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Abstract 

This paper describes our effort on the task 
of edited region identification for parsing 
disfluent sentences in the Switchboard 
corpus. We focus our attention on 
exploring feature spaces and selecting 
good features and start with analyzing the 
distributions of the edited regions and 
their components in the targeted corpus. 
We explore new feature spaces of a part-
of-speech (POS) hierarchy and relaxed for 
rough copy in the experiments. These 
steps result in an improvement of 43.98% 
percent relative error reduction in F-score 
over an earlier best result in edited 
detection when punctuation is included in 
both training and testing data [Charniak 
and Johnson 2001], and 20.44% percent 
relative error reduction in F-score over the 
latest best result where punctuation is 
excluded from the training and testing 
data [Johnson and Charniak 2004]. 

1 Introduction 

Repairs, hesitations, and restarts are common in 
spoken language, and understanding spoken 
language requires accurate methods for identifying 
such disfluent phenomena. Processing speech 
repairs properly poses a challenge to spoken dialog 
systems. Early work in this field is primarily based 
on small and proprietary corpora, which makes the 
comparison of the proposed methods difficult 
[Young and Matessa 1991, Bear et al. 1992, 
Heeman & Allen 1994]. Because of the availability 

of the Switchboard corpus [Godfrey et al. 1992] 
and other conversational telephone speech (CTS) 
corpora, there has been an increasing interest in 
improving the performance of identifying the 
edited regions for parsing disfluent sentences 
[Charniak and Johnson 2001, Johnson and 
Charniak 2004, Ostendorf et al. 2004, Liu et al. 
2005].  
 
In this paper we describe our effort towards the 
task of edited region identification with the 
intention of parsing disfluent sentences in the 
Switchboard corpus. A clear benefit of having 
accurate edited regions for parsing has been 
demonstrated by a concurrent effort on parsing 
conversational speech [Kahn et al 2005]. Since 
different machine learning methods provide similar 
performances on many NLP tasks, in this paper, 
we focus our attention on exploring feature spaces 
and selecting good features for identifying edited 
regions. We start by analyzing the distributions of 
the edited regions and their components in the 
targeted corpus. We then design several feature 
spaces to cover the disfluent regions in the training 
data. In addition, we also explore new feature 
spaces of a part-of-speech hierarchy and extend 
candidate pools in the experiments. These steps 
result in a significant improvement in F-score over 
the earlier best result reported in [Charniak and 
Johnson 2001], where punctuation is included in 
both the training and testing data of the 
Switchboard corpus, and a significant error 
reduction in F-score over the latest best result 
[Johnson and Charniak 2004], where punctuation 
is ignored in both the training and testing data of 
the Switchboard corpus.  
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In this paper, we follow the definition of [Shriberg 
1994] and others for speech repairs: A speech 
repair is divided into three parts: the reparandum, 
the part that is repaired; the interregnum, the part 
that can be either empty or fillers; and the 
repair/repeat, the part that replaces or repeats the 
reparandum. The definition can also be 
exemplified via the following utterance: 
 

repeatreparanda int erregnum

 ,  , this is  a big problem.This is you know  

 
This paper is organized as follows. In section 2, we 
examine the distributions of the editing regions in 
Switchboard data. Section 3, then, presents the 
Boosting method, the baseline system and the 
feature spaces we want to explore. Section 4 
describes, step by step, a set of experiments that 
lead to a large performance improvement. Section 
5 concludes with discussion and future work. 

2 Repair Distributions in Switchboard 

We start by analyzing the speech repairs in the 
Switchboard corpus. Switchboard has over one 
million words, with telephone conversations on 
prescribed topics [Godfrey et al. 1992]. It is full of 
disfluent utterances, and [Shriberg 1994, Shriberg 
1996] gives a thorough analysis and categorization 
of them. [Engel et al. 2002] also showed detailed 
distributions of the interregnum, including 
interjections and parentheticals. Since the majority 
of the disfluencies involve all the three parts 
(reparandum, interregnum, and repair/repeat), the 
distributions of all three parts will be very helpful 
in constructing patterns that are used to identify 
edited regions.  
 
For the reparandum and repair types, we include 
their distributions with and without punctuation. 
We include the distributions with punctuation is to 
match with the baseline system reported in 
[Charniak and Johnson 2001], where punctuation 
is included to identify the edited regions. Resent 
research showed that certain punctuation/prosody 
marks can be produced when speech signals are 
available [Liu et al. 2003]. The interregnum type, 
by definition, does not include punctuation.  
 
The length distributions of the reparanda in the 
training part of the Switchboard data with and 

without punctuation are given in Fig. 1. The 
reparanda with lengths of less than 7 words make 
up 95.98% of such edited regions in the training 
data. When we remove the punctuation marks, 
those with lengths of less than 6 words reach 
roughly 96%. Thus, the patterns that consider only 
reparanda of length 6 or less will have very good 
coverage. 
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Figure 1. Length distribution of reparanda in 
Switchboard training data. 

 

Length distribution of 
repairs/repeats/restarts 
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Figure 2. Length distribution of 
repairs/repeats/restarts in Switchboard training data. 

 

Length distribution of interregna

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10

 
Figure 3. Length distribution of interregna in 

Switchboard training data. 
 
The two repair/repeat part distributions in the 
training part of the Switchboard are given in Fig. 2. 
The repairs/repeats with lengths less than 7 words 
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make 98.86% of such instances in the training data. 
This gives us an excellent coverage if we use 7 as 
the threshold for constructing repair/repeat patterns. 
 
The length distribution of the interregna of the 
training part of the Switchboard corpus is shown in 
Fig. 3. We see that the overwhelming majority has 
the length of one, which are mostly words such as 
“uh”, “yeah”, or “uh-huh”. 
 
In examining the Switchboard data, we noticed that 
a large number of reparanda and repair/repeat pairs 
differ on less than two words, i.e. “as to, you know, 
when to”1, and the amount of the pairs differing on 
less than two POS tags is even bigger. There are 
also cases where some of the pairs have different 
lengths. These findings provide a good base for our 
feature space. 

3 Feature Space Selection for Boosting 

We take as our baseline system the work by 
[Charniak and Johnson 2001]. In their approach, 
rough copy is defined to produce candidates for 
any potential pairs of reparanda and repairs. A 
boosting algorithm [Schapire and Singer 1999] is 
used to detect whether a word is edited. A total of 
18 variables are used in the algorithm. In the rest 
of the section, we first briefly introduce the 
boosting algorithm, then describe the method used 
in [Charniak and Johnson 2001], and finally we 
contrast our improvements with the baseline 
system. 

3.1 Boosting Algorithm 

Intuitively, the boosting algorithm is to combine a 
set of simple learners iteratively based on their 
classification results on a set of training data. 
Different parts of the training data are scaled at 
each iteration so that the parts of the data previous 
classifiers performed poorly on are weighted 
higher. The weighting factors of the learners are 
adjusted accordingly.  
 
We re-implement the boosting algorithm reported 
by [Charniak and Johnson 2001] as our baseline 
system in order to clearly identify contributing 

                                                           
1  “as to”  is the edited region. Italicized words in the 
examples are edited words 

factors in performance.  Each word token is 
characterized by a finite tuple of random variables  

(Y, X1,..., Xm ). 
Y is  the conditioned variables and ranges from    
{-1,+1}, with Y = +1 indicating that the word is 
edited. X1,..., Xm  are the conditioning variables; 
each variable jX  ranges over a finite set jχ . The 
goal of the classifer is to predict the value of Y 
given a value for X1,..., Xm .  
 
A boosting classifier is a linear combination of n 
features to define the prediction variable Z. 

                          ∑
=

=
n

i
iiFZ

1
α                (1) 

where αi is the weight to be estimated for feature φi. 
φi is a set of variable-value pairs, and each Fi has 
the form of: 
                  Fi = (X j = x j )

<X j ,x j >∈φ i

∏         (2) 

with X’s being conditioning variables and x’s being 
values.   

 
Each component in the production for Fi  is 
defined as: 
 

       (X j = x j ) =
1  < X j = x j >∈ φi

0   otherwise

⎧ 
⎨ 
⎩ 

     (3) 

 
In other words, Fi is 1 if and only if all the 
variable-value pairs for the current position belong 
to φi.  
 
The prediction made by the classifier is 

|Z| Z/ sign(Z) = . Intuitively, our goal is to adjust 
the vector of feature weights 1( ,...., )nα α α=  to 
minimize the expected misclassification rate 

]E[sign(Z) Y≠ . This function is difficult to 
minimize, so our boosting classifier minimizes the 
expected boost loss )][(exp(-YZÊt  as in [Collins 

2000], where ][Êt ⋅  is the expectation on the 
empirical training corpus distribution. In our 
implementation, each learner contains only one 
variable. The feature weights are adjusted 
iteratively, one weight per iteration. At each 
iteration, it reduces the boost loss on the training 
corpus. In our experiments, α is obtained after 
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1500 iterations, and contains around 1350 non-zero 
feature weights. 

3.2 Charniak-Johnson approach 

In [Charniak and Johnson 2001], identifying edited 
regions is considered as a classification problem, 
where each word is classified either as edited or 
normal. The approach takes two steps. The first 
step is to find rough copy. Then, a number of 
variables are extracted for the boosting algorithm. 
In particular, a total of 18 different conditioning 
variables are used to predict whether the current 
word is an edited word or a non-edited word. The 
18 different variables listed in Table 1 correspond 
to the 18 different dimensions/factors for the 
current word position. Among the 18 variables, six 
of them, Nm, Nu, Ni, Nl, Nr and Tf , depend on the 
identification of a rough copy. 
 
For convenience, their definition of a rough copy is 
repeated here. A rough copy in a string of tagged 
words has the form of 21 ∂∂ βλ , where: 

1. 1∂  (the source) and 2∂  (the copy) both 
begin   with    non-punctuation, 

2. the strings of non-punctuation POS tag 
of   1∂  and 2∂  are identical, 

3. β  (the free final) consists of zero or 
more sequences of a free final word  (see 
below) followed by optional punctuation, 

4. λ  (the interregnum) consists of 

sequences of an interregnum string (see 
below) followed by optional punctuation. 

 
The set of free final words includes all partial 
words and a small set of conjunctions, adverbs and 
miscellanea. The set of interregnum strings 
consists of a small set of expressions such as uh, 
you know, I guess, I mean, etc.  

3.3 New Improvements 

Our improvements to the Charniak-Johnson 
method can be classified into three categories with 
the first two corresponding to the twp steps in their 
method. The three categories of improvements are 
described in details in the following subsections.  

3.3.1 Relaxing Rough Copy  

We relax the definition for rough copy, because 
more than 94% of all edits have both reparandum 
and repair, while the rough copy defined in 
[Charniak and Johnson 2001] only covers 77.66% 
of such instances.  
 
Two methods are used to relax the rough copy 
definition. The first one is to adopt a hierarchical 
POS tag set: all the Switchboard POS tags are 
further classified into four major categories: N 
(noun related), V (verb related), Adj (noun 
modifiers), Adv (verb modifiers). Instead of 
requiring the exact match of two POS tag 
sequences, we also consider two sequences as a 

Variables Name Short description 
X1 W0 The current orthographic word. 
X2 – X5 P0,P1,P2,Pf Partial word flags for the current position, the next two to the right, and the first one 

in a sequence of free-final words (partial, conjunctions, etc.) to the right of the 
current position. 

X6 – X10 T-1,T0,T1,T2,Tf Part of speech tags for the left position, the current position, the next two positions 
to the right, and the first free-final word position to the right of the current position.

X11 Nm Number of words in common in reparandum and repair 
X12 Nn Number of words in reparandum but not repair 
X13 Ni Number of words in interregnum 
X14 Nl Number of words to the left edge of reparandum 
X15 Nr Number of words to the right edge of reparandum 
X16 Ct The first non-punctuation tag to the right of the current position 
X17 Cw The first non-punctuation word to the right of the current position 
X18 Ti The tag of the first word right after the interregnum that is right after the current 

word.  
 

Table 1. Descriptions of the 18 conditioning variables from [Charniak and Johnson 2001] 
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rough copy if their corresponding major categories 
match. This relaxation increases the rough copy 
coverage, (the percent of words in edited regions 
found through the definition of rough copy), from 
77.66% to 79.68%.  
 
The second is to allow one mismatch in the two 
POS sequences. The mismatches can be an 
addition, deletion, or substitution. This relaxation 
improves the coverage from 77.66% to 85.45%. 
Subsequently, the combination of the two 
relaxations leads to a significantly higher coverage 
of 87.70%. Additional relaxation leads to excessive 
candidates and worse performance in the 
development set. 

3.3.2 Adding New Features  

We also include new features in the feature set: 
one is the shortest distance (the number of words) 
between the current word and a word of the same 
orthographic form to the right, if that repeated 
word exists; another is the words around the 
current position. Based on the distributional 
analysis in section 2, we also increase the window 
sizes for POS tags ( 5 5,...,T T− ) and words 
( 5 5,...,W W− ) to ±5 and partial words ( 3 3,...,P P− ) 
to ±3, extending Ti and Pj.  

3.3.3 Post Processing Step 

In addition to the two categories, we try to use 
contextual patterns to address the independency of 
variables in the features. The patterns have been 
extracted from development and training data, to 
deal with certain sequence-related errors, e.g.,  

E N E  E E E, 
which means that if the neighbors on both sides of 
a word are classified into EDITED, it should be 
classified into EDITED as well.  

4 Experimental Results  

We conducted a number of experiments to test the 
effectiveness of our feature space exploration. 
Since the original code from [Charniak and 
Johnson 2001] is not available, we conducted our 
first experiment to replicate the result of their 
baseline system described in section 3. We used 
the exactly same training and testing data from the 
Switchboard corpus as in [Charniak and Johnson 

2001]. The training subset consists of all files in 
the sections 2 and 3 of the Switchboard corpus. 
Section 4 is split into three approximately equal 
size subsets. The first of the three, i.e., files 
sw4004.mrg to sw4153.mrg, is the testing corpus. 
The files sw4519.mrg to sw4936.mrg are the 
development corpus. The rest files are reserved for 
other purposes.  When punctuation is included in 
both training and testing, the re-established 
baseline has the precision, recall, and F-score of 
94.73%, 68.71% and 79.65%, respectively. These 
results are comparable with the results from 
[Charniak & Johnson 2001], i.e., 95.2%, 67.8%, 
and 79.2% for precision, recall, and f-score, 
correspondingly. 
 
In the subsequent experiments, the set of additional 
feature spaces described in section 3 are added, 
step-by-step. The first addition includes the 
shortest distance to the same word and window 
size increases. This step gives a 2.27% 
improvement on F-score over the baseline. The 
next addition is the introduction of the POS 
hierarchy in finding rough copies. This also gives 
more than 3% absolute improvement over the 
baseline and 1.19% over the expanded feature set 
model. The addition of the feature spaces of 
relaxed matches for words, POS tags, and POS 
hierarchy tags all give additive improvements, 
which leads to an overall of 8.95% absolute 
improvement over the re-implemented baseline, or 
43.98% relative error reduction on F-score.  
 
When compared with the latest results from 
[Johnson and Charniak 2004], where no 
punctuations are used for either training or testing 
data, we also observe the same trend of the 
improved results. Our best result gives 4.15% 
absolute improvement over their best result, or 
20.44% relative error reduction in f-scores. As a 
sanity check, when evaluated on the training data 
as a cheating experiment, we show a remarkable 
consistency with the results for testing data.  

 
For error analysis, we randomly selected 100 
sentences with 1673 words total from the test 
sentences that have at least one mistake. Errors can 
be divided into two types, miss (should be edited) 
and false alarm (should be noraml). Among the 
207 misses, about 70% of them require some 
phrase level analysis or acoustic cues for phrases. 
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For example, one miss is “because of the friends 
because of many other things”, an error we would 
have a much better chance of correct identification, 
if we were able to identify prepositional phrases 
reliably. Another example is “most of all my 
family”. Since it is grammatical by itself, certain 
prosodic information in between “most of” and “all 
my family” may help the identification. [Ostendorf 
et al. 2004] reported that interruption point could 
help parsers to improve results.  [Kahn et al. 2005] 
also showed that prosody information could help 
parse disfluent sentences. The second major class 
of the misses is certain short words that are not 
labeled consistently in the corpus. For example, 
“so”, “and”, and “or”, when they occur in the 
beginning of a sentence, are sometimes labeled as 

edited, and sometimes just as normal. The last 
category of the misses, about 5.3%, contains the 
ones where the distances between reparanda and 
repairs are often more than 10 words.  
 
Among the 95 false alarms, more than three 
quarters of misclassified ones are related to certain 
grammatical constructions. Examples include cases 
like, “the more … the more” and “I think I 
should …”. These cases may be fixable if more 
elaborated grammar-based features are used.  

5 Conclusions  

This paper reports our work on identifying edited 
regions in the Switchboard corpus. In addition to a 

Results on testing data Results on training data 
with punctuation Punctuation on both  No punctuation on both 

Method codes 

Precision Recall f-score Precision Recall f-score Precision Recall f-score
CJ’01    95.2 67.8 79.2    

JC’04 p       82.0 77.8 79.7 
 R CJ’01 94.9 71.9 81.81 94.73 68.71 79.65 91.46 64.42 75.59 

+d 94.56 78.37 85.71 94.47 72.31 81.92 91.79 68.13 78.21 
+d+h 94.23 81.32 87.30 94.58 74.12 83.11 91.56 71.33 80.19 
+d+rh 94.12 82.61 87.99 92.61 77.15 84.18 89.92 72.68 80.39 
+d+rw 96.13 82.45 88.77 94.79 75.43 84.01 92.17 70.79 80.08 

+d+rw+rh 94.42 84.67 89.28 94.57 77.93 85.45 92.61 73.46 81.93 
+d+rw+rt+wt 94.43 84.79 89.35 94.65 76.61 84.68 92.08 72.61 81.19 
+d+rw+rh+wt 94.58 85.21 89.65 94.72 79.22 86.28 92.69 75.30 83.09 

+d+rw+rh+wt+ps 93.69 88.62 91.08 93.81 83.94 88.60 89.70 78.71 83.85 
 

Table 2. Result summary for various feature spaces. 
 

Method codes Method description 

CJ’01 Charniak and Johnson 2001 
JC’04 p Johnson and Charniak 2004, parser results 
R CJ’01 Duplicated results for Charniak and Johnson 2001 
+d Distance + window sizes 
+d+h Distance + window sizes + POS hierarchy in rough copy 
+d+rh Distance + window sizes + relaxed POS hierarchy in rough copy 
+d+rw Distance + window sizes + relaxed word in rough copy 
+d+rw+rh Distance + window sizes + relaxed word and POS hierarchy in rough copy 
+d+rw+rt+wt Distance + window sizes + word & tag pairs + relaxed word and POS in rough copy 
+d+rw+rh+wt Distance + window sizes + word & tag pairs + relaxed word and POS hierarchy in 

rough copy 
+d+rw+rh+wt+ps Distance + window sizes + word & tag pairs + relaxed word and POS hierarchy in 

rough copy + pattern substitution 
 

Table 3. Description of method codes used in the result table. 
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distributional analysis for the edited regions, a 
number of feature spaces have been explored and 
tested to show their effectiveness. We observed a 
43.98% relative error reduction on F-scores for the 
baseline with punctuation in both training and 
testing [Charniak and Johnson 2001]. Compared 
with the reported best result, the same approach 
produced a 20.44% of relative error reduction on 
F-scores when punctuation is ignored in training 
and testing data [Johnson and Charniak 2004]. The 
inclusion of both hierarchical POS tags and the 
relaxation for rough copy definition gives large 
additive improvements, and their combination has 
contributed to nearly half of the gain for the test 
set with punctuation and about 60% of the gain for 
the data without punctuation.  

 
Future research would include the use of other 
features, such as prosody, and the integration of 
the edited region identification with parsing.   
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