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Abstract
This paper addresses two previously unresolved is-
sues in the automatic evaluation of Text Structuring
(TS) in Natural Language Generation (NLG). First,
we describe how to verify the generality of an exist-
ing collection of sentence orderings defined by one
domain expert using data provided by additional
experts. Second, a general evaluation methodol-
ogy is outlined which investigates the previously
unaddressed possibility that there may exist many
optimal solutions for TS in the employed domain.
This methodology is implemented in a set of ex-
periments which identify the most promising can-
didate for TS among several metrics of coherence
previously suggested in the literature.1

1 Introduction
Research in NLG focused on problems related to TS from
very early on, [McKeown, 1985] being a classic example.
Nowadays, TS continues to be an extremely fruitful field of
diverse active research. In this paper, we assume the so-
called search-based approach to TS [Karamanis et al., 2004]
which employs a metric of coherence to select a text struc-
ture among various alternatives. The TS module is hypothe-
sised to simply order a preselected set of information-bearing
items such as sentences [Barzilay et al., 2002; Lapata, 2003;
Barzilay and Lee, 2004] or database facts [Dimitromanolaki
and Androutsopoulos, 2003; Karamanis et al., 2004].

Empirical work on the evaluation of TS has become in-
creasingly automatic and corpus-based. As pointed out by
[Karamanis, 2003; Barzilay and Lee, 2004] inter alia, using
corpora for automatic evaluation is motivated by the fact that
employing human informants in extended psycholinguistic
experiments is often simply unfeasible. By contrast, large-
scale automatic corpus-based experimentation takes place
much more easily.

[Lapata, 2003] was the first to present an experimental set-
ting which employs the distance between two orderings to es-
timate automatically how close a sentence ordering produced

1Chapter 9 of [Karamanis, 2003] reports the study in more detail.

by her probabilistic TS model stands in comparison to order-
ings provided by several human judges.

[Dimitromanolaki and Androutsopoulos, 2003] derived
sets of facts from the database of MPIRO, an NLG system
that generates short descriptions of museum artefacts [Isard
et al., 2003]. Each set consists of 6 facts each of which cor-
responds to a sentence as shown in Figure 1. The facts in
each set were manually assigned an order to reflect what a
domain expert, i.e. an archaeologist trained in museum la-
belling, considered to be the most natural ordering of the
corresponding sentences. Patterns of ordering facts were au-
tomatically learned from the corpus created by the expert.
Then, a classification-based TS approach was implemented
and evaluated in comparison to the expert’s orderings.

Database fact Sentence
subclass(ex1, amph) → This exhibit is an amphora.
painted-by(ex1, p-Kleo) → This exhibit was decorated by

the Painter of Kleofrades.
painter-story(p-Kleo, en4049) → The Painter of Kleofrades

used to decorate big vases.
exhibit-depicts(ex1, en914) → This exhibit depicts a warrior performing

splachnoscopy before leaving for the battle.
current-location(ex1, wag-mus) → This exhibit is currently displayed

in the Martin von Wagner Museum.
museum-country(wag-mus, ger) → The Martin von Wagner Museum

is in Germany.

Figure 1: MPIRO database facts corresponding to sentences

A subset of the corpus created by the expert in the previous
study (to whom we will henceforth refer as E0) is employed
by [Karamanis et al., 2004] who attempt to distinguish be-
tween many metrics of coherence with respect to their use-
fulness for TS in the same domain. Each human ordering of
facts in the corpus is scored by each of these metrics which
are then penalised proportionally to the amount of alternative
orderings of the same material that are found to score equally
to or better than the human ordering. The few metrics which
manage to outperform two simple baselines in their overall
performance across the corpus emerge as the most suitable
candidates for TS in the investigated domain. This method-
ology is very similar to the way [Barzilay and Lee, 2004]
evaluate their probabilistic TS model in comparison to the
approach of [Lapata, 2003].

Because the data used in the studies of [Dimitromanolaki



and Androutsopoulos, 2003] and [Karamanis et al., 2004]
are based on the insights of just one expert, an obvious un-
resolved question is whether they reflect general strategies
for ordering facts in the domain of interest. This paper ad-
dresses this issue by enhancing the dataset used in the two
studies with orderings provided by three additional experts.
These orderings are then compared with the orders of E0 us-
ing the methodology of [Lapata, 2003]. Since E0 is found
to share a lot of common ground with two of her colleagues
in the ordering task, her reliability is verified, while a fourth
“stand-alone” expert who uses strategies not shared by any
other expert is identified as well.

As in [Lapata, 2003], the same dependent variable which
allows us to estimate how different the orders of E0 are from
the orders of her colleagues is used to evaluate some of the
metrics which perform best in [Karamanis et al., 2004]. As
explained in the next section, in this way we investigate the
previously unaddressed possibility that there may exist many
optimal solutions for TS in our domain. The results of this
additional evaluation experiment are presented and emphasis
is laid on their relation with the previous findings.

Overall, this paper addresses two general issues: a) how to
verify the generality of a dataset defined by one expert using
sentence orderings provided by other experts and b) how to
employ these data for the automatic evaluation of a TS ap-
proach. Given that the methodology discussed in this paper
does not rely on the employed metrics of coherence or the as-
sumed TS approach, our work can be of interest to any NLG
researcher facing these questions.

The next section discusses how the methodology imple-
mented in this study complements the methods of [Karamanis
et al., 2004]. After briefly introducing the employed metrics
of coherence, we describe the data collected for our exper-
iments. Then, we present the employed dependent variable
and formulate our predictions. In the results section, we state
which of these predictions were verified. The paper is con-
cluded with a discussion of the main findings.

2 An additional evaluation test
As [Barzilay et al., 2002] report, different humans often order
sentences in distinct ways. Thus, there might exist more than
one equally good solution for TS, a view shared by almost
all TS researchers, but which has not been accounted for in
the evaluation methodologies of [Karamanis et al., 2004] and
[Barzilay and Lee, 2004].2

Collecting sentence orderings defined by many experts in
our domain enables us to investigate the possibility that there
might exist many good solutions for TS. Then, the measure
of [Lapata, 2003], which estimates how close two orderings
stand, can be employed not only to verify the reliability of E0
but also to compare the orderings preferred by the assumed
TS approach with the orderings of the experts.

However, this evaluation methodology has its limitations
as well. Being engaged in other obligations, the experts nor-
mally have just a limited amount of time to devote to the

2A more detailed discussion of existing corpus-based methods
for evaluating TS appears in [Karamanis and Mellish, 2005].

NLG researcher. Similarly to standard psycholinguistic ex-
periments, consulting these informants is difficult to extend
to a larger corpus like the one used e.g. by [Karamanis et al.,
2004] (122 sets of facts).

In this paper, we reach a reasonable compromise by show-
ing how the methodology of [Lapata, 2003] supplements the
evaluation efforts of [Karamanis et al., 2004] using a similar
(yet by necessity smaller) dataset. Clearly, a metric of coher-
ence that has already done well in the previous study, gains
extra bonus by passing this additional test.

3 Metrics of coherence
[Karamanis, 2003] discusses how a few basic notions of co-
herence captured by Centering Theory (CT) can be used to
define a large range of metrics which might be useful for TS
in our domain of interest.3 The metrics employed in the ex-
periments of [Karamanis et al., 2004] include:

M.NOCB which penalises NOCBs, i.e. pairs of adjacent
facts without any arguments in common [Karamanis and
Manurung, 2002]. Because of its simplicity M.NOCB
serves as the first baseline in the experiments of [Kara-
manis et al., 2004].

PF.NOCB, a second baseline, which enhances M.NOCB
with a global constraint on coherence that [Karamanis,
2003] calls the PageFocus (PF).

PF.BFP which is based on PF as well as the original for-
mulation of CT in [Brennan et al., 1987].

PF.KP which makes use of PF as well as the recent re-
formulation of CT in [Kibble and Power, 2000].

[Karamanis et al., 2004] report that PF.NOCB outper-
formed M.NOCB but was overtaken by PF.BFP and PF.KP.
The two metrics beating PF.NOCB were not found to differ
significantly from each other.

This study employs PF.BFP and PF.KP, i.e. two of the best
performing metrics of the experiments in [Karamanis et al.,
2004], as well as M.NOCB and PF.NOCB, the two previously
used baselines. An additional random baseline is also defined
following [Lapata, 2003].

4 Data collection
16 sets of facts were randomly selected from the corpus of
[Dimitromanolaki and Androutsopoulos, 2003].4 The sen-
tences that each fact corresponds to and the order defined by
E0 was made available to us as well. We will subsequently
refer to an unordered set of facts (or sentences that the facts
correspond to) as a Testitem.

4.1 Generating the BestOrders for each metric
Following [Karamanis et al., 2004], we envisage a TS ap-
proach in which a metric of coherence M assigns a score to

3Since discussing the metrics in detail is well beyond the scope
of this paper, the reader is referred to Chapter 3 of [Karamanis, 2003]
for more information on this issue.

4These are distinct from, yet very similar to, the sets of facts used
in [Karamanis et al., 2004].



each possible ordering of the input set of facts and selects the
best scoring ordering as the output. When many orderings
score best, M chooses randomly between them. Crucially, our
hypothetical TS component only considers orderings starting
with the subclass fact (e.g. subclass(ex1, amph)
in Figure 1) following the suggestion of [Dimitromanolaki
and Androutsopoulos, 2003]. This gives rise to 5! = 120
orderings to be scored by M for each Testitem.

For the purposes of this experiment, a simple algorithm
was implemented that first produces the 120 possible order-
ings of facts in a Testitem and subsequently ranks them ac-
cording to the scores given by M. The algorithm outputs the
set of BestOrders for the Testitem, i.e. the orderings which
score best according to M. This procedure was repeated for
each metric and all Testitems employed in the experiment.

4.2 Random baseline
Following [Lapata, 2003], a random baseline (RB) was im-
plemented as the lower bound of the analysis. The random
baseline consists of 10 randomly selected orderings for each
Testitem. The orderings are selected irrespective of their
scores for the various metrics.

4.3 Consulting domain experts
Three archaeologists (E1, E2, E3), one male and two females,
between 28 and 45 years of age, all trained in cataloguing
and museum labelling, were recruited from the Department
of Classics at the University of Edinburgh.

Each expert was consulted by the first author in a separate
interview. First, she was presented with a set of six sentences,
each of which corresponded to a database fact and was printed
on a different filecard, as well as with written instructions de-
scribing the ordering task.5 The instructions mention that the
sentences come from a computer program that generates de-
scriptions of artefacts in a virtual museum. The first sentence
for each set was given by the experimenter.6 Then, the expert
was asked to order the remaining five sentences in a coherent
text.

When ordering the sentences, the expert was instructed to
consider which ones should be together and which should
come before another in the text without using hints other than
the sentences themselves. She could revise her ordering at
any time by moving the sentences around. When she was sat-
isfied with the ordering she produced, she was asked to write
next to each sentence its position, and give them to the ex-
perimenter in order to perform the same task with the next
randomly selected set of sentences. The expert was encour-
aged to comment on the difficulty of the task, the strategies
she followed, etc.

5 Dependent variable
Given an unordered set of sentences and two possible order-
ings, a number of measures can be employed to calculate the

5The instructions are given in Appendix D of [Karamanis, 2003]
and are adapted from the ones used in [Barzilay et al., 2002].

6This is the sentence corresponding to the subclass fact.

distance between them. Based on the argumentation in [How-
ell, 2002], [Lapata, 2003] selects Kendall’s τ as the most ap-
propriate measure and this was what we used for our analysis
as well. Kendall’s τ is based on the number of inversions
between the two orderings and is calculated as follows:

(1) τ = 1− 2I
PN

= 1− 2I
N(N−1)/2

PN stands for the number of pairs of sentences and N is the
number of sentences to be ordered.7 I stands for the number
of inversions, that is, the number of adjacent transpositions
necessary to bring one ordering to another. Kendall’s τ ranges
from−1 (inverse ranks) to 1 (identical ranks). The higher the
τ value, the smaller the distance between the two orderings.

Following [Lapata, 2003], the Tukey test is employed to in-
vestigate significant differences between average τ scores.8
First, the average distance between (the orderings of)9 two
experts e.g. E0 and E1, denoted as T (E0E1), is calculated as
the mean τ value between the ordering of E0 and the order-
ing of E1 taken across all 16 Testitems. Then, we compute
T (EXPEXP ) which expresses the overall average distance
between all expert pairs and serves as the upper bound for the
evaluation of the metrics. Since a total of E experts gives rise
to PE = E(E−1)

2 expert pairs, T (EXPEXP ), is computed
by summing up the average distances between all expert pairs
and dividing the sum by PE .

While [Lapata, 2003] always appears to single out a unique
best scoring ordering, we often have to deal with many best
scoring orderings. To account for this, we first compute the
average distance between e.g. the ordering of an expert E0
and the BestOrders of a metric M for a given Testitem. In
this way, M is rewarded for a BestOrder that is close to the
expert’s ordering, but penalised for every BestOrder that is
not. Then, the average T (E0M ) between the expert E0 and
the metric M is calculated as their mean distance across all
16 Testitems. Finally, yet most importantly, T (EXPM ) is the
average distance between all experts and M. It is calculated by
summing up the average distances between each expert and M
and dividing the sum by the number of experts. As the next
section explains in more detail, T (EXPM ) is compared with
the upper bound of the evaluation T (EXPEXP ) to estimate
the performance of M in our experiments.

RB is evaluated in a similar way as M using the 10 ran-
domly selected orderings instead of the BestOrders for each
Testitem. T (EXPRB) is the average distance between all ex-
perts and RB and is used as the lower bound of the evaluation.

7In our data, N is always equal to 6.
8Provided that an omnibus ANOVA is significant, the Tukey test

can be used to specify which of the conditions c1, ..., cn measured
by the dependent variable differ significantly. It uses the set of means
m1, ..., mn (corresponding to conditions c1, ..., cn) and the mean
square error of the scores that contribute to these means to calculate
a critical difference between any two means. An observed differ-
ence between any two means is significant if it exceeds the critical
difference.

9Throughout the paper we often refer to e.g. “the distance be-
tween the orderings of the experts” with the phrase “the distance
between the experts” for the sake of brevity.



E0E1: ** ** **
0.692 E0E2: ** ** **

0.717 E1E2: ** ** **
0.758 E0E3:

CD at 0.01: 0.338 0.258 E1E3:
CD at 0.05: 0.282 0.300 E2E3:
F(5,75)=14.931, p<0.000 0.192

Table 1: Comparison of distances between the expert pairs

6 Predictions
Despite any potential differences between the experts, one ex-
pects them to share some common ground in the way they or-
der sentences. In this sense, a particularly welcome result for
our purposes is to show that the average distances between
E0 and most of her colleagues are short and not significantly
different from the distances between the other expert pairs,
which in turn indicates that she is not a “stand-alone” expert.

Moreover, we expect the average distance between the ex-
pert pairs to be significantly smaller than the average distance
between the experts and RB. This is again based on the as-
sumption that even though the experts might not follow com-
pletely identical strategies, they do not operate with absolute
diversity either. Hence, we predict that T (EXPEXP ) will be
significantly greater than T (EXPRB).

Due to the small number of Testitems employed in this
study, it is likely that the metrics do not differ significantly
from each other with respect to their average distance from
the experts. Rather than comparing the metrics directly with
each other (as [Karamanis et al., 2004] do), this study com-
pares them indirectly by examining their behaviour with re-
spect to the upper and the lower bound. For instance, al-
though T (EXPPF.KP ) and T (EXPPF.BFP ) might not be
significantly different from each other, one score could be sig-
nificantly different from T (EXPEXP ) (upper bound) and/or
T (EXPRB) (lower bound) while the other is not.

We identify the best metrics in this study as the ones whose
average distance from the experts (i) is significantly greater
from the lower bound and (ii) does not differ significantly
from the upper bound.10

7 Results
7.1 Distances between the expert pairs
On the first step in our analysis, we computed the T score
for each expert pair, namely T (E0E1), T (E0E2), T (E0E3),
T (E1E2), T (E1E3) and T (E2E3). Then we performed all
15 pairwise comparisons between them using the Tukey test,
the results of which are summarised in Table 1.11

The cells in the Table report the level of significance re-
turned by the Tukey test when the difference between two

10Criterion (ii) can only be applied provided that the average dis-
tance between the experts and at least one metric Mx is found to
be significantly lower than T (EXPEXP ). Then, if the average dis-
tance between the experts and another metric My does not differ
significantly from T (EXPEXP ), My performs better than Mx.

11The Table also reports the result of the omnibus ANOVA, which
is significant: F(5,75)=14.931, p<0.000.

E0E1: ** ** **
0.692 E0E2: ** ** **

0.717 E1E2: ** ** **
0.758 E0RB :

CD at 0.01: 0.242 0.323 E1RB :
CD at 0.05: 0.202 0.347 E2RB :
F(5,75)=18.762, p<0.000 0.352

E0E3:
0.258 E1E3:

0.300 E2E3:
CD at 0.01: 0.219 0.192 E3RB :
CD at 0.05: 0.177 0.302
F(3,45)=1.223, p=0.312

Table 2: Comparison of distances between the experts (E0,
E1, E2, E3) and the random baseline (RB)

distances exceeds the critical difference (CD). Significance
beyond the 0.05 threshold is reported with one asterisk (*),
while significance beyond the 0.01 threshold is reported with
two asterisks (**). A cell remains empty when the difference
between two distances does not exceed the critical difference.
For example, the value of T (E0E1) is 0.692 and the value of
T (E0E3) is 0.258. Since their difference exceeds the CD at
the 0.01 threshold, it is reported to be significant beyond that
level by the Tukey test, as shown in the top cell of the third
column in Table 1.

As the Table shows, the T scores for the distance between
E0 and E1 or E2, i.e. T (E0E1) and T (E0E2), as well as the
T for the distance between E1 and E2, i.e. T (E1E2), are quite
high which indicates that on average the orderings of the three
experts are quite close to each other. Moreover, these T scores
are not significantly different from each other which suggests
that E0, E1 and E2 share quite a lot of common ground in
the ordering task. Hence, E0 is found to give rise to similar
orderings to the ones of E1 and E2.

However, when any of the previous distances is compared
with a distance that involves the orderings of E3 the differ-
ence is significant, as shown by the cells containing two as-
terisks in Table 1. In other words, although the orderings of
E1 and E2 seem to deviate from each other and the orderings
of E0 to more or less the same extent, the orderings of E3
stand much further away from all of them. Hence, there ex-
ists a “stand-alone” expert among the ones consulted in our
studies, yet this is not E0 but E3.

This finding can be easily explained by the fact that by con-
trast to the other three experts, E3 followed a very schematic
way for ordering sentences. Because the orderings of E3
manifest rather peculiar strategies, at least compared to the or-
derings of E0, E1 and E2, the upper bound of the analysis, i.e.
the average distance between the expert pairs T (EXPEXP ),
is computed without taking into account these orderings:

(2) T (EXPEXP ) = 0.722 = T (E0E1)+T (E0E2)+T (E1E2)
3

7.2 Distances between the experts and RB
As the upper part of Table 2 shows, the T score between any
two experts other than E3 is significantly greater than their
distance from RB beyond the 0.01 threshold. Only the dis-



tances between E3 and another expert, shown in the lower
section of Table 2, are not significantly different from the dis-
tance between E3 and RB.

Although this result does not mean that the orders of E3
are similar to the orders of RB,12 it shows that E3 is roughly
as far away from e.g. E0 as she is from RB. By contrast,
E0 stands significantly closer to E1 than to RB, and the same
holds for the other distances in the upper part of the Table.
In accordance with the discussion in the previous section, the
lower bound, i.e. the overall average distance between the
experts (excluding E3) and RB T (EXPRB), is computed as
shown in (3):

(3) T (EXPRB) = 0.341 = T (E0RB)+T (E1RB)+T (E2RB)
3

7.3 Distances between the experts and each metric
So far, E3 was identified as an “stand-alone” expert standing
further away from the other three experts than they stand from
each other. We also identified the distance between E3 and
each expert as similar to her distance from RB.

Similarly, E3 was found to stand further away from the
metrics compared to their distance from the other three ex-
perts.13 This result, gives rise to the set of formulas in (4) for
calculating the overall average distance between the experts
(excluding E3) and each metric.
(4) (4.1): T (EXPPF.BFP ) = 0.629 =

T (E0P F.BF P )+T (E1P F.BF P )+T (E2P F.BF P )
3

(4.2): T (EXPPF.KP ) = 0.571 =

T (E0P F.KP )+T (E1P F.KP )+T (E2P F.KP )
3

(4.3): T (EXPPF.NOCB) = 0.606 =

T (E0P F.NOCB)+T (E1P F.NOCB)+T (E2P F.NOCB)
3

(4.4): T (EXPM.NOCB) = 0.487 =

T (E0M.NOCB)+T (E1M.NOCB)+T (E2M.NOCB)
3

In the next section, we present the concluding analysis for
this study which compares the overall distances in formu-
las (2), (3) and (4) with each other. As we have already
mentioned, T (EXPEXP ) serves as the upper bound of the
analysis whereas T (EXPRB) is the lower bound. The aim
is to specify which scores in (4) are significantly greater than
T (EXPRB), but not significantly lower than T (EXPEXP ).

7.4 Concluding analysis
The results of the comparisons of the scores in (2), (3) and (4)
are shown in Table 3. As the top cell in the last column of
the Table shows, the T score between the experts and RB,
T (EXPRB), is significantly lower than the average distance
between the expert pairs, T (EXPEXP ) at the 0.01 level.

12This could have been argued, if the value of T (E3RB) had been
much closer to 1.

13Due to space restrictions, we cannot report the scores for these
comparisons here. The reader is referred to Table 9.4 on page 175
of Chapter 9 in [Karamanis, 2003].

This result verifies one of our main predictions showing that
the orderings of the experts (modulo E3) stand much closer
to each other compared to their distance from randomly as-
sembled orderings.

As expected, most of the scores that involve the met-
rics are not significantly different from each other, ex-
cept for T (EXPPF.BFP ) which is significantly greater than
T (EXPM.NOCB) at the 0.05 level. Yet, what we are mainly
interested in is how the distance between the experts and each
metric compares with T (EXPEXP ) and T (EXPRB). This
is shown in the first row and the last column of Table 3.

Crucially, T (EXPRB) is significantly lower than
T (EXPPF.BFP ) as well as T (EXPPF.NOCB) and
T (EXPPF.KP ) at the 0.01 level. Notably, even the dis-
tance of the experts from M.NOCB, T (EXPM.NOCB), is
significantly greater than T (EXPRB), albeit at the 0.05
level. These results show that the distance from the experts is
significantly reduced when using the best scoring orderings
of any metric, even M.NOCB, instead of the orderings of
RB. Hence, all metrics score significantly better than RB in
this experiment.

However, simply using M.NOCB to output the best
scoring orders is not enough to yield a distance from
the experts which is comparable to T (EXPEXP ). Al-
though the PF constraint appears to help towards this di-
rection, T (EXPPF.KP ) remains significantly lower than
T (EXPEXP ), whereas T (EXPPF.NOCB) falls only 0.009
points short of CD at the 0.05 threshold. Hence, PF.BFP
is the most robust metric, as the difference between
T (EXPPF.BFP ) and T (EXPEXP ) is clearly not signifi-
cant.

Finally, the difference between T (EXPPF.NOCB) and
T (EXPM.NOCB) is only 0.006 points away from the CD.
This result shows that the distance from the experts is reduced
to a great extent when the best scoring orderings are com-
puted according to PF.NOCB instead of simply M.NOCB.
Hence, this experiment provides additional evidence in favour
of enhancing M.NOCB with the PF constraint of coherence,
as suggested in [Karamanis, 2003].

8 Discussion
A question not addressed by previous studies making use of
a certain collection of orderings of facts is whether the strate-
gies reflected there are specific to E0, the expert who created
the dataset. In this paper, we address this question by enhanc-
ing E0’s dataset with orderings provided by three additional
experts. Then, the distance between E0 and her colleagues
is computed and compared to the distance between the other
expert pairs. The results indicate that E0 shares a lot of com-
mon ground with two of her colleagues in the ordering task
deviating from them as much as they deviate from each other,
while the orderings of a fourth “stand-alone” expert are found
to manifest rather individualistic strategies.

The same variable used to investigate the distance between
the experts is employed to automatically evaluate the best
scoring orderings of some of the best performing metrics in
[Karamanis et al., 2004]. Despite its limitations due to the
necessarily restricted size of the employed dataset, this eval-



EXPEXP : ** ** **
0.722 EXPPF.BFP : * **

0.629 EXPPF.NOCB : **
0.606 EXPPF.KP : **

CD at 0.01: 0.150 0.571 EXPM.NOCB : *
CD at 0.05: 0.125 0.487 EXPRB :
F(5,75)=19.111, p<0.000 0.341

Table 3: Results of the concluding analysis comparing the distance between the expert pairs (EXPEXP ) with the distance
between the experts and each metric (PF.BFP, PF.NOCB, PF.KP, M.NOCB) and the random baseline (RB)

uation task allows us to explore the previously unaddressed
possibility that there exist many good solutions for TS in the
employed domain.

Out of a much larger set of possibilities, 10 metrics were
evaluated in [Karamanis et al., 2004], only a handful of which
were found to overtake two simple baselines. The additional
test in this study carries on the elimination process by point-
ing out PF.BFP as the single most promising metric to be used
for TS in the explored domain, since this is the metric that
manages to clearly survive both tests.

Equally crucially, our analysis shows that all employed
metrics are superior to a random baseline. Additional evi-
dence in favour of the PF constraint on coherence introduced
in [Karamanis, 2003] is provided as well. The general evalu-
ation methodology as well as the specific results of this study
will be useful for any subsequent attempt to automatically
evaluate a TS approach using a corpus of sentence orderings
defined by many experts.

As [Reiter and Sripada, 2002] suggest, the best way to treat
the results of a corpus-based study is as hypotheses which
eventually need to be integrated with other types of evalua-
tion. Although we followed the ongoing argumentation that
using perceptual experiments to choose between many possi-
ble metrics is unfeasible, our efforts have resulted into a sin-
gle preferred candidate which is much easier to evaluate with
the help of psycholinguistic techniques (instead of having to
deal with a large number of metrics from very early on). This
is indeed our main direction for future work in this domain.
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