
S. Werner (ed.), Proceedings of the 15th NODALIDA conference, Joensuu 2005, Ling@JoY 1, 2006, pp. 47–56
ISBN 952-458-771-8, ISSN 1796-1114. http://ling.joensuu.fi/lingjoy/
© by the authors

A generic architecture for data-driven dependency parsing

Johan Hall and Joakim Nivre

Växjö University
School of Mathematics and Systems Engineering

{jha,nivre}@msi.vxu.se

Abstract

We present a software architecture

for data-driven dependency parsing

of unrestricted natural language text,

which achieves a strict modularization

of parsing algorithm, feature model

and learning method such that these

parameters can be varied indepen-

dently. The design has been realized

in MaltParser, which supports several

parsing algorithms and learning meth-

ods, for which complex feature models

can be defined in a special description

language.

1 Introduction

One of the advantages of data-driven ap-

proaches to syntactic parsing is the relative

ease with which they can be ported to new

languages or domains, provided that the nec-

essary linguistic data resources are available.

Thus, the parser of Collins (1999), originally de-

veloped for English and trained on Wall Street

Journal data, has been successfully applied

to languages as different as Czech (Collins

et al., 1999) and Chinese (Sun and Jurafsky,

2004). However, most available systems for

data-driven syntactic parsing lack another kind

of flexibility, namely the possibility to combine

different parsing algorithms with different fea-

ture models and learning methods.

Data-driven dependency parsing has recently

been explored as a robust and efficient method

for syntactic parsing of unrestricted natural

language text (Yamada and Matsumoto, 2003;

Nivre et al., 2004). Dependency parsing means

that the goal of the parsing process is to con-

struct a dependency graph, of the kind depicted

in Figure 1. The methodology is based on three

essential components:

1. Deterministic parsing algorithms for build-

ing dependency graphs (Yamada and Mat-

sumoto, 2003; Nivre, 2003)

2. History-based feature models for predict-

ing the next parser action (Black et al.,

1992)

3. Discriminative machine learning to map

histories to parser actions (Yamada and

Matsumoto, 2003; Nivre et al., 2004)

Given the restriction imposed by these compo-

nents, we present a software design for data-

driven dependency parsing of unrestricted nat-

ural language text. The most important fea-

ture of the design is a clean separation of pars-

ing algorithms, feature models, and learning

methods, so that these components can be var-

ied independently of each other. Moreover, the

design makes it possible to use the same ba-

sic components both for inducing a model from

treebank data in the learning phase and for us-

ing the model to parse new data in the parsing

phase. This architecture has been realized in

the MaltParser system.1

This paper is structured as follows. Section 2

gives the necessary background and introduces

the framework of inductive dependency parsing

(Nivre, 2005). Section 3 presents the generic

architecture for data-driven dependency pars-

ing, and section 4 describes its realization in

the MaltParser system. Finally, conclusions are

presented in section 5.

2 Inductive dependency parsing

Given a set R of dependency types, we de-

fine a dependency graph for a sentence x =

(w1, . . . , wn) to be a labeled directed graph G =

1MaltParser is freely available for research and
educational purposes and can be downloaded from
http://www.vxu.se/msi/users/nivre/research/Malt-
Parser.html.

Proceedings of the 15th NODALIDA conference, Joensuu 2005 Ling@JoY 1, 2006

JJ
Economic

� �

?

nmod

NN
news

� �

?

sbj

VB
had

JJ
little

� �

?

nmod

NN
effect

� �

?

obj

IN
on

� �

?

nmod

JJ
financial

� �

?

nmod

NN
markets

� �

?

pmod

PU
.

?

� �

p

Figure 1: Dependency structure for English sentence

(V, E, L), where V is the set of input tokens

w1, . . . , wn, extended with a special root node

w0 and ordered by a linear precedence relation

<; E ⊆ V × V is a set of directed arcs; and

L : E → R is a function that labels arcs with de-

pendency types. A dependency graph G is well-

formed iff (i) the node w0 is a root of G, (ii) G

is connected, (iii) every node in G has an inde-

gree of at most 1, and (iv) G is acyclic. Depen-

dency parsing is the task of mapping sentences

to well-formed dependency graphs.

Inductive approaches to natural language

parsing can in general be defined in terms of

three essential components:

1. A formal model M defining permissible

representations for sentences (such as

the model of dependency graphs defined

above).

2. A parameterized stochastic model MΘ,

defining a score S(x, y) for every sentence

x and well-formed representation y.

3. An inductive learning algorithm L for es-

timating the parameters Θ from a repre-

sentative sample Tt = (x1 : y1, . . . , xn : yn)

of sentences with their correct representa-

tions (normally a treebank sample).

Inductive dependency parsing is compatible

with a variety of different models, but we fo-

cus here on history-based models (Black et al.,

1992; Magerman, 1995; Ratnaparkhi, 1997;

Collins, 1999), which can be defined in three

steps:

1. Define a one-to-one mapping between syn-

tactic representations y and decision se-

quences D = (d1, . . . , dm) such that D

uniquely determines y.

2. Define the score S(x, y) , for every sen-

tence x and representation y, in terms of

each decision di in the decision sequence

D = (d1, . . . , dm), conditioned on the his-

tory H = (d1, . . . , di−1).

3. Define a function Φ that groups histories

into equivalence classes, thereby reducing

the number of parameters in Θ.

In a conditional history-based model, the score

S(x, y) defined by the model is the conditional

probability P (y |x) of the analysis y given the

sentence x, which means that the input sen-

tence is a conditioning variable for each deci-

sion in the decision sequence:

P (y |x) = P (d1, . . . , dm |x) =
m∏

i=1

P (di |Φ(d1, . . . , di−1, x))

The parameters of this model are the condi-

tional probabilities P (d |Φ(H, x)), for all possi-

ble decisions d and non-equivalent conditions

Φ(H, x).

Given a conditional history-based model, the

conditional probability P (yj |x) of analysis yj

given input x can be used to rank a set of al-

ternative analyses {y1, . . . , yk} of the input sen-

tence x, derived by a nondeterministic parser.

If the model allows a complete search of the

analysis space, we can in this way be sure to

find the analysis yj that maximizes the proba-

bility P (yj |x) according to the model:

arg max
j

P (yj |x) =

arg max
j

m∏

i=1

P (di |Φ(d1, . . . , di−1, x))

With a deterministic parsing strategy, we in-

stead try to find the most probable analysis yj

without exploring more than one decision se-

quence, based on the following approximation:

max
j

P (yj |x) ≈

Hall & Nivre: A generic architecture for data-driven dependency parsing 48

Proceedings of the 15th NODALIDA conference, Joensuu 2005 Ling@JoY 1, 2006

m∏

i=1

max
i

P (di |Φ(d1, . . . , di−1, x))

A deterministic parsing strategy is in this con-

text a greedy algorithm, making a locally op-

timal choice in the hope that this choice will

lead to a globally optimal solution (Cormen et

al., 1990). The main problem with the greedy

strategy is that it may not lead to a globally opti-

mal solution. The main advantage of the greedy

strategy is that it improves parsing efficiency

by avoiding an exhaustive search of the analy-

sis space, but an additional advantage is that

it reduces the effective number of parameters

of the stochastic model, since only the mode of

the distribution P (di |Φ(H, x)) needs to be esti-

mated for each distinct condition Φ(H, x). This

also means that a larger class of learning meth-

ods can be used, including purely discrimina-

tive methods.

With a discriminative learning method we

can reduce the learning problem to a pure clas-

sification problem, where an input instance is a

parameterized history Φ(H, x), which is repre-

sented by a feature vector, and an output class

is a decision d. Using a supervised learning

method, our task is then to induce a classifier C

given a set of training instances T , derived from

a treebank sample, where O is an oracle func-

tion that predicts the correct decision given the

gold standard treebank:

T = {(Φ(H, x), d) |O(H, x) = d, x ∈ Tt}

In order to construct a specific instance of

the inductive dependency parser, we therefore

need to specify three things:

1. A deterministic parsing algorithm used to

derive dependency graphs, which defines

the set D of permissible decisions, as well

as the oracle function O that determines

the correct decision given a certain history

H and input sentence x.

2. A parameterization function Φ used to de-

fine equivalence classes of histories and

sentences in terms of a feature vector

Φ(1,p) = (φ1, . . . , φp), where each feature φi

is a function that maps a token to its part-

of-speech, lexical form or dependency type

(in the partially built dependency graph).

We call Φ(1,p) a feature model.

3. A discriminative learning algorithm

used to approximate the mode function

f(Φ(H, x)) = arg maxd P (d |Φ(H, x)) given

a set T of training instances.

We will now turn to the description of an archi-

tecture that allows the user to construct such

an instance in an efficient and flexible manner,

given a suitable sample of a dependency tree-

bank.

3 A generic architecture

We propose an architecture with a strict mod-

ularization of parsing algorithms, feature mod-

els and learning methods, thereby giving max-

imum flexibility in the way these components

can be varied independently of each other.

The architecture can be seen as a data-driven

parser-generator framework, which constructs

a parser without rebuilding the framework

given a treebank and a specified parsing al-

gorithm, feature model, learning method. The

idea is to give the user the flexibility to exper-

iment with the components in a more conve-

nient way, although there are still dependencies

between components, in the sense that not all

combinations will perform well with respect to

accuracy and efficiency.

The design of the architecture deals also with

the fact that the parser can be executed in

two different phases: the learning phase and

the parsing phase. In the learning phase, the

system uses a treebank to learn a model; in

the parsing phase, it takes a previously learnt

model and uses this to parse new and unseen

data. Although these two tasks have a differ-

ent structure, they often involve similar or even

identical subproblems. For instance, learning

normally requires the construction of a gold

standard parse derivation in order to estimate

the parameters of a model, which is exactly the

same kind of derivation that is constructed dur-

ing parsing.

The architecture consists of three main com-

ponents:

1. Parser, which derives the dependency

graph for a sentence (during both learning

and parsing) using a deterministic parsing

algorithm.

2. Guide, which extracts feature vectors from

the current state of the system (according

to the specified model) and passes data be-

tween the Parser and the Learner.

Hall & Nivre: A generic architecture for data-driven dependency parsing 49

Proceedings of the 15th NODALIDA conference, Joensuu 2005 Ling@JoY 1, 2006

3. Learner, which is responsible for inducing

a model during learning time and for us-

ing this model to guide the Parser to make

decisions at all nondeterministic choice

points during the parsing phase.

In addition to the three main components the

framework includes input/output components

and an overall control structure. These com-

ponents are responsible for reading a text S =

(x1, . . . , xn) and invoking the Parser for each

sentence xi ∈ S. When the Parser has con-

structed the dependency graph Gi, the depen-

dency graph should be outputted in a suitable

format. The next three subsections describe the

main components in more detail.

3.1 Parser

The Parser is responsible for the derivation

of a well-formed dependency graph Gi for a

sentence x = w1, . . . , wn, given a set R =

{r0, r1, . . . , rm} of dependency types (r0 is a spe-

cial symbol for dependents of the root). To per-

form this derivation we need a parsing algo-

rithm that can map a dependency graph into a

sequence of decisions D = (d1, . . . , dm) during

learning time by using the gold standard. Each

decision will be passed on to the Guide as an

example of a correct decision. During parsing

time the parsing algorithm constructs a depen-

dency graph by asking the Guide for each non-

deterministic decision di. During both learning

and parsing time, the parser configuration will

be updated according to the decision. We can

define a parser configuration for x as a sextuple

c = (σ, τ, υ, p, h, l), where:

1. σ is a stack of partially processed tokens.

2. τ is a list of remaining input tokens.

3. υ is a stack of unattached tokens occurring

between the token on top of the stack σ

and the next input token, called the context

stack.

4. p is the part-of-speech function, where

p(wi) is the part-of-speech of the token i.

5. h is the head function defining the partially

built dependency structure, where h(wi)

is the syntactic head of the token i (with

h(wi) = 0 if i is not yet attached to a

head). hg is the gold standard head func-

tion, where hg(wi) is the syntactic head of

the token i, taken from a treebank.

6. l is the dependency function labeling

the partially built dependency structure,

where l(wi) is the dependency type ri link-

ing the token i to its syntactic head (with

l(wi) = r0 if i is not yet attached to a head).

lg is the gold standard dependency func-

tion, where lg(wi) is the dependency type

labeling the token i to its syntactic head,

taken from a treebank.

Moreover, one of the main ideas of the Parser

component is that it should be capable of in-

corporating several parsing algorithms, which

allow the user of the system to choose a suit-

able algorithm for a specific purpose. Not all

parsing algorithms are of course applicable for

this architecture and therefore we need to de-

fine the restrictions that the parsing algorithm

must fulfil:

1. It must be able to operate the configuration

c = (σ, τ, υ, p, h, l) of the form defined above

for each sentence x.

2. It must only assign a dependency relation

between the token on top of the stack σ and

the next input token in the list τ .

3. It must be deterministic, in the sense that

it always derives a single analysis for each

sentence x. However, the algorithm can

be nondeterministic in its individual choice

points such as adding a dependency arc be-

tween two tokens or shifting a new token

onto its stack. This implies that the algo-

rithm must be able to break down the pars-

ing problem into a sequence of decisionsD.

However, not all decisions have to be non-

deterministic, for example when the stack

σ is empty we can only shift the next token

on to the stack.

4. It must be capable to make a gold stan-

dard parse given a training corpus Tt =

{x1, . . . , xn} in the learning phase. In this

way, the algorithm derives the correct de-

cision in all nondeterministic choice points

using an oracle function. This function

defines the mapping between the depen-

dency graphGi and the decision sequences

D = (d1, . . . , dm) such that D uniquely de-

termines the dependency graph Gi.

5. It must define a set Dc of permissible de-

cisions for each configuration c and check

Hall & Nivre: A generic architecture for data-driven dependency parsing 50

Proceedings of the 15th NODALIDA conference, Joensuu 2005 Ling@JoY 1, 2006

that it does not perform an illegal decision.

For example, if the stack σ is empty then

it is not possible to pop the stack. To com-

ply with the requirement of robustness, it

must therefore provide a default decision

according to the current state of the sys-

tem if an illegal decision is proposed by the

guide.

3.2 Guide

The Guide is responsible for constructing a set

of training instances T for the Learner dur-

ing the learning phase, and for passing the

Learner’s predictions to the Parser during the

parsing phase.

At learning time, the Guide constructs one

training instance Φ((H, x), d) for each decision

di passed from the Parser, where Φ(H, x) is

the current vector of feature values (given the

parameterization function Φ and the current

state of the system), and passes this on to the

Learner. At parsing time, the Guide constructs

a feature vector Φ(H, x) for each request from

the Parser, sends it to the Learner and passes

on the predicted decision d from the Learner

to the Parser. In this way, the feature model is

completely separated from the Parser, and the

Learner only has to learn a mapping from fea-

ture vectors to decisions, without knowing ei-

ther how the features are extracted or how the

decisions are to be used. Moreover, the feature

extraction is performed in exactly the same way

during both learning and parsing.

The feature extraction uses the parameteri-

zation function Φ, which is defined in terms of a

feature vector Φ(1,p), where each feature φi is a

function, defined in terms of three simpler func-

tions: an address function aφi
, which identifies

a specific token in a given parser configuration,

an attribute function fφi
, which picks out a spe-

cific attribute of the token, and amapping func-
tion mφi

, which defines equivalence classes of

attribute values.

1. For every i, i ≥ 0, σ[i], τ [i] and υ[i] are ad-

dress functions identifying the i+1th token

from the top of the stack σ, the start of the

input list τ , and the top of the stack υ, re-

spectively. (Hence, σ[0] is the top of the

stack, τ [0] is the next input token and υ[0]

is the top of the context stack.)

2. If α is an address function, then h(α), lc(α),

rc(α), ls(α) and rs(α) are address func-

tions, identifying the head (h), the leftmost

child (lc), the rightmost child (rc), the next

left sibling (ls) and the next right sibling

(rs), respectively, of the token identified by

α (according to the partially built depen-

dency graph Gi).

3. If α is an address function, then p(α), w(α)

and l(α) are feature functions, identifying

the part-of-speech (p), word form (w) and

dependency type (l) of the token identified

by α (where the dependency type, if any,

is given by the partially built dependency

graph Gi). We call p, w and l attribute func-

tions.

Given a feature function β, we can also de-

fine a mapping function that maps each value

of β to a new value. For example, a mapping

function can be used to restrict the value of a

lexical feature (w(α)) to the last n characters of

the word form.

Given this parameterization function Φ, the

Guide will extract a parser state si =

(v1, . . . , vp) and passes this to the learner, where

the vj is extracted value for the corresponding

feature φj . During learning it also provide the

decision di , or request the di during parsing.

3.3 Learner

The Learner, finally, is responsible for induc-

ing a classifier g from the set of training in-

stances T by using a learning algorithm L. The

learned function g is an approximation of the

true oracle O. The set of possible decisions is

discrete and finite, and therefore we can view

this as classification problem. The classifier g is

used to predict parser decisions given a parser

state during the parsing phase. In practice, the

Learner will normally be an interface to a stan-

dard machine learning package.

3.4 The learning and parsing phase

To conclude this section we will summarize the

architecture by illustrating the data flow during

the learning and parsing phase.

Figure 2 shows the architecture during the

learning phase. The Parser takes as input a list

of input tokens τ and the gold standard func-

tions (hg, lg). For each nondeterministic deci-

sion the Parser use the oracle function O to de-

rive the correct decision di+1 and updates the

configuration according to di+1, which results

in the next configuration ci+1. The Guide takes

Hall & Nivre: A generic architecture for data-driven dependency parsing 51

Proceedings of the 15th NODALIDA conference, Joensuu 2005 Ling@JoY 1, 2006

Parser(τ, hg, lg)

di+1 = O(ci, hg, lg)

ci+1 = di+1(ci)

Guide(x, Φ)

si = Φ(ci, x)

Learner(L)

Ti+1 = Ti ∪ {(si, di+1)}

g = L(T)

-
(ci, di+1)

-
(si, di+1)

Figure 2: The data flow in the architecture during the learning phase.

Parser(τ)

ci+1 = di+1(ci)

Guide(x, Φ)

si = Φ(ci, x)

Learner(g)

di+1 = g(si)

-

�

ci

di+1

-

�

si

di+1

Figure 3: The data flow in the architecture during the parsing phase.

Genom pp 3 ADV

skattereformen nn.utr.sin.def.nom 1 PR

införs vb.prs.sfo 0 ROOT

individuell jj.pos.utr.sin.ind.nom 5 ATT

beskattning nn.utr.sin.ind.nom 3 SUB

(pad 5 IP

särbeskattning nn.utr.sin.ind.nom 5 APP

) pad 5 IP

av pp 5 ATT

arbetsinkomster nn.utr.plu.ind.nom 9 PR

. mad 3 IP

Figure 4: An example sentence taken from the Swedish treebank Talbanken (Einarsson, 1976)

in the Malt-TAB format. The first column is the word from, followed by the part-of-speech, the

syntactic head and the dependency relation to the head (in that order).

Hall & Nivre: A generic architecture for data-driven dependency parsing 52

Proceedings of the 15th NODALIDA conference, Joensuu 2005 Ling@JoY 1, 2006

as input a feature model Φ, and a sentence xi.

For each nondeterministic decision, the Guide

uses the feature model Φ to extract the parser

state si. Finally, the Learner collects the in-

stance (si, di+1) passed from the Guide in the

training set T . When all training instances are

collected the learning algorithm L is applied to

induce a classifier g.

The architecture during the parsing phase is

shown in figure 3. The Parser takes as input a

list of input tokens τ . For each nondeterminis-

tic decision the Parser requests a prediction of

the next decision from the Guide and updates

the configuration according to di+1, which re-

sults in the next configuration ci+1. The Guide

acts as a middle layer between the Parser and

the Learner by extracting the parser state si =

Φ(ci, x) in the same way as in the learning phase

and passing di+1 from Learner to the Parser.

The Learner uses the induced classifier g to pre-

dict the decision di+1.

4 Implementation

The architecture described in section 3 has

been realized in the MaltParser system, which

can be applied to a labeled dependency tree-

bank in order to induce a labeled dependency

parser for the language represented by the

treebank.

The system takes as input a file in the Malt-

TAB format, there each token is represented

on one line, with attribute values being sepa-

rated by tabs and each sentence separated by a

blank line. Figure 4 shows an example of the

Malt-TAB format. During the learning phase

the parser requires all four columns, but dur-

ing parsing it only needs the first two columns,

i.e. the word form and the part-of-speech. The

output of the MaltParser system is a sequence

of labeled dependency graphs in the Malt-TAB

format or the Malt-XML format. The latter is an

XML version of the Malt-TAB format.

In the sections below, we describe the main

components in the architecture from the point

of view of how they are implemented in the

MaltParser system.

4.1 Parser

The user of MaltParser can choose between

several deterministic parsing algorithms, in-

cluding the algorithms described by Nivre

(2003; 2004) and the incremental parsing algo-

rithms described by Covington (2001).

Nivre’s algorithm is a linear-time algorithm

limited to projective dependency structures. It

can be run in arc-eager or arc-standard mode

(cf. (Nivre, 2004)).

Covington’s algorithm is a quadratic-time

algorithm for unrestricted dependency struc-

tures, which proceeds by trying to link each

new token to each preceding token. It can be

run in a projective mode, where the linking op-

eration is restricted to projective dependency

structures, or in a non-projective mode, al-

lowing non-projective (but acyclic) dependency

structures.

4.2 Guide

The MaltParser system comes with a formal

specification language for feature functions,

which enables the user to define arbitrar-

ily complex feature models in terms of ad-

dress functions, attribute functions and map-

ping functions (cf. section 3.2). Each fea-

ture model is defined in a feature specification

file, which allows users to define feature mod-

els without rebuilding the system. The feature

specification uses the syntax described in Fig-

ure 5. Each feature is specified on a single

line, consisting of at least two tab-separated

columns. Below follows a description of each

column:

1. Defines the feature type to be part-of-

speech (POS), dependency (DEP) or word

form (LEX), corresponding to the attribute

functions p, l and w in section 3.

2. Identifies one of the main data structures

in the parser configuration: STACK (corre-

sponding to σ), INPUT (corresponding to τ

or CONTEXT (corresponds to υ). The third

alternative, CONTEXT, is relevant only to-

gether with Covington’s algorithm in non-

projective mode.

3. Defines a list offset i which can only be pos-

itive and which identifies the i+1th token

in the list/stack specified in the second col-

umn (i.e. σ[i], τ [i] or υ[i]).

4. Defines a linear offset i, which can be

positive (forward/right) or negative (back-

ward/left) and which refers to (relative) to-

ken positions in the original input string.

5. Defines an offset i in terms of the function

h (head), which has to be non-negative and

Hall & Nivre: A generic architecture for data-driven dependency parsing 53

Proceedings of the 15th NODALIDA conference, Joensuu 2005 Ling@JoY 1, 2006

<fspec> ::= <feat>+

<feat> ::= <lfeat>|<nlfeat>

<lfeat> ::= LEX\t<dstruc>\t<off>\t<suff>\n

<nlfeat> ::= (POS|DEP)\t<dstruc>\t<off>\n

<dstruc> ::= (STACK|INPUT|CONTEXT)

<off> ::= <nnint>\t<int>\t<nnint>\t<int>\t<int>

<suff> ::= <nnint>

<int> ::= (...|-2|-1|0|1|2|...)

<nnint> ::= (0|1|2|...)

Figure 5: The syntax for defining a feature model in an external feature specification.

which specifies i applications of the h func-

tion to the token identified through preced-

ing offsets.

6. Defines an offset i in terms of the functions

lc (the leftmost child) or rc (the rightmost

child), which can be negative (|i| applica-

tions of lc), positive (i applications of rc),

or zero (no applications).

7. Defines an offset i in terms of the functions

ls (the next left sibling) or rs (the next right

sibling), which can be negative (|i| applica-

tions of ls), positive (i applications of rs),

or zero (no applications).

8. If the first column specifies the attribute

function w (LEX), the eighth column, de-

fines a mapping function which specifies a

suffix of length n of the word form w. By

convention, if n = 0, the entire word form

is included; otherwise only the n last char-

acters are included in the feature value.

As syntactic sugar, any feature definition can

be truncated if all remaining integer values are

zero. Let us consider an example:

POS INPUT

DEP STACK 0 0 1

LEX INPUT 1

The first feature is the part-of-speech of the to-

ken located first in the list τ of remaining in-

put tokens, i.e. p(τ [0]). The feature defined on

the second line is the dependency type of the

head of the token located at the top of the stack

σ (zero steps down the stack, zero steps for-

ward/backward in the input string, one step up

to the head), i.e. l(h(σ[0])). Finally, the third

feature is the word form of the token immedi-

ately after the next input token, i.e. w(τ [1]).

When the Guide extracts the features accord-

ing to the specification, it stores the feature val-

ues in a dedicated data structure. The Learner

later iterates through this data structure in a

linear fashion and outputs each feature in the

format by a specific machine learning package.

4.3 Learner

In the current implementation this component

is actually a set of interfaces to machine learn-

ing packages. The interfaces prepare the set of

training instances, provided by the Guide, for

the specific package and invoke the appropriate

functions to learn a model or predict a decision.

MaltParser comes with two different learning

algorithms: Memory-based learning and Sup-

port Vector Machines (SVMs), each with a wide

variety of parameters.

Memory-based learning and classification is

based on the assumption that a cognitive learn-

ing task to a high degree depends on direct ex-

perience and memory, rather than extraction of

an abstract representation. Solving new prob-

lems is achieved by reusing solutions from sim-

ilar previously solved problems (Daelemans et

al., 1999). During learning time, all training

instances are stored and at parsing time a vari-

ant of k-nearest neighbor classification is used

to predict the next action. MaltParser uses

the software package TiMBL (Tilburg Memory-

Based Learner) (Daelemans and Van den Bosch,

2005) to implement this learning algorithm,

and supports all the options provided by that

package.

Support Vector Machines (SVMs) was formu-

lated in the late seventies by Vapnik (1979), but

the main development as a machine learning

approach has taken place in the last decade.

SVMs have been used for many pattern recogni-

tion problems. In the field of natural language

Hall & Nivre: A generic architecture for data-driven dependency parsing 54

Proceedings of the 15th NODALIDA conference, Joensuu 2005 Ling@JoY 1, 2006

processing, SVMs have been used for exam-

ple for text categorization (Joachims, 1998) and

syntactic dependency parsing (Kudo and Mat-

sumoto, 2000). SVMs rely on kernel functions

to induce a maximum-margin hyperplane classi-

fier at learning time, which can be used to pre-

dict the next action at parsing time. MaltParser

uses the library LIBSVM (Wu et al., 2004) to

implement this algorithm with all the options

provided by this library.

5 Conclusion

We have presented a generic architecture for

data-driven dependency parsing that provides a

strict modularization of parsing algorithm, fea-

ture model and learning method. The main ad-

vantage of this design is that these three di-

mensions can be varied independently of each

other, but the design also enables the reuse of

components between the learning and the pars-

ing phase. The design has been implemented

in the MaltParser system, which is freely avail-

able for research and educational purposes,

and which supports several parsing algorithms

and learning methods, as well as a specification

language for feature models that lets the user

specify complex combinations of different types

of features.

References

E. Black, F. Jelinek, J. Lafferty, D. Magerman,
R. Mercer, and S Roukos. 1992. Towards
history-based grammars: Using richer mod-
els for probabilistic parsing. In Proceedings
of the 5th DARPA Speech and Natural Lan-
guage Workshop, pages 31–37.

Michael Collins, Jan Hajič, Lance Ramshaw,
and Christoph Tillmann. 1999. A statistical
parser for Czech. In Proceedings of the 37th
Annual Meeting of the Association for Com-
putational Linguistics, pages 505–512.

Michael Collins. 1999. Head-Driven Statistical
Models for Natural Language Parsing. Ph.D.
thesis, University of Pennsylvania.

Thomas H. Cormen, Charles E. Leiserson, and
Ronald L. Rivest. 1990. Introduction to Algo-
rithms. MIT Press.

Michael A. Covington. 2001. A fundamental al-
gorithm for dependency parsing. In Proceed-
ings of the 39th Annual ACM Southeast Con-
ference, pages 95–102.

Walter Daelemans and Antal Van den Bosch.
2005. Memory-Based Language Processing.
Cambridge University Press.

Walter Daelemans, Antal van den Bosch, and
Jakub Zavrel. 1999. Forgetting exceptions
is harmful in language learning. Machine
Learning, 34(1-3):11–41.

Jan Einarsson. 1976. Talbankens skriftspråk-
skonkordans. Lund University, Department
of Scandinavian Languages.

T. Joachims. 1998. Text categorization with
support vector machines. In Proceedings of
the 10th European Conference on Machine
Learning (ECML’98), pages 137–142.

Taku Kudo and Yuji Matsumoto. 2000.
Japanese Dependency Structure Analysis
Based on Support Vector Machines. In Em-
pirical Methods in Natural Language Pro-
cessing and Very Large Corpora, pages 18–
25.

D. M. Magerman. 1995. Statistical decision-
tree models for parsing. In Proceedings of
the 33rd Annual Meeting of the Association
for Computational Linguistics (ACL), pages
276–283.

Joakim Nivre, Johan Hall, and Jens Nilsson.
2004. Memory-based dependency parsing.
In Hwee Tou Ng and Ellen Riloff, editors, Pro-
ceedings of the 8th Conference on Computa-
tional Natural Language Learning (CoNLL),
pages 49–56.

Joakim Nivre. 2003. An efficient algorithm
for projective dependency parsing. In Gert-
jan van Noord, editor, Proceedings of the 8th
International Workshop on Parsing Technolo-
gies (IWPT), pages 149–160.

Joakim Nivre. 2004. Incrementality in de-
terministic dependency parsing. In Frank
Keller, Stephen Clark, Matthew Crocker, and
Mark Steedman, editors, Proceedings of the
Workshop in Incremental Parsing: Bringing
Engineering and Cognition Together (ACL),
pages 50–57.

Joakim Nivre. 2005. Inductive Dependency
Parsing of Natural Language Text. Ph.D. the-
sis, Växjö University.

Adwait Ratnaparkhi. 1997. A linear observed
time statistical parser based on maximum en-
tropy models. In Proceedings of the Second
Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1–10.

Hall & Nivre: A generic architecture for data-driven dependency parsing 55

Proceedings of the 15th NODALIDA conference, Joensuu 2005 Ling@JoY 1, 2006

Honglin Sun and Daniel Jurafsky. 2004. Shal-
low semantic parsing of Chinese. In Proceed-
ings of the Human Technology Conference
of the North American Chapter of the Asso-
ciation for Computational Linguistics (HLT-
NAACL), pages 249–256.

V. Vapnik. 1979. Estimation of dependences
based on empirical data. Technical report,
Nauka, Moscow.

T.-F. Wu, C.-J. Lin, and R. C. Weng. 2004. Prob-
ability estimates for multi-class classification
by pairwise coupling. Journal of Machine
Learning Research, 5:975–1005.

Hiroyasu Yamada and Yuji Matsumoto. 2003.
Statistical dependency analysis with support
vector machines. In Gertjan van Noord,
editor, Proceedings of the 8th International
Workshop on Parsing Technologies (IWPT),
pages 195–206.

Hall & Nivre: A generic architecture for data-driven dependency parsing 56

