Fehler nach der letzten ‘und‘-Verknüpfung

Not correct. The mistake is probably located after the last ‘and‘-operation

2. Reference by exploiting default scope and metonymic relations

(4a) (R°S)-1 = {(x,y) | ∃z (z ∈ M ^ (y,z) ∈ R-1 ^ (z,x) ∈ S-1)} ⊇ S-1°R -1

(4b) Nein, das ist nicht richtig! Vergleichen Sie den zweiten Term mit Ihrer vorhergehenden 
Aussage!
No, this is not correct! Compare the second term with your previous assertion!

(5a) {(x,y) | (y,x) ∈ (R°S)} =  {(x,y) | (x,y) ∈ {(a,b) | ∃z (z ∈ M) ^ (a,z) ∈ R ^ (z,b) ∈ S}}
(5b) Das stimmt so nicht. Die rechte Seite wäre identisch mit R°S.

This is not correct. The right side would be identical to R°S.
(6a) {(x,y) | ∃z (z ∈ M) ^ ((x,z) ∈ R ∨ (x,z) ∈ S) ^ (z,y) ∈ S} =

{(x,y) | ∃z (z ∈ M) ^ (z,y) ∈ S ^ ((x,z) ∈ R ∨ (x,z) ∈ S)} ⇔ ((y,z) ∈ S ^ (z,y) ∈ S)
(6b) Auf der rechten Seite ist z nicht spezifiziert

On the right side, z is not specified
(7a) {(x,y) | ∃z (z ∈ M) ^ ((x,z) ∈ R ∨ (x,z) ∈ S) ^ (z,y) ∈ S} = {(x,y) | ∃z (z ∈ M) ^ 

(z,y) ∈ S ^ ((x,z) ∈ R ∨ (x,z) ∈ S)} ⇔ ∃z (z ∈ M ^ ((y,z) ∈ S ^ (z,y) ∈ S))
(7b) Diese Aussagen scheinen nicht gleichwertig zu sein. Ein z, das die Bedingung der rechten 

Aussage erfüllt, muß nicht die Bedingung der linken Menge erfüllen.
These assertions do not seem to be of equal range. A z which fulfills the condition of the 
right assertion does not necessarily fulfill the condition of the left set.

3. Reference by exploiting default scope for building groups of objects

(8a) K((A ∪ B) ∩ (C ∪ D)) = K(A ∪ B) ∪ K(C ∪ D)
(8b) De Morgan Regel 2 auf beide Komplemente angewendet.

De Morgan Rule 2, applied to both complements.

(9a) (T-1°S-1)-1 ∪ (T-1°R-1)-1 = {(x,y) | (y,x) ∈ (T-1°S-1) ^ (y,x) ∈ (T-1°R-1)}
(9b) Dies würde dem Schnitt der beiden Mengen entsprechen.

This would correspond to the intersection of both sets.

4. Reference to regions by expressions involving vagueness

(10a) Also ist (R ∪ S)°T = {(x,z) | ∃v (((x,v) ∈ R ∨ (x,v) ∈ S) ^ (z,v) ∈ T)}
(10b) Fast richtig. Am Ende der Formel ist ein Fehler.

Almost correct. At the end of the formula, there is a mistake.
(11a) Wegen der Formel für die Komposition folgt (R ∪ T)°(S ∪ T) = 

{(x,z) | ∃z ((x,z) ∈ R ^ (z,y) ∈ T) ∨ ∃z ((x,z) ∈ R ^ (z,y) ∈ T)}
(11b) Fast richtig. In der zweiten Hälfte der Formel ist ein Fehler.

Almost correct. In the second half of the formula, there is a mistake.
                                                                                                                                                                                                                                   

Figure 1: References to components of mathematical objects in dialog fragments of our corpus
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bold, and 2. a tutor response labeled by (#b), 
with at least one referring expression, in italics. 
Texts are given in the original German version, 
accompanied by a translation into English.

The examples are partitioned into four cate-
gories. The first one, (examples 1 to 3), illus-
trate references by the typographical position,  
from left to right. Items referred to in this 
manner are qualified by their formal category. 
(1) refers to an equality – two terms joined by 
an equal sign – in a sequence of three equa-
lities. (2) refers to an instance of a variable, y, 
which must be further qualified by its position 
to distinguish it from another occurrence. (3) 
refers to the last occurrence of the and oper-
ator. Distinct surface forms are used for objects 
referred to by category (“second equality”) 
resp. by name (“second occurrence of y”).

The second category, the only one specific 
to recursively structured objects, comprises 
references which look similar to the previous 
ones, but they do not reflect the typographical 
position but structural embeddings. Objects 
referred to by this kind of expressions are 
found on the top level of the embedding object 
or close to it. In most cases, references to the 
embedding level where the intended referent is 
to be found are left unexpressed, which carries 
the implicit meaning that the referent appears 
at the top most level in which the referred cate-
gory can be found. In (4), for example, the 
entire formula contains many terms as its 
components, in various levels of embedding, so 
that orientation on typographic positions is not 
clear. However, on top level of the inequation 
chain, there are only three terms and the order 
among these is perfectly clear. (5) and (6) 
illustrate the role of incompleteness – only 
“right side” is mentioned, leaving the object 
whose right side is meant implicit. Conse-
quently, this must be the right side of the whole 
formula. The last example in this category, (7) 
shows the reference to different levels of 
embedding in one sentence. While “right 
assertion” refers to the expression on the right 
side of the equivalence on top level, “left set” 
refers to the left of the two sets in the equation 
on the left side of that equivalence.

The third category, which features the refer-
ence to sets of objects, shows the interpretation 
of the embedding level in which the intended 
referent is to be found on the basis of number 
constraints. In precise terms, this is an instance 

of implicature (Grice 1975): if the number of 
objects that are on top level of the embedding 
object and satisfy the description, exceeds the 
cardinality specified, identification of the 
intended referents is transferred to one of the 
embedded substructures. In (8), three subex-
pressions satisfy the metonymic description 
“complement”, but the expression refers only 
to two. Consequently, the intended referents 
must be found in one of the substructures 
where a precise cardinality match is present – 
here, the right side of the equation. Due to the 
implicature, expressing this additional qualifi-
cation is not required. An additional compli-
cation arises in the context of interference 
across referring expressions in one sentence. In 
(9), “both sets” would be resolved to the two 
sides of the equation, without the context of the 
whole sentence. However, since “this” refers 
to the result of the preceeding assertion, that is, 
the right side of the equation, this part is in 
some sense excluded from the context for 
resolving the next referring expressions. 
Hence, the left side of the equation yields the 
two sets on top level as interpretation.

The fourth category comprises examples of 
references which are in some sense associated 
with vagueness. In references to formulas, we 
consider the end (example (10)) – which 
means the region towards the end, as a vague 
expression, but also the second half (example 
(11)), since it is not entirely clear whether this 
expression must be interpreted structurally or 
typographically, and a precise interpretation of 
“half” in the typographical sense is pointless.

In the following, we present methods for the 
automated generation of referring expressions 
of the kind illustrated in Figure 1 – concise 
ones. We address the following phenomena:

• Implicit scope interpretation 

• Incomplete or metonymic expressions

• Implicatures of category and cardinality

We do, however, restrict our task to the 
generation of single referring expressions with 
precise references. Hence, we do not address 
vagueness issues, since the meaning of 
expressions as occurring in (10) and (11) is 
not fully clear. Moreover, we do not accom-
modate the context due to previously gener-
ated referring expressions as in (9), which we 
assume to be done by the embedding process.
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3 Operationalization

In this section, we describe an operationali-
zation of generating referring expressions of 
the kind discussed in the previous section. This 
operationalization is realized in terms of 
extensions to the algorithm by Dale and Reiter 
(1995). This algorithm assumes an envir-
onment with three interface functions: Basic-
LevelValue, accessing basic level categories of 
objects (Rosch 1978), MoreSpecificValue for 
accessing incrementally specialized attribute 
values according to a taxonomic hierarchy, and 
UserKnows for judging whether the user is 
familiar with the attribute value of an object. In 
a nutshell, MakeReferringExpression (Figure 2, 
including our extensions) iterates over the attri-
butes P of an intended referent r (or a set of 
referents). In FindBestValue, a value is chosen 
that is known to the user and maximizes discri-
mination (RulesOut) – this value describes the 
intended referent and rules out at least one 
potential distractor in C. If existing, such values 
are iteratively collected in L, until P is empty or 
a distinguishing description is found. The 
value V of an attribute A is chosen within an 
embedded iteration, starting with the basic level 
value attributed to r , after which more specific 
values also attributed to r  and assumed to be 
known to the user are tested for their discri-
minatory power. Finally, the least specific value 
that excludes the largest number of potential 
distractors and is known to the user is chosen.

The extensions to handle particularities for 
our concerns comprise several components:

• The knowledge representation of objects 
is enhanced by properties expressing  
positions in some context and by a meta-
property about the use of descriptors  – 
metonymic use of a descriptor when 
standing in relation to another one.

• The value selection for context-dependent 
descriptors requires special treatment; 
moreover, metonymic expressions are 
built in some sort of a two-step process.

• The discriminatory power in the subpro-
cedure RulesOut is interpreted in local 
contexts for attributes expressing position.

• Termination criteria include a test whether 
a cardinality or position-based impli-
cature establishes a unique preference.

                                                                                                             

Group(x) ::=
G ≡ {y | ∃z (∀y dominates(z,y))} ^ G ⊇ x

T-group-items :: = 
{x | ∃y (¬∃z dominates(z,y) ^ ∀x dominates(y,x))}

L1-items :: = 
{x | ∃y (y ∈ T-group-items ^ dominates(y,x))}

Group-pref(Group,N,V) :: =
  |(r  ∪ C) ∩ Group| = N ^
∀x ∈ ((r ∪ C) ∩ Group): Position(x,Group,N) = V

T-group-pref(N,V) ::=
Group-pref(T-group-items,N,V)

L1-group-pref(x,N,V) ::= ¬T-Group-pref(N,V) ^
L1-items ⊇ Group(x) ^ Group-pref(x,N,V) ^
(∀y (Group(y) ^ L1-items ⊇ Group(y)): 

   (x≠y → ¬Group-pref(y,N,V)))
                                                                                                             

Figure 2: Definitions with group components 

In order to precisely define the extensions, 
we introduce some predicates and formal defi-
nitions for them (Figure 2). Composition in 
recursively structured objects is built on domi-
nates(x,y), expressing that component y is part 
of component x; chained compositions of 
dominates are acyclic. On that basis, groups of 
items are built according to local contexts. A 
Group which some items x belong to is the set 
of items dominated by one same item, if 
existing. Otherwise, Group is empty. A special 
group is the set of items on top level, T-group-
items, which are all dominated by the entire 
structure, the root item, which is not domi-
nated by any item. These items also build a 
group. In contrast, L1-items, which comprise 
the items one level below the T-group-items, 
are not all in one group. Intersection with the 
Group predicate yields subsets, where each 
element in these sets is dominated by one and 
the same T-group-item (see the definition of 
L1-group-pref). A central definition is Group-
pref (group preference), used for testing the 
effect of implicatures. It is defined for the set 
of relevant items to be used within the algo-
rithm (r  ∪  C), that is, the intended referents 
and still existing distractors, in relation to a 
Group, in the context of cardinality N and 
position V, which apply to the set of items. For 
that group to be preferred, the relevant items 
falling into that group must match the given 
cardinality and the position description (see 
the definition of Position in the next para-
graph). On that basis, T-group-pref expresses
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MakeReferringExpression (r,C,P)
L ← {}, Ctotal ← C       [1]
for each member Ai of list P do   
case Ai of    [2]
cardinality: V ← |r|      [3]
global-position: V ← Position(r,Ctotal,|r |)    [4]
local-position: V ← Position(r,Group(r),|r |)    [5]
other: V = FindBestValue(r,Ai,BasicLevelValue(r,Ai))

end case
if RulesOut(<Ai,V>,C) ≠ nil then
if metonymic(Ai,X) and <type,X> ∈ L for some X      [6]

  and RulesOut(<Ai,V>,Ctotal) ⊇     [7]
       RulesOut(<type,X>,Ctotal)     [8]

then L ← L  \ {<type,X>} ∪ {<type,V>}      [9]
else L ← L ∪ {<Ai,V>} end if

C ← C - RulesOut(<Ai,V>,C)    [10]
end if
if C = {} or Preference-by-Implicature then   [11]
if <type,X> ∈ L for some X

then return L (an identifying description)
else return L ∪ {<type,BasicLevelValue(r,type)>}

end if end if
end for
return L (a non-identifying description)

FindBestValue (r,A,initial-value)
if UserKnows(r,<A,initial-value>) = true
then value ←  initial-value 
else value ← no-value end if
if (spec-value ← MoreSpecificValue(r,A,value)) ≠ nil ^
(new-value ← FindBestValue(r,A,spec-value)) ≠ nil ^
(|RulesOut(<A,new-value>,C)| > 
|RulesOut(<A,value>,C)|)  [12]

then value ←  new-value end if  
return value

RulesOut (<A,V>,C)  [13]
if V = no-value then return nil
else case Ai of  [14]
cardinality: return C ∩ ∪ Group(c) c ∈ C,

         where |Group(c) ∩ C | < V  [15]
global-position: return {x : x ∈ C ^ Position(x,Ctotal,|r|) ≠ V  [16] 
local-position: return {x : x ∈ C ^ Position(x,Group(x),|r|) ≠ V  
other: return {x: x ∈ C ^ UserKnows(x,<A,V>) = false}

end case end if 
      Preference-by-Implicature  [17]

V ←  any, N ←  any
 if <global-position,V> ∈ L ∨ <local-position,V> ∈ L ∨
   <cardinality,N> ∈ L  then  [18]
 return (T-group-pref(|r|,V) ^ T-group-items ⊇ r ) ∨

 (L1-items ⊇ r ^  L1-group-pref(r,|r|,V))  [19]
else return false end if
                                                                                                             

Figure 3: The algorithm in pseudo-code 

preference for top-group items, when bound 
to Group, and L1-group-pref expresses prefer-
ence for such a group with x one level below.

The knowledge representation of objects is 
enriched by some properties which are not 
intrinsic to an object itself. These properties 
comprise descriptors cardinality, position, and 
the meta-property metonymic. The predicate 
metonymic(x,y) expresses the acceptability of 
a metonymic reference of a descriptor x for a 
category y (e.g., an operator for a formula, in  
mathematical domains). The descriptor cardi-
nality easily fits in the standard schema of the 
procedure. However, it only contributes to the 
discrimination from potential distractors in the 
context of effects of implicature. The most 
complex addition is the descriptor position, 
which expresses some sort of relative position 
of an object considered within the context of a 
set of comparable objects (e.g., first, second). 
There are two dimensions along which such 
descriptors are meaningful in the domain of 
mathematical formulas and in similar domains 
with recursively structured objects: (1) the 
typographical position within the entire object, 
referred to by the descriptor global-position, 
and (2) the position within the structural level 
where the object in question resides, referred 
to by the descriptor local-position. Moreover, 
that position also depends on the number of 
objects considered, if subgroups of objects are 
built prior to checking their position within 
the entire group (e.g,: the first two items). This 
information is encapsulated in the function 
Position(x,y,n), where x denotes the object or 
set of objects whose position within group y is 
the value of that function, where subgroups of 
n objects are formed. In order to yield a 
proper result, x must be a subset of y and the 
position value within y must be the same for 
all elements of x. Otherwise, the value is unde-
fined. For example, for a group G=<1,2,3,4, 
5,6>, Position({3},G,1) = 3, Position({3},G,2) 
= 2, and Position({2,3},G,2) = undefined. In 
some sense, this handling of positions is a 
generalization of the ordering for vague 
descriptors in (van Deemter 2006). Also in 
accordance with van Deemter, we separate 
descriptor selection from surface form deter-
mination, yielding, for example, “left set” for 
{<type,set>, <local-position,first>}, the first 
part of an equation, and “second occurrence 
of x” for {<type,x>, <local-position,second>}.  
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In order to process these enhanced represen-
tations adequately, we have incorporated  
appropriate modifications in the procedure 
MakeReferringExpression (labeled by [#] in 
Figure 3). First, the original set of potential 
distractors is stored for computations within a 
global context [1]. Then the value selection 
for the attribute currently considered is done 
[2], which is different from the usual call to 
FindBestValue for cardinality [3], global-
position [4], and local-position [5]; the latter 
two are realized by the function Position, with 
appropriate instantiations for the group para-
meter. Next, the treatment for the inclusion of 
metonymic properties in the description is 
addressed. If the metonymic descriptor fits to 
the object category [6], and its discriminatory 
power [7] dominates that associated with the 
type descriptor [8], the descriptor values are 
conflated by overwriting the type value by 
that of the metonymic descriptor [9]. The two 
calls to RulesOut involved in the above test 
([7] and [8]) are the only references to Rules 
Out where effects on the original, entire set of 
distractors are tested. Therefore, the parameter 
C is added in the definition of RulesOut [13] 
and in all other places where that procedure is 
called [10], [12]. Similarly to the inclusion of 
attribute-value pairs in the description, the 
exclusion tests in RulesOut are specific for 
non-intrinsic attributes [14]. For cardinality, 
those distractors are excluded which belong to 
a group where the number of still relevant 
distractors (those consistent with the partial 
description built so far) is below that cardina-
lity [15]. Similarly, for testing position values, 
those distractors are picked for which the 
values returned by the function Position, in 
dependency of the relevant scope – the group 
the intended referent(s) belong to, are not 
consistent with value of the attribute consi-
dered (global-position resp. local-position) 
[16]. Finally, the termination criterion [11] is 
enhanced, by taking into account the effect of 
implicatures through cardinality and position 
descriptors, by the function Preference-by-
implicature [17]. In this function, the values 
of cardinality and global-position or local-
position are instantiated, provided they appear 
in the description L [18]. The return value is 
the result of a test whether there exists prefer-
ence for the top-level, or for that level 1 group 
which contains the intended referents [19]. 

4 Examples

In this section, we illustrate how particularities 
of our application domain are modeled and 
how the procedure behaves in generating the 
referring expressions observed in our corpus. 
The ordered list of attributes, P, consists of 
<type, form, cardinality, global-order, local-
order> for atomic items and of <type, oper-
ator, cardinality, local-order, dominated-by> 
for the composed expressions – dominated-by 
is the inverse of dominates. The meta-predi-
cate metonymic is instantiated for pairs <vari-
able, form>, <expression, local-order>, and 
<term, operator> for producing expressions 
such as “x” referring to variable x, “left 
side” referring to the left part of an assertion 
or equation, and “complement” referring to 
a term with complement as top level operator. 

We show the generation of two examples.
1. example: “Left set” in (7) in Figure 1. 

It is generated by choosing “set” as the type, 
followed by unsuccessful attempts to pick an 
operator attribute (there is none defined for 
that set), and a cardinality (which yields no 
discrimination). Then “first” is chosen for 
local-ordering, yielding unique identification 
(the embedding is left implicit), and this value 
is expressed by “left” on the surface. 

2. example: “both complements” in (8). 
It is generated by choosing “term” as the 
type, followed by “complement” as the oper-
ator, which overwrites “term” due to its 
specification as metonymic with respect to that 
category. Then “2” is chosen for cardinality, 
which yields unique identification since a 
subgroup preference for level one is present.

Altogether, the algorithm is able to gener-
ate the expressions occurring in our corpus, or 
quite similar ones, assisted by the application-
specific tailored list P. Exceptions constitute 
reference to regions related to some formula 
component, such as (3) in Figure 1, effects of 
interference of scope across several referring 
expressions, such as (9), and expressions 
involving vague region descriptors, such as 
(10) and (11). While the last set of examples 
comprises more than referring expressions, 
the first two can be handled, but the generated 
expressions are typically a bit cumbersome, 
such as “the third term in the condition of the 
set” instead of “after the last ‘and‘-oper-
ation” in (3) and “both sets on the left side” 
instead of simply “both sets” in (9).
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5 Conclusion and Discussion

In this paper, we have presented an approach to 
generating referring expressions that identify 
components of recursively structured objects. 
Known techniques are enhanced by measures 
building metonymic expressions, descriptors 
expressing positions relative to some subgroup 
of object components, and exploiting the effect 
of implicatures due to cardinality and position 
descriptors. Concise expressions can be gener-
ated, in accordance with those in our corpus.

While our elaborations are domain-specific 
to a certain extent, several parts of our method 
are also much broader applicable. Metonymic 
expressions are quite common, and we think 
that building them within the task of reference 
generation is superior to doing this in a process 
thereafter, because this enables an easy compu-
tation of the discrminatory power of both alter-
natives, the implicit and the explicit one. 
Another aspect of broader relevance concerns 
the effect of implicatures in connection with 
object subgroups. While the group building 
itself, which is based on compositions of the 
relation dominates, is specific to our envir-
onment, the techniques to establish preferences 
among groups and deriving identification from 
that pertain to other environments. For 
instance, when a subgroup of two items of 
some kind is visually identifiable in the context 
of a few other subgroups with different cardi-
nalities, “the two X's” would lead to the identi-
fication of the subgroup in focus, through the 
effect of implicature, the group formation 
being based on local proximity. Thus, only the 
group formation schema needs to be changed.  
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