
Real-Time Stochastic Language Generation for Dialogue Systems

Nathanael Chambers
Florida Institute for Human and Machine Cognition

40 South Alcaniz Street
Pensacola, FL 32502
nchambers@ihmc.us

Abstract

This paper describes Acorn, a sentence planner and
surface realizer for dialogue systems. Improve-
ments to previous stochastic word-forest based ap-
proaches are described, countering recent criticism
of this class of algorithms for their slow speed.
An evaluation of the approach with semantic in-
put shows runtimes of a fraction of a second and
presents results that suggest it is also portable
across domains.

1 Introduction
This paper describes Acorn, a real-time sentence planner and
surface realizer for dialogue systems that is independent of
a specific domain. Acorn is based on a two-phased gram-
mar and stochastic approach, such as the HALogen system
[Langkilde-Geary, 2002], but offers several improvements to
make it more realistic for dialogue use. The first is to offer
an algorithm fortrickle-down featuresthat passes head/foot
features through the grammar as the initial word forest is cre-
ated, allowing the grammar to broadly represent phenomena
such as wh-movement. The second is to more tightly link the
grammar to a lexicon and represent syntactic properties such
as number, person, and tense to constrain the over-generation
process. Lastly, efficiency improvements are described which
further decrease the runtime of the system, allowing Acorn to
be used in a real-time dialogue context. It is named Acorn,
based on the wordforeststhat are created and searched.

The task of Natural Language Generation is frequently
split into three somewhat disjoint steps: document planning,
microplanning (reference and sentence planning) and surface
realization. Document planning is a more reduced task in di-
alogue, mainly involvingcontent determinationsince there is
no need for a document. Since the system follows a notion
of discourse, content determination is typically performed by
some reasoner external to generation, such as a Task Man-
ager. This paper addresses the sentence planning and sur-
face realization steps, assuming that content determination
and referential generation has already occurred and is rep-
resented in a high-level semantics.

This stochastic approach involves two phases; the first uses
a grammar to over-generate the possible realizations of an

input form into a word forest, and the second uses a lan-
guage model to choose the preferred path through the forest.
This approach is attractive to dialogue systems because it of-
fers flexibility and adaptivity that cannot be achieved through
most symbolic systems. By over-generating possible utter-
ances, the (sometimes dynamic) language models can decide
which is more natural in the current context. Other advan-
tages include domain independence and an under-specified
input. The main disadvantages most often cited include a
very slow runtime and the inability to capture complex lin-
guistic constraints, such as wh-movement. The latter is a side
effect of the word-forest creation algorithm and a solution to
broaden the coverage of language is presented in this paper.
The issue of runtime is critical to dialogue.

Slow runtime is a two-fold problem: the word-forest that
is generated is extremely large and often not linguistically
constrained, and second, the algorithm has not been effi-
ciently implemented. These issues must be addressed be-
fore stochastic approaches can be suited for dialogue. Langk-
ilde [Langkilde, 2000] provides an evaluation of coverage of
HALogen and shows runtimes around 28 seconds for sen-
tences with average lengths of 22 words. Callaway[Call-
away, 2003] later commented on the runtime thatHALogen is
anywhere from 6.5 to 16 times slowerthan the symbolic real-
izer FUF/SURGE (which may also be too slow for dialogue).
This paper shows that more work can be done in stochastic
generation to reduce the runtime by constraining the gram-
mar and making simple algorithm improvements. Runtimes
of only a fraction of one second are presented.

The next section provides a brief background on stochas-
tic generation, followed by a description of Acorn in section
3. The description presents several new grammar additions to
broaden language coverage, including a mechanism, called
trickle-down features, for representing head and foot features
in the grammar. Section 4 describes the evaluation of Acorn,
as well as the results concerning domain independence and
the overall runtime. A brief discussion and related work fol-
lows the evaluation.

2 Background
The task of Content Determination is typically relegated to a
module outside of the Generation component, such as with
a Task Manager or other reasoning components. This leaves
the tasks of Sentence Planning and Surface Realization as the

main steps in dialogue generation, and this paper is describing
a module that performs both. The task of referential genera-
tion is not addressed, and it is assumed that each logical input
is a single utterance, thus removing the need for multiple sen-
tence generation.

Traditionally, surface realization has been performed
through templates or more complex syntactic grammars, such
as the FUF/SURGE system[Elhadad and Robin, 1996].
Template-based approaches produce inflexible output that
must be changed in every new domain to which the system is
ported. Symbolic approaches produce linguistically correct
utterances, but require a syntactic input and typically have
runtimes that are impractical for dialogue. Requiring word
choice to be finished beforehand, including most syntactic de-
cisions, puts a heavy burden on dialogue system designers.

Stochastic approaches have recently provided a new
method of reducing the need for syntactic input and produce
flexible generation in dialogue. HALogen[Langkilde-Geary,
2002] was one of the first stochastic generation systems, pro-
viding a two-phased approach that allowed the system de-
signer to use an under-specified input. The first phase uses
a hand written grammar that over-generates possible word
orderings into a word forest. The second phase uses an n-
gram language model to choose the highest probability path
through the forest, returning this path as the generated sen-
tence. This approach was first used in a dialogue system in
[Chambers and Allen, 2004] as an attempt to create a domain
independent surface realizer. A human evaluation showed a
slight decline in naturalness when moved to a new domain.
The stochastic approach was shown in[Langkilde, 2000] to
produce good coverage of the Penn Treebank, but its runtime
was significantly slow and others have suggested the stochas-
tic approach is not feasible for dialogue.

3 Acorn: System Description
3.1 Input Form
The input to Acorn is a semantic feature-value form rooted on
thetypeof speech act. On the top level, the :speechact feature
gives the type (i.e. satell, sayn-question, saaccept, etc.),
the :terms feature gives the list of semantic, content bear-
ing terms, and the :root feature gives the variable of the root
term in the utterance. Other features are allowed and often
required, such as a :focus for wh-questions. Each term in the
:terms list is a feature-value structure based on thematic roles,
as used in many other representations (e.g. Verbnet[Kipper
et al., 2000]). This utterance input is a syntactically modified
version of the domain independent Logical Form described in
[Dzikovskaet al., 2003].

Each term is specified by the features::indicator, :class,
optional :lex, and any other relevant thematic roles (e.g.
:agent, :theme, etc.). The:indicator indicates the type or
function of the term and takes the values THE, A, F, PRO, and
QUANTITY-TERM. THE represents a grounded object in the
discourse, A represents an abstract object, F is a functional
operator, PRO is used for references, and QUANTITY-TERM
represents quantities expressed in various scales. There are
other indicators, but the details are beyond the scope of this
paper. The:classspecifies the semantic class of the term, and

<UTTERANCE> ::=
(utt :speechact <act> :root <variable>

<FEATURE-VALUE>*
:terms (<TERM> *))

<TERM> ::=
(<variable> :indicator <indicator>

:class <class> <FEATURE-VALUE> *)

<FEATURE-VALUE> ::=
<keyword> <value>

Figure 1: BNF for the input to Acorn. A keyword is a symbol
preceded by a colon, and a value is any valid symbol, variable,
or list.

(utt :speechact satell :root v8069 :terms
((v8324 :indicator speechact :class satell :content v8069)
(v8069 :indicator f :class want :lex want :theme v8173

:experiencer v7970 :tense present)
(v7970 :indicator pro :class person :lex i :context-rel i)
(v8173 :indicator a :class computer :lex computer

:assoc-with v8161)
(v8161 :indicator quantity-term :class speed-unit

:lex gigahertz :quantity v8225)
(v8225 :indicator quantity-term :class number :value 2.4)))

Figure 2: Input to Acorn for the utterance, ’I want a 2.4 ghz
computer.’ This input provides the lexical items for the utter-
ance, but these are typically absent in most cases.

the:lex is the root lexical item for the term. Lex is an optional
feature and is created from the:classif it is not present in the
input. Figure 1 gives the specification of the input, and fig-
ure 2 shows an example input to Acorn for the utterance,’I
want a 2.4 gigahertz computer’. Appendix A provides further
examples of both semantic and lexical inputs.

3.2 Grammar Rules
The grammar rules in Acorn convert the input utterance into
word orderings by matching keywords (features) in each
term. A unique aspect of Acorn is that the utterance level
features can also be matched at any time. It is often neces-
sary to write a rule based on the current speech act type. The
left-hand side (LHS) of a rule showing both options is given
here:

(grule focus
(:subject ?s)
:g (:speechact ?act sa_tell)

>>
...)

Each rule matches keywords in its LHS to the currentterm
and binds the values of the keywords in theterm to the vari-
ables in the LHS. In the above example, the variable?swould
be bound to the subject of the term, and the variable?act is
bound to the top-level :speechact value. A LHS element that
is preceded by the:g symbol indicates a top-level (global)

feature. In this example, the value satell is also specified as
a requirement before the rule can match.

When matched, the right-hand side (RHS) offers several
different options of processing. As in HALogen, the recast-
ing (changing a keyword to a new keyword, such as convert-
ing a semantic role into a syntactic one), substitution (remov-
ing a keyword and its value, or just changing its value), and
ordering rules (specifying phrasal and word-level ordering in
the word forest) are supported. Two additional rules are sup-
ported in Acorn that are able to handle wh-movement and
other head features. The first is calledempty-creationand its
complement isfilling. In order to effectively use these rules,
a method of passing head and/or foot features is needed. The
following describes trickle-down features, followed by a de-
scription of the empty-creation and filling rules.

Trickle-Down Features
A drawback of the grammar phase is that all features in the
terms must be explicitly coded in the rules, otherwise they are
discarded when ordering rules are applied. Using a simple
example of subject-object placement, the followingordering
rule places the subject in front of the verb, and the object
behind.

(grule subject
(:subject ?s)
(:object ?o)

>>
(-> (?s) (?rest) (?o)))

Three new branches are created in the forest, one each for
(?s), (?rest), and (?o). This rule creates a branch in the word
forest that is a conjunct of three non-terminal nodes:

N3 -> N4 N5 N6

Processing of the (?s) and (?o) branches is restarted at the top
of the grammar, but they do not contain any features (the ?rest
variable is a catch-all variable that represents all features not
matched in the LHS). Indeed, it is possible to write rules with
a list of optional features, and include them in the RHS:

(grule subject
(:subject ?s)
(:object ?o)

&keep &optional
(:gap ?g)

>>
(-> (?s :gap ?g) (?rest) (?o :gap ?g)))

However, this quickly leads to bloated rules and can slow
the matching procedure considerably. It is very intuitive to
keep features like head and foot features hidden from the
grammar writer as much as possible. This is accomplished
through what we are callingtrickle-down features. The syn-
tax for these special case features includes an asterisk before
the name, as in:*gap. The result of using these features is to
get the effect of the latter rule with the ease of use in the for-
mer rule. It essentially trickles down the features until their
appropriate place in the input utterance is found. Figure 3
shows the feature ’searching’ for its correct path. One use of
this is shown in the following examples of theempty-creation
andfilling rules.

G4

*gap G4

*gap G4
*gap G4

*gap G4

"now""did" "buy""they" "what"

*gap G4
*gap G4

*gap G4

1

2

3 4 5 6 8

7

Figure 3: A graphical representation of trickle down features.
The gap head feature can be seen percolating to each node,
finding its true path (1->2->6) to the wh-termwhat, and link-
ing the filler with the gap (6->G4).

Empty-Creation
When building the word forest, we often need to create a
gap node that will be filled later by movement phenomena,
such as in wh-questions. The content of the node may not
be known, but throughempty-creation, we can instantiate a
variable and link it to the current location in the word forest.
This variable can then be attached to a specialtrickle-down
featurewhich is implicitly passed through the grammar. The
following is an example of an empty-creation rule:

(grule wh-question
(:root ?r +) ;; root term
:g (:speechact ?s sa_wh-question)
((gentemp "?GAP") ?wh-gap)

>>
(g-> ?wh-gap)
(-> ?wh-gap (?rest : * gap ?wh-gap)))

The first half of the RHS (the g-> rule) creates a global
variable and binds a new word forest node label to it. This
label is then used in the second half of the RHS where the
node is inserted into the word forest, and as of now, is empty.
The variable is then passed as a trickle-down feature :*gap to
the current term using the ?rest catch-all variable. This rule
is applied to node 1 in figure 3, creating gap node G4 and the
?rest node 2, passing the :*gap through the forest.

Filling
Filling rules perform the wh-movement needed in wh-
questions and many complement structures. Filling in the
context of Acorn can be seen as binding a gap variable that
has already been created through an empty-creation rule. The
following is an example filling rule that completes the above
wh-gap example.

(grule gap-fill
(:indicator ?i wh-term)
(: * gap ?gap)

>>
(b-> ?gap (?rest)))

This rule checks that the current term is awh-termthat has
a gap head feature. The RHS (the b-> rule) binds the current
term to the gap that has already been created, filling the empty
node in the word forest. The Filling rule essentially grafts a
branch onto a location in the word forest that has previously
been created by an Empty-Creation rule. The dotted line in
figure 3 is created by such a Filling rule.

3.3 Grammar Over-Generation
One of the main attractions of the two-phased approach is
that the grammar in the first phase can be left linguistically
unconstrained and over-generates many possibilities for an
input utterance. However, the statistical second phase may
then be over-burdened with the task of searching it. The con-
verse problem arises when the first stage is too constrained
and does not produce enough realizations to be natural and
flexible, perhaps removing the need for a stochastic phase en-
tirely. There needs to be a balance between the two stages.
The processing time is also critical in that over-generation
can take too much time to be useful for dialogue.

The grammar used in HALogen largely relied on the over-
generation first phase to ensure full coverage of the output.
It also reduced the number of rules in the grammar. Subject-
verb agreement was loosely enforced, particularly with sub-
ject number. Also, singular and plural nouns were both gener-
ated when the input was unspecified, doubling the size of the
noun phrase possibilities. One of the biggest over-generations
was in morphology. HALogen has its own morphology gen-
erator that relies on over-generating algorithms rather than
a lexicon to morph words. The typical word forest then
contains many unknown words that are ignored during the
stochastic search, but which explode the size of the word for-
est. Lastly, modifiers are over-generated to appear both in
front of and behind the head words.

Our approach removes the above over-generation and links
a lexicon to the grammar for morphology. Subject-verb
agreement is enforced where possible without dramatically
increasing the grammar size, nouns are only made plural
when the input specifies so (under the assumption that the
input would contain such semantically critical information),
and modifiers are placed in specific locations on certain
phrases (i.e. adjectives are always premodifiers for nouns,
complements of infinitive verbs are postmodifiers, etc.).

These changes greatly reduce the runtime of the first phase
and directly affect the runtime of the second phase by creating
smaller word forests.

3.4 Algorithm
Forest Creation
Word forest creation begins with the input utterance, such as
the one in figure 2. The top level utterance features are stored
in a global feature list, easily accessed by the grammar rules
if need be. The:root feature points to the root semantic term
given in the list of:terms. This root term is then processed,
beginning at the top of the grammar.

The grammar is pre-processed and each rule is indexed in
a hash table of features according to the least popular feature
in the rule. For example, if a rule has two features,:theme
and :agent, and:agentonly appears in 8 rules while:theme

(v87 :indicator f :class purchase
 :subject v91 :object v93)

(v91 ... :position subject) (v87 :indicator f :class purchase) (v93 ... :position object)

"she" "bought" "computer""a"

Figure 4: A word forest created from the Acorn grammar.

appears in 14, the rule will be added to the list of rules in
the :agent bin. During processing of an input term, all of
the term’s features are extracted and the rules under each fea-
ture in the hash table are merged into an ordered subset of
the full grammar. This process differs from HALogen and
its successors by vastly limiting the number of rules that are
checked against each input. Instead of checking 250 rules, we
may only check the relevant 20 rules. After a grammar rule
matches, the index is queried again with the new term(s) from
the RHS of the rule. A new subset of the grammar is created
and used to continue processing through the grammar.

RHS expansions create (1) ordering constraints, (2) new
branches, and (3) feature modifications to the current term.
Options (1) and (2) are typically done with ordering rules
such as the following RHS:

(-> (?s :position subject)
(?rest) (?o :position object))

The variables are either bound from the LHS conditions, or
are unbound (conditions that follow the&optional indicator
in the LHS) and ignored during RHS expansion. The?rest
variable is a special case variable which refers to the current
term and its features that do not appear in the LHS (by default,
features in the LHS that are matched are removed from the
term, unless they follow a&keep indicator). In the above
example, there will be a new conjunction branch with three
child nodes in the word forest, as shown in figure 4.

When this rule is matched, the ?s node will bind its vari-
able that must point to one of the terms in the input utterance’s
:termslist. Processing will now begin with that term, attach-
ing any features in the RHS to it (in this example, :position
subject), at the top of the grammar. Once completed, pro-
cessing will continue with the current term (?rest) until the
grammar is exhausted. Finally, the third term (?o ...) will be-
gin at the top of the grammar. As discussed in section 3.2,
any trickle-down features in the current term are appended to
the three terms when processing begins/continues on each of
them.

A term attempts to match each rule in the grammar until
a RHS creates a leaf node. This is accomplished by a RHS
expansion into an initial atom that is a string. Finally, inline
functions are allowed to be used in the grammar. The follow-
ing example calls the functionstringifyand its returned value
is bound to the?str variable. These calls are typically used to
access the lexicon.

(grule stringify
(:lex ?lex)
;; convert lexical item to string
((stringify ?lex) ?str)

&optional
(:cat ?cat)

>>
(-> (?str :cat ?cat)))

PathFinder

The PathFinder module of Acorn is the second stage, respon-
sible for determining the most likely path through the forest.
In this stage, the hypotheses from the grammar are analyzed
and the top word ordering is chosen based on n-gram stochas-
tic models derived from corpora.

The algorithm we implemented in PathFinder is largely the
same as the one described in[Langkilde, 2000]. It is a dy-
namic programming algorithm that stores the topm phrases
at each decision point based on the leading and trailing words
in the phrase. When dealing with n-grams, we only need
to keep track of the firstn − 1 and the lastn − 1 words in
each phrase. Our approach not only tracks thesefeaturesas
Langkilde calls them, but PathFinder also sorts the topm
phrases and prunes any duplicates. Pruning duplicates of-
fers an advantage in runtime when the phrases are merged
with neighboring phrases. The complexity analysis is still
O(m∗m) = O(m2), but in practice, pruning phrases reduces
the number of phrases to some number less thanm.

The largest change to the algorithm is that we added dy-
namic interpolation of language models. PathFinder can load
any number of models and interpolate them together during
n-gram analysis using an input set of weights. PathFinder
also has the capability to use feature-based models and word
history models.

Feature models, such as part of speech n-grams, model the
features1 of forest leaves instead of the lexical items. The
Forest Creation stage is able to output features in addition to
lexical items, as seen in the RHS of this forest leaf:

N6 :POS NN :BASE COMPUTER -> "COMPUTERS"

There are two ’features’ on this leaf,posandbase. Parame-
ters can be passed to PathFinder that command it to use the
features instead of the RHS string when applying a language
model to the forest. This option is not evaluated in this paper,
but is a promising option for future work.

Word history models keep track of the current discourse
and monitor word usage, providing a history of word choice
and calculating a unigram probability for each word. The
PathFinder is updated on each utterance in the dialogue and
applies a decaying word history approach, similar to the work
in [Clarkson and Robinson, 1997]. This model is not evalu-
ated in this paper, but is useful in portraying the breadth of
coverage that a stochastic phase can provide to dialogue.

1Here we refer to features in the grammar phase, as in feature-
values. These are not to be confused with the features of Langkilde
in the forest search phase.

:action :co-theme :property
:addressee :cognizer :purpose
:affected :compared-to :rank
:agent :cost :result
:along-with :effect :sit-val
:associated :entity :state
:attribute :event-relative :theme
:beneficiary :experiencer :time-duration-rel
:cause :of :value
:center :patient

Figure 5: The main semantic features in Acorn’s grammar.

4 Evaluation
The three factors that are most important in evaluating dia-
logue generation is portability, coverage, and speed. Other
factors include naturalness, flexibility, and many more, but
the above three are evaluated in this paper to address con-
cerns of domain independent generation and real-time dia-
logue. During one’s efforts to address the latter concern by
constraining the size of the word forest, it is very easy to lose
the former.

4.1 The Grammar
Acorn’s grammar contains 189 rules and is heavily seman-
tic based, although the semantic features and concepts are
transformed into syntactic features before word ordering is
decided. It is possible to input a syntactic utterance, but this
evaluation is only concerned with semantic input. The gram-
mar was created within the context of a computer purchasing
domain in which the dialogue system is a collaborative assis-
tant that helps the user define and purchase a computer. We
had a corpus of 216 utterances from developers of the system
who created their own mock dialogues. The grammar was
constructed mainly based on these parsed utterances. Other
domains such as an underwater robotic mine search and a
database query interface were used to represent as many se-
mantic roles as possible. The list of the main semantic fea-
tures in Acorn’s grammar is provided in figure 5.

4.2 Evaluation Methodology
Each utterance that was able to be parsed in our target dia-
logues was automatically transformed into the input syntax of
Acorn. These inputs were pushed through Acorn, resulting in
a single, top ranked utterance. This utterance was compared
to the target utterance using the Generation String Accuracy
metric. This metric compares a target string to the generated
string and counts the number of word movements (M), sub-
stitutions (S), deletions (D), and insertions (I) (not counting
deletions and insertions implicitly included in movements).
The metric is given below (L is the number of tokens in the
target string):

1− M + I + D + S

L
(1)

Before comparison, all contractions were split into single
lexical items to prevent the metric from penalizing seman-
tically similar phrases (e.g.aren’t to are not). The Simple

Utterance Lengths
number of words 1-2 3-5 6-9 10-

Number of utterances 661 177 109 39

Figure 6: Number of utterances of each word length. The ma-
jority are grounding/acknowledgements (661 utterances out
of 986). We only evaluated those of length 3 or more, 325
utterances.

String Accuracy metric was also applied to provide compar-
ison against studies that may not use the Generation Metric;
however, the Generation Metric intuitivelyrepairs some of
the former’s failings, namely double penalization for word
movement. More on these and other metrics can be found in
[Bangaloreet al., 2000].

4.3 Domain Independent Evaluation

Acorn was evaluated using the Monroe Corpus[Stent, 2000],
a collection of 20 dialogues. Each dialogue is a conversation
between two English speakers who were given a map of Mon-
roe County, NY and a description of a task that needed to be
solved. There were eight different disaster scenarios ranging
from a bomb attack to a broken leg, and the participants were
to act as emergency dispatchers. It is a significantly different
domain from computer purchasing and was chosen because
it offers a corpus that has been parsed by our parser and thus
has readily available logical forms for input to Acorn. The
length of utterances are shown in figure 6.

The four dialogues that had most recently been updated
to our logical form definitions were chosen for the evalua-
tion. The remaining sixteen are used by PathFinder as a bi-
gram language model of the domain’s dialogue. Two series
of tests were run. The first includes the lexical items as input
to Acorn and the second only includes the ontology concepts.
Generation String Accuracy is used to judge the output of
the system against the original utterances in the Monroe dia-
logues. While there have been other generation metrics that
have been proposed, such as the Bleu Metric[Papineniet al.,
2001], the Generation String Accuracy metric still provides
a measure of system improvement and a comparison against
other systems. Bleu requires more than one correct output
option to be of worthwhile (’quantity leads to quality’), so is
not as applicable with only one target utterance.

4.4 Domain Specific Evaluation

In order to compare the domain independent evaluation with
a domain specific evaluation, the same evaluation described
in 4.2 was used on the computer purchasing corpus that in-
cludes the logical forms on which Acorn’s grammar is based.
As described in 4.1, the domain is an assistant that collabora-
tively purchases computers online for the user. There are 132
utterances of length three or more in this corpus. The n-gram
models were automatically generated using a hand formed
word grammar of sample sentences. Both Simple and Gen-
eration String Accuracy were used to compare the output of
Acorn to the target utterances in the corpus.

Domain Independent: Monroe Rescue

Simple String Accuracy
Baseline Random Path Final

Lexical Items 0.28 0.55 0.67
Semantic Concepts N/A 0.38 0.59

Generation String Accuracy
Baseline Random Path Final

Lexical Items 0.28 0.59 0.70
Semantic Concepts N/A 0.40 0.62

Figure 7: The Simple and Generation String Accuracy results
of Acorn in the Monroe domain. The two baseline metrics
and the final Acorn scores are given.

4.5 Baselines
Two baselines were included in the evaluation as compara-
tive measures. The first is named simply,baseline, and is a
random ordering of the lexical inputs to Acorn. Instead of
using a grammar to choose the ordering of the input lexical
items, thebaselineis a simple procedure which traverses the
input terms, outputting each lexical item as it comes across
them. When there are multiple modifiers on a term, the order
of which to follow first is randomly chosen. This baseline is
only run when lexical items are provided in the input.

The second baseline is calledRandom Pathand serves as
a baseline before the second phase of Acorn. A random path
through the resulting word forest of the first phase of Acorn
is extracted and compared against the target utterance. This
allows us to evaluate the usefulness of the second stochas-
tic phase. Both these baselines are included in the following
results.

4.6 Results
Two different tests were performed. The first included lexical
choice in the input utterances and the second included only
the ontology concepts. The accuracy scores for the Monroe
domain are shown in figure 7. A semantic input with all lex-
ical items specified scored an average of 0.70 (or 70%) on
325 input utterances. A purely semantic input with just the
ontology classes scored 0.62 (or 62%).

The results from Acorn in the Computer Purchasing Do-
main are shown in figure 8. Both the semantic and lexical
evaluations were run, resulting in an average score of 0.85
(85%) and 0.69 (69%) respectively.

In order to judge usefulness for a real-time dialogue sys-
tem, the runtime for both phases of Acorn was recorded for
each utterance. We also ran HALogen for comparison. Since
its grammar is significantly different from Acorn’s, the out-
put from HALogen is not relevant since little time was spent
in conforming its grammar to our logical form; however, the
runtimes are useful for comparison. The times for both Acorn
and HALogen are shown in figure 9. With a purely seman-
tic input, Acorn took 0.16 seconds to build a forest and 0.21
seconds to rank it for a total time of 0.37 seconds. HALogen
took a total time of 19.29 seconds. HALogen runs quicker
when lexical choice is performed ahead of time, finishing in

Domain Specific: Computer Purchasing

Simple String Accuracy
Baseline Random Path Final

Lexical Items 0.28 0.66 0.82
Semantic Concepts N/A 0.47 0.67

Generation String Accuracy
Baseline Random Path Final

Lexical Items 0.28 0.69 0.85
Semantic Concepts N/A 0.49 0.69

Figure 8: The Simple and Generation String Accuracy results
of Acorn in the Monroe domain. The two baseline metrics
and the final Acorn scores are given.

System Runtime
Build Rank Total Runtime

Acorn Lexical 0.06s 0.00s 0.06s
Acorn Semantic 0.16s 0.21s 0.37s
HALogen Lexical 2.26s 0.47s 2.73s
HALogen Semantic 11.51s 7.78s 19.29s

Figure 9: A comparison of runtimes (in seconds) between
Acorn and HALogen. Both the lexical item and the semantic
concept input are shown.

2.73 seconds. The reason is mainly due to its over-generation
of noun plurals, verb person and number, and morphology.

Finally, the runtime improvement of using the grammar
rule indexing algorithm was analyzed. All utterances of word
length five or more with correct parses were chosen from the
dialogues to create forests of sufficient size, resulting in 192
tests. Figure 10 shows the average forest building time with
the indexing algorithm versus the old approach of checking
each grammar rule individually. A 30% improvement was
achieved.

5 Discussion
While it is difficult to quantify, the implementation of trickle-
down features and Empty-Creation and Filling rules accom-
modate well the construction of a grammar that can capture
head/foot features. The forest creation algorithm of HALo-
gen and others is much too cumbersome to implement within,
and representing lexical movement is impossible without it.
The above result of 62% coverage in a new domain is com-

Build Forest Runtime
Normal Grammar 0.30s
Indexed Grammar 0.21s
% Improvement 30%

Figure 10: Runtimes of a sequential grammar rule search for
matching rules versus the rule indexing approach described
in this paper. The average runtime for 192 word forests is
shown.

parable, and arguably better than those given in Langkilde
[Langkilde-Geary, 2002]. This paper uses a semantic ut-
terance input which is most similar to theMin spectest of
Langkilde. TheMin specactually included both the lexical
choice and the surface syntactic roles (such as logical-subject,
instead of theme or agent), resulting in a Simple String Ac-
curacy of 55.3%. Acorn’s input is even more abstract by only
including the semantic roles. Its lexical input, most similar
to theMin spec, but still more abstract with thematic roles,
received 70%. This comparison should only be taken at face
value since dialogue utterances are shorter than the WSJ, but
it provides assurance that a constrained grammar can produce
good output even with a more abstract input. It must also be
noted that the String Accuracy approaches do not take into ac-
count synonyms and paraphrases that are semantically equiv-
alent.

These results also evaluate the amount of effect the
stochastic phase of this approach has on the overall results.
Figure 7 shows that the average random path through the
word forest (the result of the first grammar-based phase) was
only 0.40 (40%). After PathFinder chooses the most prob-
able path, the average is 0.62 (62%). We can conclude that
the grammar is still over-generating possible realizations and
that this approach does require the second stochastic phase to
choose a realization based on previously seen corpora.

The difference between the results in the known domain
(computer purchasing) and the new domain (monroe rescue)
is 85% to 70% (69% to 62% without lexical items). While
the difference is too great to claim domain independence on
a semantic input, one of the main advantages of the over-
generation grammar is that it requires less work to construct a
new grammar when domains are switched. Here we see 70%
achieved for zero invested time. A study that analyzes the
time it takes a programmer to reach 85% has yet to be done.

The runtime improvement of our approach is more drastic
than originally thought possible. An average runtime of 0.37
seconds is decidedly within the time constraints of an effec-
tive dialogue system. While the 30% improvement in gram-
mar indexing is also significant, the larger gains appear to
be results of finer morphology and person/number agreement
between verbs and their subjects. Compared with 19.29 sec-
onds of the previous implementation, it shows that a middle
ground between over-generation and statistical determination
is a viable solution.

Finally, more work is needed to produce better output. The
majority of errors in this approach are modifier placement
choices. Without a formal grammar, the final placement de-
cisions are ultimately decided by an n-gram language model,
resulting in short-sighted decisions. Even though 85% from
a semantic input is a good result, modifiers tend to be the one
area that falls behind. Several examples of this can be seen in
Appendix B where some poor generations are shown.

6 Related Work
Stochastic work on the FERGUS system[Chenet al., 2002]
uses a TAG grammar to produce a word lattice of possible
realizations. The lattice is traversed to find the most likely
path. The work in[Chenet al., 2002] generated sentences in

0.28 seconds for an Air-Travel Domain. This paper differs
in that the input to FERGUS is a shallow syntactic tree, con-
taining all lexemes and function words. In addition, surface
syntax trees were mapped one-to-one with each template in
the Air-Travel domain. There was little, if any, flexibility in
the semantic input. This paper presents a result of 0.37 sec-
onds that includes both the sentence planner, surface realizer,
and a grammar that generates multiple realizations based on
both syntaxandsemantics.

Work was done on the Oxygen system[Habash, 2000] to
improve the speed of the two-phased Nitrogen generator, a
predecessor to HALogen. The work pre-compiled a declar-
ative grammar into a functional program, thus removing the
need to match rules during forest creation. This paper differs
in that similar performance was achieved without the need
for pre-compiling nor a more complex grammar syntax. This
paper also described lexical movement and trickle down fea-
tures not supported in Oxygen.

Chambers[Chambers and Allen, 2004] used HALogen in
a dialogue system and performed a human evaluation of the
mixed syntax/semantic input. Their input converted their do-
main independent logical form into the HALogen input. This
work differs in that we obviously did not use the HALo-
gen system, but implemented a more efficient two-phased ap-
proach. The work by Chambers and Allen did not analyze
runtime, perform sentence planning (not a full semantic in-
put), nor provide results from the common String Accuracy
metrics for comparison to other approaches.

7 Conclusion
Stochastic approaches to natural language processing are of-
ten criticized for being too slow, particularly in recent at-
tempts in language generation. This paper describes Acorn,
a system that generates dialogue utterances in an average
of 0.37 seconds. The approach and its additional advances
in word forest creation were described, such as a technique
called trickle-down features that allow a grammar to pass
head/foot features through a generation input, enabling lan-
guage phenomena such as wh-movement to be represented.
The grammar syntax and an evaluation of the coverage in an
unknown domain were presented. The coverage is compa-
rable and the runtime drastically out-performs previous ap-
proaches.

A Example Semantic and Lexical Input
Below is an example utterance from the Monroe corpus and
its purely semantic and lexical input to Acorn. In this exam-
ple, only the wordshave, helicopter, andStrong Memorialare
absent in the semantic input. The resulting generation output
from Acorn is also shown.

Original utterance:
’and i also have a helicopter at strong memorial’

Semantic Input to Acorn:
((utt :speechact satell :mods v05 :saterm v88 :terms

((v88 :indicator speechact :class satell :content v27
:mods v05)

(v05 :indicator f :class conjunct :lex and :of v88)
(v27 :indicator f :class have :co-theme v63 :theme v09

:mods v64 :mods v23 :tense present)
(v09 :indicator pro :class person :context-rel i)
(v23 :indicator f :class additive :lex also :of v27)
(v63 :indicator a :class air-vehicle)
(v64 :indicator f :class spatial-loc :lex at :of v27 :val v75)
(v75 :indicator the :class facility

:name-of (strong memorial)))))

Lexical Input to Acorn:
((utt :speechact satell :mods v05 :saterm v88 :terms

((v88 :indicator speechact :class satell :content v27
:mods v05)
(v05 :indicator f :class conjunct :lex and :of v88)
(v27 :indicator f :class have :lex have :co-theme v63

:theme v09 :mods v64 :mods v23 :tense present)
(v09 :indicator pro :class person :lex i :context-rel i)
(v23 :indicator f :class additive :lex also :of v27)
(v63 :indicator a :class air-vehicle :lex helicopter)
(v64 :indicator f :class spatial-loc :lex at :of v27 :val v75)
(v75 :indicator the :class facility :lex strong-memorial

:name-of (strong memorial)))))

Acorn Generation:
’and i have a helicopter also at strong memorial’

B Example Poor Output
Below are some target and generated utterances from Acorn,
illustrating several common errors, and are not examples of
success. The first utterance is the real target one, and the
second is the Acorn generated utterance.

1. ”i think i have a disability with maps”
”i think i have disability with maps”

2. ”they should have stayed in front of the tv”
”in a front of the tv should stay they”

3. ”and i also have a helicopter at strong memorial”
”and i have a helicopter also at strong memorial”

4. ”i can’t see it on the map”
”i can not on the map see it”

5. ”probably all of them are hospitals”
”probably hospitals are all them”

6. ”are you talking to me”
”are you talking me”

7. ”and there are three people on a stretcher at the airport ”
”and three people on a stretcher are at the airport”

8. ”then there’s one stretcher patient at the mall”
”then stretcher one patient is at the mall”

9. ”so that guy should just walk to the hospital”
”so that guy should walk to the hospital just”

10. ”i think that’s a very good plan”
”i think that is very good plan”

C Example Good Output
Below are a list of target utterances that Acorn matched ex-
actly, word for word. It is obviously not a complete list.

1. ”i’m not doing this on purpose”

2. ”we can bring it to strong memorial”

3. ”it’s on elmwood and mount hope ”

4. ”so the heart attack person can’t go there”

5. ”and bring them to saint mary’s”

6. ”do you have any suggestions?”

7. ”we can put him in one ambulance”

8. ”because we have only six wounded”

9. ”i think that’s a good idea”

10. ”and the other one is at the airport”

11. ”what can i say?”

References
[Bangaloreet al., 2000] Srinivas Bangalore, Owen Rambow,

and Steve Whittaker. Evaluation metrics for generation. In
INLG, Saarbrucken, Germany, August 2000.

[Callaway, 2003] Charles Callaway. Evaluating coverage for
large symbolic nlg grammars. InIJCAI, Acapulco, Mex-
ico, August 2003.

[Chambers and Allen, 2004] Nathanael Chambers and
James Allen. Stochastic language generation in a dialogue
system: Toward a domain independent generator. In
Proceedings of the 5th SIGdial Workshop on Discourse
and Dialogue, Boston, USA, May 2004.

[Chenet al., 2002] John Chen, Srinivas Bangalore, Owen
Rambow, and Marilyn A. Walker. Towards automatic gen-
eration of nautral language generation systems. InCOL-
ING, Taipei, Taiwan, 2002.

[Clarkson and Robinson, 1997] P.R. Clarkson and A.J.
Robinson. Language model adaptation using mixtures
and an exponentially decaying cache. InProceedings of
ICASSP-97, pages II:799–802, 1997.

[Dzikovskaet al., 2003] M. Dzikovska, M. Swift, and
J. Allen. Constructing custom semantic representations
from a generic lexicon. In5th International Workshop on
Computational Semantics, 2003.

[Elhadad and Robin, 1996] M. Elhadad and J. Robin. An
overview of surge: A reusable comprehensive syntactic
realization component. Tech Report 96-03, Ben Gurion
University, Beer Sheva, Israel, 1996.

[Habash, 2000] Nizar Habash. Oxygen: A language inde-
pendent linearization engine. InAMTA-2000, Cuernavaca,
Mexico, October 2000.

[Kipperet al., 2000] Karin Kipper, Hoa Trang Dang, and
Martha Palmer. Class-based construction of a verb lexi-
con. InProceedings of the 17th National Conference on
Artificial Intelligence, Austin, TX, 2000.

[Langkilde-Geary, 2002] Irene Langkilde-Geary. An empir-
ical verification of coverage and correctness for a general-
purpose sentence generator. InINLG, New York, 2002.

[Langkilde, 2000] Irene Langkilde. Forest-based statistical
sentence generation. InNAACL, 2000.

[Papineniet al., 2001] K. Papineni, S. Roukos, T. Ward, and
W. Zhu. Bleu: a method for automatic evaluation of
machine translation. Research Report RC22176, IBM,
September 2001.

[Stent, 2000] A. Stent. The monroe corpus. Research Report
728, Computer Science Dept., University of Rochester,
March 2000. 99-2.

