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Preface

This volume contains the papers accepted for presentation at theWorkshop on Multiword Expressions:
Identifying and Exploiting Underlying Properties. The workshop is endorsed by the Association for
Computational Linguistics Special Interest Group on the Lexicon (SIGLEX) and is hosted in conjunction
with the COLING/ACL 2006 on July 23rd, 2006 in Sydney, Australia.

There has been a growing awareness in the NLP community of the problems that multiword expressions
(MWEs) pose. Developments in areas such as machine translation, text summarization, paraphrasing,
grammar development and parsing, information retrieval, and question answering (to mention a few)
have acknowledged difficulties due to the idiosyncratic nature of multiword expressions. This workshop
continues a tradition of ACL workshops on Collocations (2001) and Multiword Expressions (2003 and
2004). Its specific objective is to focus on the underlying properties of MWEs. The call for papers
expressed our interest in several topics such as the definition of MWEs, properties of MWEs and their
impact on NLP applications, representation and treatment of the different classes of MWEs, linguistic
and psycholinguistic analyses of MWEs, evaluation of extraction techniques and the importance of
(non-)compositionality.

We received 23 submissions in total. Each submission was reviewed by (at least) three members of
the program committee who not only judged each submission but also gave detailed comments to the
authors. Among the received papers, 10 were selected for presentation at the workshop. After 3 papers
have been withdrawn by their authors, seven papers are included in these proceedings.

The intention of this workshop is to focus on some fundamental questions on the nature of MWEs. To
do this we will allow plenty of time for discussion to pursue some of the interesting, open and difficult
questions that MWEs raise. As well as a discussion period after each session of papers, we will be
organising group discussions at the end of the workshop. These will focus on problems of defining,
characterising and evaluating MWEs, given what we know about the range of phenomena that they
encompass as well as any important questions that have arisen during the workshop.

We would like to thank all the authors for submitting their research and the members of the program
committee for their careful reviews and useful suggestions to the authors. We are indebted to Timothy
Baldwin who will give an invited talk at the workshop. We would also like to thank the COLING/ACL
2006 organising committee that made this workshop possible and SIGLEX for agreeing to endorse this
workshop. Finally, we hope that this workshop will provide food for thought for all participants.

Begõna Villada Moiŕon
Aline Villavicencio
Diana McCarthy
Stefan Evert
Suzanne Stevenson
June 2006
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Compositionality and Multiword Expressions: Six of One, Half a
Dozen of the Other?

Timothy Baldwin
Melbourne University

In this talk, I will investigate the relationship between compositionality and multiword expressions,
as part of which I will outline different approaches for formalising the notion of compositionality. I will
then briefly review computational methods that have been proposed for modelling compositionality, and
applications thereof. Finally, I will discuss possible future directions for modelling compositionality, and
present some preliminary results.
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Abstract 

This paper reports on an experiment in 
which we explore a new approach to the 
automatic measurement of multi-word 
expression (MWE) compositionality. We 
propose an algorithm which ranks MWEs 
by their compositionality relative to a 
semantic field taxonomy based on the 
Lancaster English semantic lexicon (Piao 
et al., 2005a). The semantic information 
provided by the lexicon is used for meas-
uring the semantic distance between a 
MWE and its constituent words. The al-
gorithm is evaluated both on 89 manually 
ranked MWEs and on McCarthy et al’s 
(2003) manually ranked phrasal verbs. 
We compared the output of our tool with 
human judgments using Spearman’s 
rank-order correlation coefficient. Our 
evaluation shows that the automatic rank-
ing of the majority of our test data 
(86.52%) has strong to moderate correla-
tion with the manual ranking while wide 
discrepancy is found for a small number 
of MWEs. Our algorithm also obtained a 
correlation of 0.3544 with manual rank-
ing on McCarthy et al’s test data, which 
is comparable or better than most of the 
measures they tested. This experiment 
demonstrates that a semantic lexicon can 
assist in MWE compositionality meas-
urement in addition to statistical algo-
rithms. 

1 Introduction 

Over the past few years, compositionality and 
decomposability of MWEs have become impor-
tant issues in NLP research. Lin (1999) argues 
that “non-compositional expressions need to be 
treated differently than other phrases in many 
statistical or corpus–based NLP methods”. Com-

positionality means that “the meaning of the 
whole can be strictly predicted from the meaning 
of the parts” (Manning & Schütze, 2000). On the 
other hand, decomposability is a metric of the 
degree to which the meaning of a MWE can be 
assigned to its parts (Nunberg, 1994; Riehemann, 
2001; Sag et al., 2002). These two concepts are 
closely related. Venkatapathy and Joshi (2005) 
suggest that “an expression is likely to be rela-
tively more compositional if it is decomposable”. 

While there exist various definitions for 
MWEs, they are generally defined as cohesive 
lexemes that cross word boundaries (Sag et al., 
2002; Copestake et al., 2002; Calzolari et al., 
2002; Baldwin et al., 2003), which include 
nominal compounds, phrasal verbs, idioms, col-
locations etc. Compositionality is a critical crite-
rion cutting across different definitions for ex-
tracting and classifying MWEs. While semantics 
of certain types of MWEs are non-compositional, 
like idioms “kick the bucket” and “hot dog”, 
some others can have highly compositional se-
mantics like the expressions “traffic light” and 
“audio tape”. 

Automatic measurement of MWE composi-
tionality can have a number of applications. One 
of the often quoted applications is for machine 
translation (Melamed, 1997; Hwang & Sasaki, 
2005), in which non-compositional MWEs need 
special treatment. For instance, the translation of 
a highly compositional MWE can possibly be 
inferred from the translations of its constituent 
words, whereas it is impossible for non-
compositional MWEs, for which we need to 
identify the translation equivalent for the MWEs 
as a whole. 

In this paper, we explore a new method of 
automatically estimating the compositionality of 
MWEs using lexical semantic information, 
sourced from the Lancaster semantic lexicon 
(Piao et al., 2005a) that is employed in the 
USAS1 tagger (Rayson et al., 2004). This is a 

                                                 
1 UCREL Semantic Analysis System 
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large lexical resource which contains nearly 
55,000 single-word entries and over 18,800 
MWE entries. In this lexicon, each MWE2 and 
the words it contains are mapped to their poten-
tial semantic categories using a semantic field 
taxonomy of 232 categories. An evaluation of 
lexical coverage on the BNC corpus showed that 
the lexical coverage of this lexicon reaches 
98.49% for modern English (Piao et al., 2004).  
Such a large-scale semantic lexical resource al-
lows us to examine the semantics of many 
MWEs and their constituent words conveniently 
without resorting to large corpus data. Our ex-
periment demonstrates that such a lexical re-
source provides an additional approach for auto-
matically estimating the compositionality of 
MWEs. 

One may question the necessity of measuring 
compositionality of manually selected MWEs. 
The truth is, even if the semantic lexicon under 
consideration was compiled manually, it does not 
exclusively consist of non-compositional MWEs 
like idioms. Built for practical discourse analysis, 
it contains many MWEs which are highly com-
positional but depict certain entities or semantic 
concepts. This research forms part of a larger 
effort to extend lexical resources for semantic 
tagging. Techniques are described elsewhere 
(e.g. Piao et al., 2005b) for finding new candi-
date MWE from corpora. The next stage of the 
work is to semi-automatically classify these can-
didates using an existing semantic field taxon-
omy and, to assist this task, we need to investi-
gate patterns of compositionality. 

2 Related Work  

In recent years, various approaches have been 
proposed to the analysis of MWE compositional-
ity. Many of the suggested approaches employ 
statistical algorithms. 

One of the earliest studies in this area was re-
ported by Lin (1999) who assumes that “non-
compositional phrases have a significantly dif-
ferent mutual information value than the phrases 
that are similar to their literal meanings” and 
proposed to identify non-compositional MWEs 
in a corpus based on distributional characteristics 
of MWEs. Bannard et al. (2003) tested tech-
niques using statistical models to infer the mean-
ing of verb-particle constructions (VPCs), focus-

                                                 
2 In this lexicon, many MWEs are encoded as templates, 
such as driv*_* {Np/P*/J*/R*} mad_JJ,  which represent 
variational forms of a single MWE, For further details, see 
Rayson et al., 2004.  

ing on prepositional particles. They tested four 
methods over four compositional classification 
tasks, reporting that, on all tasks, at least one of 
the four methods offers an improvement in preci-
sion over the baseline they used. 

McCarthy et al. (2003) suggested that compo-
sitional phrasal verbs should have similar 
neighbours as for their simplex verbs. They 
tested various measures using the nearest 
neighbours of phrasal verbs and their simplex 
counterparts, and reported that some of the 
measures produced results which show signifi-
cant correlation with human judgments. Baldwin 
et al. (2003) proposed a LSA-based model for 
measuring the decomposability of MWEs by ex-
amining the similarity between them and their 
constituent words, with higher similarity indicat-
ing the greater decomposability.  They evaluated 
their model on English noun-noun compounds 
and verb-particles by examining the correlation 
of the results with similarities and hyponymy 
values in WordNet. They reported that the LSA 
technique performs better on the low-frequency 
items than on more frequent items. Venkatapathy 
and Joshi (2005) measured relative composition-
ality of collocations having verb-noun pattern 
using a SVM (Support Vector Machine) based 
ranking function. They integrated seven various 
collocational and contextual features using their 
ranking function, and evaluated it against manu-
ally ranked test data. They reported that the SVM 
based method produces significantly better re-
sults compared to methods based on individual 
features. 

The approaches mentioned above invariably 
depend on a variety of statistical contextual in-
formation extracted from large corpus data. In-
evitably, such statistical information can be af-
fected by various uncontrollable “noise”, and 
hence there is a limitation to purely statistical 
approaches. 

In this paper, we contend that a manually 
compiled semantic lexical resource can have an 
important part to play in measuring the composi-
tionality of MWEs. While any approach based on 
a specific lexical resource may lack generality, it 
can complement purely statistical approaches by 
importing human expert knowledge into the 
process. Particularly, if such a resource has a 
high lexical coverage, which is true in our case, 
it becomes much more useful for dealing with 
general English. It should be emphasized that we 
propose our semantic lexical-based approach not 
as a substitute for the statistical approaches. 
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Rather we propose it as a potential complement 
to them.   

In the following sections, we describe our ex-
periment and explore this approach to the issue 
of automatic estimation of MWE compositional-
ity. 

3 Measuring MWE compositionality 
with semantic field information 

In this section, we propose an algorithm for 
automatically measuring MWE compositionality 
based on the Lancaster semantic lexicon. In this 
lexicon, the semantic field of each word and 
MWE is encoded in the form of semantic tags. 
We contend that the compositionality of a MWE 
can be estimated by measuring the distance be-
tween semantic fields of an MWE and its con-
stituent words based on the semantic field infor-
mation available from the lexicon. 

The lexicon employs a taxonomy containing 
21 major semantic fields which are further di-
vided into 232 sub-categories. 3  Tags are de-
signed to denote the semantic fields using letters 
and digits. For instance, tag N3.2 denotes the 
category of {SIZE} and Q4.1 denotes {media: 
Newspapers}. Each entry in the lexicon maps a 
word or MWE to its potential semantic field 
category/ies. More often than not, a lexical item 
is mapped to multiple semantic categories, re-
flecting its potential multiple senses. In such 
cases, the tags are arranged by the order of like-
lihood of meanings, with the most prominent one 
at the head of the list. For example, the word 
“mass” is mapped to tags N5, N3.5, S9, S5 and 
B2, which denote its potential semantic fields of 
{QUANTITIES},  {MEASUREMENT: 
WEIGHT}, {RELIGION AND SUPERNATU-
RAL}, {GROUPS AND AFFILIATION} and 
{HEALTH AND DISEASE}. 

 The lexicon provides direct access to the se-
mantic field information for large number of 
MWEs and their constituent words. Furthermore, 
the lexicon was analysed and classified manually 
by a team of linguists based on the analysis of 
corpus data and consultation of printed and elec-
tronic corpus-based dictionaries, ensuring a high 
level of consistency and accuracy of the semantic 
analysis.  

In our context, we interpret the task of measur-
ing the compositionality of MWEs as examining 
the distance between the semantic tag of a MWE 
and the semantic tags of its constituent words. 
                                                 
3 For the complete semantic tagset, see website: 
http://www.comp.lancs.ac.uk/ucrel/usas/ 

Given a MWE M and its constituent words wi (i 
= 1, .., n), the compositionality D can be meas-
ured by multiplying the semantic distance SD 
between M and each of its constituent words wi. 
In practice, the square root of the product is used 
as the score in order to reduce the range of actual 
D-scores, as shown below: 

 

(1)   ∏
=

=
n

i
iwMSDMD

1

),()(  

 
where D-score ranges between [0, 1], with 1 in-
dicating the strongest compositionality and 0 the 
weakest compositionality. 

In the semantic lexicon, as the semantic in-
formation of function words is limited, they are 
classified into a single grammatical bin (denoted 
by tag Z5). In our algorithm, they are excluded 
from the measuring process by using a stop word 
list. Therefore, only the content constituent 
words are involved in measuring the composi-
tionality. Although function words may form an 
important part of many MWEs, such as phrasal 
verbs, because our algorithm solely relies on se-
mantic field information, we assume they can be 
ignored.  

 The semantic distance between a MWE and 
any of its constituent words is calculated by 
quantifying the similarity between their semantic 
field categories. In detail, if the MWE and a con-
stituent word do not share any of the major 21 
semantic domains, the SD is assigned a small 
value λ.4 If they do, three possible cases are con-
sidered: 

 
Case a. If they share the same tag, and the con-

stituent word has only one tag, then SD 
is one. 

Case b. If they share a tag or tags, but the con-
stituent words have multiple candidate 
tags, then SD is weighted using a vari-
able α based on the position of the 
matched tag in the candidate list as well 
as the number of candidate tags. 

Case c. If they share a major category, but their 
tags fall into different sub-categories 
(denoted by the trailing digits following 
a letter), SD is further weighted using a 

                                                 
4 We avoid using zero here in order to avoid producing se-
mantic distance of zero indiscriminately when any one of 
the constituent words produces zero distance regardless of 
other constituent words. 
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variable β which reflects the difference 
of the sub-categories. 

With respect to weight α, suppose L is the 
number of candidate tags of the constituent word 
under consideration, N is the position of the spe-
cific tag in the candidate list (the position starts 
from the top with N=1), then the weight α is cal-
culated as 

 

(2)  2

1
L
NL +−

=α , 

 
where N=1, 2, …, n and N<=L. Ranging between 
[1, 0), α takes into account both the location of 
the matched tag in the candidate tag list and the 
number of candidate tags. This weight penalises 
the words having more candidate semantic tags 
by giving a lower value for their higher degree of 
ambiguity. As either L or N increases, the α-
value decreases.       

Regarding the case c), where the tags share the 
same head letter but different digit codes, i.e. 
they are from the same major category but in 
different sub-categories, the weight β is calcu-
lated based on the number of sub-categories they 
share. As we mentioned earlier, a semantic tag 
consists of an initial letter and some trailing dig-
its divided by points, e.g. S1.1.2 {RECIPROC-
ITY}, S1.1.3 {PARTICIPATION}, S1.1.4 {DE-
SERVE} etc. If we let T1, T2 be a pair of semantic 
tags with the same initial letters, which have ki 
and kj trailing digit codes (denoting the number 
of sub-division layers) respectively and share n 
digit codes from the left, or from the top layer, 
then β is calculated as follows: 

 

(3)   
k
n

=β ; 

(4)   . ),max( ji kkk =
 
where β ranges between (0, 1). In fact, the cur-
rent USAS taxonomy allows only the maximum 
three layers of sub-division, therefore β has one 
of three possible scores: 0.500 (1/2), 0.333 (1/3) 
and 0.666 (2/3). In order to avoid producing zero 
scores, if the pair of tags do not share any digit 
codes except the head letter, then n is given a 
small value of 0.5. 

Combining all of the weighting scores, the 
semantic distance SD in formula (1) is calculated 
as follows: 

 

(5)  ( )

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=

∏

∏

=

=

.  then   c), if

;  then   b), if

1;  then   a), if
;   then   matches,   tagno if

,

1

1
n

i
ii

n

i
iiwMSD

βα

α

λ

 
where λ is given a small value of 0.001 for our 
experiment5. 

Some MWEs and single words in the lexicon 
are assigned with combined semantic categories 
which are considered to be inseparable, as shown 
below: 

petrol_NN1 station_NN1 M3/H1 
where the slash means that this MWE falls under 
the categories of M3 {VEHICLES AND TRANS-
PORTS ON LAND} and H1 {ARCHITECTURE 
AND KINDS OF HOUSES AND BUILDINGS} 
at the same time. For such cases, criss-cross 
comparisons between all possible tag pairs are 
carried out in order to find the optimal match 
between the tags of the MWE and its constituent 
words. 

By way of further explanation, the word 
“brush” as a verb has candidate semantic tags of 
B4 {CLEANING AND PERSONAL CARE} and 
A1.1.1 {GENERAL ACTION, MAKING} etc. On 
the other hand, the phrasal verb “brush down” 
may fall under either B4 category with the sense 
of cleaning or G2.2 category {ETHICS} with the 
sense of reprimand. When we apply our algo-
rithm to it, we get the D-score of 1.0000 for the 
sense of cleaning, indicating a high degree of 
compositionality, whereas we get a low D-score 
of 0.0032 for the sense of reprimand, indicating 
a low degree of compositionality. Note that the 
word “down” in this MWE is filtered out as it is 
a functional word. 

The above example has only a single constitu-
ent content word. In practice, many MWEs have 
more complex structures than this example. In 
order to test the performance of our algorithm, 
we compared its output against human judgments 
of compositionality, as reported in the following 
section. 

4 Manually Ranking MWEs for 
Evaluation 

In order to evaluate the performance of our 
tool against human judgment, we prepared a list 

                                                 
5 As long as λ is small enough, it does not affect the ranking 
of D-scores. 
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of 89 MWEs6 and asked human raters to rank 
them via a website. The list includes six MWEs 
with multiple senses, and these were treated as 
separate MWE. The Lancaster MWE lexicon has 
been compiled manually by expert linguists, 
therefore we assume that every item in this lexi-
con is a true MWE, although we acknowledge 
that some errors may exist. 

Following McCarthy et al.’s approach, we 
asked the human raters to assign each MWE a 
number ranging between 0 (opaque) and 10 
(fully compositional). Both native and non-native 
speakers are involved, but only the data from 
native speakers are used in this evaluation. As a 
result, three groups of raters were involved in the 
experiment.  Group 1 (6 people) rated MWEs 
with indexes of 1-30, Group 2 (4 people) rated 
MWEs with indexes of 31-59 and Group 3 (five 
people) rated MWEs with indexes of 6-89. 

In order to test the level of agreement between 
the raters, we used the procedures provided in 
the 'irr' package for R (Gamer, 2005). With this 
tool, the average intraclass correlation coefficient 
(ICC) was calculated for each group of raters 
using a two-way agreement model (Shrout & 
Fleiss, 1979). As a result, all ICCs exceeded 0.7 
and were significant at the 95% confidence level, 
indicating an acceptable level of agreement be-
tween raters. For Group 1, the ICC was 0.894 
(95% ci = 0.807 < ICC < 0.948), for Group 2 it 
was 0.9 (95% ci=0.783<ICC<0.956) and for 
Group 3 it was 0.886 (95% ci =  0.762 < ICC < 
0.948). 

Based on this test, we conclude that the man-
ual ranking of the MWEs is reliable and is suit-
able to be used in our evaluation. Source data for 
the human judgements is available from our 
website in spreadsheet form7. 

5 Evaluation 

In our evaluation, we focused on testing the 
performance of the D-score against human rat-
ers’ judgment on ranking different MWEs by 
their degree of compositionality, as well as dis-
tinguishing the different degrees of composition-
ality for each sense in the case of multiple tags.  

The first step of the evaluation was to imple-
ment the algorithm in a program and run the tool 
on the 89 test MWEs we prepared. Fig. 1 illus-
trates the D-score distribution in a bar chart. As 
shown by the chart, the algorithm produces a 
widely dispersed distribution of D-scores across 
                                                 
6 Selected at random from the Lancaster semantic lexicon. 
7 http://ucrel.lancs.ac.uk/projects/assist/ 

the sample MWEs, ranging from 0.000032 to 
1.000000. For example, the tool assigned the 
score of 1.0 to the FOOD sense and 0.001 to the 
THIEF senses of “tea leaf” successfully distin-
guishing the different degrees of compositional-
ity of these two senses. 
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Fig 1: D-score distribution across 89 sample 

MWEs 
 
As shown in Fig. 1, some MWEs share the 

same scores, reflecting the limitation of the num-
ber of ranks that our algorithm can produce as 
well as the limited amount of semantic informa-
tion available from a lexicon. Nonetheless, the 
algorithm produced 45 different scores which 
ranked the MWEs into 45 groups (see the steps 
in the figure). Compared to the eleven scores 
used by the human raters, this provides a fine-
grained ranking of the compositionality.   

The primary issue in our evaluation is the ex-
tent to which the automatic ranking of the MWEs 
correlates with the manual ranking of them. As 
described in the previous section, we created a 
list of 89 manually ranked MWEs for this pur-
pose. Since we are mainly interested in the ranks 
rather than the actual scores, we examined the 
correlation between the automatic and manual 
rankings using Spearman’s correlation coeffi-
cient. (For the full ranking list, see Appendix). 

In the manually created list, each MWE was 
ranked by 3-6 human raters. In order to create a 
unified single test data of human ranking, we 
calculated the average of the human ranks for 
each MWE. For example, if two human raters 
give ranks 3 and 4 to a MWE, then its rank is 
(3+4)/2=3.5. Next, the MWEs are sorted by the 
averaged ranks in descending order to obtain the 
combined ranks of the MWEs. Finally, we sorted 
the MWEs by the D-score in the same way to 
obtain a parallel list of automatic ranks. For the 
calculation of Spearman’s correlation coefficient, 
if n MWEs are tied to a score (either D-score or 
the average manual ranks), their ranks were ad-
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justed by dividing the sum of their ranks by the 
number of MWEs involved. Fig. 2 illustrates the 
correspondence between the adjusted automatic 
and manual rankings. 
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Fig. 2: Scatterplot of automatic vs. manual 

ranking. 
 

As shown in Fig. 2, the overall correlation seems 
quite weak. In the automatic ranking, quite a few 
MWEs are tied up to three ranks, illustrated by 
the vertically aligned points. The precise correla-
tion between the automatic and manual rankings 
was calculated using the function provided in R 
for Windows 2.2.1.  Spearman's rank correlation 
(rho) for these data was 0.2572 (p=0.01495), 
indicating a significant though rather weak posi-
tive relationship. 

In order to find the factors causing this weak 
correlation, we tested the correlation for those 
MWEs whose rank differences were less than 20, 
30, 40 and 50 respectively. We are interested to 
find out how many of them fall under each of the 
categories and which of their features affected 
the performance of the algorithm. As a result, we 
found 43, 54, 66 and 77 MWEs fall under these 
categories respectively, which yield different 
correlation scores, as shown in Table 1.  

 
numb of 
MWEs 

Percent 
(%) 

Rank 
diff 

rho-
score 

Sig. 

43 48.31 <20 0.9149 P<0.001 
54 60.67 <30 0.8321 P<0.001 
66 74.16 <40 0.7016 P<0.001 
77 86.52 <50 0.5084 P<0.001 

89 (total) 100.00 <=73 0.2572 P<0.02 
 

Table 1: Correlation coefficients corresponding 
different rank differences. 

 
As we expected, the rho decreases as the rank 

difference increases, but all of the four categories 
containing a total of 77 MWEs (86.52%) show 
reasonably high correlations, with the minimum 

score of 0.5084. 8 In particular, 66 of them 
(74.16%), whose ranking differences are less 
than 40, demonstrate a strong correlation with 
rho-score 0.7016, as illustrated by Fig. 3 
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Fig 3: ScatterPlot for 66 MWEs (rank_diff < 

40) which shows a strong correlation 
 
Our manual examination shows that the algo-

rithm generally pushes the highly compositional 
and non-compositional MWEs towards opposite 
ends of the spectrum of the D-score. For example, 
those assigned with score 1 include “aid worker”, 
“audio tape” and “unemployment figure”. On the 
other hand, MWEs such as “tea leaf” (meaning 
thief), “kick the bucket” and “hot dog” are given 
a low score of 0.001. We assume these two 
groups of MWEs are generally treated as highly 
compositional and opaque MWEs respectively. 

However, the algorithm could be improved. A 
major problem found is that the algorithm pun-
ishes longer MWEs which contain function 
words. For example, “make an appearance” is 
scored 0.000114 by the algorithm, but when the 
article “an” is removed, it gets a higher score 
0.003608. Similarly, when the preposition “up” 
is removed from “keep up appearances”, it gets 
0.014907 compared to the original 0.000471, 
which would push up their rank much higher. To 
address this problem, the algorithm needs to be 
refined to minimise the impact of the function 
words to the scoring process. 

Our analysis also reveals that 12 MWEs with 
rank differences (between automatic and manual 
ranking) greater than 50 results in a degraded 
overall correlation. Table 2 lists these words, in 
which the higher ranks indicate higher composi-
tionality.  
 

                                                 
8 Salkind (2004: 88) suggests that r-score ranges 0.4~0.6, 
0.6~0.8 and 0.8~1.0 indicate moderate, strong and very 
strong correlations respectively. 
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MWE Sem. Tag9 Auto 
rank 

Manual 
rank 

plough into A9- 53.5 3 
Bloody Mary F2 53.5 2 
pillow fight K6 26 80.5 
lollipop lady M3/S2 70 15 
cradle snatcher S3.2/T3/S2 73.5 17.5 
go bananas X5.2+++ 65 8.5 
make an appearance S1.1.3+ 2 58.5 
keep up appearances A8/S1.1.1 4 61 
sandwich course P1 69 11.5 
go bananas B2-/X1 68 10 
Eskimo roll M4 71.5 5 
in other words Z4 12.5 83 

 
Table 2: Twelve MWEs having rank differences 

greater than 50. 
 
Let us take “pillow fight” as an example. The 

whole expression is given the semantic tag K6, 
whereas neither “pillow” nor “fight” as individ-
ual word is given this tag. In the lexicon, “pil-
low” is classified as H5 {FURNITURE AND 
HOUSEHOLD FITTINGS} and “fight” is as-
signed to four semantic categories including S8- 
{HINDERING}, X8+ {HELPING}, E3- {VIO-
LENT/ANGRY}, and K5.1 {SPORTS}. For this 
reason, the automatic score of this MWE is as 
low as 0.003953 on the scale of [0, 1]. On the 
contrary, human raters judged the meaning of 
this expression to be fairly transparent, giving it 
a high score of 8.5 on the scale of [0, 10]. Similar 
contrasts occurred with the majority of the 
MWEs with rank differences greater than 50, 
which are responsible for weakening the overall 
correlation. 

Another interesting case we noticed is the 
MWE “pass away”. This MWE has two major 
senses in the semantic lexicon L1- {DIE} and 
T2- {END} which were ranked separately. Re-
markably, they were ranked in the opposite order 
by human raters and the algorithm. Human raters 
felt that the sense DIE is less idiomatic, or more 
compositional, than END, while the algorithm 
indicated otherwise. The explanation of this 
again lies in the semantic classification of the 
lexicon, where “pass” as a single word contains 
the sense T2- but not L1-. Consequently, the 
automatic score for “pass away” with the sense 

                                                 

                                                

9 Semantic tags occurring in Table 2: A8 (seem), A9 (giving 
possession), B2 (health and disease), F2 (drink), K6 (chil-
dren’s games and toys), M3 (land transport), M4 (swim-
ming), P1 (education), S1.1.1 (social actions), S1.1.3 (par-
ticipation), S2 (people), S3.2 (relationship), T3 (time: age), 
X1 (psychological actions), X5.2 (excited), Z4 (discourse 
bin) 

L1- is much lower (0.001) than that with the 
sense of T2- (0.007071). 

In order to evaluate our algorithm in compari-
son with previous work, we also tested it on the 
manual ranking list created by McCarthy et al 
(2003).10 We found that 79 of the 116 phrasal 
verbs in that list are included in the Lancaster 
semantic lexicon. We applied our algorithm on 
those 79 items to compare the automatic ranks 
against the average manual ranks using the 
Spearman’s rank correlation coefficient (rho). As 
a result, we obtained rho=0.3544 with signifi-
cance level of p=0.001357. This result is compa-
rable with or better than most measures reported 
by McCarthy et al (2003). 

6 Discussion 

The algorithm we propose in this paper is dif-
ferent from previous proposed statistical methods 
in that it employs a semantic lexical resource in 
which the semantic field information is directly 
accessible for both MWEs and their constituent 
words. Often, typical statistical algorithms meas-
ure the semantic distance between MWEs and 
their constituent words by comparing their con-
texts comprising co-occurrence words in near 
context extracted from large corpora, such as 
Baldwin et al’s algorithm (2003). 

When we consider the definition of the com-
positionality as the extent to which the meaning 
of the MWE can be guessed based on that of its 
constituent words, a semantic lexical resource 
which maps MWEs and words to their semantic 
features provides a practical way of measuring 
the MWE compositionality. The Lancaster se-
mantic lexicon is one such lexical resource 
which allows us to have direct access to semantic 
field information of large number of MWE and 
single words. Our experiment demonstrates the 
potential value of such semantic lexical resources 
for the automatic measurement of MWE compo-
sitionality. Compared to statistical algorithms 
which can be affected by a variety of un-
controllable factors, such as size and domain of 
corpora, etc., an expert-compiled semantic lexi-
cal resource can provide much more reliable and 
“clean” lexical semantic information. 

However, we do not suggest that algorithms 
based on semantic lexical resources can substi-
tute corpus-based statistical algorithms. Rather, 
we suggest it as a complement to existing statis-
tical algorithms. As the errors of our algorithm 

 
10This list is available at website: 
http://mwe.stanford.edu/resources/  
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reveal, the semantic information provided by the 
lexicon alone may not be rich enough for a very 
fine-grained distinction of MWE compositional-
ity. In order to obtain better results, this algo-
rithm needs to be combined with statistical tech-
niques. 

A limitation of our approach is language-
dependency. In order to port our algorithm to 
languages other than English, one needs to build 
similar semantic lexicon in those languages. 
However, similar semantic lexical resources are 
already under construction for some other lan-
guages, including Finnish and Russian (Löfberg 
et al., 2005; Sharoff et al., 2006), which will al-
low us to port our algorithm to those languages. 

7 Conclusion 

In this paper, we explored an algorithm based 
on a semantic lexicon for automatically measur-
ing the compositionality of MWEs. In our 
evaluation, the output of this algorithm showed 
moderate correlation with a manual ranking. We 
claim that semantic lexical resources provide 
another approach for automatically measuring 
MWE compositionality in addition to the exist-
ing statistical algorithms. Although our results 
are not yet conclusive due to the moderate scale 
of the test data, our evaluation demonstrates the 
potential of lexicon-based approaches for the 
task of compositional analysis. We foresee, by 
combining our approach with statistical algo-
rithms, that further improvement can be ex-
pected. 
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Appendix: Manual vs. Automatic Ranks 
of Sample MWEs 

The table below shows the human and auto-
matic rankings of 89 sample MWEs. The MWEs 
are sorted in ascending order by manual average 
ranks. The top items are supposed to be the most 
compositional ones. For example, according to 
the manual ranking, facial expression is the most 
compositional MWE while tea leaf is the most 
opaque one. This table also shows that some 
MWEs are tied up with the same ranks. For the 
definitions of the full semantic tagset, see web-
site http://www.comp.lancs.ac.uk/ucrel/usas/. 

 
MWE Tag Sem tag Man 

rank 
Auto. 
rank 

facial expression B1 1 9 
aid worker S8/S2 2 4 
audio tape K3 3.5 4 
leisure activities K1 3.5 36.5 
advance warning T4/Q2.2 5 36.5 
living space H2 6 51 
in other words Z4 7 77.5 

unemployment fig-
ures 

I3.1/N5 8 4 

camera angle Q4.3 9.5 45 
pillow fight K6 9.5 64 
youth club S5/T3 11.5 4 
petrol station M3/H1 11.5 36.5 
palm tree L3 13 9 
rule book G2.1/Q4.1 14 4 
ball boy K5.1/S2.2 15 13 
goal keeper K5.1/S2 16.5 4 
kick in E3- 16.5 36.5 
ventilation shaft H2 18 47 
directory enquiries Q1.3 19 14 
phone box Q1.3/H1 21 18.5 
lose balance M1 21 53 
bend the rules A1.7 21 54.5 
big nose X7/X2.4 23 67 
quantity control N5/A1.7 24 11.5 
act of God S9 25 36.5 
air bag A15/M3 26 62.5 
mind stretching A12 27 59 
plain clothes B5 28 36.5 
keep up appearances A8/S1.1.1 29 86 
examining board P1 30 23 
open mind X6 31.5 49 
make an appearance S1.1.3+ 31.5 88 
cable television Q4.3 33 15 
king size N3.2 34 36.5 
action point X7 35 61 
keep tight rein on A1.7 36 28 
noughts and crosses K5.2 37 77.5 
tea leaf L3/F2 38 4 
single minded X5.1 39.5 77.5 
window dressing I2.2 39.5 77.5 
street girl G1.2/S5 42 36.5 
just over the horizon S3.2/S2.1 42 60 
pressure group T1.1.3 42 16.5 
air proof O4.1 44.5 57.5 
heart of gold S1.2.2 44.5 77.5 
lose heart X5.2 46 26 
food for thought X2.1/X5.1 47 89 
play part S8 48 68 
look down on S1.2.3 49 77.5 
arm twisting Q2.2 50 36.5 
take into account A1.8 51 69 
kidney bean F1 52 9 
come alive A3+ 53 52 
break new ground T3/T2 54 54 
make up to S1.1.2 55 65 
by virtue of C1 56.5 36.5 
snap shot A2.2 56.5 27 
pass away L1- 58 77.5 
long face E4.1 59 77.5 
bossy boots S1.2.3/S2 60 77.5 
plough into M1/A1.1.2 61 11.5 
kick in T2+ 62 50 
animal magnetism S1.2 63 55.5 
sixth former P1/S2 64 77.5 
pull the strings S7.1 65 62.5 
couch potato A1.1.1/S2 66 77.5 
think tank S5/X2.1 67 36.5 
come alive X5.2+ 68 24 
hot dog F1 69 77.5 
cheap shot G2.2-/Q2.2 70 66 

10



rock and roll K2 71 48 
bright as a button S3.2/T3/S2 72.5 87 
cradle snatcher X9.1+ 72.5 16.5 
alpha wave B1 74 77.5 
lollipop lady M3/S2 75 20 
pass away X5.2+ 76.5 57.5 
plough into T2- 76.5 36.5 
piece of cake P1 78.5 77.5 
sandwich course A12 78.5 21 
go bananas B2-/X1 80 22 
go bananas X5.2+++ 81.5 36.5 
go bananas E3- 81.5 25 
kick the bucket L1 83 77.5 
on the wagon F2 84 36.5 
Eskimo roll M4 85 18.5 
acid house K2 86 46 
plough into A9- 87 36.5 
Bloody Mary F2 88 36.5 
tea leaf G2.1-/S2mf 89 77.5 
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Abstract

Making use of latent semantic analy-
sis, we explore the hypothesis that lo-
cal linguistic context can serve to iden-
tify multi-word expressions that have non-
compositional meanings. We propose that
vector-similarity between distribution vec-
tors associated with an MWE as a whole
and those associated with its constitutent
parts can serve as a good measure of the
degree to which the MWE is composi-
tional. We present experiments that show
that low (cosine) similarity does, in fact,
correlate with non-compositionality.

1 Introduction

Identifying non-compositional (or idiomatic)
multi-word expressions (MWEs) is an important
subtask for any computational system (Sag et al.,
2002), and significant attention has been paid
to practical methods for solving this problem in
recent years (Lin, 1999; Baldwin et al., 2003;
Villada Moirón and Tiedemann, 2006). While
corpus-based techniques for identifying collo-
cational multi-word expressions by exploiting
statistical properties of the co-occurrence of the
component words have become increasingly
sophisticated (Evert and Krenn, 2001; Evert,
2004), it is well known that mere co-occurrence
does not well distinguish compositional from
non-compositional expressions (Manning and
Scḧutze, 1999, Ch. 5).

While expressions which may potentially have
idiomatic meanings can be identified using various
lexical association measures (Evert and Krenn,
2001; Evert and Kermes, 2003), other techniques
must be used to determining whether or not a par-
ticular MWE does, in fact, have an idiomatic use.

In this paper we explore the hypothesis that the
local linguistic context can provide adequate cues
for making this determination and propose one
method for doing this.

We characterize our task on analogy with word-
sense disambiguation (Schütze, 1998; Ide and
Véronis, 1998). As noted by Schütze, WSD
involves two related tasks: the general task of
sense discrimination—determining what senses
a given word has—and the more specific task
of sense selection—determining for a particular
use of the word in context which sense was in-
tended. For us the discrimination task involves
determining for a given expression whether it has
a non-compositional interpretation in addition to
its compositional interpretation, and the selec-
tion task involves determining in a given context,
whether a given expression is being used compo-
sitionally or non-compostionally. The German ex-
pressionins Wasser fallen, for example, has a non-
compositional interpretation on which it means ‘to
fail to happen’ (as in (1)) and a compositional in-
terpretation on which it means ‘to fall into water
(as in (2)).1

(1) Das Kind war beim Baden von einer Luftma-
tratze ins Wasser gefallen.
‘The child had fallen into the water from an a
air matress while swimming’

(2) Die Eröfnung des Skateparks ist ins Wasser
gefallen.
‘The opening of the skatepark was cancelled’

The discrimination task, then, is to identifyins
Wasser fallenas an MWE that has an idiomatic
meaning and the selection task is to determine that

1Examples taken from a newspaper corpus of the German
Süddeutsche Zeitung (1994-2000)
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in (1) it is the compositional meaning that is in-
tended, while in (2) it is the non-compositional
meaning.

Following Scḧutze (1998) and Landauer & Du-
mais (1997) our general assumption is that the
meaning of an expression can be modelled in
terms of the words that it co-occurs with: its
co-occurrence signature. To determine whether
a phrase has a non-compositional meaning we
compute whether the co-occurrence signature of
the phrase is systematically related to the co-
occurrence signatures of its parts. Our hypoth-
esis is that a systematic relationship is indica-
tive of compositional interpretation and lack of
a systematic relationship is symptomatic of non-
compositionality. In other words, we expect com-
positional MWEs to appear in contexts more sim-
ilar to those in which their component words ap-
pear than do non-compositional MWEs.

In this paper we describe two experiments that
test this hypothesis. In the first experiment we
seek to confirm that the local context of a known
idiom can reliably distinguish idiomatic uses from
non-idiomatic uses. In the second experiment we
attempt to determine whether the difference be-
tween the contexts in which an MWE appears and
the contexts in which its component words appear
can indeed serve to tell us whether the MWE has
an idiomatic use.

In our experiments we make use of lexical se-
mantic analysis (LSA) as a model of context-
similarity (Deerwester et al., 1990). Since this
technique is often used to model meaning, we will
speak in terms of “meaning” similiarity. It should
be clear, however, that we are only using the LSA
vectors—derived from context of occurrence in a
corpus—to model meaning and meaning composi-
tion in a very rough way. Our hope is simply that
this rough model is sufficient to the task of identi-
fying non-compositional MWEs.

2 Previous work

Recent work which attempts to discriminate
between compositional and non-compositional
MWEs include Lin (1999), who used mutual-
information measures identify such phrases, Bald-
win et al. (2003), who compare the distribution
of the head of the MWE with the distribution of
the entire MWE, and Vallada Moirón & Tiede-
mann (2006), who use a word-alignment strat-
egy to identify non-compositional MWEs making

use of parallel texts. Schone & Jurafsky (2001)
applied LSA to MWE identification, althought
they did not focus on distinguishing compositional
from non-compositional MWEs.

Lin’s goal, like ours, was to discriminate non-
compositional MWEs from compositional MWEs.
His method was to compare the mutual informa-
tion measure of the constituents parts of an MWE
with the mutual information of similar expressions
obtained by substituting one of the constituents
with a related word obtained by thesaurus lookup.
The hope was that a significant difference between
these measures, as in the case ofred tape(mutual
information: 5.87) compared toyellow tape(3.75)
or orange tape(2.64), would be characteristic of
non-compositional MWEs. Although intuitively
appealing, Lin’s algorithm only achieves precision
and recall of 15.7% and 13.7%, respectively (as
compared to a gold standard generate from an id-
iom dictionary—but see below for discussion).

Schone & Jurafsky (2001) evaluated a num-
ber of co-occurrence-based metrics for identify-
ing MWEs, showing that, as suggested by Lin’s
results, there was need for improvement in this
area. Since LSA has been used in a number
of meaning-related language tasks to good ef-
fect (Landauer and Dumais, 1997; Landauer and
Psotka, 2000; Cederberg and Widdows, 2003),
they had hoped to improve their results by identify
non-compositional expressions using a method
similar to that which we are exploring here. Al-
though they do not demonstrate that this method
actually identifies non-compositional expressions,
they do show that the LSA similarity technique
only improves MWE identification minimally.

Baldwin et al., (2003) focus more narrowly
on distinguishing English noun-noun compounds
and verb-particle constructions which are com-
positional from those which are not composi-
tional. Their approach is methodologically similar
to ours, in that they compute similarity on the ba-
sis of contexts of occurrance, making use of LSA.
Their hypothesis is that high LSA-based similar-
ity between the MWE and each of its constituent
parts is indicative of compositionality. They evalu-
ate their technique by assessing the correlation be-
tween high semantic similarity of the constituents
of an MWE to the MWE as a whole with the like-
lihood that the MWE appears in WordNet as a hy-
ponym of one of the constituents. While the ex-
pected correlation was not attested, we suspect this
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to be more an indication of the inappropriateness
of the evaluation used than of the faultiness of the
general approach.

Lin, Baldwin et al., and Schone & Jurafsky, all
use as their gold standard either idiom dictionaries
or WordNet (Fellbaum, 1998). While Schone &
Jurafsky show that WordNet is as good a standard
as any of a number of machine readable dictionar-
ies, none of these authors shows that the MWEs
that appear in WordNet (or in the MRDs) are gen-
erally non-compositional, in the relevant sense. As
noted by Sag et al. (2002) many MWEs are sim-
ply “institutionalized phrases” whose meanings
are perfectly compositional, but whose frequency
of use (or other non-linguistic factors) make them
highly salient. It is certainly clear that many
MWEs that appear in WordNet—examples being
law student, medical student, college man—are
perfectly compositional semantically.

Zhai (1997), in an early attempt to apply
statistical methods to the extraction of non-
compositional MWEs, made use of what we take
to be a more appropriate evaluation metric. In his
comparison among a number of different heuris-
tics for identifying non-compositional noun-noun
compounds, Zhai did his evaluation by applying
each heuristic to a corpus of items hand-classified
as to their compositionality. Although Zhai’s clas-
sification appears to be problematic, we take this
to be the appropirate paradigm for evaluation in
this domain, and we adopt it here.

3 Proceedure

In our work we made use of the Word Space
model of (semantic) similiarty (Schütze, 1998)
and extended it slightly to MWEs. In this frame-
work, “meaning” is modeled as an n-dimensional
vector, derived via singular value decomposition
(Deerwester et al., 1990) from word co-occurrence
counts for the expression in question, a technique
frequently referred to asLatent Semantic Analysis
(LSA). This kind of dimensionality reduction has
been shown to improve performance in a number
of text-based domains (Berry et al., 1999).

For our experiments we used a local German
newspaper corpus.2 We built our LSA model
with the Infomap Software package.3, using the
1000 most frequent words not on the 102-word

2Süddeutsche Zeitung (SZ) corpus for 2003 with about 42
million words.

3Available frominfomap.stanford.edu .

Figure 1: Two dimensional Word Space

hand-generated stop list as the content-bearing di-
mension words (the columns of the matrix). The
20,000 most frequent content words were assigned
row values by counting occurrences within a 30-
word window. SVD was used to reduce the di-
mensionality from 1000 to 100, resulting in 100
dimensional “meaning”-vectors for each word. In
our experiments, MWEs were assigned meaning-
vectors as a whole, using the same proceedure.
For meaning similarity we adopt the standard mea-
sure of cosine of the angle between two vectors
(the normalized correlation coefficient) as a met-
ric (Scḧutze, 1998; Baeza-Yates and Ribeiro-Neto,
1999). On this metric, two expressions are taken
to be unrelated if their meaning vectors are orthog-
onal (the cosine is 0) and synonymous if their vec-
tors are parallel (the cosine is 1).

Figure 1 illustrates such a vector space in two
dimensions. Note that the meaning vector for
Löffel ‘spoon’ is quite similar to that fores-
sen ‘to eat’ but distant fromsterben ‘to die’,
while the meaning vector for the MWEden L̈offel
abgebenis close to that forsterben. Indeedden
Löffel abgeben, like to kick the bucket, is a non-
compositional idiom meaning ‘to die’.

While den L̈offel abgebenis used almost ex-
clusively in its idiomatic sense (all four occur-
rences in our corpus), many MWEs are used reg-
ularly in both their idiomatic and in their literal
senses. About two thirds of the uses of the MWE
ins Wasser fallenin our corpus are idiomatic uses,
and the remaing one third are literal uses. In
our first experiment we tested the hypothesis that
these uses could reliably be distinguished using
distribution-based models of their meaning.
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3.1 Experiment I

For this experiment we manually annotated the
67 occurrences ofins Wasser fallenin our cor-
pus as to whether the expression was used com-
positionally (literally) or non-compositionally (id-
iomatically).4 Marking this distinction we gen-
erate an LSA meaning vectors for the composi-
tional uses and an LSA meaning vector for the
non-compositional uses ofins Wasser fallen. The
vectors turned out, as expected, to be almost or-
thogonal, with a cosine of the angle between them
of 0.02. This result confirms that the linguis-
tic contexts in which the literal and the idiomatic
use of ins Wasser fallenappear are very differ-
ent, indicating—not surprisingly—that the seman-
tic difference between the literal meaning and the
idiomatic meaning is reflected in the way these
these phrases are used.

Our next task was to investigate whether this
difference could be used in particular cases to de-
termine what the intended use of an MWE in a
particular context was. To evaluate this, we did a
10-fold cross-validation study, calculating the lit-
eral and idiomatic vectors forins Wasser fallenon
the basis of the training data and doing a simple
nearest neighbor classification of each memember
of the test set on the basis of the meaning vectors
computed from its local context (the 30 word win-
dow). Our result of an average accurace of 72%
for our LSA-based classifier far exceeds the sim-
ple maximum-likelihood baseline of 58%.

In the final part of this experiment we compared
the meaning vector that was computed by sum-
ming over all uses ofins Wasser fallenwith the
literal and idiomatic vectors from above. Since id-
iomatic uses ofins Wasser fallenprevail in the cor-
pus (2/3 vs. 1/3), it is not surprisingly that the sim-
ilarity to the literal vector (0.0946) is much than
similarity to the idiomatic vector (0.3712).

To summarize Experiment I, which is a vari-
ant of a supervised phrase sense disambiguation
task, demonstrates that we can use LSA to distin-
guish between literal and the idiomatic usage of an
MWE by using local linguistic context.

4This was a straightforward task; two annotators anno-
tated independently, with very high agreement—kappa score
of over 0.95 (Carletta, 1996). Occurrences on which the an-
notators disagreed were thrown out. Of the 64 occurrences
we used, 37 were idiomatic and 27 were literal.

3.2 Experiment II

In our second experiment we sought to make
use of the fact that there are typically clear
distributional difference between compositional
and non-compositional uses of MWEs to deter-
mine whether a given MWE indeed has non-
compositional uses at all. In this experi-
ment we made use of a test set of German
Preposition-Noun-Verb “collocation candidate”
database whose extraction is described by Krenn
(2000) and which has been made available elec-
tronically.5 From this database only word com-
binations with frequency of occurrence more than
30 in our test corpus were considered. Our task
was to classify these 81 potential MWEs accord-
ing whether or not thay have an idiomatic mean-
ing.

To accomplish this task we took the following
approach. We computed on the basis of the dis-
tribution of the components of the MWE an esti-
mate for the compositional meaning vector for the
MWE. We then compared this to the actual vec-
tor for the MWE as a whole, with the expecta-
tion MWEs which indeed have non-compositinoal
uses will be distinguished by a relatively low vec-
tor similarity between the estimated compositional
meaning vector and the actual meaning vector.
In other words small similarity values should be
diagnostic for the presense of non-compositinoal
uses of the MWE.

We calculated the estimated compositional
meaning vector by taking it to be the sum of the
meaning vector of the parts, i.e., the compositional
meaning of an expressionw1w2 consisting of two
words is taken to be sum of the meaning vectors
for the constituent words.6 In order to maximize
the independent contribution of the constituent
words, the meaning vectors for these words were
always computed from contexts in which they ap-
pear alone (that is, not in the local context of the
other constituent). We call the estimated composi-
tional meaning vector the “composed” vector.7

The comparisons we made are illustrated in Fig-
ure 2, where vectors for the MWEauf die Strecke
bleiben ‘to fall by the wayside’ and the words
Strecke‘route’ and bleiben ‘to stay’ are mapped

5Available as an example data collection in UCS-Toolkit
5 fromwww.collocations.de .

6For all our experiments we consider only two-word com-
binations.

7Schone & Jurafsky (2001) explore a few modest varia-
tions of this estimate.
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Figure 2: Composed versus Multi-Word

into two dimensions8. (the wordsAutobahn‘high-
way’ andeigensẗandig‘independent’ are given for
comparison). Here we see that the linear com-
bination of the component words of the MWE is
clearly distinct from that of the MWE as a whole.

As a further illustration of the difference be-
tween the composed vector and the MWE vector,
in Table 2 we list the words whose meaning vector
is most similar to that of the MWEauf dis Strecke
bleibenalong with their similarity values, and in
Table 3 we list those words whose meaning vec-
tor is most similar to the composed vector. The
semantic differences among these two classes are
readily apparent.

folgerung ‘consequence’ 0.769663
eigensẗandig ‘independent’ 0.732372
langfristiger ‘long-term’ 0.731411
herbeif̈uhren ‘to effect’ 0.717294
ausnahmef̈alle ‘exceptions’ 0.704939

Table 1:auf die Strecke bleiben

strecken ‘to lengthen’ 0.743309
fahren ‘to drive’ 0.741059
laufen ‘to run’ 0.726631
fahrt ‘drives’ 0.712352
schließen ‘to close’ 0.704364

Table 2:Strecke+bleiben

We recognize that the composed vector is
clearly nowhere near a perfect model of compo-
sitional meaning in the general case. This can be
illustrated by considering, for example, the MWE
fire breathing. This expression is clearly com-
positional, as it denotes the process of producing

8The prepositionaufand the articledieare on the stop list

combusting exhalation, exactly what the seman-
tic combination rules of the English would pre-
dict. Nevertheless the distribution offire breath-
ing is quite unrelated to that of its constituents
fire andbreathing( the former appears frequently
with dragonandcircuswhile the later appear fre-
quently withblazeand lungs, respectively). De-
spite these principled objections, the composed
vector provides a useful baseline for our investiga-
tion. We should note that a number of researchers
in the LSA tradition have attempted to provide
more compelling combinatory functions to cap-
ture the non-linearity of linguistic compositional
interpretation (Kintsch, 2001; Widdows and Pe-
ters, 2003).

As a check we chose, at random, a number of
simple clearly-compositional word combinations
(not from the candidate MWE list). We expected
that on the whole these would evidence a very high
similarity measure when compared with their as-
sociated composed vector, and this is indeed the
case, as shown in Table 1. We also compared

vor Gericht verantworten 0.80735103
‘to appear in court’
im Bett liegen 0.76056000
‘to lie in bed’
aus Gef̈angnis entlassen 0.66532673
‘dismiss from prison’

Table 3: Non-idiomatic phrases

the literal and non-literal vectors forins Wasser
fallen from the first experiment with the composed
vector, computed out of the meaning vectors for
Wasserand forfallen.9 The difference isn’t large,
but nevertheless the composed vector is more sim-
ilar to the literal vector (cosine of 0.2937) than to
the non-literal vector (cosine of 0.1733).

Extending to the general case, our task was to
compare the composed vector to the actual vec-
tor for all the MWEs in our test set. The result-
ing cosine similarity values range from 0.01 to
0.80. Our hope was that there would be a similar-
ity threshold for distinguishing MWEs that have
non-compositional interpretations from those that
do not. Indeed of the MWEs with a similarity val-
ues of under 0.1, just over half are MWEs which
were hand-annotated to have non-literal uses.10 It

9The prepositionins is on the stop list and plays no role
in the computation.

10The similarity scores for the entire test set are given in
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is clear then that the technique described is,prima
facie, capable of detecting idiomatic MWEs.

3.3 Evaluation and Discussion

To evaluate the method, we used the careful man-
ual annotation of the PNV database described by
Krenn (2000) as our gold standard. By adopt-
ing different threshholds for the classification de-
cision, we obtained a range of results (trading off
precision and recall). Table 4 illustrates this range.

The F-score measure is maximized in our ex-
periments by adopting a similarity threshold of
0.2. This means that MWEs which have a mean-
ing vector whose cosine is under this value when
compared with with the combined vector should
be classified as having a non-literal meaning.

To compare our method with that proposed by
Baldwin et al. (2003), we applied their method
to our materials, generating LSA vectors for the
component content words in our candidate MWEs
and comparing their semantic similarity to the
MWEs LSA vector as a whole, with the expecta-
tion being that low similarity between the MWE as
a whole and its component words is indication of
the non-compositionality of the MWE. The results
are given in Table 5.

It is clear that while Baldwin et al.’s expectation
is borne out in the case of the constituent noun
(the non-head), it is not in the case of the con-
stituent verb (the head). Even in the case of the
nouns, however, the results are, for the most part,
markedly inferior to the results we achieved using
the composed vectors.

There are a number of issues that complicate
the workability of the unsupervised technique de-
scribed here. We rely on there being enough
non-compositional uses of an idiomatic MWE in
the corpus that the overall meaning vector for the
MWE reflects this usage. If the literal meaning
is overwhelmingly frequent, this will reduce the
effectivity of the method significantly. A second
problem concerns the relationship between the lit-
eral and the non-literal meaning. Our technique
relies on these meaning being highly distinct. If
the meanings are similar, it is likely that local con-
text will be inadequate to distinguish a composi-
tional from a non-compositional use of the expres-
sion. In our investigation it became apparent, in
fact, that in the newspaper genre, highly idiomatic
expressions such asins Wasser fallenwere often

Appendix I.

used in their idiomatic sense (apparently for hu-
morous effect) particularly frequently in contexts
in which elements of the literal meaning were also
present.11

4 Conclusion

To summarize, in order to classify an MWE as
non-compositional, we compute an approximation
of its compositional meaning and compare this
with the meaning of the expression as it is used
on the whole. One of the obvious improvements
to the algorithm could come from better mod-
els for simulating compositional meaning. A fur-
ther issue that can be explored is whether linguis-
tic preprocessing would influence the results. We
worked only on raw text data. There is some ev-
idence (Baldwin et al., 2003) that part of speech
tagging might improve results in this kind of task.
We also only considered local word sequences.
Certainly some recognition of the syntactic struc-
ture would improve results. These are, however,
more general issues associated with MWE pro-
cessing.

Rather promising results were attained using
only local context, however. Our study shows
that the F-score measure is maximized by taking
as threshold for distinguishing non-compositional
phrases from compositional ones a cosine simi-
larity value somewhere between 0.1-0.2. An im-
portant point to be explored is that compositional-
ity appears to come in degrees. As Bannard and
Lascarides (2003) have noted, MWEs “do not fall
cleanly into the binary classes of compositional
and non-compositional expressions, but populate
a continuum between the two extremes.” While
our experiment was designed to classify MWEs,
the technique described here, of course, provides
a means, if rather a blunt one, for quantifying the
degreee of compositonality of an expression.
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APPENDIX
Similarity (cosine) values for the combined and
the MWE vector. Uppercase entries are those
hand-annotated as being MWEs which have an id-
iomatic interpretation.
Word Combinations Cosines
(vor) gericht verantworten 0.80735103
(in) bett liegen 0.76056000
(aus) gef̈angnis entlassen 0.66532673
(zu) verf̈uung stellen 0.60310321
(aus) haft entlassen 0.59105617
(um) prozent steigern 0.55889772
(ZU) KASSE BITTEN 0.526331
(auf) prozent sinken 0.51281725
(IN) TASCHE GREIFEN 0.49350031
(zu) verf̈ugung stehen 0.49236563
(auf) prozent steigen 0.47422122
(um) prozent zulegen 0.47329672
(in) betrieb gehen 0.47262171
(unter) druck geraten 0.44377297
(in) deutschland leben 0.44226071
(um) prozent steigen 0.41498688
(in) rechnung stellen 0.40985534
(von) prozent erreichen 0.39407666
(auf) markt kommen 0.38740534
(unter) druck setzen 0.37822936
(in) vergessenheit geraten 0.36654168
(um) prozent sinken 0.36600216
(in) rente gehen 0.36272313
(zu) einsatz kommen 0.3562527
(zu) schule gehen 0.35595884
(in) frage stellen 0.35406327
(in) frage kommen 0.34714701
(in) luft sprengen 0.34241143
(ZU) GESICHT BEKOMMEN 0.34160325
(vor) gericht ziehen 0.33405685
(in) gang setzen 0.33231573
(in) anspruch nehmen 0.32217044
(auf) prozent erḧohen 0.31574088
(um) prozent wachsen 0.3151615
(in) empfang nehmen 0.31420746
(für) sicherheit sorgen 0.30230156

(zu) ausdruck bringen 0.30001438
(IM) MITTELPUNKT STEHEN 0.29770654
(zu) ruhe kommen 0.29753093
(IM) AUGE BEHALTEN 0.2969367
(in) urlaub fahren 0.29627064
(in) kauf nehmen 0.2947628
(in) pflicht nehmen 0.29470704
(in) höhe treiben 0.29450525
(in) kraft treten 0.29311349
(zu) kenntnis nehmen 0.28969961
(an) start gehen 0.28315812
(auf) markt bringen 0.2800427
(in) ruhe standgehen 0.27575604
(bei) prozent liegen 0.27287073
(um) prozent senken 0.26506203
(UNTER) LUPE NEHMEN 0.2607078
(zu) zug kommen 0.25663165
(zu) ende bringen 0.25210009
(in) brand geraten 0.24819525
(ÜBER) BÜHNE GEHEN 0.24644366
(um) prozent erḧohen 0.24058016
(auf) tisch legen 0.23264335
(auf) b̈uhne stehen 0.23136641
(auf) idee kommen 0.23097735
(zu) ende gehen 0.20237252
(auf) spiel setzen 0.20112171
(IM) VORDERGRUND STEHEN 0.18957473
(IN) LEERE LAUFEN 0.18390151
(zu) opfer fallen 0.17724105
(in) gefahr geraten 0.17454816
(in) angriff nehmen 0.1643926
(auer) kontrolle geraten 0.16212899
(IN) HAND NEHMEN 0.15916243
(in) szene setzen 0.15766861
(ZU) SEITE STEHEN 0.14135151
(zu) geltung kommen 0.13119923
(in) geschichte eingehen 0.12458956
(aus) ruhe bringen 0.10973377
(zu) fall bringen 0.10900036
(zu) wehr setzen 0.10652383
(in) griff bekommen 0.10359659
(auf) tisch liegen 0.10011075
(IN) LICHTER SCHEINEN 0.08507655
(zu) sprache kommen 0.08503791
(IM) STICH LASSEN 0.0735844
(unter) beweis stellen 0.06064519
(IM) WEG STEHEN 0.05174435
(AUS) FUGEN GERATEN 0.05103952
(in) erinnerung bleiben 0.04339438
(ZU) WORT KOMMEN 0.03808749
(AUF) STRAßE GEHEN 0.03492515
(AUF) STRECKE BLEIBEN 0.03463844
(auer) kraft setzen 0.0338813
(AUF) WEG BRINGEN 0.03122951
(zu) erfolg f̈uhren 0.02882997
(in) sicherheit bringen 0.02862914
(in) erfühlung gehen 0.01515792
(in) zeitung lesen 0.00354598
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Abstract

It is well known that multi-word expres-
sions are problematic in natural language
processing. In previous literature, it has
been suggested that information about
their degree of compositionality can be
helpful in various applications but it has
not been proven empirically. In this pa-
per, we propose a framework in which
information about the multi-word expres-
sions can be used in the word-alignment
task. We have shown that even simple
features like point-wise mutual informa-
tion are useful for word-alignment task in
English-Hindi parallel corpora. The align-
ment error rate which we achieve (AER =
0.5040) is significantly better (about 10%
decrease in AER) than the alignment error
rates of the state-of-art models (Och and
Ney, 2003) (Best AER = 0.5518) on the
English-Hindi dataset.

1 Introduction

In this paper, we show that measures representing
compositionality of multi-word expressions can
be useful for tasks such as Machine Translation,
word-alignment to be specific here. We use an on-
line learning framework called MIRA (McDon-
ald et al., 2005; Crammer and Singer, 2003) for
training a discriminative model for the word align-
ment task (Taskar et al., 2005; Moore, 2005). The
discriminative model makes use of features which
represent the compositionality of multi-word ex-
pressions.

1At present visiting Institute for Research in Cognitive
Science, University of Pennsylvania, PA, USA.

Multi-word expressions (MWEs) are those
whose structure and meaning cannot be derived
from their component words, as they occur inde-
pendently. Examples include conjunctions such
as ‘as well as’ (meaning ‘including’), idioms like
‘kick the bucket’ (meaning ‘die’) phrasal verbs
such as ‘find out’ (meaning ‘search’) and com-
pounds like ‘village community’. They can be de-
fined roughly as idiosyncratic interpretations that
cross word boundaries (Sag et al., 2002).

A large number of MWEs have standard
syntactic structure but are semantically non-
compositional. Here, we consider the class of verb
based expressions (verb is the head of the phrase),
which occur very frequently. This class of verb
based multi-word expressions include verbal id-
ioms, support-verb constructions, among others.
The example ‘take place’ is a MWE but ‘take a
gift’ is not.

In the past, various measures have been sug-
gested for measuring the compositionality of
multi-word expressions. Some of these are mu-
tual information (Church and Hanks, 1989), dis-
tributed frequency (Tapanainen et al., 1998) and
Latent Semantic Analysis (LSA) model (Baldwin
et al., 2003). Even though, these measures have
been shown to represent compositionality quite
well, compositionality itself has not been shown to
be useful in any application yet. In this paper, we
explore this possibility of using the information
about compositionality of MWEs (verb based) for
the word alignment task. In this preliminary work,
we use simple measures (such as point-wise mu-
tual information) to measure compositionality.

The paper is organized as follows. In section 2,
we discuss the word-alignment task with respect
to the class of multi-word expressions of interest
in this paper. In section 3, we show empirically,
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the behavior of verb based expressions in a paral-
lel corpus (English-Hindi in our case). We then
discuss our alignment algorithm in section 4. In
section 5, we describe the features which we have
used in our training model. Section 6 discusses the
training algorithm and in section 7, the results of
our discriminative model for the word alignment
task. Related work and conclusion follow in sec-
tion 8 and 9 respectively.

2 Task: Word alignment of verbs and
their dependents

The task is to align the verbs and their dependents
(arguments and adjuncts) in the source language
sentence (English) with words in the target lan-
guage sentence (Hindi). The dependents of the
verbs in the source sentence are represented by
their head words. Figure 1. shows an example
of the type of multi-word expressions which we
consider for alignment.

subj
obj

 prep_in

event place

took

The cycling

Philadelphia

     (The cycling event took place in Philadelphia) 

Figure 1: Example of MWEs we consider

In the above example, the goal will the to align
the words ‘took’, ‘event’, ‘place’ and ‘Philadel-
phia’ with corresponding word(s) in the target lan-
guage sentence (which is not parsed) using a dis-
criminative approach. The advantage in using the
discriminative approach for alignment is that it lets
you use various compositionality based features
which are crucial towards aligning these expres-
sions. Figure 2. shows the appropriate alignment
of the expression in Figure 1. with the words in the
target language. The pair (take place), in English,
a verb and one of its dependents is aligned with a
single verbal unit in Hindi.

It is essential to obtain the syntactic roles for de-
pendents in the source language sentence as they
are required for computing the compositionality
value between the dependents and their verbs. The

Philadelphia   mein   saikling     kii    pratiyogitaa   hui

Philadelphia

The cycling

took

placeevent

 prep_in
obj

subj

Figure 2: Alignment of Verb based expression

syntactic roles on the source side are obtained by
applying simple rules to the output of a depen-
dency parser. The dependency parser which we
used in our experiments is a stochastic TAG based
dependency parser (Shen, 2006). A sentence
could have one or more verbs. We would like
to align all the expressions represented by those
verbs with words in the target language.

3 Behavior of MWEs in parallel corpora

In this section, we will briefly discuss the com-
plexity of the alignment problem based on the
verb based MWE’s. From the word aligned sen-
tence pairs, we compute the fraction of times a
source sentence verb and its dependent are aligned
together with the same word in the target lan-
guage sentence. We count the number of times a
source sentence verb and its dependent are aligned
together with the same word in the target lan-
guage sentence, and divide it by the total num-
ber of dependents. The total size of our word
aligned corpus is 400 sentence pairs which in-
cludes both training and test sentences. The total
number of dependents present in these sentences
are 2209. Total number of verb dependent pairs
which aligned with same word in target language
are 193. Hence, the percentage of such occur-
rences is 9%, which is a significant number.

4 Alignment algorithm

In this section, we describe the algorithm for align-
ing verbs and their dependents in the source lan-
guage sentence with the words in the target lan-
guage. Let V be the number of verbs and A be the
number of dependents. Let the number of words in
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the target language be N. If we explore all the ways
in which theV + A words in the source sentence
are aligned with words in the target language be-
fore choosing the best alignment, the total number
of possibilites areNV+A. This is computationally
very expensive. Hence, we use a Beam-search al-
gorithm to obtain the K-best alignments.

Our algorithm has three main steps.

1. Populate the Beam : Use the local features
(which largely capture the co-occurence in-
formation between the source word and the
target word) to determine the K-best align-
ments of verbs and their dependents with
words in the target language.

2. Re-order the Beam: Re-order the above
alignments using more complex features
(which include the global features and the
compositionality based feature(s)).

3. Post-processing : Extend the alignment(s) of
the verb(s) (on the source side) to include
words which can be part of the verbal unit
on the target side.

For a source sentence, let the verbs and depen-
dents be denoted bysij. Here i is the index of
the verb (1 <= i <= V ). The variablej is
the index of the dependents (0 <= j <= A)
except whenj = 0 which is used to represent
the verb itself. Let the source sentences be de-
noted asS = fsijg and the target sentences byT = ftng. The alignment from a source sen-
tence S to target sentence T is defined as the map-
ping �a = faijn j aijn � (sij ! tn);8i; jg. A
beam is used to store a set of K-best alignments
between a source sentence and the target sentence.
It is represented using the symbolB whereBk
(0 <= k <= K) is used to refer to a particular
alignment configuration.

4.1 Populate the Beam

The task in this step is to obtain the K-best can-
didate alignments using local features. The local
features mainly contain the coccurence informa-
tion between a source and a target word and are in-
dependent of other alignment links or words in the
sentences. Let the local feature vector be denoted
asfL(sij ; tk). The score of a particular alignment
link is computed by taking the dot product of the
weight vectorW with the local feature vector (of

words connected by the alignment link). Hence,
the local score will besoreL(sij ; tk) = W:fL(sij ; tk)
The total score of an alignment configuration is
computed by adding the scores of individual links
in the alignment configuration. Hence, the align-
ment score will besoreLa(�a; S; T ) =X soreL(sij; tk)8sij 2 S & sij ! tk 2 �a

We propose an algorithm of orderO((V +A)Nlog(N) + K) to compute the K-best align-
ment configurations. First, the local scores of each
verb and its dependents are computed for each
word in the target sentence and stored in a lo-
cal beam denoted bybij . The local beams cor-
responding to all the verbs and dependents are
then sorted. This operation has the complexity(V +A) N log(N).

The goal now is to pick the K-best configura-
tions of alignment links. A single slot in the local
beam corresponds to one alignment link. We de-
fine a boundary which partitions each local beam
into two sets of slots. The slots above the bound-
ary represent the slots which have been explored
by the algorithm while slots below the boundary
have still to be explored. The figure 3. shows the
boundary which cuts across the local beams.

Bb (i,j)

Beam
Alignment

Boundary

Local Beams

Figure 3: Boundary

We keep on modifying the boundary untill all
the K slots in the Alignment Beam are filled with
the K-best configurations. At the beginning of the
algorithm, the boundary is a straight line passing
through the top of all the local beams. The top slot
of the alignment beam at the beginning represents
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the combination of alignment links with the best
local scores.

The next slotbij[p℄ (from the set of unexplored
slots) to be included in the boundary is the slot
which has the least difference in score from the
score of the slot at the top of its local beam. That
is, we pick the slotbij[p℄ such thatsore(bij [p℄)�sore(bij [1℄) is the least among all the unexplored
slots (or alignment links). Trivially,bij [p� 1℄ was
already a part of the boundary.

When the slotbij [p℄ is included in the boundary,
various configurations, which now containbij [p℄,
are added to the alignment beam. The new con-
figurations are the same as the ones which previ-
ously containedbij[p � 1℄ but with the replace-
ment ofbij [p� 1℄ by bij [p℄. The above procedure
ensures that the the alignment configurations are
K-best and are sorted according to the scores ob-
tained using local features.

4.2 Re-order the beam

We now use global features to re-order the beam.
The global features look at the properties of the en-
tire alignment configuration instead of alignment
links locally.

The global score is defined as the dot product of
the weight vector and the global feature vector.soreG(�a) = W:fG(�a)
The overall score is calculated by adding the local
score and the global score.sore(�a) = soreLa(�a) + soreG(�a)

The beam is now sorted based on the overall
scores of each alignment. The alignment config-
uration at the top of the beam is the best possible
alignment between source sentence and the target
sentence.

4.3 Post-processing

The first two steps in our alignment algorithm
compute alignments such that one verb or depen-
dent in the source language side is aligned with
only one word in the target side. But, in the case
of compound verbs in Hindi, the verb in English is
aligned to all the words which represent the com-
pound verb in Hindi. For example, in Figure 3, the
verb “lost” is aligned to both ’khoo’ and ’dii’.

Our alignment algorithm would have aligned
“lost” only to ’khoo’. Hence, we look at the win-
dow of words after the word which is aligned to

mainee    Shyam   ki    kitaaba  khoo   dii

Shyam’s

bookI

lost

Figure 4: Case of compound verb in Hindi

the source verb and check if any of them is a verb
which has not been aligned with any word in the
source sentence. If this condition is satisfied, we
align the source verb to these words too.

5 Parameters

As the number of training examples (294 sen-
tences) is small, we choose to use very representa-
tive features. Some of the features which we used
in this experiment are as follows,

5.1 Local features (FL)

The local features which we consider are mainly
co-occurence features. These features estimate the
likelihood of a source word aligning to a target
word based on the co-occurence information ob-
tained from a large sentence aligned corpora1.

1. DiceWords: Dice Coefficient of the source
word and the target wordDCoe� (sij; tk) = 2 � Count(sij; tk)Count(sij) + Count(tk)
whereCount(sij; tk) is the number of times
the wordtk was present in the translation of
sentences containing the wordsij in the par-
allel corpus.

2. DiceRoots: Dice Coefficient of the lemma-
tized forms of the source and target words.
It is important to consider this feature be-
cause the English-Hindi parallel corpus is not
large and co-occurence information can be
learnt effectively only after we lemmatize the
words.

3. Dict: Whether there exists a dictionary entry
from the source wordsij to the target word

150K sentence pairs originally collected as part of TIDES
MT project and later refined at IIIT-Hyderabad, India.
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tk. For English-Hindi, we used a dictionary
available at IIIT - Hyderabad, India.

4. Null: Whether the source wordsij is aligned
to nothing in the target language.

5.2 Global features

The following are the four global features which
we have considered,� AvgDist: The average distance between the

words in the target language sentence which
are aligned to the verbs in the source lan-
guage sentence . AvgDist is then normalized
by dividing itself by the number of words in
the target language sentence. If the average
distance is small, it means that the verbs in
the source language sentence are aligned with
words in the target language sentence which
are located at relatively close distances, rela-
tive to the length of the target language sen-
tence.

This feature expresses the distribution of
predicates in the target language.� Overlap: This feature stores the count of
pairs of verbs in the source language sentence
which align with the same word in the target
language sentence. Overlap is normalized by
dividing itself by the total pairs of verbs.

This feature is used to discourage overlaps
among the words which are alignments of
verbs in the source language sentence.� MergePos: This feature can be considered as
a compositionality based feature. The part
of speech tag of a dependent is essential to
determine the likelihood of the dependent to
align with the same word in the target lan-
guage sentence as the word to which its verb
is aligned.

This binary feature is active when the align-
ment links of a dependent and its verb
merge. For example, in Figure 5., the feature
‘merge RP’ will be active (that is, mergeRP
= 1).� MergeMI: This is a compositionality based
feature which associates point-wise mutual
information (apart from the POS informa-
tion) with the cases where the dependents
which have the same alignment in the target

He/N away/RP

ran/V

    vaha     bhaaga     gayaa

Figure 5: Example of MergePos feature

language as their verbs. This features which
notes the the compositionality value (repre-
sented by point-wise mutual information in
our experiments) is active if the alignment
links of dependent and its verb merge.

The mutual information (MI) is classified
into three groups depending on its absolute
value. If the absolute value of mutual infor-
mation rounded to nearest integer is in the
range 0-2, it is considered LOW. If the value
is in the range 3-5, it is considered MEDIUM
and if it is above 5, it is considered HIGH.

The feature “mergeRP HIGH” is active in
the example shown in figure 6.

He/N away/RP

ran/V

    vaha     bhaaga     gayaa

MI = HIGH

Figure 6: Example of MergeMI feature

6 Online large margin training

For parameter optimization, we have used an on-
line large margin algorithm called MIRA (Mc-
Donald et al., 2005) (Crammer and Singer, 2003).
We describe the training algorithm that we used
very briefly. Our training set is a set of English-
Hindi word aligned parallel corpus. We get the
verb based expressions in English by running a de-
pendency parser (Shen, 2006). Let the number of
sentence pairs in the training data bem. We have
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fSq; Tq; âqg for training whereq <= m is the in-
dex number of the sentence pairfSq; Tqg in the
training set and̂aq is the gold alignment for the
pair fSq; Tqg. Let W be the weight vector which
has to be learnt,Wi be the weight vector after the
end ofith update. To avoid over-fitting,W is ob-
tained by averaging over all the weight vectorsWi.

A generic large margin algorithm is defined fol-
lows for the training instancesfSq; Tq; âqg,

1. InitializeW0, W , i
2. for p:1 to NIterations

3. for q:1 to m

4. Get K-Best predictions�q = fa1; a2:::akg
for the training example(Sq; Tq; âq) using
the current modelW i and applying step
1 and 2 of section 4. ComputeW i+1 by
updatingW i based on(Sq; Tq; âq; �q).

5. i = i + 1

6. W = W +W i+1
7. W = WNIterations�m

The goal of MIRA is to minimize the change inW i such that the score of the gold alignmentâ ex-
ceeds the score of each of the predictions in� by a
margin which is equal to the number of mistakes in
the predictions when compared to gold alignment.
While computing the number of mistakes, the mis-
takes due to the mis-alignment of head verb could
be given greater weight, thus prompting the opti-
mization algorithm to give greater importance to
verb related mistakes and thereby improving over-
all performance.

Step 4 in the algorithm mentioned above can
be substituted by the following optimization
problem,

minimizek(W i+1 �W i)k
s.t.8k, sore(âq; Sq; Tq)� sore(aq;k; Sq; Tq)>= Mistakes(ak; âq; Sq; Tq)
The above optimization problem is converted to

the Dual form using one Lagrangian multiplier for
each constraint. In the Dual form, the Lagrangian
multipliers are solved using Hildreth’s algorithm.
Here, prediction of� is similar to the prediction
of K � best classes in a multi-class classification

problem. Ideally, we need to consider all the possi-
ble classes and assign margin constraints based on
every class. But, here the number of such classes
is exponential and thus we restrict ourselves to theK � best classes.

7 Results on word-alignment task

7.1 Dataset

We have divided the 400 word aligned sentence
pairs into a training set consisting of 294 sen-
tence pairs and a test set consisting of 106 sentence
pairs. The source sentences are all dependency
parsed (Shen, 2006) and only the verb and its de-
pendents are considered for both training and test-
ing our algorithm. Our training algorithm requires
that the each of the source words is aligned to only
one or zero target words. For this, we use simple
heuristics to convert the training data to the appro-
priate format. For the words aligned to a source
verb, the first verb is chosen as the gold alignment.
For the words aligned to any dependent which is
not a verb, the last content word is chosen as the
alignment link. For test data, we do not make any
modifications and the final output from our align-
ment algorithm is compared with the original test
data.

7.2 Experiments with Giza

We evaluated our discriminative approach by com-
paring it with the state-of-art Giza++ alignments
(Och and Ney, 2003). The metric that we have
used to do the comparison is the Alignment Error
Rate (AER). The results shown below also contain
Precision, Recall and F-measure.

Giza was trained using an English-Hindi
aligned corpus of 50000 sentence pairs. In Table
1., we report the results of the GIZA++ alignments
run from both the directions (English to Hindi and
Hindi to English). We also show the results of the
intersected model. See Table 1. for the results of
the GIZA++ alignments.

Prec. Recall F-meas. AER

Eng! Hin 0.45 0.38 0.41 0.5874

Hin! Eng 0.46 0.27 0.34 0.6584

Intersected 0.82 0.19 0.31 0.6892

Table 1: Results of GIZA++ - Original dataset

We then lemmatize the words in both the source
and target sides of the parallel corpora and then
run Giza++ again. As the English-Hindi dataset

25



of 50000 sentence pairs is relatively small, we ex-
pect lemmatizing to improve the results. Table 2.
shows the results. As we hoped, the results after
lemmatizing the word forms are better than those
without.

Prec. Recall F-meas. AER

Eng! Hin 0.52 0.40 0.45 0.5518

Hin! Eng 0.53 0.30 0.38 0.6185

Intersected 0.82 0.23 0.36 0.6446

Table 2: Results of GIZA++ - lemmatized set

7.3 Experiments with our model

We trained our model using the training set of 294
word aligned sentence pairs. For training the pa-
rameters, we used a beam size of 3 and number of
iterations equal to 3. Table 3. shows the results
when we used only the basic local features (Dice-
Words, DiceRoots, Dict and Null) to train and test
our model.

Prec. Recall F-meas. AER

Local Feats. 0.47 0.38 0.42 0.5798

Table 3: Results using the basic features

When we add the the global features (AvgDist,
Overlap), we obtain the AER shown in Table 4.

Prec. Recall F-meas. AER

+ AvgD., Ove. 0.49 0.39 0.43 0.5689

Table 4: Results using the features - AvgDist,
Overlap

Now, we add the transition probabilities ob-
tained from the experiments with Giza++ as fea-
tures in our model. Table 5. contains the results.

The compositionality related features are now
added to our discriminative model to see if there is
any improvement in performance. Table 6. shows
the results by adding one feature at a time.

We observe that there is an improvement in the
AER by using the compositionality based features,
thus showing that compositionality based features
aid in the word-alignment task in a significant way
(AER = 0.5045).

8 Related work

Various measures have been proposed in the past
to measure the compositionality of multi-word ex-

Prec. Recall F-meas. AER

+ Giza++ prob. 0.54 0.44 0.49 0.5155

Table 5: Results using the Giza++ probabilities

Prec. Recall F-meas. AER

+ MergePos 0.54 0.45 0.49 0.5101

+ MergeMI 0.55 0.45 0.50 0.5045

Table 6: Results using the compositionality based
features

pressions of various types. Some of them are Fre-
quency, Point-wise mutual information (Church
and Hanks, 1989), Distributed frequency of object
(Tapanainen et al., 1998), Distributed frequency
of object using verb information (Venkatapathy
and Joshi, 2005), Similarity of object in verb-
object pair using the LSA model (Baldwin et al.,
2003), (Venkatapathy and Joshi, 2005) and Lex-
ical and Syntactic fixedness (Fazly and Steven-
son, 2006). These features have largely been eval-
uated by the correlation of the compositionality
value predicted by these measures with the gold
standard value suggested by human judges. It has
been shown that the correlation of these measures
is higher than simple baseline measures suggest-
ing that these measures represent compositionality
quite well. But, the compositionality as such has
not been used in any specific application yet.

In this paper, we have suggested a framework
for using the compositionality of multi-word ex-
pressions for the word alignment task. State-of-art
systems for doing word alignment use generative
models like GIZA++ (Och and Ney, 2003; Brown
et al., 1993). Discriminative models have been
tried recently for word-alignment (Taskar et al.,
2005; Moore, 2005) as these models give the abil-
ity to harness variety of complex features which
cannot be provided in the generative models. In
our work, we have used the compositionality of
multi-word expressions to predict how they align
with the words in the target language sentence.

For parameter optimization for the word-
alignment task, Taskar, Simon and Klein (Taskar
et al., 2005) used a large margin approach by fac-
toring the structure level constraints to constraints
at the level of an alignment link. We cannot do
such a factorization because the scores of align-
ment links in our case are not computed in a com-
pletely isolated manner. We use an online large
margin approach called MIRA (McDonald et al.,
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2005; Crammer and Singer, 2003) which fits well
with our framework. MIRA has previously been
used by McDonald, Pereira, Ribarov and Hajic
(McDonald et al., 2005) for learning the param-
eter values in the task of dependency parsing.

It should be noted that previous word-alignment
experiments such as Taskar, Simon and Klein
(Taskar et al., 2005) have been done with very
large datasets and there is little word-order vari-
ation in the languages involved. Our dataset is
small at present and there is substantial word order
variation between the source and target languages.

9 Conclusion and future work

In this paper, we have proposed a discriminative
approach for using the compositionality informa-
tion about verb-based multi-word expressions for
the word-alignment task. For training our model,
use used an online large margin algorithm (Mc-
Donald et al., 2005). For predicting the alignment
given a model, we proposed a K-Best beam search
algorithm to make our prediction algorithm com-
putationally feasible.

We have investigated the usefulness of simple
features such as point-wise mutual information for
the word-alignment task in English-Hindi bilin-
gual corpus. We have show that by adding the
compositionality based features to our model, we
obtain an decrease in AER from 0.5155 to 0.5045.
Our overall results are better than those obtained
using the GIZA++ models (Och and Ney, 2003).

In future, we will experiment with more ad-
vanced compositionality based features. But, this
would require a larger dataset for training and we
are working towards buidling such a large dataset.
Also, we would like to conduct similar exper-
iments on other language pairs (e.g. English-
French) and compare the results with the state-of-
art results reported for those languages.
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Abstract 

Complex Predicates or CPs are multi-
word complexes functioning as single 
verbal units. CPs are particularly 
pervasive in Hindi and other Indo-
Aryan languages, but an usage account 
driven by corpus-based identification 
of these constructs has not been 
possible since single-language systems 
based on rules and statistical 
approaches require reliable tools (POS 
taggers, parsers, etc.) that are 
unavailable for Hindi. This paper 
highlights the development of first 
such database based on the simple idea 
of projecting POS tags across an 
English-Hindi parallel corpus. The CP 
types considered include adjective-verb 
(AV), noun-verb (NV), adverb-verb 
(Adv-V), and verb-verb (VV) 
composites. CPs are hypothesized 
where a verb in English is projected 
onto a multi-word sequence in Hindi. 
While this process misses some CPs, 
those that are detected appear to be 
more reliable (83% precision, 46% 
recall). The resulting database lists 
usage instances of 1439 CPs in 4400 
sentences. 

1 Introduction 

A "pain in the neck" (Sag et al., 2002) for 
NLP in languages of the Indo-Aryan family 
(e.g. Hindi-Urdu, Bangla and Kashmiri) is the 
fact that most verbs (nearly half of all 
instances in Hindi) occur as complex  

 
predicates - multi-word complexes which 
function as a single verbal unit in terms of 
argument and event structure (Hook, 1993; 
Butt and Geuder, 2003; Raina and Mukerjee, 
2005).  Moreover, most of these languages 
being resource-poor, even a proper corpus-
based characterization of such CPs has 
remained an elusive goal. 

In this paper we construct the first corpus-
based lexicon of CPs in Hindi based on 
projecting POS tags across parallel English-
Hindi corpora. While such approaches 
sometimes leave out some CPs, the ones that 
are identified are seen to be quite robust. As a 
result, this appears to be a good first approach 
for identifying the majority of CPs along with 
usage data. Moreover, since the language 
specific input in the procedure is minimal, it 
can be easily extended to other languages with 
similar multi word expressions. 

2 Complex Predicates 

CPs are characterized by a predicate or host - 
typically a noun (N), adjective (A), verb (V), 
or adverb (Adv) - followed by a light verb  
(LV),  a grammaticalized version of a main 
verb, which contributes little telic significance 
to the composite predicate. As an example, the 
English verb "describe" may be rendered in 
Hindi as the Noun-Verb complex ‘वणर्न + 
कर’, varNan kar, "description + do". Analysis 
based on a non-CP lexicon might assign the 
verbal head as kar (do), whereas functional 
aspects such as the argument structure are 
determined by the noun host varNan 
"description". An example of a V-V CP may 
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be ‘कर + दे’, kar de "do+give", where the light 
verb de “give” imposes a completive aspect on 
the action kar “do”.  

Identifying such constructs is a significant 
hurdle for NLP tasks ranging from phrasal 
parsing (Ray et al., 2003, Shrivastava et al., 
2005), translation (where each complex may 
be treated as a lexical unit in the target 
language), predicate-argument analysis, to 
semantic delineation. In addition to the 
computational aspects, a mere listing of all 
CPs occurring in the corpus would provide an 
important resource for tasks such as 
constructing WordNets (Narayan et al.,2002) 
and linguistic analysis of CPs (Butt and 
Geuder, 2003). 

Rule-based approaches to identifying CPs 
are not very effective since there do not seem 
to be any clear set of rules that can be used to 
distinguish CPs from non-CP constructs 
(contrast, for example, the composite CP 
‘अनुमित दे’ anumati de "permission+give" with 
the non-composite N-V structure ‘िकताब दे’ 
kitaab de "give the book"). Even where such 
rules do exist, they depend on semantic 
properties such as the fact that book is a 
physical object which can be given in the 
physical sense (Raina and Mukerjee, 2005). 
However, in the translated form, the former 
may show up as a verb, whereas the latter 
invariably will be a N+V, so the tag projection 
would rule out the latter as a CP.  

Here we adopt a parallel corpus-based 
approach to creating a database of complex 
predicates in Hindi. The procedure can 
potentially be duplicated to most Indo-Aryan 
languages.  The motivation is that a CP may be 
translated as a direct verb in other languages, 
and POS Projection across Parallel Corpora 
then project a tag of Verb for this expression in 
the source language. Additional linguistic 
constraints are used to determine if the multi-
word cluster qualifies as a CP.  These include a 
check list of LVs that can occur with A, N, V 
and Adv constituents of a multi word 
predicate.  

Let us consider some examples from the CP 
lexicon constructed from the EMILLE parallel 
corpus (McEnery et al., 2000) of 200,000 
words, collected from leaflets prepared by the 
UK government for immigrants.  Examples of 
these different complexes may be: 

 
 

(1) N+V:  वणर्न + कर   varNan kar 
  “description + do”: 
 
पैकेज  या   स्तुत     इश्तेहार       मे ं   जैसे  
paikej     yaa    prastut     ishtehaar        mein    jaise   
package   or    present     advertisement  in       as  

 
वणर्न   िकया   गया      हो,     ठीक     वैसा    
varNan     kiyaa   gayaa       ho       ThIk        vaisaa  
description do-past go-past be-pres exact  same 

 
ही      होगा 
hii         hogaa 
emph    be-fut 

 
“It will be exactly as described on the package 
or the display advertisement.” 
  
(2) A+V: उपलब्ध है upalabdh hai  

 “available+ be”:   
 

सहायता   समीप      ही      उपलब्ध        है।  
Sahaytaa   samiip          hii       upalabdh              hai  
Help         near        emph     available      be-pres 
 
“Help is available nearby.” 
 

(3) V+V :  सोच ले  soch le  “think+take”: 
 

पहले  हर  पहलू  के  बारे   मे ं   अच्छी    तरह  
Pahle  har  pehluu  ke  baare-mein   achchhi    tarah  
First    every aspect-poss   about         good    way 
 
सोच     लीिजए । 
soch      liijiye 
think      take-imp-hon 

 
“Think it through first.” 

 
(4) Adv+V  vaapas paa   “return+obtain” 
 
आप   सामान    बदलने  मे ं अपने   पूरे     पैसे  
Aap  saamaan   badalne    mein  apne  puure  paise 
You   goods exchange-nom in      your   all     money 
 
वापस   पाने   का  अिधकार   खो    देते    हैं ।  
vaapas   paane   kaa     adhikar     kho    dete    hai  
return obtain-nom of      right      lose   give  be-pres     

 
“You loose your right to get your full money 
back in exchanging the goods. “ 
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Of the four classes cited above, the NV and 
AV classes are the most productive. The AdvV 
class is highly restricted, confined to a few 
adverbs. The VV class is highly selective for 
its constituents, apparently driven by semantic 
considerations.  

Identifying CPs in text is crucial to 
processing since it serves as a clausal head, 
and other elements in the phrase are licensed 
by the complex as a whole and not by the 
verbal head.  The semantic import of the host-
verb complex varies along a composability 
continuum, at one end of which we have 
purely idiomatic CPs, while at the other end, 
the CPs may be recoverable from its 
constituents.  For example, ‘व्यवहार+कर’, 
vyavhaar kar, "behave+do" has a sense of 
"use,treat" in English, reflecting clearly an 
idiomatic usage.   

Detecting CPs is made difficult by the 
differing degrees of productivity for different 
classes of open-class host, which reflects the 
applicability of unrestricted rules.  Also, verbs 
participating in CPs are very selective; e.g. in 
NV and AV CPs the verb is typically restricted 
to ho, kar and the like, whereas in VV 
constructs ho reflects auxiliary usage, but a 
different set of verbs appear. The open class 
word (host) tends to be uninflected, and only 
the light verb (LV) carries tense, agreement 
and aspect markers.  Even the host V 
participating in a VV CP is always uninflected. 
As an instance of the difficulty in detecting 
CPs, consider the so called permissive CP 
(Hook, 1993; Butt and Geuder, 2003), as in the 
karne+de “do-nom +give” example here, 
where the host verb appears to be  inflected:  

 
(5)  Raam ne sitaa ko   kaam  karne     diyaa 
      Ram-erg  sita-acc  work  do-nom  give-past 
       “Ram let Sita do the work”  
 
However, this does not actually reflect CP 
usage, and is better parsed as:  
 
(6) [S [NP raam ne] [VP [NP sitaa ko]                    

[VP kaam karne] [V  diyaa] VP] S] 
 

Another challenge for CP identification is 
that the constituents may be separated – 
sometimes quite widely.   

3 CPs from Parallel Projection  

Identifying MWEs from corpora is clearly 
an area of increasing research emphasis. For 
resource-rich languages, one may use a parse 
tree and look for mutual information statistics 
in head-complement collocations, and also 
compare it with other "similar" collocations to 
determine if something is unusual about a 
given construct (Lin, 1999). As of now 
however, even POS-tagging remains a 
challenge for languages such as Hindi, thereby 
making it necessary to seek alternate methods. 

Parallel corpus based approaches to 
inducing monolingual part-of-speech taggers, 
base noun-phrase bracketers, named-entity 
taggers and morphological analyzers for 
French, Chinese and other languages have 
shown quite promising results (Yarowsky et 
al., 2001). These approaches use minimal 
linguistic input and have been increasingly 
effective with the growth in the availability of 
large parallel corpuses. The algorithm 
essentially attempts to word-align the target 
language sentences with the source language 
sentences and then use a probabilistic model 
try to project the linguistic information from 
the source language. Since these are statistical 
algorithms, the accuracy of results depends on 
the size of the corpus used.  

In our approach, we first use a similar 
approach to word-align an English-Hindi 
parallel corpus. The English sentences are 
tagged and the tags are projected to Hindi 
sentences. We observe that words which are 
tagged as verbs by projection and have POS 
tag as N, A, Adv or V in the Hindi lexicon, and 
are followed by an LV, are usually CPs.  

Clearly the CP detection is limited to those 
instances where a CP in the target language is 
translated as a single verb in English.  For 
example, a phrase such as जवाब दे, jawaab de, 
"answer give", may be rendered in English 
either as the verb “answer” or as the English 
CP "give answer".  In the latter case (an 
example appearing quite frequently in this 
corpus), the correct POS projection would 
label jawaab as [N answer], thus failing to 
detect the CP.  While this may not be 
significant in certain tasks (e.g. translation), it 
may be relevant in others (e.g. semantic 
processing).  
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Furthermore, the POS tagging process is 
inherently biased towards projecting tags for 
frequently encountered constituents first, and 
this may lead to some constituents in certain 
CPs being flagged with their normal POS tags, 
resulting in missed CPs. However, this does 
not result in false positives, since non-CP 
constructs often fail on other criteria (e.g. list 
of LVs). 

For reasons discussed above, many CPs are 
not identifiable through parallel corpus 
methods.  Some examples include ‘अिधकार 

होते’, ‘पैदा करन’े, ‘हािन होती’. Our database 
is therefore correspondingly thin for these 
types of CPs.  

With VV CPs, it is difficult to distinguish 
between CPs and other related structures such 
as the passive construct or serial verbs. These 
are illustrated below.  

 
(7) Passive 

 
ऐसा  भी   हो  सकता  है    िक  ेिडट  नोट  
Aisa   bhii    ho   saktaa   hai      ki      credit  note 
 It     emph   be    can     aux     that   credit  note 
 
िसफर्   कुछ   ही    िदनो ं  तक   काम    मे ं 
siraf      kuch    hii      dino         tak    kaam     me 
only       few    emph   days       for     use       in 

 
लाया    जा   सकता   हो । 
laaya     jaa     sakta     ho 
bring    go       can       be  
 

“It is quite possible that the credit note can be 
put to use only for a few days.” 
 
(8) Serial verb 

 
वह   लडका  मुझे  अपनी िकताब   दे  गया । 
voh   laDkaa   mujhe  apni   kitaab     de   gayaa 
That    boy      me       own    book    give  go-past 
 

“That boy gave me his book and went away.” 
 
It appears that passive can be reliably ruled 

out using the root verb criterion for VVs, since 
the main verb in passive is always in an 
inflected form. No comparable formal criterion 
exists for the serial verb, where also the POS 
tagger will identify both constituents as verbs.  

However, these verbs are relatively rare 
compared to CPs.  

4 Hindi-English POS Projection  

4.1 Data Resources and Preprocessing  

We used the EMILLE1 corpus Hindi-English 
parallel corpus, with approximately 200,000 
words in non-sentenced aligned translations in 
Unicode 16 format (McEnery et al., 2000). The 
texts consist of different types of information 
leaflets originally in English, along with 
translations in Hindi, Bangla, Gujarati and a 
number of South Asian languages. Closer 
analysis of the corpus reveals that the corpus is 
not completely sentence aligned and also that 
the translations are not very correct in many 
cases. Hindi versions of the manuals tend to be 
more verbose than their English translations.  

For the word alignment algorithm we 
needed a sentence aligned corpus but due to 
the small size of the parallel corpus, the 
standard sentence alignment systems did not 
give very high accuracy levels. Therefore, the 
whole data was manually sentence aligned to 
produce a sentence aligned parallel corpus of 
about nine thousand sentences and 140 
thousand words which is used in this work. 

4.2 Word alignment 

We have used IBM models proposed by 
Brown (Brown et al., 1993) for word aligning 
the parallel corpus. The IBM models have 
been widely used in statistical machine 
translation. Given a Hindi sentence h, we seek 
the English sentence e that maximizes P(e | h); 
the "most likely” translation.  
 
Now P (e | h) = P (e) * P (h | e) / P (h) 
argmax-e P(e | h) = argmax-e P(e) * P(h | e). 
 
P (e) is modeled by the N-gram model .We are 
interested in P (h | e). We used the Giza++ tool 
kit (Och and Ney, 2000), based on the 
Expectation Maximization (EM) algorithm, to 
calculate these probability measures. At the 
end of this step, we have a word-to-word 
mapping between the English and Hindi 
sentences. A "NULL" is used in the English 
sentences to account for the unaligned Hindi 
words from the corresponding Hindi sentence.  

 
 

                                                      
1 http://bowland-files.lancs.ac.uk/corplang/emille/ 
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Figure 1. Example of projection of POS tags from English to Hindi.  Here the phrase "shikaayat kar" is projected 
from the English "complain" and is tagged as V+V.  Since shikaayat is a N in the Hindi lexicon, this phrase is 

identified as an CP of N+V type. 

 
 

4.3 Tagging English Sentences 

The English sentences are POS-tagged using 
the Brill Tagger (Brill, 1994), a rule based 
tagger which uses more or less the same tags 
as the Penn Treebank project (Marcus, 1994). 
Since for our purposes, we did not need a very 
detailed subcategorization of the tag set for 
Hindi, the English tag set was reduced by 
merging the subcategorization tags of a few 
categories. Thus  all noun distinctions in the 
Pen Treebank tagset based on number, person 
etc  were merged in our treatment of the Noun 
class. Similarly in the case of verbs, we 
merged distinctions based on tense, person, 
aspect and participles etc. Subclasses of 
adverbs and case forms of pronouns were also 
merged. Rest of the POS categories were 
retained.  The “NULL” word in the English 
sentences, used for unaligned Hindi words in 
the parallel corpus, was given a “NULL” tag. 

4.4 Projection of Tags to Hindi 

The reduced English tags were projected to 
Hindi words based on the word alignments 
obtained earlier. A sample alignment and 
tagged projection is shown in Figure 1. As the 
figure shows, postpositional markers, which 
are relatively more frequent in Hindi are 
mapped to the “NULL” word in the English 
sentence.  

Since the amount of training data is very 
small, the statistical word alignment algorithm 
is not adequate enough to align all words 
correctly. To overcome this weakness, we 
apply some filtering conditions to remove 
alignment errors, especially in smaller 
sentences.  This filtering is based on two 
parameters: a) Fertility count (rf), which is 
defined as the number of Hindi words an 
English word maps to, and b) Acceptance level 
(k), defined as the number of words acceptable  

in a sentence with fertility count greater than 
equal to rf.  These two parameters are selected 
to minimize errors in the groundtruth sample-
set, and the resulting filtering heuristics used 
are presented in Table 1.  

 
Table-1. Filtering Criteria 

 Sentence 
Length 
 

Fertility 
Count(rf) 
 

Acceptance 
Level(k) 

 
1. 1-5 2 1 
2. 5-10 3 2 
3. 10-15 3 3 
4. 15-20 4 3 
5. 20-25 4 3 
6. 25-35 4 3 
7. 35+ 4 3 

4.5 Identification of CP’s 

After the filtering is done we observe that the 
CP’s are usually translated as a direct verb in 
English. So if the projected tag of a Hindi 
word is Verb and the normal POS tag of the 
word in the Hindi dictionary is N, A, V or Adv 
and the word is followed by one of the 
members from the LV set, then we classify the 
multi word expression as N+V, A+V, V+V, or 
Adv+V CP respectively.   

4.6 Fragments of the CP Lexicon 

A sample fragment of the CP lexicon is shown 
in Figure-2. The whole corpus is available 
online2. Since we do not have a very 
comprehensive Hindi dictionary we are not 
able to classify many CP’s that are identified 
in their respective class. On a test with 4400 
sentences we identified a total of 1439 CPs  

                                                      
2 The lexicon is available online at  
http://www.cse.iitk.ac.in/users/language/CP-
database.htm 
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Figure 2. Example of the CP lexicon for “shikaayat kr” 
 

 
 
 
with the following distribution:  N+V: 788, 
A+V: 107, Adv+V: 18 and V+V: 526.  

4.7 Errors in CP identification 

CP identification in the test data set 
involved certain ground truth decisions such as 
excluding verbal composites with regular 
auxiliary verb है, hai corresponding to the 
English finite verb ‘be’ and the progressive 
‘रहा’ raha ‘-ing (progressive)’. CPs with 
idiomatic usage were included, and so were the 
CPs with a passive verb, although the latter 
were not counted in computational scores. The 
testing was done on a small set of about 120 
groundtruth sentences in which the CP’s were 
carefully identified manually. We get a 
precision of about 82.5% and a recall of 40% 
with our CP finding algorithm. If the idiomatic 
CPs is not considered the recall goes upto 
46%.   

Several types of errors are observed in the 
corpus-derived results.  A False Negative 
(missed CP) error arising due to the English 
complex predicate is shown in Figure 3. A 
number of False Positives arise due to 
inadequacy in the Hindi dictionary – the online 
dictionary of Hindi we used was missing many 
lexemes. A further problem is homography – 
e.g. the word kii (do-past) appears both as an 
possessive marker, as well as the past-tense 
form for the verb kara (do), occurring 
frequently (with jaa, go) in adjectival clause 
constructions. This has been mis-tagged in 
about one in ten instances (approx 0.2% cases), 
with hosts such as shikaayat (complaint), baat 
(talk), dekhvaal (looking-after), madad (help) 

etc. Similarly, the word un can appear as a 
noun (wool) or a pronoun (he). Furthermore, 
while considerable care was taken to manually 
sentence align the parallel corpus, a number of 
typos and other problems remain, some of 
them show up as false positives.  

4.8 Discontinuous CP identification 

In the results above, we have made no 
attempt to identify discontinuous CPs, i.e., 
instances where other phonological material 
intervenes between the constituents of a CP, 
As an example, consider  
(9) जाँच हो, jaanch ho, “inspection-be” 

 
अगर  कार  की  जाँच   पहले    ही  हो 
agar   kaar  kii    jaanch    pahale   hii       ho 
if       car  poss  inspection earlier emph happen 

 
चुकी      है ,   तो    िरपोटर्    माँिगए । 
 chuki       hai         to      report      mangiye  
comp. be-present  then  report    ask-imp-hon 
 
 “If the car has already been inspected 
please ask to see the report.” 

 
These separated multi-word expressions 

constitute some of the most difficult problems 
for any language – for example, one may 
compare these with English phrasal verbs like 
“give up”, which can sometimes occur in 
discontinuity. However, owing to the relatively 
free word order in Hindi, the discontinuous 
CPs in Hindi are separated by a variety of 
structures ranging from simple emphatic or 
focal particles and negation markers  to clausal 
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Figure 3. Here the projection process fails to detect the CP "shikaayat karna" since the English translation is also 

CP "make complaint".  Improvements in MWE detection in English can possibly help reduce such errors. 
 

 
 

Figure 4. A verb in the source language, “inspected” projects to jaanch (inspection)+ ho (be) + chukaa hai (aux),    
although they are separated by the phrase pahale-bhi (already).  Thus, using source and target languages 

together. the parallel projection method may have the potential for discovering discontinuous CPs as well.  
 
 
 
 
 
 
 

constituents.  How these structures are to be 
encoded in a computational lexicon is a 
complex matter that takes us beyond CP 
identification (Villavicencio et al. 2004). But 
while rule-based identification of such 
constructs is problematic, we feel that POS-tag 
projection holds considerable promise in this 
direction.   

In the algorithm above we have only 
considered the target language (Hindi) tags 
after the parallel tagging is completed.  If in 
addition, we also consider the source language 
tag and its radiation the CP probabilities may 
be redefined in a manner that helps capture 
some discontinuous CPs as well. Thus, if 
English “complain” radiates to shikaayat and 
kara, the inherent CP can be detected even in 
the presence of an intermediate phrase.  An 
example from the POS-tagged data exhibiting 
discontinous CP detection is presented in 
Figure 4.   

5 Conclusion 

In this work we have presented a 
preliminary approach to a corpus-based 
lexicon of CPs in Hindi based on projecting 
POS tags across parallel English-Hindi 
corpora. Since the approach involves minimal 
linguistic analysis, it is easily extendable to 
other languages which exhibit similar CP 
constructs, provided the availability of a POS 
lexicon. 

Clearly, a number of problems will remain 
with any such approach.  The limitiations of 
the parallel POS tagging is that certain kinds of 
maps may never be found (as in parallel CPs in 
source and target languages).  On the other 
hand, some of our accuracies, we feel, would 
improve considerably given a larger parallel 
corpus and more refined use of a Hindi 
lexicon.   

In addition to the handling of discontinuous 
CPs hinted at above, another aspect that we 
would like to consider next is to tune some of 
the parameters of the parallel tagging 
algorithm, such as specifically tuning the 
distortion and fertility probabilities in 
situations (e.g. English verbs) that are likely to 
manifest CPs in Hindi.  

We feel that beyond the usefulness of this 
initial approach, the database of CPs 
constructed in this work may in itself be an 
important linguistic resource for Hindi.  
Furthermore, the approach can possibly be 
used to detect MWEs that radiate to a single 
lexical structure in another language, e.g. 
phrasal verbs in English.  
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Abstract

However large a hand-crafted wide-
coverage grammar is, there are always go-
ing to be words and constructions that
are not included in it and are going to
cause parse failure. Due to their hetero-
geneous and flexible nature, Multiword
Expressions (MWEs) provide an endless
source of parse failures. As the number
of such expressions in a speaker’s lexi-
con is equiparable to the number of single
word units (Jackendoff, 1997), one ma-
jor challenge for robust natural language
processing systems is to be able to deal
with MWEs. In this paper we propose
to semi-automatically detect MWE can-
didates in texts using some error mining
techniques and validating them using a
combination of the World Wide Web as a
corpus and some statistical measures. For
the remaining candidates possible lexico-
syntactic types are predicted, and they are
subsequently added to the grammar as new
lexical entries. This approach provides
a significant increase in the coverage of
these expressions.

1 Introduction

Hand-crafted large-scale grammars like the En-
glish Resource Grammar (Flickinger, 2000), the
Pargram grammars (Butt et al., 1999) and the
Dutch Alpino Grammar (Bouma et al., 2001)
are extremely valuable resources that have been
used in many NLP applications. However, due
to the open-ended and dynamic nature of lan-
guages, and the difficulties of grammar engineer-
ing, such grammars are likely to contain errors

and be incomplete. An error can be roughly clas-
sified asunder-generating(if it prevents a gram-
matical sentence to be generated/parsed) orover-
generating (if it allows an ungrammatical sen-
tence to be generated/parsed). In the context of
wide-coverage parsing, we focus on theunder-
generatingerrors which normally lead to parsing
failure.

Traditionally, the errors of the grammar are to
be detected manually by the grammar develop-
ers. This is usually done by running the grammar
over a carefully designed test suite and inspecting
the outputs. This procedure becomes less reliable
as the grammar gets larger, and is especially dif-
ficult when the grammar is developed in a dis-
tributed manner. Baldwin et al. (2004), among
many others, for instance, have investigated the
main causes of parse failure, parsing a random
sample of 20,000 strings from the written com-
ponent of the British National Corpus (hencefor-
ward BNC) using the English Resource Gram-
mar (Flickinger, 2000), a broad-coverage preci-
sion HPSG grammar for English. They have found
that the large majority of failures are caused by
missing lexical entries, with 40% of the cases, and
missing constructions, with 39%.

To this effect, as mentioned above, in recent
years, some approaches have been developed in
order to (semi)automatically detect and/or repair
the errors in linguistic grammars. van Noord
(2004), for instance, takes a statistical approach
towards semi-automated error detection using the
parsability metric for word sequences. He reports
on a simple yet practical way of identifying gram-
mar errors. The method is particularly useful for
discovering systematic problems in a large gram-
mar with reasonable coverage. The idea behind it
is that each (under-generating) error in the gram-
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mar leads to the parsing failure of some specific
grammatical sentences. By running the grammar
over a large corpus, the corpus can be split into
two subsets: the set of sentences covered by the
grammar and the set of sentences that failed to
parse. The errors can be identified by comparing
the statistical differencebetween these two sets
of sentences. Bystatistical difference, any kind
of uneven distribution of linguistic phenomena is
meant. In the case of van Noord (2004), the word
sequences are used, mainly because the cost to
compute and count the word sequences is mini-
mum. The parsability of a sequencewi . . . wj is
defined as:

R(wi . . . wj) =
C(wi . . . wj, OK)

C(wi . . . wj)
(1)

where C(wi . . . wj) is the number of sentences
in which the sequencewi . . . wj occurs, and
C(wi . . . wj , OK) is the number of sentences with
a successful parse which contain the sequence.
A frequency cut is used to eliminate the infre-
quent sequences. With suffix arrays and perfect
hashing automata, the parsability of all word se-
quences (with arbitrary length) can be computed
efficiently. The word sequences are then sorted
according to their parsabilities. Those sequences
with the lowest parsabilities are taken as direct in-
dication of grammar errors.

Among them, one common error, and sub-
sequently very common cause of parse failure
is due to Multiword Expressions (MWEs), like
phrasal verbs (break down), collocations (bread
and butter), compound nouns (coffee machine),
determiner-less PPs (in hospital), as well as so-
called “frozen expressions” (by and large), as dis-
cussed by both Baldwin et al. (2004) and van No-
ord (2004). Indicatively, in the experiments re-
ported in Baldwin et al. (2004), for instance, from
all the errors due to missing lexical entries, one
fifth were due to missing MWEs (8% of total er-
rors). If an MWE is syntactically marked, the stan-
dard grammatical rules and lexical entries cannot
generate the string, as for instance in the case of
a phrasal verb liketake off, even if the individual
words that make up the MWE are contained in the
lexicon.

In this paper we investigate semi-automatic
methods for error mining and detection of miss-
ing lexical entries, following van Noord (2004),
with the subsequent handling of the MWEs among

them. The output of the error mining phase pro-
poses a set of n-grams, which also contain MWEs.
Therefore, the task is to distinguish the MWEs
from the other cases. To do this, first we propose
to use the World Wide Web as a very large corpus
from which we collect evidence that enables us to
rule out noisy cases (due to spelling errors, for in-
stance), following Grefenstette (1999), Keller et
al. (2002), Kilgarriff and Grefenstette (2003) and
Villavicencio (2005). The candidates that are kept
can be semi-automatically included in the gram-
mar, by employing a lexical type predictor, whose
output we use in order to add lexical entries to the
lexicon, with a possible manual check by a gram-
mar writer. This procedure significantly speeds up
the process of grammar development, relieving the
grammar developer of some of the burden by au-
tomatically detecting parse failures and providing
semi-automatic means for handling them.

The paper starts with a discussion of MWEs and
of some of the characteristics that make them so
challenging for NLP, in section 2. This is followed
by a more detailed discussion of the technique
employed for error detection, in section 3. The
approach used for distinguishing noisy sequences
from MWE-related constructions using the World
Wide Web is then presented. How this information
is used for extending the grammar and the results
obtained are then addressed in section 5.

2 Multiword Expressions

The term Multiword Expressions (MWEs) has
been used to describe expressions for which the
syntactic or semantic properties of the whole ex-
pression cannot be derived from its parts ((Sag et
al., 2002), (Villavicencio et al., 2005)), including
a large number of related but distinct phenomena,
such as phrasal verbs (e.g.come along), nomi-
nal compounds (e.g.frying pan), institutionalised
phrases (e.g.bread and butter), and many oth-
ers. They are used frequently in language, and
in English, Jackendoff (1997) estimates the num-
ber of MWES in a speaker’s lexicon to be com-
parable to the number of single words. This is re-
flected in several existing grammars and lexical re-
sources, where almost half of the entries are Mul-
tiword Expressions. However, due to their hetero-
geneous characteristics, MWEs present a tough
challenge for both linguistic and computational
work (Sag et al., 2002). Some MWEs are fixed,
and do not present internal variation, such asad
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hoc, while others allow different degrees of inter-
nal variability and modification, such astouch a
nerve (touch/find a nerve) and spill beans(spill
several/musical/mountains of beans). In terms of
semantics, some MWEs are more opaque in their
meaning (e.g.to kick the bucketasto die), while
others have more transparent meanings that can be
inferred from the words in the MWE (e.g.eat up,
where the particleup adds a completive sense to
eat). Therefore, to provide a unified account for
the detection of these distinct but related phenom-
ena is a real challenge for NLP systems.

3 Detection of Errors: Overview

van Noord (2004) reports on various errors that
have been discovered for the Dutch Alpino Gram-
mar (Bouma et al., 2001) semi-automatically, us-
ing the Twente Nieuws Corpus. The idea pur-
sued by van Noord (2004) has been to locate those
n-grams in the input that might be the cause of
parsing failure. By processing a huge amount
of data, the parsability metrics briefly presented
in section 1 have been used to successfully lo-
cate various errors introduced by the tokenizer,
erroneous/incomplete lexical descriptions, frozen
expressions with idiosyncratic syntax, or incom-
plete grammatical descriptions. However, the re-
covery of these errors has been shown to still re-
quire significant efforts from the grammar devel-
oper. Moreover, there is no concrete data given
about the distribution of the different types of er-
rors discovered.

As also mentioned before, among the n-grams
that usually cause parse failures, there is a large
number of missing MWEs in the lexicon such
as phrasal verbs, collocations, compound nouns,
frozen expressions (e.g.by and large, centre of
attention, put forward by, etc).

For the purpose of the detection of MWEs, we
are interested in seeing what the major types of er-
ror for a typical large-scale deep grammar are. In
this context, we have run the error mining experi-
ment reported by van Noord with the English Re-
source Grammar (ERG; (Flickinger, 2000))1 and
the British National Corpus 2.0 (BNC; (Burnard,
2000)).

We have used a subset of the BNC written com-
ponent. The sentences in this collection contain
no more than 20 words and only ASCII characters.

1ERG is a large-scale HPSG grammar for English. In this
paper, we have used the January 2006 release of the grammar.

That is about 1.8M distinct sentences.
These sentences have then be fed into an effi-

cient HPSG parser (PET; (Callmeier, 2000)) with
ERG loaded. The parser has been configured with
a maximum edge number limit of 100K and has
run in thebest-onlymode so that it does not ex-
haustively find all the possible parses. The result
of each sentence is marked as one of the following
four cases:

• P means at least one parse is found for the
sentence;

• L means the parser halted after the morpho-
logical analysis and has not been able to con-
struct any lexical item for the input token;

• N means the search has finished normally
and there is no parse found for the sentence;

• E means the search has finished abnormally
by exceeding the edge number limit.

It is interesting to notice that when the ambigu-
ity packing mechanism (Oepen and Carroll, 2000)
is used and the unpacking is turned off2, E does
not occur at all for our test corpus. Running the
parsability checking over the entire collection of
sentences has taken the parser less than 2 days on
a 64bit machine with 3GHz CPU. The results are
shown in Table 1.

Result # Sentences Percentage
P 644,940 35.80%
L 969,452 53.82%
N 186,883 10.38%

Table 1: Distribution of Parsing Results

¿From the results shown in Table 1, one can see
that ERG has full lexical span for less than half of
the sentences. For these sentences, about 80% are
successfully parsed. These numbers show that the
grammar coverage has a significant improvement
as compared to results reported by Baldwin et al.
(2004) and Zhang and Kordoni (2006), mainly at-
tributed to the increase in the size of the lexicon
and the new rules to handle punctuations and frag-
ments.

Obviously, L indicates the unknown words in
the input sentence. But forN , it is not clear where

2For the experiment of error mining, only the parsability
checking is necessary. There is no need to record the exact
parses.
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and what kind of error has occurred. In order
to pinpoint the errors, we used the error mining
techniques proposed by van Noord (2004) on the
grammar and corpus. We have taken the sentences
marked asN (because the errors inL sentences
are already determined) and calculate the word se-
quence parsabilities against the sentences marked
asP . The frequency cut is set to be 5. The whole
process has taken no more than 20 minutes, result-
ing in total the parsability scores for 35K n-grams
(word sequences). The distribution of n-grams in
length with parsability below 0.1 is shown in Ta-
ble 2.

Number Percentage
uni-gram 798 20.84%
bi-gram 2,011 52.52%
tri-gram 937 24.47%

Table 2: Distribution of N-gram in Length in Error
Mining Results (R(x) < 0.1)

Although pinpointing the problematic n-grams
still does not tell us what the exact errors are, it
does shed some light on the cause. From Table 2
we see quite a lot of uni-grams with low parsabil-
ities. Table 3 gives some examples of the word
sequences. By intuition, we make the bold as-
sumption that the low parsability of uni-grams is
caused by the missing appropriate lexical entries
for the corresponding word.3

For the bi-grams and tri-grams, we do see a lot
of cases where the error can be repaired by just
adding a multiword lexical entry into the grammar.

N-gram Count
professionals 248
the flat 62
indication of 21
tone of voice 19
as always is 7

Table 3: Some Examples of the N-grams in Error
Mining Results

In order to distinguish those n-grams that can
be added into the grammar as MWE lexical en-
tries from the other cases, we propose to vali-
date them using evidence collected from the World
Wide Web.

3It has later been confirmed with the grammar developer
that almost all of the errors detected by these low parsability
uni-grams can be fixed by adding correct lexical entries.

4 Detection of MWEs and related
constructions

Recently, many researchers have started using the
World Wide Web as an extremely large corpus,
since, as pointed out by Grefenstette (1999), the
Web is the largest data set available for NLP
((Grefenstette, 1999), (Keller et al., 2002), (Kil-
garriff and Grefenstette, 2003) and (Villavicencio,
2005)). For instance, Grefenstette employs the
Web to do example-based machine translation of
compounds from French into English. The method
he employs would suffer considerably from data
sparseness, if it were to rely only on corpus data.
So for compounds that are sparse in the BNC he
also obtains frequencies from the Web. The scale
of the Web can help to minimise the problem of
data sparseness, that is especially acute for MWEs,
and Villavicencio (2005) uses the Web to find ev-
idence to verify automatically generated VPCs.
This work is built on these, in that we propose
to employ the Web as a corpus, using frequencies
collected from the Web to detect MWEs among
the n-grams that cause parse failure. We concen-
trate on the 482 most frequent candidates, to verify
t he method.

The candidate list has been pre-processed to re-
move systematic unrelated entries, like those in-
cluding acronyms, names, dates and numbers, fol-
lowing Bouma and Villada (2002). Using Google
as a search engine, we have looked for evidence
on the Web for each of the candidate MWEs, that
have occurred as an exact match in a webpage. For
each candidate searched, Google has provided us
with a measure of frequency in the form of the
number of pages in which it appears. Table 4
shows the 10 most frequent candidates, and among
these there are parts of formulae, frozen expres-
sions and collocations. Table 5 on the other hand,
shows the 10 least frequent candidates. From the
total of candidates, 311 have been kept while the
other have been discarded as noise.

A manual inspection of the candidates has re-
vealed that indeed the list contains a large amount
of MWEs and frozen expressions liketaking into
account the, good and evil, by and large, put for-
ward by and breach of contract. Some of these
cases, likecome into effect in, have very spe-
cific subcategorisation requirements, and this is re-
flected by the presence of the prepositionsinto and
in in the ngram. Other cases seem to be part of
formulae, likebut also in, as part ofnot only X but
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Table 4: Top 10 Candidate Multiword Expressions

MWE Pages Entropy Prob(%)
the burden of 36600000 0.366 79.4
and cost effective 34400000 0.372 70.7
the likes of 34400000 0.163 93.1
but also in 27100000 0.038 98.9
to bring together 25700000 0.086 96.6
points of view 24500000 0.017 99.6
and the more 23700000 0.512 61.5
with and without 23100000 0.074 97.4
can do for 22300000 0.003 99.9
taking into account the 22100000 0.009 99.6
but what about 21000000 0.045 98.7
the ultimate in 17400000 0.199 90.0

Table 5: Bottom 10 Candidate Multiword Expressions

MWE Pages Entropy Prob (%)
stand by and 1350000 0.399 65.5
discharged from hospital 553000 0.001 99.9
shock of it 92300 0.541 44.6
was woken by 91400 0.001 99.9
telephone rang and 43700 0.026 99.2
glanced across at 36900 0.003 99.9
the citizens charter 22900 0.070 97.9
input is complete 13900 0.086 97.2
from of government 706 0.345 0.1
the to infinitive 561 0.445 1.4
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also Y, but what about, andthe more the(part of
the more the Yer).

However, among the candidates there still re-
main those that are not genuine MWEs, likeof al-
cohol andandthan that in, which contain very fre-
quent words that enable them to obtain a very high
frequency count without being an MWE. There-
fore, to detect these cases, the remainder of the
candidates could be further analysed using some
statistical techniques to try to distinguish them
from the more likely MWEs among the candi-
dates. This is done by Bouma and Villada (2002)
who investigated some measures that have been
used to identify certain kinds of MWEs, focusing
on collocational prepositional phrases, and on the
tests of mutual information, log likelihood andχ2.
One significant difference here is that this work is
not constrained to a particular type of MWEs, but
has to deal with them in general. Moreover, the
statistical measures used by Bouma and Villada
demand the knowledge of single word frequencies
which can be a problem when using Google espe-
cially for common words likeof anda.

In Tables 4 and 5 we present two alternative
measures that combined can help to detect false
candidates. The rational is similar to the statis-
tical tests, without the need of searching for the
frequency of each of the words that make up the
MWE. We assume that if a candidate is just a
result of the random occurrence of very frequent
words most probably the order of the words in the
ngram is not important. Therefore, given a can-
didate, such asthe likes of, we measure the fre-
quency of occurrence of all its permutations (e.g.
the of likes, likes the of, etc) and we calculate the
candidate’s entropy as

S = −
1

log N

N
∑

k=1

Pi log Pi (2)

where Pi is the probability of occurrence of a
given permutation, and N the total number of per-
mutations. The entropy above defined has its max-
imum atS = 1 when all permutations are equally
probably, which indicates a clear signature of a
random nature. On the other hand, when order is
very important and only a single configuration is
allowed the entropy has its minimum,S = 0. An
ngram with low entropy has good chances of being
an MWE. A close inspection on Table 4 shows that
the top two candidate ngrams have relatively high
entropies ( here we consider high entropy when

S > 0.3 ). In the first case this can be explained
by the fact that the wordthe can appear after the
word of without compromising the MWE mean-
ing as inthe burden of the job. In the second case
it shows that the real MWE iscost effectiveand
the wordand can be either in the beginning or in
the end of the trigram. In fact for a trigram with
only two acceptable permutations the entropy is
S = log 2/ log 6 ' 0.39, very close to what is
obtained .

We also show the probability of occurrence
of each candidate ngram among its permutations
(P1). Most of the candidates in the list are more
frequent than their permutations. In Table 4 we
find two exceptions which are clearly spelling er-
rors in the last 2 ngrams. Therefore lowP1 can
be a good indicative of a noisy candidate. Another
good predictor is the relative frequency between
the candidates. Given the occurrence values for
the most frequent candidates, we consider that by
using a threshold of 20,000 occurrences, it is pos-
sible to remove the more noisy cases.

We note that the grammar can also impose some
restrictions in the order of the elements in the
ngram, in the sense that some of the generated
permutations are ungrammatical (e.g.the of likes)
and will most probably have null or very low fre-
quencies. Therefore, on top of the constraints on
the lexical order there are also constraints on the
constituent order of a candidate which will be re-
flected in these measures.4

The remainder candidates can be semi-
automatically included in the grammar, by using
a lexical type predictor, as described in the next
section. With this information, each candidate is
added as a lexical entry, with a possible manual
check by a grammar writer prior to inclusion in
the grammar.

4Google ignores punctuation between the elements of the
ngram. This can lead to some hits being returned for some
of the ungrammatical permuted ngrams, such asone one by
in the sentenceWe’re going to catch people one by one. One
day,... from www.beertravelers.com/lists/drafttech.html. On
the other hand, Google only returns the number of pages
where a given ngram occurred, but not the number of times it
occurred in that page. This can result in a huge underestima-
tion especially for very frequent ngrams and words, which
can be used mo re than once in a given page. Therefore,
a conservative view of these frequencies must be adopted,
given that for some ngrams they might be inflated and for
others deflated.
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5 Automated Deep Lexical Acquisition

In section (3), we have seen that more than 50%
of the sentences contain one or more unknown
words. And about half of the other parsing failures
are also due to lexicon missing. In this section, we
propose a statistical approach towards lexical type
prediction for unknown words, including multi-
word expressions.

5.1 Atomic Lexical Types

Lexicalist grammars are normally composed of a
limited number of rules and a lexicon with rich
linguistic features attached to each entry. Some
grammar formalisms have a type inheriting system
to encode various constraints, and a flat structure
of the lexicon with each entry mapped onto one
type in the inheritance hierarchy. The following
discussion is based onHead-driven Phrase Struc-
ture Grammar (HPSG)(Pollard and Sag, 1994),
but should be easily adapted to other formalisms,
as well.

The lexicon of HPSG consists of a list of well-
formedTyped Feature Structures (TFSs)(Carpen-
ter, 1992), which convey the constraints on spe-
cific words by two ways: the type compatibility,
and the feature-value consistency. Although it is
possible to use both features and types to con-
vey the constraints on lexical entries, large gram-
mars prefer the use of types in the lexicon because
the inheritance system prevents the redundant def-
inition of feature-values. And the feature-value
constraints in the lexicon can be avoided by ex-
tending the types. Say we haven lexical entries
Li :

t

[

F a1

]

. . . Ln :
t

[

F an

]

. They share the same
lexical typet, but take different values for the fea-
tureF . If a1, . . . , an are the only possible values
for F in the context of typet, we can extend the
type t with subtypes ta1 :

t

[

F a1

]

. . . tan :
t

[

F an

]

and modify the lexical entries to use these new
types, respectively. Based on the fact that large
grammars normally have a very restricted num-
ber of feature-values constraints for each lexical
type, the increase of the types is acceptable. It is
also typical that the types assigned to lexical en-
tries are maximum on the type hierarchy, which
means that they have no further subtypes. We will
call the maximum lexical types after extension the
atomic lexical types. Then the lexicon will be a
multi-valued mapping from the word stems to the
atomic lexical types.

Needless to underline here that all we have

mentioned above is not applicable exclusively to
HPSG, but to many other formalisms based on
TFSs, which makes our assumptions about atomic
lexical types all the more relevant for a wide range
of systems and applications.

5.2 Statistical Lexical Type Predictor

Given that the lexicon of deep grammars can be
modelled by a mapping from word stems to atomic
lexical types, we now go on designing the statisti-
cal methods that can automatically “guess” such
mappings for unknown words.

Similar to Baldwin (2005), we also treat the
problem as a classification task. But there is an im-
portant difference. While Baldwin (2005) makes
predictions for each unknown word, we create a
new lexical entry for each occurrence of the un-
known word. The assumption behind this is that
there should be exactly one lexical entry that cor-
responds to the occurrence of the word in the given
context5.

We use a single classifier to predict the atomic
lexical type. There are normally hundreds of
atomic lexical types for a large grammar. So the
classification model should be able to handle a
large number of output classes. We choose the
Maximum Entropy-based model because it can
easily handle thousands of features and a large
number of possible outputs. It also has the ad-
vantages of general feature representation and no
independence assumption between features. With
the efficient parameter estimation algorithms dis-
cussed by Malouf (2002), the training of the model
is now very fast.

For our prediction model, the probability of a
lexical typet given an unknown word and its con-
text c is:

p(t|c) =
exp(

∑

i θifi(t, c))
∑

t′∈T exp(
∑

i θifi(t′, c))
(3)

where featurefi(t, c) may encode arbitrary char-
acteristics of the context. The parameters<
θ1, θ2, . . . > can be evaluated by maximising the
pseudo-likelihood on a training corpus (Malouf,
2002). The detailed design and feature selec-
tion for the lexical type predictor are described in
Zhang and Kordoni (2006).

5Lexical ambiguity is not considered here for the un-
knowns. In principle, this constraint can be relaxed by allow-
ing the classifier to return more than one results by, settinga
confidence threshold, for example.
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In the experiment described here, we have used
the latest version of the Redwoods Treebank in or-
der to train the lexical type predictor with morpho-
logical features and context words/POS tags fea-
tures 6. We have then extracted from the BNC
6248 sentences, which contain at least one of the
311 MWE candidates verified with World Wide
Web in the way described in the previous section.
For each occurrence of the MWE candidates in
this set of sentences, our lexical type predictor has
predicted a lexical entry candidate. This has re-
sulted in 1936 distinct entries. Only those entries
with at least 5 counts have been added into the
grammar. This has resulted in an extra 373 MWE
lexical entries for the grammar.

This addition to the grammar has resulted in a
significant increase in coverage (table 6) of 14.4%.
This result is very promising, as only a subset of
the candidate MWEs has been analysed, and could
result in an even greater increase in coverage, if
these techniques were applied to the complete set
of candidates.

However, we should also point out that the cov-
erage numbers reported in Table 6 are for a set
of “difficult” sentences which contains a lot of
MWEs. When compared to the numbers reported
in Table 1, the coverage of the parser on this data
set after adding the MWE entries is still signifi-
cantly lower. This indicates that not all the MWEs
can be correctly handled by simply adding more
lexical entries. Further investigation is still re-
quired.

6 Conclusions

One of the important challenges for robust natural
language processing systems is to be able to deal
with the systematic parse failures caused in great
part by Multiword Expressions and related con-
structions. Therefore, in this paper we have pro-
posed an approach for the semi-automatic exten-
sion of grammars by using an error mining tech-
nique for the detection of MWE candidates in texts
and for predicting possible lexico-syntactic types
for them. The approach presented is based on that
of van Noord (2004) and proposes a set of MWE
candidates. For this set of candidates, using the
World Wide Web as a large corpus, frequencies are
gathered for each candidate. These in conjunction
with some statistical measures are employed for
ruling out noisy cases like spelling mistakes (from

6The POS tags are produced with theTnT tagger.

of government) and frequent non-MWE sequences
like input is complete.

With this information the remaining sequences
are analysed by a statistical type predictor that as-
signs the most likely lexical type for each of the
candidates in a given context. By adding these to
the grammar as new lexical entries, a considerable
increase in coverage of 14.4% was obtained.

The approach proposed employs simple and
self-contained techniques that are language-
independent and can help to semi-automatically
extend the coverage of a grammar without rely-
ing on external resources, like electronic dictio-
naries and ontologies that are expensive to obtain
and not available for all languages. Therefore, it
provides an inexpensive and reusable manner of
helping and speeding up the grammar engineer-
ing process, by relieving the grammar developer
of some of the burden of extending the coverage
of the grammar.

As future work we intend to investigate further
statistical measures that can be applied robustly to
different types of MWEs for refining even more
the list of candidates and distinguishing false pos-
itives, like of alcohol andfrom MWEs, like put
forward by. The high frequency with which the
former occur in corpora and the more accute prob-
lem of data sparseness that affects the latter make
this a difficult task.
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Abstract

Previous computational work on learning
the semantic properties of verb-particle
constructions (VPCs) has focused on their
compositionality, and has left unaddressed
the issue of which meaning of the compo-
nent words is being used in a given VPC.
We develop a feature space for use in clas-
sification of the sense contributed by the
particle in a VPC, and test this on VPCs
using the particle up. The features that
capture linguistic properties of VPCs that
are relevant to the semantics of the par-
ticle outperform linguistically uninformed
word co-occurrence features in our exper-
iments on unseen test VPCs.

1 Introduction

A challenge in learning the semantics of mul-
tiword expressions (MWEs) is their varying de-
grees of compositionality—the contribution of
each component word to the overall semantics
of the expression. MWEs fall on a range from
fully compositional (i.e., each component con-
tributes its meaning, as in frying pan) to non-
compositional or idiomatic (as in hit the roof ). Be-
cause of this variation, researchers have explored
automatic methods for learning whether, or the de-
gree to which, an MWE is compositional (e.g.,
Lin, 1999; Bannard et al., 2003; McCarthy et al.,
2003; Fazly et al., 2005).

However, such work leaves unaddressed the ba-
sic issue of which of the possible meanings of a
component word is contributed when the MWE is
(at least partly) compositional. Words are notori-
ously ambiguous, so that even if it can be deter-
mined that an MWE is compositional, its meaning

is still unknown, since the actual semantic contri-
bution of the components is yet to be determined.
We address this problem in the domain of verb-
particle constructions (VPCs) in English, a rich
source of MWEs.

VPCs combine a verb with any of a finite set
of particles, as in jump up, figure out, or give in.
Particles such as up, out, or in, with their literal
meaning based in physical spatial relations, show
a variety of metaphorical and aspectual meaning
extensions, as exemplified here for the particle up:

(1a) The sun just came up. [vertical spatial movement]

(1b) She walked up to him. [movement toward a goal]

(1c) Drink up your juice! [completion]

(1d) He curled up into a ball. [reflexive movement]

Cognitive linguistic analysis, as in Lindner (1981),
can provide the basis for elaborating this type of
semantic variation.

Given such a sense inventory for a particle,
our goal is to automatically determine its mean-
ing when used with a given verb in a VPC. We
classify VPCs according to their particle sense,
using statistical features that capture the seman-
tic and syntactic properties of verbs and particles.
We contrast these with simple word co-occurrence
features, which are often used to indicate the se-
mantics of a target word. In our experiments, we
focus on VPCs using the particle up because it is
highly frequent and has a wide range of meanings.
However, it is worth emphasizing that our feature
space draws on general properties of VPCs, and is
not specific to this particle.

A VPC may be ambiguous, with its particle oc-
curring in more than one sense; in contrast to (1a),
come up may use up in a goal-oriented sense as in
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The deadline is coming up. While our long-term
goal is token classification (disambiguation) of a
VPC in context, following other work on VPCs
(e.g., Bannard et al., 2003; McCarthy et al., 2003),
we begin here with the task of type classification.
Given our use of features which capture the statis-
tical behaviour relevant to a VPC across a corpus,
we assume that the outcome of type classification
yields the predominant sense of the particle in the
VPC. Predominant sense identification is a useful
component of sense disambiguation of word to-
kens (McCarthy et al., 2004), and we presume our
VPC type classification work will form the basis
for later token disambiguation.

Section 2 continues the paper with a discussion
of the features we developed for particle sense
classification. Section 3 first presents some brief
cognitive linguistic background, followed by the
sense classes of up used in our experiments. Sec-
tions 4 and 5 discuss our experimental set-up and
results, Section 6 related work, and Section 7 our
conclusions.

2 Features Used in Classification

The following subsections describe the two sets of
features we investigated. The linguistic features
are motivated by specific semantic and syntactic
properties of verbs and VPCs, while the word co-
occurrence features are more general.

2.1 Linguistically Motivated Features

2.1.1 Slot Features

We hypothesize that the semantic contribution
of a particle when combined with a given verb is
related to the semantics of that verb. That is, the
particle contributes the same meaning when com-
bining with any of a semantic class of verbs.1 For
example, the VPCs drink up, eat up and gobble up
all draw on the completion sense of up; the VPCs
puff out, spread out and stretch out all draw on the
extension sense of out. The prevalence of these
patterns suggests that features which have been
shown to be effective for the semantic classifica-
tion of verbs may be useful for our task.

We adopt simple syntactic “slot” features which
have been successfully used in automatic seman-
tic classification of verbs (Joanis and Stevenson,

1Villavicencio (2005) observes that verbs from a seman-
tic class will form VPCs with similar sets of particles. Here
we are hypothesizing further that VPCs formed from verbs
of a semantic class draw on the same meaning of the given
particle.

2003). The features are motivated by the fact
that semantic properties of a verb are reflected
in the syntactic expression of the participants in
the event the verb describes. The slot features
encode the relative frequencies of the syntactic
slots—subject, direct and indirect object, object of
a preposition—that the arguments and adjuncts of
a verb appear in. We calculate the slot features
over three contexts: all uses of a verb; all uses of
the verb in a VPC with the target particle (up in our
experiments); all uses of the verb in a VPC with
any of a set of high frequency particles (to capture
its semantics when used in VPCs in general).

2.1.2 Particle Features

Two types of features are motivated by proper-
ties specific to the semantics and syntax of par-
ticles and VPCs. First, Wurmbrand (2000) notes
that compositional particle verbs in German (a
somewhat related phenomenon to English VPCs)
allow the replacement of their particle with seman-
tically similar particles. We extend this idea, hy-
pothesizing that when a verb combines with a par-
ticle such as up in a particular sense, the pattern
of usage of that verb in VPCs using all other par-
ticles may be indicative of the sense of the target
particle (in this case up) when combined with that
verb. To reflect this observation, we count the rel-
ative frequency of any occurrence of the verb used
in a VPC with each of a set of high frequency par-
ticles.

Second, one of the striking syntactic properties
of VPCs is that they can often occur in either the
joined configuration (2a) or the split configuration
(2b):

(2a) Drink up your milk! He walked out quickly.

(2b) Drink your milk up! He walked quickly out.

Bolinger (1971) notes that the joined construction
may be more favoured when the sense of the par-
ticle is not literal. To encode this, we calculate the
relative frequency of the verb co-occurring with
the particle up with each of

�
– � words between

the verb and up, reflecting varying degrees of verb-
particle separation.

2.2 Word Co-occurrence Features

We also explore the use of general context fea-
tures, in the form of word co-occurrence frequency
vectors, which have been used in numerous ap-
proaches to determining the semantics of a target
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word. Note, however, that unlike the task of word
sense disambiguation, which examines the context
of a target word token to be disambiguated, here
we are looking at aggregate contexts across all in-
stances of a target VPC, in order to perform type
classification.

We adopt very simple word co-occurrence fea-
tures (WCFs), calculated as the frequency of any
(non-stoplist) word within a certain window left
and right of the target. We noted above that the
target particle semantics is related both to the se-
mantics of the verb it co-occurs with, and to the
occurrence of the verb across VPCs with different
particles. Thus we not only calculate the WCFs of
the target VPC (a given verb used with the parti-
cle up), but also the WCFs of the verb itself, and
the verb used in a VPC with any of the high fre-
quency particles. These WCFs give us a very gen-
eral means for determining semantics, whose per-
formance we can contrast with our linguistic fea-
tures.

3 Particle Semantics and Sense Classes

We give some brief background on cognitive
grammar and its relation to particle semantics, and
then turn to the semantic analysis of up that we
draw on as the basis for the sense classes in our
experiments.

3.1 Cognitive Grammar and Schemas

Some linguistic studies consider many VPCs to be
idiomatic, but do not give a detailed account of
the semantic similarities between them (Bolinger,
1971; Fraser, 1976; Jackendoff, 2002). In con-
trast, work in cognitive linguistics has claimed that
many so-called idiomatic expressions draw on the
compositional contribution of (at least some of)
their components (Lindner, 1981; Morgan, 1997;
Hampe, 2000). In cognitive grammar (Langacker,
1987), non-spatial concepts are represented as spa-
tial relations. Key terms from this framework are:

Trajector (TR) The object which is conceptually
foregrounded.

Landmark (LM) The object against which the
TR is foregrounded.

Schema An abstract conceptualization of an ex-
perience. Here we focus on schemas depict-
ing a TR, LM and their relationship in both
the initial configuration and the final config-
uration communicated by some expression.

TR

TR

LM LM

Initial Final

Figure 1: Schema for Vertical up.

The semantic contribution of a particle in a VPC
corresponds to a schema. For example, in sen-
tence (3), the TR is the balloon and the LM is the
ground the balloon is moving away from.

(3) The balloon floated up.

The schema describing the semantic contribution
of the particle in the above sentence is shown
in Figure 1, which illustrates the relationship be-
tween the TR and LM in the initial and final con-
figurations.

3.2 The Senses of up

Lindner (1981) identifies a set of schemas for each
of the particles up and out, and groups VPCs ac-
cording to which schema is contributed by their
particle. Here we describe the four senses of up
identified by Lindner.

3.2.1 Vertical up (Vert-up)

In this schema (shown above in Figure 1), the
TR moves away from the LM in the direction of
increase along a vertically oriented axis. This in-
cludes prototypical spatial upward movement such
as that in sentence (3), as well as upward move-
ment along an abstract vertical axis as in sen-
tence (4).

(4) The price of gas jumped up.

In Lindner’s analysis, this sense also includes ex-
tensions of upward movement where a vertical
path or posture is still salient. Note that in some of
these senses, the notion of verticality is metaphor-
ical; the contribution of such senses to a VPC may
not be considered compositional in a traditional
analysis. Some of the most common sense exten-
sions are given below, with a brief justification as
to why verticality is still salient.

47



Initial

TR

LM = goal LM = goal

TR

Final

Figure 2: Schema for Goal-Oriented up.

Up as a path into perceptual field. Spatially
high objects are generally easier to perceive.
Examples: show up, spring up, whip up.

Up as a path into mental field. Here up encodes
a path for mental as opposed to physical objects.
Examples: dream up, dredge up, think up.

Up as a path into a state of activity. Activity is
prototypically associated with an erect posture.
Examples: get up, set up, start up.

3.2.2 Goal-Oriented up (Goal-up)

Here the TR approaches a goal LM; movement
is not necessarily vertical (see Figure 2). Proto-
typical examples are walk up and march up. This
category also includes extensions into the social
domain (kiss up and suck up), as well as exten-
sions into the domain of time (come up and move
up), as in:

(5a) The intern kissed up to his boss.

(5b) The deadline is coming up quickly.

3.2.3 Completive up (Cmpl-up)

Cmpl-up is a sub-sense of Goal-up in which the
goal represents an action being done to comple-
tion. This sense shares its schema with Goal-up
(Figure 2), but it is considered as a separate sense
since it corresponds to uses of up as an aspectual
marker. Examples of Cmpl-up are: clean up, drink
up, eat up, finish up and study up.

3.2.4 Reflexive up (Refl-up)

Reflexive up is a sub-sense of Goal-up in which
the sub-parts of the TR are approaching each other.
The schema for Refl-up is shown in Figure 3; it is
unique in that the TR and LM are the same object.
Examples of Refl-up are: bottle up, connect up,
couple up, curl up and roll up.

LM = TR LM = TR

Initial Final

Figure 3: Schema for Reflexive up.

Vertical up Goal-Oriented up

Completive up

Reflexive up

Figure 4: Simplified schematic network for up.

3.3 The Sense Classes for Our Study

Adopting a cognitive linguistic perspective, we as-
sume that all uses of a particle make some compo-
sitional contribution of meaning to a VPC. In this
work, we classify target VPCs according to which
of the above senses of up is contributed to the ex-
pression. For example, the expressions jump up
and pick up are designated as being in the class
Vert-up since up in these VPCs has the vertical
sense, while clean up and drink up are designated
as being in the class Cmpl-up since up here has
the completive sense. The relations among the
senses of up can be shown in a “schematic net-
work” (Langacker, 1987). Figure 4 shows a sim-
plification of such a network in which we connect
more similar senses with shorter edges. This type
of analysis allows us to alter the granularity of our
classification in a linguistically motivated fashion
by combining closely related senses. Thus we can
explore the effect of different sense granularities
on classification.

4 Materials and Methods

4.1 Experimental Expressions

We created a list of English VPCs using up, based
on a list of VPCs made available by McIntyre
(2001) and a list of VPCs compiled by two human
judges. The judges then filtered this list to include
only VPCs which they both agreed were valid, re-
sulting in a final list of 389 VPCs. From this list,
training, verification and test sets of sixty VPCs
each are randomly selected. Note that the expense
of manually annotating the data (as described be-
low) prevents us from using larger datasets in this
initial investigation. The experimental sets are
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chosen such that each includes the same propor-
tion of verbs across three frequency bands, so that
the sets do not differ in frequency distribution of
the verbs. (We use frequency of the verbs, rather
than the VPCs, since many of our features are
based on the verb of the expression, and moreover,
VPC frequency is approximate.) The verification
data is used in exploration of the feature space and
selection of final features to use in testing; the test
set is held out for final testing of the classifiers.

Each VPC in each dataset is annotated by the
two human judges according to which of the four
senses of up identified in Section 3.2 is contributed
to the VPC. As noted in Section 1, VPCs may
be ambiguous with respect to their particle sense.
Since our task here is type classification, the
judges identify the particle sense of a VPC in its
predominant usage, in their assessment. The ob-
served inter-annotator agreement is

����� �
for each

dataset. The unweighted observed kappa scores
are

�������
,

�����
	
and

��� � � , for the training, verifica-
tion and test sets respectively.

4.2 Calculation of the Features

We extract our features from the 100M word
British National Corpus (BNC, Burnard, 2000).
VPCs are identified using a simple heuristic based
on part-of-speech tags, similar to one technique
used by Baldwin (2005). A use of a verb is con-
sidered a VPC if it occurs with a particle (tagged
AVP) within a six word window to the right. Over
a random sample of 113 VPCs thus extracted, we
found 88% to be true VPCs, somewhat below the
performance of Baldwin’s (2005) best extraction
method, indicating potential room for improve-
ment.

The slot and particle features are calculated us-
ing a modified version of the ExtractVerb software
provided by Joanis and Stevenson (2003), which
runs over the BNC pre-processed using Abney’s
(1991) Cass chunker.

To compute the word co-occurrence features
(WCFs), we first determine the relative frequency
of all words which occur within a five word win-
dow left and right of any of the target expressions
in the training data. From this list we eliminate
the most frequent 1% of words as a stoplist and
then use the next � most frequent words as “fea-
ture words”. For each “feature word”, we then cal-
culate its relative frequency of occurrence within
the same five word window of the target expres-

#VPCs in Sense Class
Sense Class Train Verification Test
Vert-up 24 33 27
Goal-up 1 1 3
Cmpl-up 20 23 22
Refl-up 15 3 8

Table 1: Frequency of items in each sense class.

#VPCs in Sense Class
Sense Class Train Verification Test
Vert-up 24 33 27
Goal-up � 21 24 25
Cmpl-up
Refl-up 15 3 8

Table 2: Frequency of items in each class for the
3-way task.

sions in all datasets. We use ���� � �
and �� � � �

to create feature sets WCF ����� and WCF ����� respec-
tively.

4.3 Experimental Classes

Table 1 shows the distribution of senses in each
dataset. Each of the training and verification sets
has only one VPC corresponding to Goal-up. Re-
call that Goal-up shares a schema with Cmpl-up,
and is therefore very close to it in meaning, as in-
dicated spatially in Figure 4. We therefore merge
Goal-up and Cmpl-up into a single sense, to pro-
vide more balanced classes.

Since we want to see how our features per-
form on differing granularities of sense classes, we
run each experiment as both a 3-way and 2-way
classification task. In the 3-way task, the sense
classes correspond to the meanings Vert-up, Goal-
up merged with Cmpl-up (as noted above), and
Refl-up, as shown in Table 2. In the 2-way task, we
further merge the classes corresponding to Goal-

#VPCs in Sense Class
Sense Class Train Verification Test
Vert-up 24 33 27
Goal-up � 36 27 33
Cmpl-up �
Refl-up

Table 3: Frequency of items in each class for the
2-way task.
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up/Cmpl-up with that of Refl-up, as shown in Ta-
ble 3. We choose to merge these classes because
(as illustrated in Figure 4) Refl-up is a sub-sense of
Goal-up, and moreover, all three of these senses
contrast with Vert-up, in which increase along a
vertical axis is the salient property. It is worth em-
phasizing that the 2-way task is not simply a clas-
sification between literal and non-literal up—Vert-
up includes extensions of up in which the increase
along a vertical axis is metaphorical.

4.4 Evaluation Metrics and Classifier
Software

The variation in the frequency of the sense classes
of up across the datasets makes the true distri-
bution of the classes difficult to estimate. Fur-
thermore, there is no obvious informed baseline
for this task. Therefore, we make the assumption
that the true distribution of the classes is uniform,
and use the chance accuracy ����� as the baseline
(where � is the number of classes—in our exper-
iments, either � or

�
). Accordingly, our measure

of classification accuracy should weight each class
evenly. Therefore, we report the average per class
accuracy, which gives equal weight to each class.

For classification we use LIBSVM (Chang and
Lin, 2001), an implementation of a support-vector
machine. We set the input parameters, cost
and gamma, using 10-fold cross-validation on the
training data. In addition, we assign a weight of� ���
	����������� �
���������� �
������� to each class � to eliminate the ef-
fects of the variation in class size on the classifier.

Note that our choice of accuracy measure and
weighting of classes in the classifier is necessary
given our assumption of a uniform random base-
line. Since the accuracy values we report incorpo-
rate this weighting, these results cannot be com-
pared to a baseline of always choosing the most
frequent class.

5 Experimental Results

We present experimental results for both
Ver(ification) and unseen Test data, on each
set of features, individually and in combination.
All experiments are run on both the 2-way and
3-way sense classification, which have a chance
baseline of 50% and 33%, respectively.

3-way Task 2-way Task
Features Ver Test Ver Test
Slots 41 51 53 67
Particles 37 33 65 47
Slots � Particles 54 54 59 63

Table 4: Accuracy (%) using linguistic features.

5.1 Experiments Using the Linguistic
Features

The results for experiments using the features that
capture semantic and syntactic properties of verbs
and VPCs are summarized in Table 4, and dis-
cussed in turn below.

5.1.1 Slot Features

Experiments using the slot features alone test
whether features that tap into semantic informa-
tion about a verb are sufficient to determine the
appropriate sense class of a particle when that verb
combines with it in a VPC. Although accuracy on
the test data is well above the baseline in both the
2-way and 3-way tasks, for verification data the
increase over the baseline is minimal. The class
corresponding to sense Refl-up in the 3-way task
is relatively small, which means that a small vari-
ation in classification on these verbs may lead to
a large variation in accuracy. However, we find
that the difference in accuracy across the datasets
is not due to performance on VPCs in this sense
class. Although these features show promise for
our task, the variation across the datasets indicates
the limitations of our small sample sizes.

5.1.2 Particle Features

We also examine the performance of the parti-
cle features on their own, since to the best of our
knowledge, no such features have been used be-
fore in investigating VPCs. The results are dis-
appointing, with only the verification data on the
2-way task showing substantially higher accuracy
than the baseline. An analysis of errors reveals no
consistent explanation, suggesting again that the
variation may be due to small sample sizes.

5.1.3 Slot + Particle Features

We hypothesize that the combination of the slot
features with the particle features will give an in-
crease in performance over either set of linguis-
tic features used individually, given that they tap
into differing properties of verbs and VPCs. We
find that the combination does indeed give more
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3-way Task 2-way Task
Features Ver Test Ver Test
WCF ����� 45 42 59 51
WCF ����� 38 34 55 48

Table 5: Accuracy (%) using WCFs.

consistent performance across verification and test
data than either feature set used individually. We
analyze the errors made using slot and particle fea-
tures separately, and find that they tend to classify
different sets of verbs incorrectly. Therefore, we
conclude that these feature sets are at least some-
what complementary. By combining these com-
plementary feature sets, the classifier is better able
to generalise across different datasets.

5.2 Experiments Using WCFs

Our goal was to compare the more knowledge-rich
slot and particle features to an alternative feature
set, the WCFs, which does not rely on linguistic
analysis of the semantics and syntax of verbs and
VPCs. Recall that we experiment with both 200
feature words, WCF ����� , and 500 feature words,
WCF ����� , as shown in Table 5. Most of the exper-
iments using WCFs perform worse than the cor-
responding experiment using all the linguistic fea-
tures. It appears that the linguistically motivated
features are better suited to our task than simple
word context features.

5.3 Linguistic Features and WCFs Combined

Although the WCFs on their own perform worse
than the linguistic features, we find that the lin-
guistic features and WCFs are at least somewhat
complementary since they tend to classify differ-
ent verbs incorrectly. We hypothesize that, as with
the slot and particle features, the different types
of information provided by the linguistic features
and WCFs may improve performance in combina-
tion. We therefore combine the linguistic features
with each of the WCF ����� and WCF ����� features;
see Table 6. However, contrary to our hypothesis,
for the most part, the experiments using the full
combination of features give accuracies the same
or below that of the corresponding experiment us-
ing just the linguistic features. We surmise that
these very different types of features—the linguis-
tic features and WCFs—must be providing con-
flicting rather than complementary information to
the classifier, so that no improvement is attained.

3-way Task 2-way Task
Features Ver Test Ver Test
Combined ����� 53 45 63 53
Combined ����� 54 46 65 49

Table 6: Accuracy (%) combining linguistic fea-
tures with WCFs.

5.4 Discussion of Results

The best performance across the datasets is at-
tained using all the linguistic features. The lin-
guistically uninformed WCFs perform worse on
their own, and do not consistently help (and in
some cases hurt) the performance of the linguis-
tic features when combined with them. We con-
clude then that linguistically based features are
motivated for this task. Note that the features are
still quite simple, and straightforward to extract
from a corpus—i.e., linguistically informed does
not mean expensive (although the slot features do
require access to chunked text).

Interestingly, in determining the semantic near-
est neighbor of German particle verbs, Schulte im
Walde (2005) found that WCFs that are restricted
to the arguments of the verb outperform simple
window-based co-occurrence features. Although
her task is quite different from ours, similarly re-
stricting our WCFs may enable them to encode
more linguistically-relevant information.

The accuracies we achieve with the linguistic
features correspond to a 30–31% reduction in er-
ror rate over the chance baseline for the 3-way
task, and an 18–26% reduction in error rate for
the 2-way task. Although we expected that the
2-way task may be easier, since it requires less
fine-grained distinctions, it is clear that combining
senses that have some motivation for being treated
separately comes at a price.

The reductions in error rate that we achieve with
our best features are quite respectable for a first
attempt at addressing this problem, but more work
clearly remains. There is a relatively high variabil-
ity in performance across the verification and test
sets, indicating that we need a larger number of
experimental expressions to be able to draw firmer
conclusions. Even if our current results extend to
larger datasets, we intend to explore other feature
approaches, such as word co-occurrence features
for specific syntactic slots as suggested above, in
order to improve the performance.

51



6 Related Work

The semantic compositionality of VPC types has
recently received increasing attention. McCarthy
et al. (2003) use several measures to automati-
cally rate the overall compositionality of a VPC.
Bannard (2005), extending work by Bannard et al.
(2003), instead considers the extent to which the
verb and particle each contribute semantically to
the VPC. In contrast, our work assumes that the
particle of every VPC contributes composition-
ally to its meaning. We draw on cognitive lin-
guistic analysis that posits a rich set of literal and
metaphorical meaning possibilities of a particle,
which has been previously overlooked in compu-
tational work on VPCs.

In this first investigation of particle meaning in
VPCs, we choose to focus on type-based clas-
sification, partly due to the significant extra ex-
pense of manually annotating sufficient numbers
of tokens in text. As noted earlier, though, VPCs
can take on different meanings, indicating a short-
coming of type-based work. Patrick and Fletcher
(2005) classify VPC tokens, considering each as
compositional, non-compositional or not a VPC.
Again, however, it is important to recognize which
of the possible meaning components is being con-
tributed. In this vein, Uchiyama et al. (2005)
tackle token classification of Japanese compound
verbs (similar to VPCs) as aspectual, spatial, or
adverbial. In the future, we aim to extend the
scope of our work, to determine the meaning of
a particle in a VPC token, along the lines of our
sense classes here. This will almost certainly re-
quire semantic classification of the verb token (La-
pata and Brew, 2004), similar to our approach here
of using the semantic class of a verb type as indica-
tive of the meaning of a particle type.

Particle semantics has clear relations to prepo-
sition semantics. Some research has focused on
the sense disambiguation of specific prepositions
(e.g., Alam, 2004), while other work has classi-
fied preposition tokens according to their seman-
tic role (O’Hara and Wiebe, 2003). Moreover,
two large lexical resources of preposition senses
are currently under construction, The Preposi-
tion Project (Litkowski, 2005) and PrepNet (Saint-
Dizier, 2005). These resources were not suitable
as the basis for our sense classes because they do
not address the range of metaphorical extensions
that a preposition/particle can take on, but future
work may enable larger scale studies of the type

needed to adequately address VPC semantics.

7 Conclusions

While progress has recently been made in tech-
niques for assessing the compositionality of VPCs,
work thus far has left unaddressed the problem of
determining the particular meaning of the compo-
nents. We focus here on the semantic contribution
of the particle—a part-of-speech whose seman-
tic complexity and range of metaphorical mean-
ing extensions has been largely overlooked in prior
computational work. Drawing on work within
cognitive linguistics, we annotate a set of 180
VPCs according to the sense class of the particle
up, our experimental focus in this initial investiga-
tion. We develop features that capture linguistic
properties of VPCs that are relevant to the seman-
tics of particles, and show that they outperform
linguistically uninformed word co-occurrence fea-
tures, achieving around 20–30% reduction in er-
ror rate over a chance baseline. Areas of on-going
work include development of a broader range of
features, consideration of methods for token-based
semantic determination, and creation of larger ex-
perimental datasets.
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Abstract

We present two novel paraphrase tests for
automatically predicting the inherent se-
mantic relation of a given compound nom-
inalisation as one of subject, direct object,
or prepositional object. We compare these
to the usual verb–argument paraphrase test
using corpus statistics, and frequencies ob-
tained by scraping the Google search en-
gine interface. We also implemented a
more robust statistical measure than max-
imum likelihood estimation — the con-
fidence interval. A significant reduction
in data sparseness was achieved, but this
alone is insufficient to provide a substan-
tial performance improvement.

1 Introduction

Compound nouns are a class of multiword expres-
sion (MWE) that have been of interest in recent
computational linguistic work, as any task with a
lexical semantic dimension (like machine transla-
tion or information extraction) must take into ac-
count their semantic markedness. A compound
noun is a sequence of two or more nouns compris-
ing an N̄ , for example, polystyrene garden-gnome.
The productivity of compound nouns makes their
treatment equally desirable and difficult. They ap-
pear frequently: more than 1% of the words in the
British National Corpus (BNC: Burnard (2000))
participate in noun compounds (Tanaka and Bald-
win, 2003). However, unestablished compounds
are common: almost 70% of compounds identi-
fied in the BNC co-occur with a frequency of only
one (Lapata and Lascarides, 2003).

Analysis of the entire space of compound nouns
has been hampered to some degree as the space de-

fies some regular set of predicates to define the im-
plicit semantics between a modifier and its head.
This semantic underspecification led early analy-
sis to be primarily of a semantic nature, but more
recent work has advanced into using syntax to pre-
dict the semantics, in the spirit of the study by
Levin (1993) on diathesis alternations.

In this work, we examine compound nominal-
isations, a subset of compound nouns where the
head has a morphologically–related verb. For
example, product replacement has an underlying
verbal head replace, whereas garden-gnome has
no such form. While compound nouns in gen-
eral have a set of semantic relationships between
the head and modifier that is potentially non-finite,
compound nominalisations are better defined, in
that the modifier fills a syntactic argument rela-
tion with respect to the head. For example, prod-
uct might fill the direct object slot of the verb
to replace for the compound above. Compound
nominalisations comprise a substantial minority of
compound nouns, with figures of about 35% being
observed (Grover et al., 2005; Nicholson, 2005).

We propose two novel paraphrases for a corpus
statistical approach to predicting the relationship
for a set of compound nominalisations, and inves-
tigate how using the World Wide Web as a cor-
pus alleviates the common phenomenon of data
sparseness, and how the volume of data impacts
on the classification results. We also examine
a more robust statistical approach to interpreta-
tion of the statistics than maximum likelihood es-
timates, called the confidence interval.

The rest of the paper is structured as follows: in
Section 2, we present a brief background for our
work, with a listing of our resources in Section 3.
We detail our proposed method in Section 4, the
corresponding results in Section 5, with a discus-
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sion in Section 6 and a brief conclusion in Sec-
tion 7.

2 Background

2.1 Compound Noun Interpretation

Compound nouns were seminally and thoroughly
analysed by Levi (1978), who hand–constructs a
nine–way set of semantic relations that she identi-
fies as broadly defining the observed relationships
between the compound head and modifier. War-
ren (1978) also inspects the syntax of compound
nouns, to create a somewhat different set of twelve
conceptual categories.

Early attempts to automatically classify com-
pound nouns have taken a semantic approach:
Finin (1980) and Isabelle (1984) use “role nomi-
nals” derived from the head of the compound to
fill a slot with the modifier. Vanderwende (1994)
uses a rule–based technique that scores a com-
pound on possible semantic interpretations, while
Jones (1995) implements a graph–based unifica-
tion procedure over semantic feature structures for
the head. Finally, Rosario and Hearst (2001) make
use of a domain–specific lexical resource to clas-
sify according to neural networks and decision
trees.

Syntactic classification, using paraphrasing,
was first used by Leonard (1984), who uses a pri-
oritised rule–based approach across a number of
possible readings. Lauer (1995) employs a cor-
pus statistical model over a similar paraphrase
set based on prepositions. Lapata (2002) and
Grover et al. (2005) again use a corpus statis-
tical paraphrase–based approach, but with verb–
argument relations for compound nominalisations
— attempting to define the relation as one of sub-
ject, direct object, or a number of prepositional ob-
jects in the latter.

2.2 Web–as–Corpus Approaches

Using the World Wide Web for corpus statistics
is a relatively recent phenomenon; we present a
few notable examples. Grefenstette (1998) anal-
yses the plausibility of candidate translations in
a machine translation task through Web statistics,
and avoids some data sparseness within that con-
text. Zhu and Rosenfeld (2001) train a language
model from a large corpus, and use the Web to
estimate low–density trigram frequencies. Keller
and Lapata (2003) show that Web counts can
obviate data sparseness for syntactic predicate–

argument bigrams. They also observe that the
noisiness of the Web, while unexplored in detail,
does not greatly reduce the reliability of their re-
sults. Nakov and Hearst (2005) demonstrate that
Web counts can aid in identifying the bracketing in
higher–arity noun compounds. Finally, Lapata and
Keller (2005) evaluate the performance of Web
counts on a wide range of natural language pro-
cessing tasks, including compound noun bracket-
ing and compound noun interpretation.

2.3 Confidence Intervals

Maximum likelihood statistics are not robust when
many sparse vectors are under consideration, i.e.
naively “choosing the largest number” may not be
accurate in contexts when the relative value across
samplings may be relevant, for example, in ma-
chine learning. As such, we apply a statistical
test with confidence intervals (Kenney and Keep-
ing, 1962), where we compare sample z-scores in
a pairwise manner, instead of frequencies globally.

The confidence interval P , for z-score n, is:

P =
2√
π

∫ n/
√

2

0

e−t2dt (1)

t is chosen to normalise the curve, and P is strictly
increasing on n, so we are only required to find the
largest z-score.

Calculating the z-score exactly can be quite
costly, so we instead use the binomial approxi-
mation to the normal distribution with equal prior
probabilities and find that a given z-score Z is:

Z =
f − µ

σ
(2)

where f is the frequency count, µ is the mean in
a pairwise test, and σ is the standard deviation of
the test. A more complete derivation appears in
Nicholson (2005).

3 Resources

We make use of a number of lexical resources
in our implementation and evaluation. For cor-
pus statistics, we use the written component of
the BNC, a balanced 90M token corpus. To find
verb–argument frequencies, we parse this using
RASP (Briscoe and Carroll, 2002), a tag sequence
grammar–based statistical parser. We contrast
the corpus statistics with ones collected from the
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Web, using an implementation of a freely avail-
able Google “scraper” from CPAN.1

For a given compound nominalisation, we wish
to determine all possible verbal forms of the head.
We do so using the combination of the morpho-
logical component of CELEX (Burnage, 1990), a
lexical database, NOMLEX (Macleod et al., 1998),
a nominalisation database, and CATVAR (Habash
and Dorr, 2003), an automatically–constructed
database of clusters of inflected words based on
the Porter stemmer (Porter, 1997).

Once the verbal forms have been identified, we
construct canonical forms of the present partici-
ple (+ing) and the past participle (+ed), using the
morph lemmatiser (Minnen et al., 2001). We con-
struct canonical forms of the plural head and plural
modifier (+s) in the same manner.

For evaluation, we have the two–way classified
data set used by Lapata (2002), and a three–way
classified data set constructed from open text.
Lapata automatically extracts candidates from
the British National Corpus, and hand–curates
a set of 796 compound nominalisations which
were interpreted as either a subjective relation
SUBJ (e.g. wood appearance “wood appears”),
or a (direct) objective relation OBJ (e.g. stress
avoidance “[SO] avoids stress”. We automatically
validated this data set for consistency, removing:

1. items that did not occur in the same chunk,
according to a chunker based on fnTBL 1.0
(Ngai and Florian, 2001),

2. items whose head did not have a verbal form
according to our lexical resources, and

3. items which consisted in part of proper
nouns,

to end up with 695 consistent compounds. We
used the method of Nicholson and Baldwin (2005)
to derive a small data set of 129 compound
nominalisations, also from the BNC, which we
instructed three unskilled annotators to identify
each as one of subjective (SUB), direct object
(DOB), or prepositional object (POB, e.g. side
show “[SO] show [ST] on the side”). The an-
notators identified nine prepositional relations:
{about,against,for,from,in,into,on,to,with}.

1www.cpan.org: We limit our usage to examining the
“Estimated Results Returned”, so that our usage is identi-
cal to running the queries manually from the website. The
Google API (www.google.com/apis) gives a method
for examining the actual text of the returned documents.

4 Proposed Method

4.1 Paraphrase Tests
To derive preferences for the SUB, DOB, and var-
ious POB interpretations for a given compound
nominalisation, the most obvious approach is to
examine a parsed corpus for instances of the verbal
form of the head and the modifier occurring in the
corresponding verb–argument relation. There are
other constructions that can be informative, how-
ever.

We examine two novel paraphrase tests: one
prepositional and one participial. The preposi-
tional test is based in part on the work by Leonard
(1984) and Lauer (1995): for a given compound,
we search for instances of the head and modifier
nouns separated by a preposition. For example,
for the compound nominalisation leg operation,
we might search for operation on the leg, corre-
sponding to the POB relation on. Special cases are
by, corresponding to a subjective reading akin to a
passive construction (e.g. investor hesitancy, hesi-
tancy by the investor ≡ “the investor hesitates”),
and of, corresponding to a direct object reading
(e.g. language speaker, speaker of the language
≡ “[SO] speaks the language”).

The participial test is based on the paraphras-
ing equivalence of using the present participle of
the verbal head as an adjective before the modifier,
for the SUB relation (e.g. the hesitating investor ≡
“the investor hesitates”), compared to the past par-
ticiple for the DOB relation (the spoken language
≡ “[SO] speaks the language”). The correspond-
ing prepositional object construction is unusual in
English, but still possible: compare ?the operated-
on leg and the lived-in village.

4.2 The Algorithm
Given a compound nominalisation, we perform a
number of steps to arrive at an interpretation. First,
we derive a set of verbal forms for the head from
the combination of CELEX, NOMLEX, and CAT-
VAR. We find the participial forms of each of the
verbal heads, and plurals for the nominal head and
modifier, using the morph lemmatiser.

Next, we examine the BNC for instances of the
modifier and one of the verbal head forms oc-
curring in a verb–argument relation, with the aid
of the RASP parse. Using these frequencies, we
calculate the pairwise z-scores between SUB and
DOB, and between SUB and POB: the score given
to the SUB interpretation is the greater of the two.

56



We further examine the RASP parsed data for in-
stances of the prepositional and participial tests for
the compound, and calculate the z-scores for these
as well.

We then collect our Google counts. Because the
Web data is unparsed, we cannot look for syntactic
structures explictly. Instead, we query a number of
collocations which we expect to be representative
of the desired structure.

For the prepositional test, the head can be sin-
gular or plural, the modifier can be singular or plu-
ral, and there may or may not be an article be-
tween the preposition and the modifier. For exam-
ple, for the compound nominalisation product re-
placement and preposition of we search for all of
the following: (and similarly for the other prepo-
sitions)

replacement of product
replacement of the product
replacement of products
replacement of the products
replacements of product
replacements of the product
replacements of products
replacements of the products

For the participial test, the modifier can be sin-
gular or plural, and if we are examining a prepo-
sitional relation, the head can be either a present
or past participle. For product replacement, we
search for, as well as other prepositions:

the replacing product
the replacing products
the replaced product
the replaced products
the replacing–about product
the replacing–about products
the replaced–about product
the replaced–about products

We comment briefly on these tests in Section 6.
We choose to use the as our canonical article be-

cause it is a reliable marker of the left boundary of
an NP and number-neutral; using a/an represents
a needless complication.

We then calculate the z-scores using the method
described in Section 2, where the individual fre-
quency counts are the maximum of the results ob-
tained across the query set.

Once the z-scores have been obtained, we
choose a classification based on the greatest-
valued observed test. We contrast the confidence

interval–based approach with the maximum like-
lihood method of choosing the largest of the raw
frequencies. We also experiment with a machine
learning package, to examine the mutual predic-
tiveness of the separate tests.

5 Observed Results

First, we found majority-class baselines for each
of the data sets. The two–way data set had
258 SUBJ–classified items, and 437 OBJ–classified
items, so choosing OBJ each time gives a baseline
of 62.9%. The three–way set had 22 SUB items,
63 of DOB, and 44 of POB, giving a baseline of
48.8%.

Contrasting this with human performance on
the data set, Lapata recorded a raw inter-annotator
agreement of 89.7% on her test set, which cor-
responds to a Kappa value κ = 0.78. On the
three–way data set, three annotators had a agree-
ment of 98.4% for identification and classification
of observed compound nominalisations in open
text, and κ = 0.83. For the three-way data set,
the annotators were asked to both identify and
classify compound nominalisations in free text,
and agreement is thus calculated over all words
in the test. The high agreement figure is due to
the fact that most words could be trivially disre-
garded (e.g. were not nouns). Kappa corrects this
for chance agreement, so we conclude that this
task was still better-defined than the one posed
by Lapata. One possible reason for this was the
number of poorly–behaved compounds that we re-
moved due to chunk inconsistencies, lack of a ver-
bal form, or proper nouns: it would be difficult for
the annotators to agree over compounds where an
obvious well–defined interpretation was not avail-
able.

5.1 Comparison Classification

Results for classification over the Lapata two–way
data set are given in Table 1, and results over
the open data three–way set are given in Table 2.
For these, we selected the greatest raw frequency
count for a given test as the intended relation
(Raw), or the greatest confidence interval accord-
ing to the z-score (Z-Score). If a relation could not
be selected due to ties (e.g., the scores were all 0),
we selected the majority baseline. To deal with the
nature of the two–way data set with respect to our
three–way selection, we mapped compounds that
we would prefer to be POB to OBJ, as there are
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Paraphrase Default Corpus Counts Web Counts
Raw Z-Score Raw Z-Score

Verb–Argument 62.9 67.9 68.3 – –
Prepositional 62.9 62.1 62.4 62.6 63.0
Participial 62.9 63.0 63.2 61.4 58.8

Table 1: Classification Results over the two–way data set, in %. Comparison of raw frequency counts
vs. confidence–based z-scores, for BNC data and Google scrapings shown.

Paraphrase Default Corpus Counts Web Counts
Raw Z-Score Raw Z-Score

Verb–Argument 48.8 54.3 55.0 – –
Prepositional 48.8 48.4 50.0 59.7 58.9
Participial 48.8 43.2 45.4 43.4 38.0

Table 2: Classification results over the three-way data set, in %. Comparison of raw frequency counts
vs. confidence-based z-scores, for BNC data and Google scrapings shown.

compounds in the set (e.g. adult provision) that
have a prepositional object reading (“provide for
adults”) but have been classified as a direct object
OBJ.

The verb–argument counts obtained from the
parsed BNC are significantly better than the base-
line for the Lapata data set (χ2

= 4.12, p ≤ 0.05),
but not significantly better for the open data set
(χ2

= 0.99, p ≤ 1). Similar results were reported
by Lapata (2002) over her data set using backed–
off smoothing, the most closely related method.

Neither the prepositional nor participial para-
phrases were significantly better than the baseline
for either the two–way (χ2

= 0.00, p ≤ 1), or
the three–way data set (χ2

= 3.52, p ≤ 0.10), al-
though the prepositional test did slightly improve
on the verb–argument results.

5.2 Machine Learning Classification

Although the results were not impressive, we still
believed that there was complementing informa-
tion within the data, which could be extracted with
the aid of a machine learner. For this, we made
use of TiMBL (Daelemans et al., 2003), a nearest-
neighbour classifier which stores the entire train-
ing set and extrapolates further samples, as a prin-
cipled method for combination of the data. We use
TiMBL’s in-built cross-validation method: 90% of
the data set is used as training data to test the other
10%, for each stratified tenth of the set. The results
it achieves are assumed to be able to generalise to
new samples if they are compared to the current
training data set.

The results observed using TiMBL are shown

Corpus Counts Web Counts
Two–way Set 72.4 74.2
Three–way Set 51.1 50.4

Table 3: TiMBL results for the combination of
paraphrase tests over the two–way and three–way
data sets for corpus and Web frequencies

in Table 3. This was from the combination
of all of the available paraphrase tests: verb–
argument, prepositional, and participial for the
corpus counts, and just prepositional and particip-
ial for the Web counts. The results for the two–
way data set derived from Lapata’s data set were a
good improvement over the simple classification
results, significantly so for the Web frequencies
(χ2

= 20.3, p ≤ 0.01). However, we also no-
tice a corresponding decrease in the results for the
three–way open data set, which make these im-
provements immaterial.

Examining the other possible combinations for
the tests did indeed lead to varying results, but not
in a consistent manner. For example, the best com-
bination for the open data set was using the par-
ticipial raw scores and z-scores (58.1%), which
performed particularly badly in simple compar-
isons, and comparatively poorly (70.2%) for the
two–way set.

6 Discussion

Although the observed results failed to match, or
even approach, various benchmarks set by La-
pata (2002) (87.3% accuracy) and Grover et al.
(2005) (77%) for the subject–object and subject–
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direct object–prepositional objects classification
tasks respectively, the presented approach is not
without merit. Indeed, these results relied on
machine learning approaches incorporating many
features independent of corpus counts: namely,
context, suffix information, and semantic similar-
ity resources. Our results were an examination
of the possible contribution of lexical information
available from high–volume unparsed text.

One important concept used in the above bench-
marks was that of statistical smoothing, both
class–based and distance–based. The reason for
this is the inherent data sparseness within the
corpus statistics for these paraphrase tests. La-
pata (2002) observes that almost half (47%) of
the verb–noun pairs constructed are not attested
within the BNC. Grover et al. (2005) also note the
sparseness of observed relations. Using the im-
mense data source of the Web allows one to cir-
cumvent this problem: only one compound (an-
archist prohibition) has no instances of the para-
phrases from the scraping,2 from more than 900
compounds between the two data sets. This ex-
tra information, we surmise, would be beneficial
for the smoothing procedures, as the comparative
accuracy between the two methods is similar.

On the other hand, we also observe that sim-
ply alleviating the data sparseness is insufficient
to provide a reliable interpretation. These results
reinforce the contribution made by the statistical
and semantic resources used in arriving at these
benchmarks.

The approach suggested by Keller and Lapata
(2003) for obtaining bigram information from the
Web could provide an approach for estimating the
syntactic verb–argument counts for a given com-
pound (dashes in Tables 1 and 2). In spite of
the inherent unreliability of approximating long–
range dependencies with n-gram information, re-
sults look promising. An examination of the effec-
tiveness of this approach is left as further research.
Similarly, various methods of combining corpus
counts with the Web counts, including smooth-
ing, backing–off, and machine learning, could also
lead to interesting performance impacts.

Another item of interest is the comparative dif-
ficulty of the task presented by the three–way data
set extracted from open data, and the two–way
data set hand–curated by Lapata. The baseline

2Interestingly, Google only lists 3 occurrences of this
compound anyway, so token relevance is low — further in-
spection shows that those 3 are not well-formed in any case.

of this set is much lower, even compared that
of the similar task (albeit domain–specific) from
Grover et al. (2005) of 58.6%. We posit that the
hand–filtering of the data set in these works con-
tributes to a biased sample. For example, remov-
ing prepositional objects for a two–way classifica-
tion, which make up about a third of the open data
set, renders the task somewhat artificial.

Comparison of the results between the maxi-
mum likelihood estimates used in earlier work,
and the more statistically robust confidence inter-
vals were inconclusive as to performance improve-
ment, and were most effective as a feature expan-
sion algorithm. The only obvious result is an aes-
thetic one, in using “robust statistics”.

Finally, the paraphrase tests which we propose
are not without drawbacks. In the prepositional
test, a paraphrase with of does not strictly con-
tribute to a direct object reading: consider school
aim “school aims”, for which instances of aim by
the school are overwhelmed by aim of the school.
We experimented with permutations of the avail-
able queries (e.g. requiring the head and modifier
to be of different number, to reflect the pluralis-
ability of the head in such compounds, e.g. aims
of the school), without observing substantially dif-
ferent results.

Another observation is the inherent bias of the
prepositional test to the prepositional object re-
lation. Apparent prepositional relations can oc-
cur in spite of the available verb frames: con-
sider cash limitation, where the most populous in-
stance is limitation on cash, despite the impossi-
bility of *to limit on cash (for to place a limit on
cash). Another example, is bank agreement: find-
ing instances of agreement with bank does not lead
to the pragmatically absurd [SO] agrees with the
bank.

Correspondingly, the participial relation has the
opposite bias: constructions of the form the lived-
in flat “[SO] lived in the flat” are usually lexi-
calised in English. As such, only 17% of com-
pounds in the two–way data set and 34% of the
three-way data set display non-zero values in the
prepositional object relation for the participial test.
We hoped that the inherent biases of the two tests
might balance each other, but there is little evi-
dence of that from the results.
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7 Conclusion

We presented two novel paraphrase tests for au-
tomatically predicting the inherent semantic rela-
tion of a given compound nominalisation as one of
subject, direct object, or prepositional object. We
compared these to the usual verb–argument para-
phrase test, using corpus statistics, and frequen-
cies obtained by scraping the Google search en-
gine. We also implemented a more robust statisti-
cal measure than the insipid maximum likelihood
estimates — the confidence interval. A significant
reduction in data sparseness was achieved, but this
alone is insufficient to provide a substantial per-
formance improvement.
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