
Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing, pages 185–188,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Maximum Entropy Word Segmentation of Chinese Text

Aaron J. Jacobs
Department of Linguistics

University of Texas at Austin
1 University Station B5100

Austin, TX 78712-0198 USA
aaronjacobs@mail.utexas.edu

Yuk Wah Wong
Department of Computer Sciences

University of Texas at Austin
1 University Station C0500

Austin, TX 78712-0233 USA
ywwong@cs.utexas.edu

Abstract

We extended the work of Low, Ng, and
Guo (2005) to create a Chinese word seg-
mentation system based upon a maximum
entropy statistical model. This system
was entered into the Third International
Chinese Language Processing Bakeoff and
evaluated on all four corpora in their re-
spective open tracks. Our system achieved
the highest F-score for the UPUC corpus,
and the second, third, and seventh high-
est for CKIP, CITYU, and MSRA respec-
tively. Later testing with the gold-standard
data revealed that while the additions we
made to Low et al.’s system helped our re-
sults for the 2005 data with which we ex-
perimented during development, a number
of them actually hurt our scores for this
year’s corpora.

1 Segmenter

Our Chinese word segmenter is a modification of
the system described by Low et al. (2005), which
they entered in the 2005 Second International Chi-
nese Word Segmentation Bakeoff. It uses a max-
imum entropy (Ratnaparkhi, 1998) model which
is trained on the training corpora provided for this
year’s bakeoff. The maximum entropy framework
used is the Python interface of Zhang Le’s maxi-
mum entropy modeling toolkit (Zhang, 2004).

1.1 Properties in common with Low et al.

As with the system of Low et al., our system
treats the word segmentation problem as a tag-
ging problem. When segmenting a string of Chi-
nese text, each character can be assigned one of
four boundary tags: S for a character that stands

alone as a word, B for a character that begins a
multi-character word, M for a character in a multi-
character word which neither starts nor ends the
word, and E for a character that ends a multi-
character word. The optimal tag for a given char-
acter is chosen based on features derived from
the character’s surrounding context in accordance
with the decoding algorithm (see Section 1.2).

All of the feature templates of Low et al.’s sys-
tem are utilized in our own (with a few slight mod-
ifications):

1. Cn (n = −2,−1, 0, 1, 2)

2. CnCn+1 (n = −2,−1, 0, 1)

3. C−1C1

4. Pu(C0)

5. T (C−2)T (C−1)T (C0)T (C1)T (C2)

6. Lt0

7. Cnt0 (n = −1, 0, 1)

In the above feature templates, Ci refers to the
character i positions away from the character un-
der consideration, where negative values indicate
characters to the left of the present position. The
punctuation feature Pu(C0) is added only if the
current character is a punctuation mark, and the
function T maps characters to various numbers
representing classes of characters. In addition to
the numeral, date word, and English letter classes
of Low et al.’s system, we added classes for punc-
tuation and likely decimal points (which are de-
fined by a period or the character ¹ occurring
between two numerals). L is defined to be the
length of the longest word W in the dictionary that
matches some sequence of characters around C0

185



in the current context and t0 is the boundary tag of
C0 in W . The dictionary features are derived from
the use of the same online dictionary from Peking
University that was used by Low et al.

In order to improve out-of-vocabulary (OOV)
recall rates, we followed the same procedure as
Low et al.’s system in using the other three train-
ing corpora as additional training material when
training a model for a particular corpus:

1. Train a model normally using the given cor-
pus.

2. Use the resulting model to segment the other
training corpora from this year’s bakeoff, ig-
noring the pre-existing segmentation.

3. Let C be a character in one of the other cor-
pora D. If C is assigned a tag t by the model
with probability p, t is equivalent to the tag
assigned by the actual training corpus D, and
p is less than 0.8, then add C (along with
its associated features) as additional training
material.

4. Train a new model using all of the original
training data along with the new data derived
from the other corpora as described in the
previous step.

This procedure was carried out when training
models for all of the corpora except CKIP. The
model for that corpus was trained solely with its
own training data due to time and memory con-
cerns as well as the fact that our scores during de-
velopment for the corresponding corpus (AS) in
2005 did not seem to benefit from the addition of
data from the other corpora.

We adopt the same post-processing step as Low
et al.’s system: after segmenting a body of text,
any sequence of 2 to 6 words whose total length
is at least 3 characters and whose concatenation
is found as a single word elsewhere in the seg-
menter’s output is joined together into that sin-
gle word. Empirical testing showed that this pro-
cess was actually detrimental to results in the 2005
CITYU data, so it was performed only for the
UPUC, MSRA, and CKIP corpora.

1.2 Decoding algorithm
When segmenting text, to efficiently compute the
most likely tag sequence our system uses the
Viterbi algorithm (Viterbi, 1967). Only legal tag
sequences are considered. This is accomplished

by ignoring illegal state transitions (e.g. from a B
tag to an S tag) during decoding. At each stage
the likelihood of the current path is estimated by
multiplying the likelihood of the path which it ex-
tends with the probability given by the model of
the assumed tag occurring given the surrounding
context and the current path. To keep the problem
tractable, only the 30 most likely paths are kept at
each stage.

The advantage of such an algorithm comes in
its ability to ‘look ahead’ compared to a simpler
algorithm which just chooses the most likely tag
at each step and goes on. Such an algorithm is
likely to run into situations where choosing the
most likely tag for one character forces the choice
of a very sub-optimal tag for a later character by
making impossible the choice of the best tag (e.g.
if S is the best choice but the tag assigned for the
previous character was B). In contrast, the Viterbi
algorithm entertains multiple possibilities for the
tagging of each character, allowing it to choose a
less likely tag now as a trade-off for a much more
likely tag later.

1.3 Other outcome-independent features

To the feature templates of Low et al.’s system
described in Section 1.1, we added the following
three features which do not depend on previous
tagging decisions but only on the current charac-
ter’s context within the sentence:

1. The surname feature is set if the current
character is in our list of common surname
characters, as derived from the Peking Uni-
versity dictionary.

2. The redup-next feature is set if C1 is
equal to C0. This is to handle reduplication
within words, such as in the case of ��Z
Z ‘particularly clear’.

3. The redup-prev feature is set if C−1 is
equal to C0.

These features were designed to give the system
hints in cases where we saw it make frequent er-
rors in the 2005 data.

1.4 Outcome-dependent features

In addition to the features previously discussed,
we added a number of features to our system that
are outcome-dependent in the sense that their re-
alization for a given character depends upon how

186



the previous characters were segmented. These
work in conjunction with the Viterbi algorithm
discussed in Section 1.2 to make it so that a given
character in a sentence can be assigned a different
set of features each time it is considered, depend-
ing on the path currently being extended.

1. If the current character is one of the place
characters such as Q or G which com-
monly occur at the end of a three-character
word and the length of the current word
(as determined by previous tagging decisions
on the current path) including the current
character is equal to three, then the feature
place-char-and-len-3 is set.

2. If the situation is as described above ex-
cept the next character in the current con-
text is the place character, then the feature
next-place-char-and-len-2 is set.

3. If the current character is I and the word
before the previous word is an enumerating
comma (�), then the feature deng-list
is set. This is intended to capture situations
where a list of single-word items is presented,
followed by I to mean ‘and so on’.

4. If the current character is I and the third
word back is an enumerating comma, then
the feature double-word-deng-list is
set.

5. If the length of the previous word is at least 2
and is equal to the length of the current word,
then the feature symmetry is set.

6. If the length of the previous word is at least 2
and is one more than the length of the current
word, then the feature almost-symmetry
is set.

7. Similar features are added if the length of the
current word is equal to (or one less than) the
length of the word before the last and the last
word is a comma.

These features were largely designed to help al-
leviate problems the model had with situations in
which it would otherwise be difficult to discern the
correct segmentation. For example, in one devel-
opment data set the model incorrectly grouped I
at the end of a list (which should be a word on its
own) with the following character to form I�, a
word found in the dictionary.

1.5 Simplified normalization

To derive the most benefit from the additional
training data obtained as described in Section 1.1,
before generating any sort of features from char-
acters in training and test data, all characters are
normalized by the system to their simplified vari-
ants (if any) using data from version 4.1.0 of the
Unicode Standard. This is intended to improve the
utility of additional data from the traditional Chi-
nese corpora when training models for the sim-
plified corpora, and vice versa. Due to the re-
sults of some empirical testing, this normalization
was only performed when training models for the
UPUC and MSRA corpora; in our testing it did
not actually help with the scores for the traditional
Chinese corpora.

2 Results

Table 1 lists our official results for the bakeoff.
The columns show F scores, recall rates, precision
rates, and recall rates on out-of-vocabulary and
in-vocabulary words. Out of the participants in
the bakeoff whose scores were reported, our sys-
tem achieved the highest F score for UPUC, the
second-highest for CKIP, the seventh-highest for
MSRA, and the third-highest for CITYU.

Corpus F R P ROOV RIV

UPUC 0.944 0.949 0.939 0.768 0.966
CKIP 0.954 0.959 0.949 0.672 0.972
MSRA 0.960 0.959 0.961 0.711 0.968
CITYU 0.969 0.971 0.967 0.795 0.978

Table 1: Our 2006 SIGHAN bakeoff results.

The system’s F score for MSRA was higher than
for UPUC or CKIP, but it did particularly poorly
compared to the rest of the contestants when one
considers how well it performed for the other cor-
pora. An analysis of the gold-standard files for
the MSRA test data show that out of all of the
corpora, MSRA had the highest percentage of
single-character words and the smallest percent-
age of two-character and three-character words.
Moreover, its proportion of words over 5 char-
acters in length was five times that of the other
corpora. Most of the errors our system made on
the MSRA test set involved incorrect groupings
of true single-character words. Another compar-
atively high proportion involved very long words,
especially names with internal syntactic structure

187



(e.g. -ýý�Zi}ÔX�,]!hýãh
'�).

Our out of vocabulary scores were fairly high
for all of the corpora, coming in first, fourth,
fifth, and third places in UPUC, CKIP, MSRA,
and CITYU respectively. Much of this can be at-
tributed to the value of using an external dictionary
and additional training data, as illustrated by the
experiments run by Low et al. (2005) with their
model.

3 Further testing

In order to get some idea of how each of our ad-
ditions to Low et al.’s system contributed to our
results, we ran a number of experiments with the
gold-standard segmentations distributed after the
completion of the bakeoff. We stripped out all
of the additions and then added them back in one
by one, segmenting and scoring the test data each
time. What we found is that our system actu-
ally performed best with the implementation of
the Viterbi algorithm (which raised F scores by an
average of about 0.09 compared to simply choos-
ing the most likely tag at each stage) but without
any of the extra outcome-dependent or indepen-
dent features. There were only two exceptions to
this:

• The system achieved slightly higher OOV re-
call rates for the MSRA and CITYU corpora
with the place-char and deng-list
features than without.

• The system achieved a very small increase
in F score for the UPUC corpus with the
place-char feature than without.

Besides these small differences, the model was
best off without any of the features enumerated in
Sections 1.3 and 1.4, obtaining the scores listed in
Table 2. This is a surprising result, as in our testing
the added features helped to improve the F scores
and OOV recall rates of the system when dealing
with the 2005 bakeoff data, even if only by a small
amount in some cases.

It should be noted that in our testing during de-
velopment, even when we strove to create a system
which matched as closely as possible the one de-
scribed by Low et al. (2005), we were unable to
achieve scores for the 2005 bakeoff data as high
as their system did. Why this was the case re-
mains a mystery to us. It is possible that at least

Corpus F R P ROOV RIV

UPUC 0.948 0.954 0.943 0.781 0.970
CKIP 0.957 0.962 0.952 0.698 0.973
MSRA 0.964 0.963 0.964 0.731 0.971
CITYU 0.974 0.976 0.972 0.816 0.983

Table 2: Our results without the extra features.

some of the gap is due to implementation differ-
ences. In particular, the maximum entropy toolkit
utilized along with the training algorithms chosen
seem likely candidates for sources of the disparity.

4 Conclusions

Using a maximum entropy approach based on a
modification of the system described by Low, Ng,
and Guo (2005), our system was able to achieve
a respectable level of accuracy when evaluated on
the corpora of the word segmentation task of the
Third International Chinese Language Processing
Bakeoff. Implementing the Viterbi decoding algo-
rithm was very beneficial for F scores and OOV
recall rates. However, it should be investigated
whether the rest of the added features, especially
the outcome-dependent ones, are useful in general
or if they were only beneficial for the 2005 test
data due to some pattern in that data, after which
they were modeled.

References
Jin Kiat Low, Hwee Tou Ng, and Wenyuan Guo.

2005. A maximum entropy approach to Chi-
nese word segmentation. In Fourth SIGHAN
Workshop on Chinese Language Processing, pages
161–164. URL http://www.aclweb.org/
anthology/I05-3025.

Adwait Ratnaparkhi. 1998. Maximum Entropy Models
for Natural Language Ambiguity Resolution. Ph.D.
thesis, University of Pennsylvania.

Andrew J. Viterbi. 1967. Error bounds for convolu-
tional codes and an asymptotically optimum decod-
ing algorithm. IEEE Transactions on Information
Theory, 13(2):260–269.

Le Zhang, 2004. Maximum Entropy Modeling
Toolkit for Python and C++. URL http://
homepages.inf.ed.ac.uk/s0450736/.

188


