
IWPT-05

Proceedings of the Ninth
International Workshop on

Parsing Technologies

9–10 October 2005
Vancouver, British Columbia, Canada



Production and Manufacturing by
Omnipress Inc.
Post Office Box 7214
Madison, WI 53707-7214

c©2005 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
75 Paterson Street, Suite 9
New Brunswick, NJ 08901
USA
Tel: +1-732-342-9100
Fax: +1-732-342-9339
acl@aclweb.org

ii



Preface

The 9th International Workshop on Parsing Technologies continues the tradition that was started with
the first workshop with that name, organized by Masaru Tomita in 1989 in Pittsburgh. IWPT’89
was followed by seven workshops in a biennial rhythm, only slightly disturbed by fear of millenium
problems in 1999:

• IWPT’91 in Cancun, Mexico

• IWPT’93 in Tilburg, The Netherlands

• IWPT’95 in Prague, Czech Republic

• IWPT’97 in Cambridge (MA), USA

• IWPT 2000 in Trento, Italy

• IWPT 2001 in Beijing, China

• IWPT 2003 in Nancy, France

Over the years, the IWPT workshops have become the major forum for researchers in natural language
parsing to meet and discuss advances in the field. Based on these workshops, four books on parsing
technologies have been published by Kluwer Academic Publishers. The most recent one, based on
IWPT 2000 and IWPT’01 was published last year (New Developments in Parsing Technology, Harry
Bunt, John Carroll and Giorgio Satta, editors).

In 1994 the Special Interest Group on Parsing (SIGPARSE) was set up within ACL with the primary
aim to give continuity to the IWPT series, and ever since the IWPT workshops have taken place under
the auspices of SIGPARSE. IWPT 2005 also marks the return of IWPT to North America; the combined
conferences on Human Language Technology and Empirical Methods in Natural Language Processing
providing an excellent opportunity for this. I would like to thank Alon Lavie and the ACL organisation,
in particular Priscilla Rasmussen, for their wonderful and professional help in organizing IWPT 2005
as a satellite event of the joint HLT/EMNLP conference.

Thanks are also due to the members of the Program Committee, and in particular to chairman Rob
Malouf, for the careful work in reviewing submitted papers and designing the workshop program.
Of a total of 42 submitted papers, 17 were accepted for presentation as a full paper, which gives an
acceptance rate of 40%.

Harry Bunt
SIGPARSE Officer and IWPT 2005 General Chair
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Abstract

In this paper, we introduce a new parser,
called SXLFG, based on the Lexical-
Functional Grammars formalism (LFG).
We describe the underlying context-free
parser and how functional structures are
efficiently computed on top of the CFG
shared forest thanks to computation shar-
ing, lazy evaluation, and compact data
representation. We then present vari-
ous error recovery techniques we imple-
mented in order to build a robust parser.
Finally, we offer concrete results when
SXLFG is used with an existing gram-
mar for French. We show that our parser
is both efficient and robust, although the
grammar is very ambiguous.

1 Introduction

In order to tackle the algorithmic difficulties of
parsers when applied to real-life corpora, it is nowa-
days usual to apply robust and efficient methods
such as Markovian techniques or finite automata.
These methods are perfectly suited for a large num-
ber of applications that do not rely on a complex rep-
resentation of the sentence. However, the descriptive
expressivity of resulting analyses is far below what
is needed to represent, e.g., phrases or long-distance
dependencies in a way that is consistent with seri-
ous linguistic definitions of these concepts. For this
reason, we designed a parser that is compatible with
a linguistic theory, namely LFG, as well as robust
and efficient despite the high variability of language
production.

Developing a new parser for LFG (Lexical-
Functional Grammars, see, e.g., (Kaplan, 1989)) is
not in itself very original. Several LFG parsers al-
ready exist, including those of (Andrews, 1990) or
(Briffault et al., 1997). However, the most famous
LFG system is undoubtedly the Xerox Linguistics
Environment (XLE) project which is the successor
of the Grammars Writer’s Workbench (Kaplan and
Maxwell, 1994; Riezler et al., 2002; Kaplan et al.,
2004). XLE is a large project which concentrates a
lot of linguistic and computational technology, relies
on a similar point of view on the balance between
shallow and deep parsing, and has been successfully
used to parse large unrestricted corpora.

Nevertheless, these parsers do not always use in
the most extensive way all existing algorithmic tech-
niques of computation sharing and compact infor-
mation representation that make it possible to write
an efficient LFG parser, despite the fact that the LFG
formalism, as many other formalisms relying on uni-
fication, is NP-hard. Of course our purpose is not to
make a new XLE system but to study how robust-
ness and efficiency can be reached in LFG parsing
on raw text.

Building constituent structures (c-structures) does
not raise any particular problem in theory,1 be-
cause they are described in LFG by a context-free
grammar (CFG), called (CF) backbone in this pa-
per. Indeed, general parsing algorithms for CFGs
are well-known (Earley, GLR,. . . ). On the other
hand, the efficient construction of functional struc-
tures (f-structures) is much more problematic. The
first choice that a parser designer must face is that
of when f-structures are processed: either during CF

1In practice, the availability of a good parser is sometimes
less straightforward.
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parsing (interleaved method) or in a second phase
(two-pass computation). The second choice is be-
tween f-structures evaluation on single individual
[sub-]parses ([sub-]trees) or on a complete represen-
tation of all parses. We choose to process all phrasal
constraints by a CF parser which produces a shared
forest2 of polynomial size in polynomial time. Sec-
ond, this shared forest is used, as a whole, to de-
cide which functional constraints to process. For
ambiguous CF backbones, this two pass computa-
tion is more efficient than interleaving phrasal and
functional constraints.3 Another advantage of this
two pass vision is that the CF parser may be easily
replaced by another one. It may also be replaced
by a more powerful parser.4 We choose to evalu-
ate functional constraints directly on the shared for-
est since it has been proven (See (Maxwell and Ka-
plan, 1993)), as one can easily expect, that tech-
niques which evaluate functional constraints on an
enumeration of the resulting phrase-structure trees
are a computational disaster. This article explores
the computation of f-structures directly (without un-
folding) on shared forests. We will see how, in some
cases, our parser allows to deal with potential com-
binatorial explosion. Moreover, at all levels, error
recovering mechanisms turn our system into a robust
parser.

Our parser, called SXLFG, has been evaluated
with two large-coverage grammars for French, on
corpora of various genres. In the last section of this
paper, we present quantitative results of SXLFG us-
ing one of these grammars on a general journalistic
corpus.

2 The SXLFG parser: plain parsing

This section describes the parsing process for fully
grammatical sentences. Error recovery mechanisms,
that are used when this is not the case, are described
in the next section.

2Informally, a shared forest is a structure which can repre-
sent a set of parses (even an unbounded number) in a way that
shares all common sub-parses.

3This fact can be easily understood by considering that func-
tional constraints may be constructed in exponential time on
a sub-forest that may well be discarded later on by (future)
phrasal constraints.

4For example, we next plan to use an RCG backbone (see
(Boullier, 2004) for an introduction to RCGs), with the func-
tional constraints being evaluated on the shared forest output by
an RCG parser.

2.1 Architecture overview

The core of SXLFG is a general CF parser that pro-
cesses the CF backbone of the LFG. It is an Earley-
like parser that relies on an underlying left-corner
automaton and is an evolution of (Boullier, 2003).
The set of analyses produced by this parser is rep-
resented by a shared parse forest. In fact, this parse
forest may itself be seen as a CFG whose produc-
tions are instantiated productions of the backbone.5

The evaluation of the functional equations is per-
formed during a bottom-up left-to-right walk in this
forest. A disambiguation module, which discards
unselected f-structures, may be invoked on any node
of the forest including of course its root node.

The input of the parser is a word lattice (all words
being known by the lexicon, including special words
representing unknown tokens of the raw text). This
lattice is converted by the lexer in a lexeme lattice
(a lexeme being here a CFG terminal symbol asso-
ciated with underspecified f-structures).

2.2 The context-free parser

The evolutions of the Earley parser compared to that
described in (Boullier, 2003) are of two kinds: it ac-
cepts lattices (or DAGs) as input and it has syntac-
tic error recovery mechanisms. This second point
will be examined in section 3.1. Dealing with DAGs
as input does not require, at least from a theoreti-
cal standpoint, considerable changes in the Earley
algorithm.6 Since the Earley parser is guided by
a left-corner finite automaton that defines a regular
super-set of the CF backbone language, this automa-
ton also deals with DAGs as input (this corresponds
to an intersection of two finite automata).

5If A is a non-terminal symbol of the backbone, Aij is an in-

stantiated non-terminal symbol if and only if Aij
+⇒
G

ai+1 . . . aj

where w = a1 . . . an is the input string and
+⇒
G

the transitive

closure of the derives relation.
6If i is a node of the DAG and if we have a transition on the

terminal t to the node j (without any loss in generality, we can
suppose that j > i) and if the Earley item [A → α.tβ, k] is
an element of the table T [i], then we can add to the table T [j]
the item [A → αt.β, k] if it is not already there. One must
take care to begin a PREDICTOR phase in a T [j] table only if
all Earley phases (PREDICTOR, COMPLETOR and SCANNER)
have already been performed in all tables T [i], i < j.
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2.3 F-Structures computation

As noted in (Kaplan and Bresnan, 1982), if the num-
ber of CF parses (c-structures) grows exponentially
w.r.t. the length of the input, it takes exponential
time to build and check the associated f-structures.
Our experience shows that the CF backbone for large
LFGs may be highly ambiguous (cf. Section 4).
This means that (full) parsing of long sentences
would be intractable. Although in CF parsing an ex-
ponential (or even unbounded) number of parse trees
can be computed and packed in polynomial time in
a shared forest, the same result cannot be achieved
with f-structures for several reasons.7 However, this
intractable behavior (and many others) may well not
occur in practical NL applications, or some tech-
niques (See Section 2.4) may be applied to restrict
this combinatorial explosion.

Efficient computation of unification-based struc-
tures on a shared forest is still a evolving research
field. However, this problem is simplified if struc-
tures are monotonic, as is the case in LFG. In such
a case the support (i.e., the shared forest) does not
need to be modified during the functional equation
resolution. If we adopt a bottom-up left-to-right
traversal strategy in the shared forest, information
in f-structures is cumulated in a synthesized way.
This means that the evaluation of a sub-forest8 is
only performed once, even when this sub-forest is
shared by several parent nodes. In fact, the effect
of a complete functional evaluation is to associate
to each node of the parse forest a set of partial f-
structures which only depends upon the descendants
of that node (excluding its parent or sister nodes).

The result of our LFG parser is the set of (com-
plete and consistent, if possible) main f-structures
(i.e., the f-structures associated to the root of the
shared forest), or, when a partial analysis occurs,

7As an example, it is possible, in LFG, to define f-structures
which encode individual parses. If a polynomial sized shared
forest represents an exponential number of parses, the number
of different f-structures associated to the root of the shared for-
est would be that exponential number of parses. In other words,
there are cases where no computational sharing of f-structures
is possible.

8If the CF backbone G is cyclic (i.e., ∃A s.t. A
+⇒
G

A), the

forest may be a general graph, and not only a DAG. Though our
CF parser supports this case, we exclude it in SXLFG. Of course
this (little) restriction does not mean that cyclic f-structures are
also prohibited. SXLFG does support cyclic f-structures, which
can be an elegant way to represent some linguistic relations.

the sets of (partial) f-structures which are associated
with maximal internal nodes). Such sets of (partial
or not) f-structures could be factored out in a single
f-structure containing disjunctive values, as in XLE.
We decided not to use these complex disjunctive val-
ues, except for some atomic types, but rather to asso-
ciate to any (partial) f-structure a unique identifier:
two identical f-structures will always have the same
identifier throughout the whole process. Experi-
ments (not reported here) show that this strategy is
worth using and that the total number of f-structures
built during a complete parse remains very tractable,
except maybe in some pathological cases.

As in XLE, we use a lazy copying strategy during
unification. When two f-structures are unified, we
only copy their common parts which are needed to
check whether these f-structures are unifiable. This
restricts the quantity of copies between two daughter
nodes to the parts where they interact. Of course,
the original daughter f-structures are left untouched
(and thus can be reused in another context).

2.4 Internal and global disambiguation

Applications of parsing systems often need a dis-
ambiguated result, thus calling for disambiguation
techniques to be applied on the ambiguous output
of parsers such as SXLFG. In our case, this im-
plies developing disambiguation procedures in order
to choose the most likely one(s) amongst the main f-
structures. Afterwards, the shared forest is pruned,
retaining only c-structures that are compatible with
the chosen main f-structure(s).

On the other hand, on any internal node of the for-
est, a possibly huge number of f-structures may be
computed. If nothing is done, these numerous struc-
tures may lead to a combinatorial explosion that pre-
vents parsing from terminating in a reasonable time.
Therefore, it seems sensible to allow the grammar
designer to point out in his or her grammar a set of
non-terminal symbols that have a linguistic property
of (quasi-)saturation, making it possible to apply
on them disambiguation techniques.9 Hence, some
non-terminals of the CF backbone that correspond

9Such an approach is indeed more satisfying than a blind
skimming that stops the full processing of the sentence when-
ever the amount of time or memory spent on a sentence exceeds
a user-specified limit, replacing it by a partial processing that
performs a bounded amount of work on each remaining non-
terminal (Riezler et al., 2002; Kaplan et al., 2004).
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to linguistically saturated phrases may be associ-
ated with an ordered list of disambiguation meth-
ods, each of these non-terminals having its own list.
This allows for swift filtering out on relevant internal
nodes of f-structures that could arguably only lead
to inconsistent and/or incomplete main f-structures,
or that would be discarded later on by applying the
same method on the main f-structures. Concomi-
tantly, this leads to a significant improvement of
parsing times. This view is a generalization of the
classical disambiguation method described above,
since the pruning of f-structures (and incidentally
of the forest itself) is not reserved any more to the
axiom of the CF backbone. We call global disam-
biguation the pruning of the main f-structures, and
internal disambiguation the same process applied
on internal nodes of the forest. It must be noticed
that neither disambiguation type necessarily leads
to a unique f-structure. Disambiguation is merely
a shortcut for partial or total disambiguation.

Disambiguation methods are generally divided
into probabilistic and rule-based techniques. Our
parsing architecture allows for implementing both
kinds of methods, provided the computations can
be performed on f-structures. It allows to asso-
ciate a weight with all f-structures of a given in-
stantiated non-terminal.10 Applying a disambigua-
tion rule consists in eliminating of all f-structures
that are not optimal according to this rule. Each op-
tional rule is applied in a cascading fashion (one can
change the order, or even not apply them at all).

After this disambiguation mechanism on f-
structures, the shared forest (that represent c-
structures) is filtered out so as to correspond exactly
to the f-structure(s) that have been kept. In partic-
ular, if the disambiguation is complete (only one f-
structure has been kept), this filtering yields in gen-
eral a unique c-structure (a tree).

10See (Kinyon, 2000) for an argumentation on the impor-
tance of performing disambiguation on structures such as TAG
derivation trees or LFG f-structures and not constituent(-like)
structures.

3 Techniques for robust parsing

3.1 Error recovery in the CF parser

The detection of an error in the Earley parser11 can
be caused by two different phenomena: the CF back-
bone has not a large enough coverage or the input is
not in its language. Of course, although the parser
cannot make the difference between both causes,
parser and grammar developers must deal with them
differently. In both cases, the parser has to be able
to perform recovery so as to resume parsing as well
as, if possible, to correctly parse valid portions of
incorrect inputs, while preserving a sensible relation
between these valid portions. Dealing with errors
in parsers is a field of research that has been mostly
addressed in the deterministic case and rarely in the
case of general CF parsers.

We have implemented two recovery strategies in
our Earley parser, that are tried one after the other.
The first strategy is called forward recovery, the
second one backward recovery.12 Both generate a
shared forest, as in the regular case.

The mechanism is the following. If, at a certain
point, the parsing is blocked, we then jump forward
a certain amount of terminal symbols so as to be able
to resume parsing. Formally, in an Earley parser
whose input is a DAG, an error is detected when,
whatever the active table T [j], items of the form
I = [A → α.tβ, i] in this table are such that in the
DAG there is no out-transition on t from node j. We
say that a recovery is possible in k on β if in the suf-
fix β = β1Xβ2 there exists a derived phrase from
the symbol X which starts with a terminal symbol
r and if there exists a node k in the DAG, k ≥ j,
with an out-transition on r. If it is the case and if
this possible recovery is selected, we put the item
[A → αtβ1.Xβ2, i] in table T [k]. This will ensure

11Let us recall here that the Earley algorithm, like the GLR
algorithm, has the valid prefix property. This is still true when
the input is a DAG.

12The combination of these two recovery techniques leads to
a more general algorithm than the skipping of the GLR* algo-
rithm (Lavie and Tomita, 1993). Indeed, we can not only skip
terminals, but in fact replace any invalid prefix by a valid pre-
fix (of a right sentential form) with an increased span. In other
words, both terminals and non-terminals may be skipped, in-
serted or changed, following the heuristics described later on.
However, in (Lavie and Tomita, 1993), considering only the
skipping of terminal symbols was fully justified since their aim
was to parse spontaneous speech, full of noise and irrelevances
that surround the meaningful words of the utterance.
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Figure 1: Simplified constituents structure for in-
complete sentence Jean essaye de... (“Jean tries
to...”). The derivation of VP in the empty string is
the result of a forward recovery, and will lead to
an incomplete functional structure (no “pred” in the
sub-structure corresponding to node VP).

at least one valid transition from T [k] on r. The ef-
fect of such a recovery is to assume that between
the nodes j and k in the DAG there is a path that is a
phrase generated by tβ1. We select only nodes k that
are as close as possible to j. This economy principle
allows to skip (without analysis) the smallest pos-
sible number of terminal symbols, and leads pretty
often to no skipping, thus deriving β1 into the empty
string and producing a recovery in k = j. This re-
covery mechanism allows the parsing process to go
forward, hence the name forward recovery.

If this strategy fails, we make use of backward
recovery.13 Instead of trying to apply the current
item, we jump backward over terminal symbols that
have already been recognized by the current item,
until we find its calling items, items on which we
try to perform a forward recovery at turn. In case
of failure, we can go up recursively until we suc-
ceed. Indeed, success is guaranteed, but in the worst
case it is obtained only at the axiom. In this ex-
treme case, the shared forest that is produced is only
a single production that says that the input DAG
is derivable from the axiom. We call this situation
trivial recovery. Formally, let us come back to the
item I = [A → α.tβ, i] of table T [j]. We know
that there exists in table T [i] an item J of the form
[B → γ.Aδ, h] on which we can hazard a forward

13This second strategy could be also used before or even in
parallel with the forward recovery.

recovery in l on δ, where i ≤ j ≤ l. If this fails, we
go on coming back further and further in the past,
until we reach the initial node of the DAG and the
root item [S′ → .S$, 0] of table T [0] ($ is the end-
of-sentence mark and S′ the super-axiom). Since
any input ends with an $ mark, this strategy always
succeeds, leading in the worst case to trivial recov-
ery.

An example of an analysis produced is shown in
Figure 1: in this case, no out-transition on spunct is
available after having recognized prep. Hence a for-
ward recovery is performed that inserts an “empty”
VP after the prep, so as to build a valid parse.

3.2 Inconsistent or partial f-structures

The computation of f-structures fails if and only
if no consistent and complete main f-structure is
found. This occurs because unification constraints
specified by functional equations could not have
been verified or because resulting f-structures are
inconsistent or incomplete. Without entering into
details, inconsistency mostly occurs because sub-
categorization constraints have failed.




pred = ’essayer <subj, de-vcomp>’, v[2..3]

subj =




pred = ’Jean <(subj)>’, pn[1..2]
det = +
hum = +

Aij =
{
R182

9 , R177
26 , R170

28

}




F68

de-vcomp =




pred = ’de <obj|...>’, prep[3..4]

vcomp =

[
subj = []F68

Aij =
{
R162

84

}
2

]
F69

pcase = de
Aij = {}2




F70

number = sg
person = 3
mode = indicative
tense = present
Aij =

{
R130

33 , R119
48 , R134

49

}




Figure 2: Simplified incomplete functional structure
for incomplete sentence Jean essaye de... (“Jean
tries to...”). Sub-structure identifiers are indicated as
subscripts (like F70). In the grammar, a rule can tell
the parser to store the current instantiated production
in the special field Aij of its associated left-hand
side structure. Hence, atoms of the form Rq

p rep-
resent instantiated production, thus allowing to link
sub-structures to non-terminals of the c-structure.
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A first failure leads to a second evaluation of f-
structures on the shared forest, during which consis-
tency and completeness checks are relaxed (an ex-
ample thereof is given in Figure 2). In case of suc-
cess, we obtain inconsistent or incomplete main f-
structures. Of course, this second attempt can also
fail. We then look in the shared forest for a set of
maximal nodes that have f-structures (possibly in-
complete or inconsistent) and whose mother nodes
have no f-structures. They correspond to partial
disjoint analyses. The disambiguation process pre-
sented in section 2.4 applies to all maximal nodes.

3.3 Over-segmentation of unparsable sentences

Despite all these recovery techniques, parsing some-
times fails, and no analysis is produced. This can
occur because a time-out given as parameter has ex-
pired before the end of the process, or because the
Earley parser performed a trivial recovery (because
of the insufficient coverage of the grammar, or be-
cause the input sentence is simply too far from being
correct: grammatical errors, incomplete sentences,
too noisy sentences, . . . ).

For this reason, we developed a layer over SXLFG

that performs an over-segmentation of ungrammat-
ical sentences. The idea is that it happens fre-
quently that portions of the input sentence are ana-
lyzable as sentences, although the full input sentence
is not. Therefore, we split in segments unparsable
sentences (level 1 segmentation); then, if needed,
we split anew unparsable level 1 segments14 (level
2 segmentation), and so on with 5 segmentation lev-
els.15 Such a technique supposes that the grammar
recognizes both chunks (which is linguistically jus-
tified, e.g., in order to parse nominal sentences) and
isolated terminals (which is linguistically less rele-
vant). In a way, it is a generalization of the use of a
FRAGMENT grammar as described in (Riezler et al.,
2002; Kaplan et al., 2004).

14A sentence can be split into two level 1 segments, the first
one being parsable. Then only the second one will be over-
segmented anew into level 2 segments. And only unparsable
level 2 segments will be over-segmented, and so on.

15The last segmentation level segments the input string into
isolated terminals, in order to guarantee that any input is parsed,
and in particular not to abandon parsing on sentences in which
some level 1 or 2 segments are parsable, but in which some parts
are only parsable at level 5.

4 Quantitative results

4.1 Grammar, disambiguation rules, lexicon

To evaluate the SXLFG parser, we used our system
with a grammar for French that is an adaptation of an
LFG grammar originally developed by Clément for
his XLFG system (Clément and Kinyon, 2001). In
its current state, the grammar has a relatively large
coverage. Amongst complex phenomena covered
by this grammar are coordinations (without ellip-
sis), juxtapositions (of sentences or phrases), inter-
rogatives, post-verbal subjects and double subjects
(Pierre dort-il ?), all kinds of verbal kernels (in-
cluding clitics, auxiliaries, passive, negation), com-
pletives (subcategorized or adjuncts), infinitives (in-
cluding raising verbs and all three kinds of control
verbs), relatives or indirect interrogatives, including
when arbitrarily long-distance dependencies are in-
volved. However, comparatives, clefts and elliptical
coordinations are not specifically covered, inter alia.
Moreover, we have realized that the CF backbone is
too ambiguous (see below).

Besides the grammar itself, we developed a set of
disambiguation heuristics. Following on this point
(Clément and Kinyon, 2001), we use a set of rules
that is an adaptation and extension of the three sim-
ple principles they describe and that are applied
on f-structures, rather than a stochastic model.16

Our rules are based on linguistic considerations and
can filter out functional structures associated to a
given node of the forest. This includes two special
rules that eliminate inconsistent and incomplete f-
structures either in all cases or when consistent and
complete structures exist (these rules are not applied
during the second pass, if any). As explained above,
some non-terminals of the CF backbone, that corre-
spond to linguistically saturated phrases, have been
associated with an ordered list of these rules, each of
these non-terminal having its own list.17.

16As sketched before, this could be easily done by defining a
rule that uses a stochastic model to compute a weight for each
f-structure (see e.g., (Miyao and Tsujii, 2002)) and retains only
those with the heaviest weights (Riezler et al., 2002; Kaplan
et al., 2004). However, our experiments show that structural
rules can be discriminative enough to enable efficient parsing,
without the need for statistical data that have to be acquired on
annotated corpora that are rare and costly, in particular if the
considered language is not English.

17Our rules, in their order of application on main f-structures,
i.e. on the axiom of the backbone, are the following (note that
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Figure 3: Repartition of sentences of the test corpus
w.r.t. their length. We show the cardinal of classes
of sentences of length 10i to 10(i + 1) − 1, plotted
with a centered x-coordinate (10(i + 1/2)).

The lexicon we used is the latest version of
Lefff (Lexique des formes fléchies du français18),
which contains morphosyntactic and syntactic infor-
mation for more than 600,000 entries corresponding
to approximately 400,000 different tokens (words or
components of multi-word units).

The purpose of this paper is not however to val-
idate the grammar and these disambiguation rules,
since the grammar has only the role of enabling eval-
uation of parsing techniques developed in the current
work.

4.2 Results

As for any parser, the evaluation of SXLFG has been
carried out by testing it in a real-life situation. We
used the previously cited grammar on a raw journal-
istic corpus of 3293 sentences, not filtered and pro-

when used on other non-terminal symbols than the axiom, some
rules may not be applied, or in a different order):
Rule 1: Filter out inconsistent and incomplete structures, if

there is at least one consistent and complete structure.
Rule 2: Prefer analyses that maximize the sum of the weights

of involved lexemes; amongst lexical entries that have a
weight higher than normal are multi-word units.

Rule 3: Prefer nominal groups with a determiner.
Rule 4: Prefer arguments to modifiers, and auxiliary-

participle relations to arguments (the computation is
performed recursively on all (sub-)structures).

Rule 5: Prefer closer arguments (same remark).
Rule 6: Prefer deeper structures.
Rule 7: Order structures according to the mode of verbs (we

recursively prefer structures with indicative verbs, sub-
junctive verbs, and so on).

Rule 8: Order according to the category of adverb governors.
Rule 9: Choose one analysis at random (to guarantee that the

output is a unique analysis).

18Lexicon of French inflected forms
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Figure 4: CFG ambiguity (medians are computed on
classes of sentences of length 10i to 10(i+1)−1 and
plotted with a centered x-coordinate (10(i + 1/2)).

cessed by the SXPipe pre-parsing system described
in (Sagot and Boullier, 2005). The repartition of sen-
tences w.r.t. their length is plotted in Figure 3.

In all Figures, the x-coordinate is bounded so as
to show results only on statistically significant data,
although we parse all sentences, the longest one be-
ing of length 156.

However, in order to evaluate the performance of
our parser, we had to get rid of, as much as possible,
the influence of the grammar and the corpus in the
quantitative results. Indeed, the performance of the
SXLFG parser does not depend on the quality and
the ambiguity of the grammar, which is an input for
SXLFG. On the contrary, our aim is to develop a
parser which is as efficient and robust as possible
given the input grammar, and in spite of its (possibly
huge) ambiguity and of its (possibly poor) intrinsic
coverage.

4.2.1 CFG parser evaluation

Therefore, Figure 4 demonstrates the level of am-
biguity of the CF backbone by showing the median
number of CF parses given the number of transitions
in the lattice representing the sentence. Although
the number of trees is excessively high, Figure 5
shows the efficiency of our CF parser19 (the max-
imum number of trees reached in our corpus is as
high as 9.12 1038 for a sentence of length 140, which

19Our experiments have been performed on a AMD Athlon
2100+ (1.7 GHz).
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Figure 5: CF parsing time (same remark as for Fig. 4).

is parsed in only 0.75 s). Moreover, the error re-
covery algorithms described in section 3.1 are suc-
cessful in most cases where the CF backbone does
not recognize the input sentences: out of the 3292
sentences, 364 are not recognized (11.1%), and the
parser proposes a non-trivial recovery for all but 13
(96.3%). We shall see later the relevance of the pro-
posed recovered forests. We should however notice
that the ambiguity of forests is significantly higher
in case of error recovery.

4.2.2 Evaluation of f-structures computation

Although the CF backbone is massively ambigu-
ous, results show that our f-structures evaluation
system is pretty efficient. Indeed, with a timeout of
20 seconds, it takes only 6 301 seconds to parse the
whole corpus, and only 5, 7% of sentences reach the
timeout before producing a parse. These results can
be compared to the result with the same grammar on
the same corpus, but without internal disambigua-
tion (see 2.4), which is 30 490 seconds and 41.2%
of sentences reaching the timeout.

The coverage of the grammar on our corpus with
internal disambiguation is 57.6%, the coverage be-
ing defined as the proportion of sentences for which
a consistent and complete main f-structure is output
by the parser. This includes cases where the sen-
tence was agrammatical w.r.t. the CF backbone, but

for which the forest produced by the error recov-
ery techniques made it possible to compute a consis-
tent and complete main f-structure (this concerns 86
sentences, i.e., 2.6% of all sentences, and 24.5% of
all agrammatical sentences w.r.t. the backbone; this
shows that CF error recovery gives relevant results).

The comparison with the results with the same
grammar but without internal disambiguation is in-
teresting (see Table 1): in this case, the high propor-
tion of sentences that reach the timeout before being
parsed leads to a coverage as low as 40.2%. Amid
the sentences covered by such a system, 94.6% are
also covered by the full-featured parser (with inter-
nal disambiguation), which means that only 72 sen-
tences covered by the grammar are lost because of
the internal disambiguation. This should be com-
pared with the 645 sentences that are not parsed be-
cause of the timeout when internal disambiguation
is disabled, but that are covered by the grammar and
correctly parsed if internal disambiguation is used:
the risk that is taken by pruning f-structures during
the parsing process is much smaller than the benefit
it gives, both in terms of coverage and parsing time.

Since we do not want the ambiguity of the CF
backbone to influence our results, Figure 6 plots the
total parsing time, including the evaluation of fea-
tures structures, against the number of trees pro-
duced by the CF parser.
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Results With internal Without internal
disambiguation disambiguation

Total number of sentences 3293
Recognized by the backbone 2929 88.9%
CF parsing with non-trivial recovery 351 10.6%
CF parsing with trivial recovery 13 0.4%
Consistent and complete main f-structure 1896 57.6% 1323 40.2%
Inconsistent and incomplete main f-structure 734 22.3% 316 9.6%
Partial f-structures 455 13.8% 278 8.4%
No f-structure 6 0.2% 6 0.2%
No result (trivial recovery) 13 0.4% 13 0.4%
Timeout (20 s) 189 5.7% 1357 40.2%

Table 1: Coverage results with and without internal ranking, with the same grammar and corpus.

 10

 100

 1000

 10000

 1  100000  1e+10  1e+15  1e+20

T
ot

al
 p

ar
si

ng
 ti

m
e 

(m
ill

is
ec

on
ds

)

Number of trees in the forest

Median total parsing time
Total parsing time at percentile rank 90
Total parsing time at percentile rank 10

Figure 6: Total parsing time w.r.t. the number of trees in the forest produced by the CF backbone (medians
are computed on classes of sentences whose number of trees lies between 102i and 102i+2 − 1 and plotted
with a centered x-coordinate (102i+1)).

9



5 Conclusion

This paper shows several important results.
It shows that wide-coverage unification-based

grammars can be used to define natural languages
and that their parsers can, in practice, analyze raw
text.

It shows techniques that allow to compute fea-
ture structures efficiently on a massively ambiguous
shared forest.

It also shows that error recovery is worth doing
both at the phrasal and functional levels. We have
shown that a non-negligible portion of input texts
that are not in the backbone language can neverthe-
less, after CF error recovery, be qualified as valid
sentences for the functional level.

Moreover, the various robustness techniques that
are applied at the functional level allow to gather
(partial) useful information. Note that these ro-
bust techniques, which do not alter the overall ef-
ficiency of SXLFG, apply in the two cases of incom-
plete grammar (lack of covering) and agrammati-
cal phrases (w.r.t. the current definition), though it
seems to be more effective in this latter case.
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Abstract

We describe four different parsing algorithms
for Linear Context-Free Rewriting Systems
(Vijay-Shanker et al., 1987). The algorithms
are described as deduction systems, and possi-
ble optimizations are discussed.

The only parsing algorithms presented forlinear context-
free rewriting systems(LCFRS; Vijay-Shanker et al.,
1987) and the equivalent formalismmultiple context-free
grammar(MCFG; Seki et al., 1991) are extensions of the
CKY algorithm (Younger, 1967), more designed for their
theoretical interest, and not for practical purposes. The
reason for this could be that there are not many imple-
mentations of these grammar formalisms. However, since
a very important subclass of the Grammatical Framework
(Ranta, 2004) is equivalent to LCFRS/MCFG (Ljunglöf,
2004a; Ljunglöf, 2004b), there is a need for practical
parsing algorithms.

In this paper we describe four different parsing algo-
rithms for Linear Context-Free Rewriting Systems. The
algorithms are described as deduction systems, and pos-
sible optimizations are discussed.

1 Introductory definitions

A record is a structureΓ = {r1 = a1; . . . ; rn = an},
where allri are distinct. That this can be seen as a set
of feature-value pairs. This means that we can define a
simple version ofrecord unificationΓ1 t Γ2 as the union
Γ1∪Γ2, provided that there is nor such thatΓ1.r 6= Γ2.r.

We sometimes denote a sequenceX1, . . . , Xn by the
more compact~X. To update theith record in a list of
records, we write~Γ[i := Γ]. To substitute a variable
Bk for a recordΓk in any data structureΓ, we write
Γ[Bk/Γk].

1.1 Decorated Context-Free Grammars

The context-free approximation described in section 4
uses a form of CFG with decorated rules of the form

f : A → α, wheref is the name of the rule, andα is a
sequence of terminals and categories subscripted with in-
formation needed for post-processing of the context-free
parse result. In all other respects a decorated CFG can be
seen as a straight-forward CFG.

1.2 Linear Context-Free Rewriting Systems

A linear context-free rewriting system(LCFRS; Vijay-
Shanker et al., 1987) is a linear, non-erasingmultiple
context-free grammar(MCFG; Seki et al., 1991). An
MCFG rule is written1

A→ f [B1 . . . Bδ] := { r1 = α1; . . . ; rn = αn }

whereA andBi are categories,f is the name of the rule,
ri are record labels andαi are sequences of terminals and
argument projections of the formBi.r. The language
L(A) of a categoryA is a set of string records, and is
defined recursively as

L(A) = { Φ[B1/Γ1, . . . , Bδ/Γδ] |
A→ f [B1 . . . Bδ] := Φ,
Γ1 ∈ L(B1), . . . , Γδ ∈ L(Bδ) }

It is the possibility of discontinuous constituents that
makes LCFRS/MCFG more expressive than context-free
grammars. If the grammar only consists of single-label
records, it generates a context-free language.

Example A small example grammar is shown in figure 1,
and generates the language

L(S) = { s shm | s ∈ (a ∪ b)∗ }

whereshm is the homomorphic mapping such that
eacha in s is translated toc, and eachb is translated
to d. Examples of generated strings areac, abcd and
bbaddc. However, neitherabc nor abcdabcd will be

1We borrow the idea of equating argument categories and
variables from Nakanishi et al. (1997) , but instead of tuples we
use the equivalent notion of records for the linearizations.
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Figure 1: An example grammar describing the language
{ s shm | s ∈ (a ∪ b)∗ }

S → f [A] := { s = A.p A.q }
A→ g[A1 A2] := { p = A1.p A2.p; q = A1.q A2.q }

A→ ac[ ] := { p = a; q = c }
A→ bd[ ] := { p = b; q = d }

generated. The language is not context-free since
it contains a combination of multiple and crossed
agreement with duplication.

If there is at most one occurrence of each possible pro-
jectionAi.r in a linearization record, the MCFG rule is
linear. If all rules are linear the grammar is linear. A rule
is erasingif there are argument projections that have no
realization in the linearization. A grammar is erasing if
it contains an erasing rule. It is possible to transform an
erasing grammar to non-erasing form (Seki et al., 1991).

Example The example grammar is both linear and non-
erasing. However, given that grammar, the rule

E → e[A] := { r1 = A.p; r2 = A.p }

is both non-linear (sinceA.p occurs more than once)
and erasing (since it does not mentionA.q).

1.3 Ranges

Given an input stringw, a rangeρ is a pair of indices,
(i, j) where0 ≤ i ≤ j ≤ |w| (Boullier, 2000). The en-
tire stringw = w1 . . . wn spans the range(0, n). The
word wi spans the range(i − 1, i) and the substring
wi+1, . . . , wj spans the range(i, j). A range with identi-
cal indices,(i, i), is called an empty range and spans the
empty string.

A record containing label-range pairs,

Γ = { r1 = ρ1, . . . , rn = ρn }

is called arange record. Given a rangeρ = (i, j), the
ceiling of ρ returns an empty range for the right index,
dρe = (j, j); and thefloor of ρ does the same for the
left index bρc = (i, i). Concatenation of two ranges is
non-deterministic,

(i, j) · (j′, k) = { (i, k) | j = j′ }

.

1.3.1 Range restriction
In order to retrieve the ranges of any substrings in a

sentencew = w1 . . . wn we definerange restrictionof s
with respect tow as〈s〉w = { (i, j) | s = wi+1 . . . wj },
i.e. the set of all occurrences ofs in w. If w is understood
from the context we simply write〈s〉.

Range restriction of a linearization recordΦ is written
〈Φ〉, which is a set of records, where every terminal token
s is replaced by a range from〈s〉. The range restriction of
two terminals next to each other fails if range concatena-
tion fails for the resulting ranges. Any unbound variables
in Φ are unaffected by range restriction.

Example Given the stringw = abba, range restricting
the terminala yields

〈a〉w = { (0, 1), (3, 4) }

Furthermore,

〈aA.r a bB.q〉w =
{ (0, 1)A.r (0, 2)B.q, (3, 4)A.r (0, 2)B.q }

The other possible solutions fail since they cannot
be range concatenated.

2 Parsing as deduction

The idea withparsing as deduction(Shieber et al., 1995)
is to deduce parse items by inference rules. A parse item
is a representation of a piece of information that the pars-
ing algorithm has acquired. An inference rule is written

γ1 . . . γn

C

γ

whereγ is the consequence of the antecedentsγ1 . . . γn,
given that the side conditions inC hold.

2.1 Parsing decorated CFG

Decorated CFG can be parsed in a similar way as stan-
dard CFG. For our purposes it suffices to say that the al-
gorithm returns items of the form,

[f : A/ρ→ B1/ρ1 . . . Bn/ρn • ]

saying thatA spans the rangeρ, and each daughterBi

spansρi.
The standard inference rulecombinemight look like

this for decorated CFG:
Combine

[f : A/ρ→ α •Bx β]
[g : B/ρ′ → . . . • ]
ρ′′ ∈ ρ · ρ′

[f : A/ρ→ α Bx/ρ′′ • β]

Note that the subscriptx in Bx is the decoration that will
only be used in post-processing.
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3 The Naïve algorithm

Seki et al. (1991) give an algorithm for MCFG, which can
be seen as an extension of the CKY algorithm (Younger,
1967). The problem with that algorithm is that it has to
find items for all daughters at the same time. We modify
this basic algorithm to be able to find one daughter at the
time.

There are two kinds of items. Apassiveitem [A; Γ]
has the meaning that the categoryA has been found span-
ning the range recordΓ. An active item for the rule
A→ f [ ~B ~B′] := Ψ has the form

[A→ f [ ~B • ~B′]; Φ; ~Γ]

in which the categories to the left of the dot,~B, have been
found with the linearizations in the list of range records
~Γ. Φ is the result of substituting the projections inΨ with
ranges for the categories found in~B.

3.1 Inference rules

There are three inference rules, Predict, Combine and
Convert.

Predict

A→ f [ ~B] := Ψ
Φ ∈ 〈Ψ〉

[A→ f [ • ~B]; Φ; ]

Prediction gives an item for every rule in the gram-
mar, where the range restrictionΦ is what has been
found from the beginning. The list of daughters is
empty since none of the daughters in~B have been
found yet.

Combine

[A→ f [ ~B •Bk
~B′]; Φ; ~Γ]

[Bk; Γk]
Φ′ ∈ Φ[Bk/Γk]

[A→ f [ ~B Bk • ~B′]; Φ′; ~Γ, Γk]

An active item looking forBk and a passive item
that has foundBk can be combined into a new active
item. In the new item we substituteBk for Γk in
the linearization record. We also addΓk to the new
item’s list of daughters.

Convert

[A→ f [ ~B • ]; Φ; ~Γ]
Γ ≡ Φ

[A; Γ]

Every fully instantiated active item is converted into
a passive item. Since the linearization recordΦ
is fully instantiated, it is equivalent to the range
recordΓ.

Figure 2: The example grammar converted to a decorated
CFG

f : (S.s) → (A.p) (A.q)
g : (A.p) → (A.p)1 (A.p)2
g : (A.q) → (A.q)1 (A.q)2
ac : (A.p) → a
ac : (A.q) → b
bd : (A.p) → c
bd : (A.q) → d

The subscripted numbers are for distinguishing the two
categories from each other, since they are equivalent.
HereA.q is a context-free category of its own, not a
record projection.

4 The Approximative algorithm

Parsing is performed in two steps in the approximative
algorithm. First we parse the sentence using a context-
free approximation. Then the resulting context-free chart
is recovered to a LCFRS chart.

The LCFRS is converted by creating a decorated
context-free rule for every row in a linearization record.
Thus, the rule

A→ f [ ~B] := { r1 = α1; . . . ; rn = αn }

will give n context-free rulesf : A.ri → αi. The ex-
ample grammar from figure 1 is converted to a decorated
CFG in figure 2.

Parsing is now initiated by a context-free parsing algo-
rithm returning decorated items as in section 2.1. Since
the categories of the decorated grammar are projections
of LCFRS categories, the final items will be of the form

[f : (A.r)/ρ→ . . . (B.r′)x/ρ
′ . . . • ]

Since the decorated CFG is over-generating, the re-
turned parse chart is unsound. We therefore need to re-
trieve the items from the decorated CFG parse chart and
check them against the LCFRS to get the discontinuous
constituents and mark them for validity.

The initial parse itemsare of the form,

[A→ f [ ~B]; r = ρ; ~Γ]

where~Γ is extracted from a corresponding decorated item
[f : (A.r)/ρ → β], by partitioning the daughters inβ
such thatΓi = { r = ρ | (B.r)i/ρ ∈ β }. In other words,
Γi will consist of allr = ρ such thatB.r is subscripted
by i in the decorated item.

Example Givenβ = (A.p)2/ρ′ (B.q)1/ρ′′ (A.q)2/ρ′′′,
we get the two range recordsΓ1 = {q = ρ′′} and
Γ2 = {p = ρ′; q = ρ′′′}.
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Apart from the initial items, we use three kinds of parse
items. From the initial parse items we first buildLCFRS
items, of the form

[A→ f [ ~B]; Γ • ri . . . rn; ~Γ]

whereri . . . rn is a list of labels,~Γ is a list of | ~B| range
records, andΓ is a range record for the labelsr1 . . . ri−1.

In order to recover the chart we usemark items

[A→ f [ ~B • ~B′]; Γ; ~Γ • ~Γ′]

The idea is that~Γ has been verified as range records span-
ning the daughters~B. When all daughters have been ver-
ified, a mark item is converted to apassive item[A; Γ].

4.1 Inference rules

There are five inference rules, Pre-Predict, Pre-Combine,
Mark-Predict, Mark-Combine and Convert.

Pre-Predict

A→ f [ ~B] := {r1 = α1; . . . ; rn = αn}
~Γδ = { }, . . . , { }

[A→ f [ ~B]; • r1 . . . rn; ~Γδ]

Every ruleA → f [ ~B] is predicted as an LCFRS
item. Since the context-free items contain informa-
tion aboutα1 . . . αn, we only need to use the labels
r1, . . . , rn. ~Γδ is a list of| ~B| empty range records.

Pre-Combine

[R; Γ • r ri . . . rn; ~Γ]
[R; r = ρ; ~Γ′]
~Γ′′ ∈ ~Γ t ~Γ′

[R; {Γ; r = ρ} • ri . . . rn; ~Γ′′]

If there is an initial parse item for the ruleR with la-
bel r, we can combine it with an LCFRS item look-
ing for r, provided the daughters’ range records can
be unified.

Mark-Predict

[A→ [ ~B]; Γ • ; ~Γ]

[A→ [ • ~B]; Γ; • ~Γ]

When all record labels have been found, we can start
to check if the items have been derived in a valid way
by marking the daughters’ range records for correct-
ness.

Mark-Combine

[A→ f [ ~B •Bi
~B′]; Γ; ~Γ • Γi

~Γ′]
[Bi; Γi]

[A→ f [ ~B Bi • ~B′]; Γ; ~Γ Γi • ~Γ′]

RecordΓi is correct if there is a correct passive item
for categoryBi that has foundΓi.

Convert

[A→ f [ ~B • ]; Γ; ~Γ • ]
[A; Γ]

An item that has marked all daughters as correct is
converted to a passive item.

5 The Active algorithm

The active algorithm parses without using any context-
free approximation. Compared to the Naïve algorithm
the dot is used to traverse the linearization record of a
rule instead of the categories in the right-hand side.

For this algorithm we use a special kind of range,
ρε, which denotes simultaneously all empty ranges(i, i).
Range restricting the empty string gives〈ε〉 = ρε. Con-
catenation is defined asρ·ρε = ρε·ρ = ρ. Both the ceiling
and the floor ofρε are identities,dρεe = bρεc = ρε.

There are two kinds of items.Passive items[A; Γ] say
that we have found categoryA inside the range recordΓ.
An active itemfor the rule

A→ f [ ~B] := {Φ; r = αβ; Ψ}

is of the form

[A→ f [ ~B]; Γ, r = ρ • β, Ψ; ~Γ]

whereΓ is a range record corresponding to the lineariza-
tion rows in Φ andα has been recognized spanningρ.
We are still looking for the rest of the row,β, and the re-
maining linearization rowsΨ. ~Γ is a list of range records
containing information about the daughters~B.

5.1 Inference rules

There are five inference rules, Predict, Complete, Scan,
Combine and Convert.

Predict

A→ f [ ~B] := {r = α; Φ}
~Γδ = { }, . . . , { }

[A→ f [ ~B]; {}, r = ρε • α, Φ; ~Γδ]

For every rule in the grammar, predict a correspond-
ing item that has found the empty range.~Γδ is a list
of | ~B| empty range records since nothing has been
found yet.

Complete

[R; Γ, r = ρ • ε, {r′ = α; Φ}; ~Γ]

[R; {Γ; r = ρ}, r′ = ρε • α,Φ; ~Γ]

When an item has found an entire linearization row
we continue with the next row by starting it off with
the empty range.
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Scan

[R; Γ, r = ρ • sα, Φ; ~Γ]
ρ′ ∈ ρ · 〈s〉
[R; Γ, r = ρ′ • α, Φ; ~Γ]

When the next symbol to read is a terminal, its range
restriction is concatenated with the range for what
the row has found so far.

Combine

[A→ f [ ~B]; Γ, r = ρ •Bi.r
′ α, Φ; ~Γ]

[Bi; Γ′]
ρ′ ∈ ρ · Γ′.r′

Γi ⊆ Γ′

[A→ f [ ~B]; Γ, r = ρ′ • α, Φ; ~Γ[i := Γ′]]

If the next thing to find is a projection onBi, and
there is a passive item whereBi is the category,
whereΓ′ is consistent withΓi, we can move the dot
past the projection.Γi is updated withΓ′, since it
might contain more information about theith daugh-
ter.

Convert

[A→ f [ ~B]; Γ, r = ρ • ε, {}; ~Γ]
[A; {Γ; r = ρ}]

An active item that has fully recognized all its lin-
earization rows is converted to a passive item.

6 The Incremental algorithm

An incremental algorithm reads one token at the time and
calculates all possible consequences of the token before
the next token is read2. The Active algorithm as described
above is not incremental, since we do not know in which
order the linearization rows of a rule are recognized. To
be able to parse incrementally, we have to treat the lin-
earization records as sets of feature-value pairs, instead
of a sequence.

The items for a ruleA → f [ ~B] := Φ have the same
form as in the Active algorithm:

[A→ f [ ~B]; Γ, r = ρ • β, Ψ; ~Γ]

However, the order between the linearization rows does
not have to be the same as inΦ. Note that in this algo-
rithm we do not use passive items. Also note that since
we always know where in the input we are, we cannot
make use of a distinguishedε-range. Another conse-
quence of knowing the current input position is that there
are fewer possible matches for the Combine rule.

2See e.g. the ACL 2004 workshop “Incremental Parsing:
Bringing Engineering and Cognition Together”.

6.1 Inference rules

There are four inference rules, Predict, Complete, Scan
and Combine.

Predict

A→ f [ ~B] := {Φ; r = α; Ψ}
0 ≤ k ≤ |w|

[A→ f [ ~B]; {}, r = (k, k) • α, {Φ; Ψ}; ~Γδ]

An item is predicted for every linearization rowr
and every input positionk. ~Γδ is a list of | ~B| empty
range records.

Complete

[R; Γ, r = ρ • ε, {Φ; r′ = α; Ψ}; ~Γ]
dρe ≤ k ≤ |w|

[R; {Γ; r = ρ}, r′ = (k, k) • α, {Φ; Ψ}; ~Γ]

Whenever a linearization rowr is fully traversed, we
predict an item for every remaining linearization row
r′ and every remaining input positionk.

Scan

[R; Γ, r = ρ • sα, Φ; ~Γ]
ρ′ ∈ ρ · 〈s〉
[R; Γ, r = ρ′ • α, Φ; ~Γ]

If the next symbol in the linearization row is a termi-
nal, its range restriction is concatenated to the range
for the partially recognized row.

Combine

[R; Γ, r = ρ •Bi.r
′ α, Φ; ~Γ]

[Bi → . . . ; Γ′, r′ = ρ′ • ε, . . . ; . . .]
ρ′′ ∈ ρ · ρ′
Γi ⊆ {Γ′; r′ = ρ′}

[R; Γ, r = ρ′′ • α, Φ; ~Γ[i := {Γ′; r′ = ρ′}]]

If the next item is a record projectionBi.r
′, and

there is an item forBi which has foundr′, then
move the dot forward. The information inΓi must
be consistent with the information found for theBi

item,{Γ′; r′ = ρ′}.

7 Discussion

We have presented four different parsing algorithms for
LCFRS/MCFG. The algorithms are described as deduc-
tion systems, and in this final section we discuss some
possible optimizations, and complexity issues.
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7.1 Different prediction strategies

The Predict rule in the above described algorithms is very
crude, predicting an item for each rule in the grammar
(for the Incremental algorithm even for each input po-
sition). A similar context-free prediction rule is called
bottom-up Earleyby Sikkel and Nijholt (1997). Such
crude predictions are only intended for educational pur-
poses, since they lead to lots of uninteresting items, and
waste of computing power. For practical purposes there
are two standard context-free prediction strategies, top-
down and bottom-up (see e.g. Wirén (1992)) and they can
be adapted to the algorithms presented in this paper.

The main idea is that an item for the ruleA → f [ ~B]
with the linearization rowr = α is only predicted if. . .

(Top-down prediction) . . . there is another item looking
for A.r.

(Bottom-up prediction) . . . there is an passive item that
has found the first symbol inα.

For a more detailed description of these prediction strate-
gies, see Ljunglöf (2004a).

7.2 Efficiency and complexity of the algorithms

The theoretical time complexity for these algorithms is
not better than what has been presented earlier.3 The
complexity arguments are similar and the reader is re-
ferred to Seki et al. (1991).

However, theoretical time complexity does not say
much about practical performance, as is already clear
from context-free parsing, where the theoretical time
complexity has remained the same ever since the first
publications (Kasami, 1965; Younger, 1967). There are
two main ways of improving the efficiency of existing
algorithms, which can be calledrefinementandfiltering
(Sikkel and Nijholt, 1997). First, one wants to be able
to locate existing parse items efficiently, e.g. by indexing
some properties in a hash table. This is often done by
refining the parse items or inference rules, increasing the
number of items or deduction steps. Second, it is desir-
able to reduce the number of parse items, which can be
done byfiltering out redundant parts of an algorithm.

The algorithms presented in this paper can all be seen
as refinements and filterings of the basic algorithm of
Seki et al. (1991):

The naïve algorithm is a refinement of the basic algo-
rithm, since single items and deduction steps are de-
composed into several different items and smaller
deduction steps.

3Nakanishi et al. (1997) reduce the parsing problem to
boolean matrix multiplication, but this can be considered a
purely theoretical result.

The approximative algorithm is both a refinement and
a filtering of the naïve algorithm; a refinement since
the inference rules Pre-Predict and Pre-Combine are
added, and a filtering since there will hopefully be
less items for Mark-Predict and Mark-Combine to
take care of.

The active algorithm is a refinement of the naïve algo-
rithm, since the Combine rule is divided into the
rules Complete, Scan and Combine.

The incremental algorithm is finally a refinement of
the active algorithm, since Predict and Complete
can select from any possible remaining linearization
row, and not just the following.

Furthermore, the different prediction strategies (top-
down and bottom-up), become filterings of the algo-
rithms, since they reduce the number of parse items.

7.3 Implementing and testing the algorithms

The algorithms presented in this paper have been im-
plemented in the programming language Haskell, for in-
clusion in the Grammatical Framework system (Ranta,
2004). These implementations are described by Bur-
den (2005). We have also started to implement a selection
of the algorithms in the programming language Prolog.

Preliminary results suggest that the Active algorithm
with bottom-up prediction is a good candidate for parsing
grammars written in the Grammatical Framework. For
a normal sentence in the English resource grammar the
speedup is about 20 times when compared to context-free
parsing and filtering of the parse trees. In the future we
plan to test the different algorithms more extensively.
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Abstract

Parsing in type logical grammars amounts
to theorem proving in a substructural
logic. This paper takes the proof net
presentation of Lambek’s associative cal-
culus as a case study. It introduces
switch graphs for online maintenance
of the Danos-Regnier acyclicity condi-
tion on proof nets. Early detection of
Danos-Regnier acyclicity violations sup-
ports early failure in shift-reduce parsers.
Normalized switch graphs represent the
combinatorial potential of a set of anal-
yses derived from lexical and structural
ambiguities. Packing these subanalyses
and memoizing the results leads directly
to a dynamic programming algorithm for
Lambek grammars.

1 Introduction

Following Montague (1970), we take the goal
of a theory of grammar to be that of assign-
ing semantic terms to linguistic expressions.
Type logical grammar is a paradigm for devel-
oping grammatical theories based on a strong
notion of typing for natural language expres-
sions. Specifically, each linguistic expression is
assigned a syntactic type and a semantic term.
For instance, the expression “John read the book”
of English might be assigned a syntactic type
S and the semantic termread(the(book))(j),

∗Supported by CICYT project TIC2002–04019–C03–01.

the expression “book that John read” the term
that(λx.read(x)(j))(book) and type CN, and
“person that read the book” the typeCN and term
that(λy.read(the(book))(y))(person).

2 Lambek’s Associative Calculus

Lambek’s associative calculusL (Lambek 1958)
contains three connectives: concatenation, left divi-
sion, and right division. Logically, concatenation is
conjunction and the divisions are directed implica-
tions. Algebraically, concatenation is a free semi-
group product and the divisions its left and right
residuals. Viewed as a purely syntactic formalism,
L assigns syntactic types to linguistic expressions
modeled as sequences of tokens. From a stipulated
lexical assignment of expressions to syntactic types,
further assignments of expressions to types are de-
rived through purely logical inference, with the logic
representing a sound and complete axiomatization
and inference system over the algebraic structure
(Pentus 1995).

L appears near the bottom of a hierarchy of
substructural logics obtained by dropping structural
rules: Lambek proofs are valid as multiplicative
intuitionistic linear proofs (restoring permutation)
which are valid as conjuntive and implicative rele-
vance proofs (restoring contraction) which are valid
as conjuntive and implicative intuitionistic proofs
(restoring weakening). In type logical grammars,
lexical entries are associated with syntactic types
and intuitionistic (in fact probably relevant) proofs
as semantic representations, notated as terms of the
simply typed λ-calculus with product, under the
Curry-Howard correspondence. The semantics of a
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derived expression is the result of substituting the
lexical semantics into the reading of the derivation
as an intuitionistic proof.

2.1 Syntactic and Semantic Types

The set ofsyntactic types is defined recursively on
the basis of a setSynAtom of atomic syntactic types.
The full setSynTyp of syntactic types is the least
set containing the atomic syntactic typesSynAtom
and closed under the formation of products (SynTyp·
SynTyp), left divisions (SynTyp\SynTyp), and right
divisions (SynTyp/SynTyp). The two division, or
“slash”, types,A/B, readA over B, andB\A, readB
under A, refine the semantic function types by pro-
viding a directionality of the argument with respect
to the function. A linguistic expression assigned to
typeA/B combines with an expression of typeB on
its right side to produce an expression of typeA. An
expression of typeB\A combines with an expression
of syntactic typeB on its left to produce an expres-
sion of typeA. The product syntactic typeA ·B is as-
signed to the concatenation of an expression of type
A to an expression of typeB. The distinguishing
feature of Lambek calculus with respect to the ear-
lier categorial grammar of Bar-Hillel is that as well
as the familar cancelation (modus ponens) rules, it
admits also a form of the deduction theorem: if the
result of concatenating an expressione to eachB re-
sults in an expression of typeA, then it follows that
e is assigned to syntactic typeA/B.

Semantic representations in Lambek type logical
grammar are simply typedλ-terms with product. We
assume a setSemAtom of atomic semantic types,
which generate the usualfunction types σ → τ and
product types σ × τ. Terms are grounded on an in-
finite set of distinctvariables Varσ, along with a set
of distinct contants Conσ for each typeσ. We as-
sume the usualλ-terms consisting of variables, con-
stants,function applications α(β), function abstrac-
tions λx.α, pairs 〈α, β〉 and projections from pairs
π1δ andπ2δ onto the first and second element of the
pair respectively. We say that a termα is closed if
and only if it contains no free variables.

A type map consists of a mappingtyp :
SynAtom → SemTyp. That is, each atomic syn-
tactic typeA ∈ AtomCat is assigned to a (not neces-
sarily atomic) semantic typetyp(A) ∈ SemTyp. Se-
mantic types are assigned to complex syntactic types

as follows:
typ(A · B) = typ(A) × typ(B) [Product]

typ(A/B) = typ(B)→ typ(A) [Right Division]

typ(B\A) = typ(B)→ typ(A) [Left Division]

We will often writeα : A whereα is aλ-term of type
typ(A).

2.2 Linguistic Expressions and the Lexicon

In the Lambek calculus, linguistic expressions are
modeled by sequences of atomic symbols. These
atomic symbols are drawn from a finite setTok of
tokens. The full set of linguisticexpressions Tok∗

is the set of sequences of tokens. For the sake of
this short version of the paper we admit the empty
sequence; we will address its exclusion (as in the
original definition ofL) in a longer version.

The compositional assignment of semantic terms
to linguistic expressions is grounded by a finite set
of assignments of terms and types to expressions.
A lexicon is a finite relationLex ⊆ Tok∗ × Term ×
SynTyp, where all〈w, α, A〉 ∈ Lex are such that the
semantic termα is of the appropriate type for the
syntactic typeA. We assume that the only terms
used in the lexicon arerelevant, in the sense of rele-
vance logic, in not containing vacuous abstractions.
Note that the set of atomic semantic types, atomic
syntactic types and the semantic type mapping are
assumed as part of the definition of a lexicon. Type
logical grammar is an example of a fully lexicalized
grammar formalism in that the lexicon is the only
locus of language-specific information.

2.3 Proof Nets

A sequent Γ ⇒ α : A is formed from anantecedent
Γ consisting of a (possibly empty) sequence ofλ-
term and syntactic type pairs, and aconsequent pair
α : A, where the terms are of the appropritate type
for the types. Following Roorda (1991), we define
theoremhood with Girard-style proof nets (Girard
1987), a geometric alternative to Lambek’s Gentzen-
style calculus (Lambek 1958).

Proof nets form a graph over nodes labeled by
polar types, where apolar type is the combination
of a syntactic type and one of twopolarities, input
(negative) andoutput (positive). We writeA• for the
input polar type, which corresponds to antecedent
types and is thus logicaly negative. We writeA◦ for
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theoutput polar type, which is logically positive and
corresponds to a consequent type. Aliteral is a po-
lar type with an atomic syntactic type. WhereA is
an atomic syntactic type, the literalsA• andA◦ are
said to becomplementary.

Each polar type defines an ordered binary tree
rooted at that polar type, known as apolar tree. For a
literal, the polar tree is a single node labeled by that
literal. For polar types with complex syntactic types,
the polar tree is rooted at the polar type and unfolded
upwards based on connective and polarity according
to the solid lines in Figure 1, which includes also
other annotation. Examples for some linguistically
motivated types are shown in Figure 2.

The solid edges of the graphs are the edges of
the logical links. Each unfolding is labeled with a
multiplicative linear logic connective, eithermulti-
plicative conjunction (⊗) or multiplicative disjunc-
tion (℘). This derives from the logical interpretation
of the polar type trees as formula trees in multiplica-
tive linear logic. Unfolding the Lambek connectives
to their linear counterparts, (A/B)• and (B\A)• un-
fold to A•℘B◦; (A/B)◦ and (B\A)◦ unfold toA◦⊗B•;
(A · B)• unfolds toA• ⊗ B•; and (A · B)◦ unfolds to
A◦℘B◦. The type unfoldings correspond to the clas-
sical equivalences between (φ → ψ) and (¬φ ∨ ψ),
between¬(φ → ψ) and (φ ∧ ¬ψ), and between
¬(φ ∧ ψ) and (¬φ ∨ ¬φ). For atomic syntactic types
A, A• becomes simplyA, whereasA◦ becomes its
linear negation A⊥; this is the sense in which po-
lar atomic types correspond to logical literals. The
non-commutatitive nature of the Lambek calculus is
reflected in the ordering of the subtrees in the un-
foldings; for commutative logics, the proof trees are
not ordered.

The proof frame for a syntactic sequent
C1, . . . ,Cn ⇒ C0 is the ordered sequence of
polar trees rooted atC◦0,C

•
1, . . . ,C

•
n. We convert

sequents to frames in this order, with the output
polar tree first. In general, what follows applies to
any cyclic reordering of these polar trees. Note that
the antecedent typesC1, . . .Cn have input (negative)
polarity inputs and the consequent typeC0 has
output (positive) polarity. All of our proof frames
are intuitionistic in that they have a single output
conclusion, i.e. a unique polar tree rooted at an
output type.

A partial proof structure consists of a proof frame

with a set ofaxiom links linking pairs of comple-
mentary literals with at most one link per literal. Ax-
iom links in both directions are shown in Figure 3.
A proof structure is a proof structure in which all
literals are connected to complementary literals by
axiom links.

Proof nets are proof structures meeting certain
conditions. A proof structure isplanar if and only if
its axiom links can be drawn in the half-plane with-
out crossing lines; this condition enforces the lack
of commutativity of the Lambek calculus. The fi-
nal condition on proof structures involves switch-
ing. A switching of a proof structure is a subgraph
that arises from the proof structure by removing ex-
actly one edge from each disjunctive (℘) link. A
proof structure is said to beDanos-Regnier (DR-)
acyclic if and only if each of its switchings is acyclic
(Danos and Regnier 1989).1A proof net is a planar
DR-acyclic proof structure. Atheorem is any se-
quent forming the proof frame of a proof net.

Consider the three proof nets in Figure 4. The first
example has no logical links, and corresponds to the
simplest sequent derivationS ⇒ S . The second ex-
ample represents a determiner, noun and intransitive
verb sequence. Both of these examples are acyclic,
as must be every proof net with no logical℘-links.
The third example corresponds to the type-raising
sequentN ⇒ S/(N\S ). Unlike the other examples,
this proof net involves a℘-link and is cyclic. But
both of its switchings are acyclic, so it satisfies the
Danos-Regnier acyclicity condition.

2.4 Essential Nets and Semantic Trips

A term is said to bepure if and only if it contains
no constants. Thelinear terms are closed, pureλ-
terms that bind each variable exactly once. Each
proof net in the Lambek calculus corresponds to a
linear (i.e. binding each variable exactly once)λ-
term via the Curry-Howard correspondence. This
term abstracts over variables standing in for the se-
mantics of the inputs in the antecedent of the sequent
and has a body that is determined by the consequent
of the sequent. For instance, theλ-termλx.λP.P(x)
corresponds to the syntactic sequentx : N, P :

1The full Danos-Regnier condition is that every switching
be acyclic and connected. Fadda and Morrill (2005) show that
for the intuitionistic case (i.e. single output conclusion, as for
L), DR-acyclicity entails the connectedness of every switching.
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Figure 1: Logical Links with Switch Paths (solid) and Semantic Trip (dashed)
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S ◦ S •

N• CN◦ N◦ S •

⊗ ⊗
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N◦ S •
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℘

S/(N\S )◦
?? ��

N•
Figure 4: Three Example Proof Nets

N\S ⇒ P(x) : S and λx.λP.P(x) corresponds to
the sequentx : N ⇒ λP.P(x) : S/(N\S ). Theλ-
term induced by the Curry-Howard correspondence
can be determined by a unification problem over a
proof net (Roorda 1991). Different proof nets for the
same theorem correspond to different interpretations
through the Curry-Howard correspondence. Thees-
sential net of a proof structure is the directed graph
rooted at the root node of the output polar type tree
whose edges are shown as dashed lines in Figures 1
and 3 (LaMarche 1994). Each output division type
introduces a fresh variable on its input subtype (its
argument), as indicated by the labelsxi in Figure 1.
The essential nets for the examples in Figure 4 are
shown in Figure 5.

Terms are computed for the polar type trees by
assigning terms to the roots of the polar inputs. The
tree is then unfolded unifying in substitutions as it
goes, as illustrated in the example polar type trees in
Figure 2. The direction of axiom links in the essen-
tial net provide the substitutions necessary to solve
the unification problem ofλ-terms in the proof net
established by equating the two halves of each ax-
iom linked complementary pair of literals. A traver-
sal of an essential net carrying out the substitutions
specified by axiom links constitutes asemantic trip
the end result of which is the Curry-Howardλ-term
for the Lambek calculus theorem derived by the
proof net. Allλ-terms derived from a semantic trip
with variables or constants assigned to input root po-
lar types will be inβ-η long form. The essential net

directly corresponds to the tree of the semantic term
derived by the Curry-Howard correspondence.

The well-formedness of a set of axiom linkings
over a polar tree may be expressed in terms of the
essential net. Among the conditions are that an es-
sential net must be acyclic and planar. In addition,
essential nets must be connected in two ways. First,
there must be a path from the root of the single out-
put polar tree to the root of each of the input polar
trees. Second, there must be a path from each output
daughter of an output division to the input daugh-
ter. That is, whenA/B◦ is unfolded toB•A◦, there
must be a path fromA◦ to B•. These conditions ex-
press the definition of linear semantic terms dictated
through the logic by the Curry-Howard correspon-
dence. The first condition requires each variable (or
term) corresponding to the root of an input polar tree
to occur in the output term, whereas the second con-
dition requires that variables only occur within their
proper scopes so that they are bound. The essen-
tial nets presented in Figure 5 adhere to these con-
ditions and produce well-typed linearλ-terms. The
example presented in Figure 6 shows a set of axiom
links that does not form a proof net; it violates the
condition on variable binding, as is seen from the
lack of path from theN◦ daughter to theN• daugh-
ter of theN/N◦ node. The major drawback to us-
ing these conditions directly in parsing is that they
are existential in the sense of requring the existence
of a certain kind of path, and thus difficult to refute
online during parsing. In comparison, the Danos-
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Regnier acyclicity condition is violated by the at-
tempt to close off the binding of the variable. The
path vilolating DR acyclicity is shown in Figure 7,
with the path given in dashed lines and the switch-
ing taking the right daughter ofN/N◦ as the arc to
remove.

3 Parsing with Switch Graphs

The planar connection of all literals into a proof
structure is straightforward to implement. Axiom
links are simply added in such a way that planarity
is maintained until a complete linkage is found. In
our shift-reduce-style parser, planarity is maintained
by a stack in the usual way (Morrill 2000). For dy-
namic programming, we combine switch graphs in
the cells in a Cocke-Kasami-Younger (CKY) parser
(Morrill 1996). The main challenge is enforcing
DR-acyclicity, and this is the main focus of the rest
of the paper. We introduce switch graphs, which not
only maintain DR-acyclicity, but also lead the way
to a normal form for well-formed subsequence frag-
ments of a partial proof structure. This normal form
underlies the packing of ambiguities in subderiva-
tions in exactly the same way as usual in dynamic
programming parsing.

3.1 Switch Graphs

Switch graphs are based on the observation that a
proof structure is DR-acyclic if and only if every cy-
cle contains both edges of a℘-link. If a cycle con-
tains both edges of a℘-link, then any switching re-
moves the cycle. Thus if every cycle in a proof struc-
ture contains both edges of a℘-link, every switching
is acyclic.

The(initial) switch graph of a partial proof struc-
ture is defined as the undirected graph underlying
the partial proof structure with edges labeled with
sets of℘-edge identifiers as indicated in Figures 1
and 3. Each edge in a logical℘-link is labeled with
the singleton set containing an identifier of the link
itself, eitherLi for the left link of ℘-link i or Ri for
the right link of℘-link i. Edges of axiom links and
logical⊗-links are labeled with the empty set.

Theclosure of a switch graph is computed by it-
erating the following operation: if there is an edge
n1− n2 labeled with setX1 and an edge edgen2− n3

labeled with setX2 such thatX1∪X2 does not contain

both edges of a℘-link, add an edgen1 − n3 labeled
with X1∪X2. An edgen−m labeled byX is subsumed
by an edge between the same nodesn−m labeled by
Y if Y ⊆ X. The normal switch graph of a partial
proof structure is derived by closing its the initial
switch graph, removing edges that are subsumed by
other edges, and restricting to the literal nodes not
connected by an axiom link. These normal switch
graphs define a unique representation of the combi-
natorial possibilities of a span of polar trees and their
associated links in a partial proof structure. That is,
any partial proof structure substructure that leads to
the same normal switch graph may be substituted in
any proof net while maintaining well-formedness.

The fundamental insight explored in this paper is
that two literals may be connected by an axiom link
in a partial proof structure without violating DR-
acyclicity if and only if they are not connected in
the normal switch graph for the partial proof struc-
ture. The normal switch graph arising from the ad-
dition of an axiom link is easily computed. It is just
the closure generated by adding the new axiom link,
with the two literals being linked removed.

3.2 Shift-Reduce Parsing

In this section, we present the search space for a
shift-reduce-style parsing algorithm based on switch
graphs. The states in the search consist of aglobal
stack of literals, a lexical stack of literals, the re-
maining tokens to be processed, and the set of links
among nodes on the stacks in the switch graph. The
shift-reducesearch space is characterized by an ini-
tial state and statetransitions. These are shown in
schematic form in Figure 8. Theinitial state con-
tains the output type’s literals and switch graph. A
lexical transition is from a state with an empty lexi-
cal stack to one containing the lexical literals of the
next token; the lexical entry’s switch graph merges
with the current one. Ashift transition pops a literal
from the lexical stack and pushes it onto the global
stack. Areduce transition adds an axiom link be-
tween the top of the global stack and lexical stack
if they are complementary and are not connected in
the switch graph; the resulting switch graph results
from adding the axiom link and normalizing. The
stack discipline insures that all partial proof struc-
tures considered are planar.

Figure 10 displays as rows the shift-reduce search
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Stack Lex Sw-Gr Op

A◦ gr(A◦) start(A)

S G
S A• G ⊕ gr(A•) lex(w, A)

Stack Lex Sw-Gr Op

AiS A jL G
S L (G ⊕ i= j) − {i, j} reduce(i, j)

AS BL G
BAS L G shift(B)

Figure 8: Shift-Reduce Parsing Schematic

N•1 N◦2 N◦4 N•5
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9999 ����

N•1 N◦2 N◦4 N•5

N◦0 N1/N•2

9999 ����
N•3 N4\N•5

9999 ����

Figure 9: Modifier Attachment Ambiguity Proof Nets

Stack Lex Tok Sw-Gr Ax Op

N◦0 start
N◦0 N•1N◦2 w1 1-2{} lex
− N◦2 0=1 reduce

N◦2 shift
N◦2 N•3 w2 lex

N•3N◦2 shift
N•3N◦2 N◦4N•5 w3 4-5{} lex

N◦2 N•5 3=4 reduce
2=5 reduce

Stack Lex Tok Sw-Gr Ax Op

N◦0 start
N◦0 N•1N◦2 w1 1-2{} lex

N•1N◦0 N◦2 1-2{} shift
N◦2N•1N◦0 1-2{} shift
N◦2N•1N◦0 N•3 w2 1-2{} lex

N•1N◦0 2=3 reduce
N•1N◦0 N◦4N•5 w3 4-5{} lex

N◦0 N•5 1=4 reduce
0=5 reduce

Figure 10: Modifier Attachment Ambiguity Shift-Reduce Search States
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states corresponding to the two valid proof nets
shown in Figure 9. The subscripts on syntactic types
in the diagram is only so that they can be indexed
in the rows of the table describing the search states.
The initial state in both searches is created from the
output type’s literal. The third column of the dia-
grams indicate the token consumed at each lexical
entry. The switch graphs are shown for the rows
for which they’re active. Because there are no℘-
links, all sets of edges are empty. The fifth column
shows the axiom linking made at each reduce step.
The history of these decisions and lexical insertion
choices determines the final proof net. Finally, the
sixth column shows the operation used to derive the
result. Note that reduction is from the top of the lex-
ical stack to the top of the global stack and is only
allowed if the nodes to be linked are not connected in
the switch graph. This is whyN•1 cannot reduce with
N◦2 in the second diagram in Figure 10; the second
shift is mandatory at this point. Note that as active
nodes are removed, as in the first diagram reduction
step linking 0=2, the switch graph contracts to just
the unlinked nodes. After the reduction, onlyN•2 is
unlinked, so there can be no switch graph links. The
link between node 4 and 5 is similarly removed al-
most as soon as it’s introduced in the second reduc-
tion step. In the second diagram, the switch graph
links persist as lexical literals are pushed onto the
stack.

Shift-reduce parses stand in one-to-one corre-
spondence with proof nets. The shift and reduce op-
erations may be read directly from a proof net by
working left to right through the literals. Between
literals, the horizontal axiom links represent literals
on the stack. Literals in the current lexical syntac-
tic type represent the lexical stack. Literals that are
shifted to the global stack eventually reduce by ax-
iom linking with a literal to the right; literals that are
reduced from the lexical stack axiom link to their
left with a literal on the global stack.

3.3 Memoized Parsing

Using switch graphs, we reduce associative Lam-
bek calculus parsing to an infinite binary phrase-
structure grammar, where the non-terminals are
normalized switch graphs. The phrase structure
schemes are shown in Steedman notation in Fig-
ure 11. Lexical entries for syntactic typeA are de-

rived from the input polar tree rooted atA•. This
polar tree yields a switch graph, which is always a
valid lexical entry in the phrase structure grammar.
Any result of axiom linking adjacent complemen-
tary pairs of literals in the polar tree that maintains
switch-graph acyclicity is also permitted. For in-
stance, allowing empty left-hand sides of sequents,
the input typeA/(B/B)• would produce the literals
A•1B•2B◦3 with links 1-2 : {L3},1-3 : {R3}. This could
be reduced by taking the axiom link 2=3, to pro-
duce the single node switch graphA•1. In contrast,
(B/B)/A• produces the switch graphB•1B◦2A◦3 with
links 1-2, 1-3, and 2-3. Thus the complementaryB
literals may not be linked.

Given a pair of normal switch graphs, the binary
rule scheme provides a finite set of derived switch
graphs. One or more complementary literals may be
axiom linked in a nested fashion at the borders of
both switch graphs. These sequences are marked as
∆ and∆ and their positions are given relative to the
other literals in the switch graph in Figure 11. Un-
linked combinations are not necessary because the
graph must eventually be connected. This scheme
is non-deterministic in choice of∆. For instance, an
adverb input (N1\S 2)/(N4\S 3)• produces the literals
N◦1S •2S ◦3N•4 and connections 1-2, 1-3:{L4}, 1-4:{R4},
2-3:{L4}, and 2-4:{R4}. When it combines with a
verb phrase inputN5\S •6 with literalsN◦5S •6 and con-
nections 5-6, then either the nominals may be linked
(4=5), or the nominals and sentential literals may be
linked (4=5, 3=6). The result of the single linking is
N◦1S •2S ◦3S •6 with connections 1-2, 1-3:{L4}, 1-6:{R4},
2-3:{L4}, and 2-6:{R4}. The result of the double link-
ing is simplyN◦1S •6 with connection 1-6, or in other
words, a verb phrase.

The dynamic programming equality condition is
that two analyses are considered equal if they lead
to the same normalized switch graphs. This equality
is only considered up to the renaming of nodes and
edges. Backpointers to derivations allow semantic
readings to be packed in the form of lexical choices
and axiom linkings. For instance, consider the two
parses in Figure 12.

With a finite set of lexical entries, bottom-up
memoized parsing schemes will terminate. We illus-
trate two derivations of a simple subject-verb-object
construction in Figure 13. This is a so-calledspuri-
ous ambiguity because the two derivations produce
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Figure 11: Phrase-Structure Schemes over Switch Graphs
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Figure 12: Modifier Attachment Ambiguity Packing

the same semantic term. They are not spurious glob-
ally because the alternative linkings are required for
adverbial modification and object relativization re-
spectively. The ambiguity in the phrase structure
grammar results from the associativity of the combi-
nation of axiom linkings. The two derivations do not
propagate their ambiguity under the dynamic pror-
gramming scheme precisely because they produce
equivalent results. Nevertheless, a worthwhile opti-
mization is to restrict the structure of combinations
of linkings in the phrase-structure schemes to corre-
spond to an unambiguous left-most linking strategy;
this corresponds to the way in which other associa-
tive operators are parsed in programming language.
For instance,x+y+z will be assumed to bex+(y+z)
if + is defined to be right associative.

An unambiguous right-associative context-free
grammar for linkingsM over literalsA and their
complementsA is:

M → A A | A M A | A A M | A M A M

An example of packing for subject/object scope am-
biguities is shown in Figure 14. The derivations
in Figure 14 produce different semantic interpreta-
tions; one of these is subject-wide scope and the
other object-wide scope. Unsurprisingly, the mem-
oizing parser does not solveP = NP in the affirmi-
tive (Pentus 2003). The size of the switch graphs on
the intermediate structures is not bounded, nor is the
number of alternative switch-paths between literals.
It remains an open question as to whether the switch
graph parser could be bounded for a fixed lexicon

(Pentus 1997).

3.4 Empty Antecedents and Subtending

Lambek’s calculus required the antecedentΓ in
a sequentΓ ⇒ α : A to be non-empty.
Proof nets derive theorems (⇒ CN/CN) and
((CN/CN)/(CN/CN)⇒ CN/CN), as shown in Fig-
ure 15. These derivations both allow the construc-
tion of an output, namely the identity termλx.x and
modifier syntactic typeCN/CN, out of no input.

A literal A is said tosubtend a complementary
literal A if they are the leftmost and rightmost de-
scendants of a℘-link. In both of the examples in
Figure 15, the output adjectiveCN/CN◦ unfolds to
the sequence of literalsCN•CN◦ in which the input
CN• subtends the outputCN◦. If literals that stand
in a subtending relation are never linked, the set of
theorems is restricted to those derivable in Lambek’s
original calculus.

Consider the proof net in Figure 16. An analysis
in which S ◦8 linked to S •11 and N•9 linked to N◦10 is
not ruled out by Danos-Regnier acyclicity. It is ruled
out by the subtending condition becauseS ◦8 subtends
S •11, being the leftmost and right most daughters of
the ℘-node (N10\S 11)\(N9\S 8)◦. Further note that
there are no cycles violating DR acyclicity; each of
the sixteen switchings is acyclic.

4 Conclusion

We have introduced switch graphs for shift-reduce
and CKY-style parsing of grammars in the asso-
ciative Lambek calculus. Switch graphs encode
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Figure 13: Left vs. Right Attachment: Packing Locally Spurious AttachmentAmbiguity
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Figure 14: Scope Ambiguity: Partial Proof Structure Fragments with PhraseStructure
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Figure 15: Subtending Examples
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Figure 16: Higher-Order Example: Adverbial Intensifier

the axiom-linking possibilities of a sequence of un-
linked literals deriving from underlying polar trees.
We introduced two parsers based on switch graphs.
The shift-reduce parsers are memory efficient and
parses correspond uniquely to (cut free) proof nets.
They can be made more efficient by bounding stack
size. The memoizing parsers are able to pack attach-
ment and scope distinctions that lead to differentλ-
terms but have the same combinatory possibilities.
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Abstract

In lexicalized phrase-structure or dependency parses, a word’s
modifiers tend to fall near it in the string. We show that a crude
way to use dependency length as a parsing feature can sub-
stantially improve parsing speed and accuracy in English and
Chinese, with more mixed results on German. We then show
similar improvements by imposinghard bounds on dependency
length and (additionally) modeling the resulting sequence of
parse fragments. This simple “vine grammar” formalism has
only finite-state power, but a context-free parameterization with
some extra parameters for stringing fragments together. We ex-
hibit a linear-time chart parsing algorithm with a low grammar
constant.

1 Introduction

Many modern parsers identify the head word of
each constituent they find. This makes it possible
to identify the word-to-word dependencies implicit
in a parse.1 (Some parsers, known as dependency
parsers, even return these dependencies as their pri-
mary output.)

Why bother to identify these dependencies? The
typical reason is to model the fact that some word
pairs are more likely than others to engage in a de-
pendency relationship.2 In this paper, we propose a
different reason to identify dependencies in candi-
date parses: to evaluate not the dependency’s word
pair but itslength(i.e., thestring distancebetween
the two words). Dependency lengths differ from

∗ This work was supported by NSF ITR grant IIS-0313193
to the first author and a fellowship from the Fannie and John
Hertz Foundation to the second author. The views expressed
are not necessarily endorsed by the sponsors. The authors thank
Mark Johnson, Eugene Charniak, Charles Schafer, Keith Hall,
and John Hale for helpful discussion and Elliott Drábek and
Markus Dreyer for insights on (respectively) Chinese and Ger-
man parsing. They also thank an anonymous reviewer for sug-
gesting the German experiments.

1In a phrase-structure parse, if phraseX headed by word
tokenx is a subconstituent of phraseY headed by word token
y 6= x, thenx is said to depend ony. In a more powerful
compositional formalism like LTAG or CCG, dependencies can
be extracted from the derivation tree.

2It has recently been questioned whether these “bilexical”
features actually contribute much to parsing performance (Klein
and Manning, 2003; Bikel, 2004), at least when one has only a
million words of training.

typical parsing features in that they cannot be deter-
mined from tree-local information. Though lengths
are not usually considered, we will see that bilexical
dynamic-programming parsing algorithms can eas-
ily consider them as they build the parse.

Soft constraints. Like any other feature of trees,
dependency lengths can be explicitly used as fea-
tures in a probability model that chooses among
trees. Such a model will tend to disfavor long de-
pendencies (at least of some kinds), as these are em-
pirically rare. In the first part of the paper, we show
that such features improve a simple baseline depen-
dency parser.

Hard constraints. If the bias against long de-
pendencies is strengthened into a hard constraint
that absolutely prohibits long dependencies, then the
parser turns into a partial parser with only finite-state
power. In the second part of the paper, we show how
to perform chart parsing in asymptotic linear time
with a low grammar constant. Such a partial parser
does less work than a full parser in practice, and in
many cases recovers a more precise set of dependen-
cies (with little loss in recall).

2 Short Dependencies in Langugage

We assume that correct parses exhibit a “short-
dependency preference”: a word’s dependents tend
to be close to it in the string.3 If the j th word of a sen-
tence depends on theith word, then|i−j| tends to be

3 In this paper, we consider only a crude notion of “close-
ness”: the number of intervening words. Other distance mea-
sures could be substituted or added (following the literature on
heavy-shift and sentence comprehension), including the phono-
logical, morphological, syntactic, or referential (given/new)
complexity of the intervening material (Gibson, 1998). In pars-
ing, the most relevant previous work is due to Collins (1997),
who considered three binary features of the intervening mate-
rial: did it contain (a) any word tokens at all, (b) any verbs,
(c) any commas or colons? Note that (b) is effective because
it measures the length of a dependency in terms of the number
of alternative attachment sites that the dependent skipped over,
a notion that could be generalized. Similarly, McDonald et al.
(2005) separately considered each of the intervening POS tags.
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small. This implies that neitheri norj is modified by
complex phrases that fall betweeni andj. In terms
of phrase structure, it implies that thephrasesmod-
ifying word i from a given side tend to be (1) few
in number, (2) ordered so that the longer phrases fall
farther fromi, and (3) internally structured so that
the bulk of each phrase falls on the side ofj away
from i.

These principles can be blamed for several lin-
guistic phenomena. (1) helps explain the “late clo-
sure” or “attach low” heuristic (e.g., Frazier, 1979;
Hobbs and Bear, 1990): a modifier such as a PP is
more likely to attach to the closest appropriate head.
(2) helps account for heavy-shift: when an NP is
long and complex,take NP out, put NP on the ta-
ble, andgive NP to Maryare likely to be rephrased
astake out NP, put on the table NP, andgive Mary
NP. (3) explains certain non-canonical word orders:
in English, a noun’s left modifier must become a
right modifier if and only if it is right-heavy (a taller
politician vs.a politician taller than all her rivals4),
and a verb’s left modifier may extrapose its right-
heavy portion (An aardvark walked in who had cir-
cumnavigated the globe5).

Why should sentences prefer short dependencies?
Such sentences may be easier for humans to produce
and comprehend. Each word can quickly “discharge
its responsibilities,” emitting or finding all its depen-
dents soon after it is uttered or heard; then it can
be dropped from working memory (Church, 1980;
Gibson, 1998). Such sentences also succumb nicely
to disambiguation heuristics thatassumeshort de-
pendencies, such as low attachment. Thus, to im-
prove comprehensibility, a speaker can make stylis-
tic choices that shorten dependencies (e.g., heavy-
shift), and a language can categorically prohibit
some structures that lead to long dependencies (*a
taller-than-all-her-rivals politician; *the sentence

4Whereas*a politician taller and *a taller-than-all-her-
rivals politicianare not allowed. The phenomenon is pervasive.

5This actually splits the heavy left dependent[an aardvark
who ...] into two non-adjacent pieces, moving the heavy second
piece. By slightly stretching theaardvark-whodependency in
this way, it greatly shortensaardvark-walked. The same is pos-
sible for heavy, non-final right dependents:I met an aardvark
yesterday who had circumnavigated the globeagain stretches
aardvark-who, which greatly shortensmet-yesterday. These ex-
amples illustrate (3) and (2) respectively. However, the resulting
non-contiguous constituents lead to non-projective parses that
are beyond the scope of this paper.

that another sentence that had center-embedding
was inside was incomprehensible).

Such functionalist pressures are not all-powerful.
For example, many languages use SOV basic word
order where SVO (or OVS) would give shorter de-
pendencies. However, where the data exhibit some
short-dependency preference, computer parsers as
well as human parsers can obtain speed and accu-
racy benefits by exploiting that fact.

3 Soft Constraints on Dependency Length

We now enhance simple baseline probabilistic
parsers for English, Chinese, and German so that
they consider dependency lengths. We confine our-
selves (throughout the paper) to parsing part-of-
speech (POS) tag sequences. This allows us to ig-
nore data sparseness, out-of-vocabulary, smoothing,
and pruning issues, but it means that our accuracy
measures are not state-of-the-art. Our techniques
could be straightforwardly adapted to (bi)lexicalized
parsers on actual word sequences, though not neces-
sarily with the same success.

3.1 Grammar Formalism

Throughout this paper we will use split bilexical
grammars, or SBGs (Eisner, 2000), a notationally
simpler variant of split head-automaton grammars,
or SHAGs (Eisner and Satta, 1999). The formalism
is context-free. We define here a probabilistic ver-
sion,6 which we use for the baseline models in our
experiments. They are only baselines because the
SBG generative process doesnot take note of de-
pendency length.

An SBG is an tupleG = (Σ,$, L,R). Σ is an
alphabet of words. (In our experiments, we parse
only POS tag sequences, soΣ is actually an alpha-
bet of tags.)$ 6∈ Σ is a distinguished root symbol;
let Σ̄ = Σ ∪ {$}. L andR are functions fromΣ̄
to probabilisticε-free finite-state automata overΣ.
Thus, for eachw ∈ Σ̄, the SBG specifies “left” and
“right” probabilistic FSAs,Lw andRw.

We useLw(G) : Σ̄∗ → [0, 1] to denote the prob-
abilistic context-free language of phrases headed by
w. Lw(G) is defined by the following simple top-
down stochastic process for sampling from it:

6There is a straightforward generalization toweighted
SBGs, which need not have a stochastic generative model.
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1. Sample from the finite-state languageL(Lw) a
sequenceλ = w−1w−2 . . . w−` ∈ Σ∗ of left
children, and fromL(Rw) a sequenceρ =
w1w2 . . . wr ∈ Σ∗ of right children. Each se-
quence is found by a random walk on its proba-
bilistic FSA. We say the childrendependonw.

2. For eachi from −` to r with i 6= 0, recursively
sampleαi ∈ Σ∗ from the context-free language
Lwi(G). It is this step that indirectly determines
dependency lengths.

3. Return α−` . . . α−2α−1wα1α2 . . . αr ∈ Σ̄∗, a
concatenation of strings.

Notice thatw’s left childrenλ were generated in
reverse order, sow−1 andw1 are its closest children
whilew−` andwr are the farthest.

Given an input sentenceω = w1w2 . . . wn ∈ Σ∗,
a parser attempts to recover the highest-probability
derivation by which$ω could have been generated
from L$(G). Thus,$ plays the role ofw0. A sample
derivation is shown in Fig. 1a. Typically,L$ and
R$ are defined so that$ must have no left children
(` = 0) and at most one right child(r ≤ 1), the
latter serving as the conventional root of the parse.

3.2 Baseline Models

In the experiments reported here, we defined only
very simple automata forLw andRw (w ∈ Σ).
However, we tried three automaton types, of vary-
ing quality, so as to evaluate the benefit of adding
length-sensitivity at three different levels of baseline
performance.

In model A (the worst), each automaton has topol-
ogy } ���, with a single stateq1, so tokenw’s left
dependents are conditionally independent of one an-
other givenw. In model C (the best), each au-
tomaton }−→} ��� has an extra stateq0 that al-
lows the first (closest) dependent to be chosen dif-
ferently from the rest. Model B is a compromise:7

it is like model A, but each typew ∈ Σ may
have an elevated or reduced probability of having
no dependents at all. This is accomplished by us-
ing automata}−→} ��� as in model C, which al-
lows the stopping probabilitiesp(STOP | q0) and
p(STOP | q1) to differ, but tying the conditional dis-

7It is equivalent to the “dependency model with valence” of
Klein and Manning (2004).

tributionsp(q0
w−→q1 | q0,¬STOP) andp(q1

w−→q1 |
q1,¬STOP).

Finally, in §3,L$ andR$ are restricted as above,
soR$ gives a probability distribution overΣ only.

3.3 Length-Sensitive Models

None of the baseline models A–Cexplicitly model
the distance between a head and child. We enhanced
them by multiplying in some extra length-sensitive
factors when computing a tree’s probability. For
each dependency, an extra factorp(∆ | . . .) is mul-
tiplied in for the probability of the dependency’s
length∆ = |i − j|, wherei andj are the positions
of the head and child in thesurfacestring.8

Again we tried three variants. In one version, this
new probabilityp(∆| . . .) is conditioned only on the
direction d = sign(i − j) of the dependency. In
another version, it is conditioned only on the POS
tagh of the head. In a third version, it is conditioned
ond, h, and the POS tagc of the child.

3.4 Parsing Algorithm

Fig. 2a gives a variant of Eisner and Satta’s (1999)
SHAG parsing algorithm, adapted to SBGs, which
are easier to understand.9 (We will modify this al-
gorithm later in§4.) The algorithm obtainsO(n3)
runtime, despite the need to track the position of
head words, by exploiting the conditional indepen-
dence between a head’s left children and right chil-

dren. It builds “half-constituents” denoted by@@

(a head word together with some modifying phrases

on the right, i.e.,wα1 . . . αr) and �� (a head word
together with some modifying phrases on the left,
i.e., α−` . . . α−1w). A new dependency is intro-

duced when @@ + �� are combined to getH
H

or �� (a pair of linked head words with all the
intervening phrases, i.e.,wα1 . . . αrα

′
−`′ . . . α

′
−1w

′,
wherew is respectively the parent or child ofw′).

One can then combineHH + @@ = @@ , or

8Since the∆ values are fully determined by the tree but ev-
ery p(∆ | . . .) ≤ 1, this crude procedure simply reduces the
probability mass of every legal tree. The resulting model isde-
ficient(does not sum to 1); the remaining probability mass goes
to impossible trees whose putative dependency lengths∆ are
inconsistent with the tree structure. We intend in future work
to explore non-deficient models (log-linear or generative), but
even the present crude approach helps.

9The SHAG notation was designed to highlight the connec-
tion tonon-split HAGs.
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�� + �� = �� . Only O(n3) combinations
are possible in total when parsing a length-n sen-
tence.

3.5 A Note on Word Senses

[This section may be skipped by the casual reader.]
A remark is necessary about :w and :w′ in Fig. 2a,

which representsensesof the words at positions
h andh′. Like past algorithms for SBGs (Eisner,
2000), Fig. 2a is designed to be a bit more general
and integrate sense disambiguation into parsing. It
formally runs on an inputΩ = W1 . . .Wn ⊆ Σ∗,
where eachWi ⊆ Σ is a “confusion set” over pos-
sible values of theith word wi. The algorithm re-
covers the highest-probability derivation that gener-
ates$ω for someω ∈ Ω (i.e., ω = w1 . . . wn with
(∀i)wi ∈Wi).

This extra level of generality is not needed for any
of our experiments, but it is needed for SBG parsers
to be as flexible as SHAG parsers. We include it in
this paper to broaden the applicability of both Fig. 2a
and our extension of it in§4.

The “senses” can be used in an SBG to pass a
finite amount of information between the left and
right children of a word, just as SHAGs allow.10 For
example, to model the fronting of a direct object, an
SBG might use a special sense of a verb, whose au-
tomata tend to generate both one more noun inλ and
one fewer noun inρ.

Senses can also be used to pass information be-
tween parents and children. Important uses are
to encode lexical senses, or to enrich the de-
pendency parse with constituent labels or depen-

10Fig. 2a enhances the Eisner-Satta version with explicit
senses while matching its asymptotic performance. On this
point, see (Eisner and Satta, 1999,§8 and footnote 6). How-
ever, it does have a practical slowdown, in that START-LEFT
nondeterministically guesses every possible sense ofWi, and
these senses are pursued separately. To match the Eisner-Satta
algorithm, we should not need to commit to a word’s sense un-
til we have seen all its left children. That is, left triangles and
left trapezoids should not carry a sense :w at all, except for the
completed left triangle (marked F) that is produced by FINISH-
LEFT. FINISH-LEFT should choose a sensew of Wh accord-
ing to the final stateq, which reflects knowledge ofWh’s left
children. For this strategy to work, the transitions inLw (used
by ATTACH-LEFT) must not depend on the particular sensew
but only onW . In other words, allLw : w ∈ Wh are really
copies of a sharedLWh , except that they may have different fi-
nal states. This requirement involves no loss of generality, since
the nondeterministic sharedLWh is free to branch as soon as it
likes onto paths that commit to the various sensesw.

dency labels (Eisner, 2000). For example, the in-
put tokenWi = {bank1/N/NP , bank2/N/NP ,
bank3/V/VP , bank3/V/S} ⊂ Σ allows four
“senses” of bank, namely two nominal meanings,
and twosyntactically differentversions of the verbal
meaning, whose automata require them to expand
into VP and S phrases respectively.

The cubic runtime is proportional to the num-
ber of ways of instantiating the inference rules in
Fig. 2a: O(n2(n + t′)tg2), wheren = |Ω| is the
input length,g = maxn

i=1 |Wi| bounds the size of
a confusion set,t bounds the number of states per
automaton, andt′ ≤ t bounds the number of au-
tomaton transitions from a state that emit the same
word. For deterministic automata,t′ = 1.11

3.6 Probabilistic Parsing

It is easy to make the algorithm of Fig. 2a length-
sensitive. When a new dependency is added by an

ATTACH rule that combines @@ + �� , the an-
notations on @@ and �� suffice to determine
the dependency’s length∆ = |h − h′|, direction
d = sign(h − h′), head wordw, and child word
w′.12 So the additional cost of such a dependency,
e.g. p(∆ | d,w,w′), can be included as the weight
of an extra antecedent to the rule, and so included in
the weight of the resulting�� or HH .

To execute the inference rules in Fig. 2a, we
use a prioritized agenda. Derived items such as

@@ , �� , �� , and HH are prioritized by
their Viterbi-inside probabilities. This is known
asuniform-cost searchor shortest-hyperpath search
(Nederhof, 2003). We halt as soon as a full parse
(the accept item) pops from the agenda, since
uniform-cost search (as a special case of the A∗

algorithm) guarantees this to be the maximum-
probability parse. No other pruning is done.

11Confusion-set parsing may be regarded as parsing a par-
ticular lattice withn states andng arcs. The algorithm can
be generalized to lattice parsing, in which case it has runtime
O(m2(n + t′)t) for a lattice ofn states andm arcs. Roughly,
h : w is replaced by an arc, whilei is replaced by a state and
i− 1 is replaced by the same state.

12For general lattice parsing, it is not possible to determine∆
while applying this rule. Thereh andh′ are arcs in the lattice,
not integers, and different paths fromh to h′ might cover dif-
ferent numbers of words. Thus, if one still wanted to measure
dependency length in words (rather than in, say, milliseconds
of speech), each item would have to record its width explicitly,
leading in general to more items and increased runtime.
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With a prioritized agenda, a probability model
that more sharply discriminates among parses will
typically lead to a faster parser. (Low-probability
constituents languish at the back of the agenda and
are never pursued.) We will see that the length-
sensitive models do run faster for this reason.

3.7 Experiments with Soft Constraints

We trained models A–C, using unsmoothed maxi-
mum likelihood estimation, on three treebanks: the
Penn (English) Treebank (split in the standard way,
§2–21 train/§23 test, or 950K/57K words), the Penn
Chinese Treebank (80% train/10% test or 508K/55K
words), and the German TIGER corpus (80%/10%
or 539K/68K words).13 Estimation was a simple
matter of counting automaton events and normaliz-
ing counts into probabilities. For each model, we
also trained the three length-sensitive versions de-
scribed in§3.3.

The German corpus contains non-projective trees.
None of our parsers can recover non-projective de-
pendencies (nor can our models produce them). This
fact was ignored when counting events for maxi-
mum likelihood estimation: in particular, we always
trainedLw andRw on the sequence ofw’s immedi-
ate children, even in non-projective trees.

Our results (Tab. 1) show that sharpening the
probabilities with the most sophisticated distance
factors p(∆ | d, h, c), consistently improved the
speedof all parsers.14 The change to the code is
trivial. The only overhead is the cost of looking up
and multiplying in the extra distance factors.

Accuracyalso improved over the baseline mod-
els of English and Chinese, as well as the simpler
baseline models of German. Again, the most so-
phisticated distance factors helped most, but even
the simplest distance factor usually obtained most
of the accuracy benefit.

German model C fell slightly in accuracy. The
speedup here suggests that the probabilities were
sharpened, but often in favor of the wrong parses.
We did not analyze the errors on German; it may

13Heads were extracted for English using Michael Collins’
rules and Chinese using Fei Xia’s rules (defaulting in both cases
to right-most heads where the rules fail). German heads were
extracted using the TIGER Java API; we discarded all resulting
dependency structures that were cyclic or unconnected (6%).

14We measure speed abstractly by the number of items built
and pushed on the agenda.

be relevant that 25% of the German sentences con-
tained a non-projective dependency between non-
punctuation tokens.

Studying the parser output for English, we found
that the length-sensitive models preferred closer at-
tachments, with 19.7% of tags having a nearer parent
in the best parse under model C withp(∆ | d, h, c)
than in the original model C, 77.7% having a par-
ent at the same distance, and only 2.5% having a
farther parent. The surviving long dependencies (at
any length> 1) tended to be much more accurate,
while the (now more numerous) length-1 dependen-
cies were slightly less accurate than before.

We caution that length sensitivity’s most dramatic
improvements to accuracy were on the worse base-
line models, which had more room to improve. The
better baseline models (B and C) were already able
to indirectly capture some preference for short de-
pendencies, by learning that some parts of speech
were unlikely to have multiple left or multiple right
dependents. Enhancing B and C therefore con-
tributed less, and indeed may have had some harmful
effect by over-penalizing some structures that were
already appropriately penalized.15 It remains to
be seen, therefore, whether distance features would
help state-of-the art parsers that are already much
better than model C. Such parsers may already in-
corporate features that indirectly impose a good
model of distance, though perhaps not as cheaply.

4 Hard Dependency-Length Constraints

We have seen how an explicit model of distance can
improve the speed and accuracy of a simple proba-
bilistic dependency parser. Another way to capital-
ize on the fact that most dependencies are local is
to impose ahard constraintthat simply forbids long
dependencies.

The dependency trees that satisfy this constraint
yield a regular string language.16 The constraint pre-
vents arbitrarily deep center-embedding, as well as
arbitrarily many direct dependents on a given head,

15Owing to our deficient model. A log-linear or discrimina-
tive model would be trained to correct for overlapping penalties
and would avoid this risk. Non-deficient generative models are
also possible to design, along lines similar to footnote 16.

16One proof is to construct a strongly equivalent CFG without
center-embedding (Nederhof, 2000). Each nonterminal has the
form 〈w, q, i, j〉, wherew ∈ Σ, q is a state ofLw or Rw, and
i, j ∈ {0, 1, . . . k−1,≥ k}. We leave the details as an exercise.
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English (Penn Treebank) Chinese (Chinese Treebank) German (TIGER Corpus)
recall (%) runtime model recall (%) runtime model recall (%) runtime model

model train test test size train test test size train test test size
A (1 state) 62.0 62.2 93.6 1,878 50.7 49.3 146.7 782 70.9 72.0 53.4 1,598
+ p(∆ | d) 70.1 70.6 97.0 2,032 59.0 58.0 161.9 1,037 72.3 73.0 53.2 1,763
+ p(∆ | h) 70.5 71.0 94.7 3,091 60.5 59.1 148.3 1,759 73.1 74.0 48.3 2,575
+ p(∆ | d, h, c) 72.8 73.1 70.4 16,305 62.2 60.6 106.7 7,828 75.0 75.1 31.6 12,325
B (2 states, tied arcs) 69.7 70.4 93.5 2,106 56.7 56.2 151.4 928 73.7 75.1 52.9 1,845
+ p(∆ | d) 72.6 73.2 95.3 2,260 60.2 59.5 156.9 1,183 72.9 73.9 52.6 2,010
+ p(∆ | h) 73.1 73.7 92.1 3,319 61.6 60.7 144.2 1,905 74.1 75.3 47.6 2,822
+ p(∆ | d, h, c) 75.3 75.6 67.7 16,533 62.9 61.6 104.0 7,974 75.2 75.5 31.5 12,572
C (2 states) 72.7 73.1 90.3 3,233 61.8 61.0 148.3 1,314 75.6 76.9 48.5 2,638
+ p(∆ | d) 73.9 74.5 91.7 3,387 61.5 60.6 154.7 1,569 74.3 75.0 48.9 2,803
+ p(∆ | h) 74.3 75.0 88.6 4,446 63.1 61.9 141.9 2,291 75.2 76.3 44.3 3,615
+ p(∆ | d, h, c) 75.3 75.5 66.6 17,660 63.4 61.8 103.4 8,360 75.1 75.2 31.0 13,365

Table 1: Dependency parsing of POS tag sequences with simple probabilistic split bilexical grammars. The models differ only
in how they weight the same candidate parse trees. Length-sensitive models are larger but can improve dependency accuracy
and speed. (Recall is measured as the fraction of non-punctuation tags whose correct parent (if not the$ symbol) was correctly
recovered by the parser; it equals precision, unless the parser left some sentences unparsed (or incompletely parsed, as in§4), in

which case precision is higher.Runtime is measured abstractly as the average number of items (i.e.,@@ , �� ,
��

,
HH

)
built per word.Model sizeis measured as the number of nonzero parameters.)

either of which would allow the non-regular lan-
guage{anbcn : 0 < n < ∞}. It doesallow ar-
bitrarily deep right- or left-branching structures.

4.1 Vine Grammars

The tighter the bound on dependency length, the
fewer parse trees we allow and the faster we can find
them using the algorithm of Fig. 2a. If the bound
is too tight to allow the correct parse of some sen-
tence, we would still like to allow an accurate partial
parse: a sequence of accurate parse fragments (Hin-
dle, 1990; Abney, 1991; Appelt et al., 1993; Chen,
1995; Grefenstette, 1996). Furthermore, we would
like to use the fact that some fragment sequences are
presumably more likely than others.

Our partial parses will look like the one in Fig. 1b.
where 4 subtrees rather than 1 are dependent on$.
This is easy to arrange in the SBG formalism. We
merely need to construct our SBG so that the au-
tomatonR$ is now permitted to generate multiple
children—the roots of parse fragments.

This R$ is a probabilistic finite-state automaton
that describes legal or likely root sequences inΣ∗.
In our experiments in this section, we will train it
to be a first-order (bigram) Markov model. (Thus
we constructR$ in the usual way to have|Σ| + 1
states, and train it on data like the other left and right
automata. During generation, its state remembers
the previously generated root, if any. Recall that we
are working with POS tag sequences, so the roots,

like all other words, are tags inΣ.)
The 4 subtrees in Fig. 1b appear as so many

bunches of grapes hanging off a vine. We refer to
the dotted dependencies upon$ asvine dependen-
cies, and the remaining, bilexical dependencies as
tree dependencies.

One might informally use the term “vine gram-
mar” (VG) for any generative formalism, intended
for partial parsing, in which a parse is a constrained
sequence of trees that cover the sentence. In gen-
eral, a VG might use a two-part generative process:
first generate a finite-state sequence of roots, then
expand the roots according to some more powerful
formalism. Conveniently, however, SBGs and other
dependency grammars can integrate these two steps
into a single formalism.

4.2 Feasible Parsing

Now, for both speed and accuracy, we will restrict
the trees that may hang from the vine. We define a
feasibleparse under our SBG to be one in which all
tree dependencies are short, i.e., their length never
exceeds some hard boundk. The vine dependencies
may have unbounded length, of course, as in Fig. 1b.

Sentences with feasible parses form a regular lan-
guage. This would also be true under other defini-
tions of feasibility, e.g., we could have limited the
depth or width of each tree on the vine. However,
that would have ruled out deeply right-branching
trees, which are very common in language, and
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Figure 1: (a) A dependency tree on words. (Our experiments use only POS tags.) (b) A partial
parse for the same sentence retaining only tree dependencies of length≤ k = 3. The roots of the
4 resulting parse fragments are now connected only by their dotted-line “vine dependencies” on$.
Transforming (a) into (b) involves grafting subtrees rooted at “According”, “ ,”, and “.” onto the vine.

are also the traditional way to describe finite-state
sublanguages within a context-free grammar. By
contrast, our limitation on dependency length en-
sures regularity while still allowing (for any bound
k ≥ 1) arbitrarily wide and deep trees, such as
a→ b→ . . .→ root← . . .← y ← z.

Our goal is to find thebest feasibleparse (if
any). Rather than transform the grammar as in foot-
note 16, our strategy is to modify the parser so that it
only considers feasible parses. The interesting prob-
lem is to achieve linear-time parsing with a grammar
constant that is as small as for ordinary parsing.

We also correspondingly modify the training data
so that we only train on feasible parses. That is, we
break any long dependencies and thereby fragment
each training parse (a single tree) into a vine of one
or more restricted trees. When we break a child-
to-parent dependency, we reattach the child to$.17

This process,grafting, is illustrated in Fig. 1. Al-
though this new parse may score less than 100% re-
call of the original dependencies, it is the best feasi-
ble parse, so we would like to train the parser to find
it.18 By training on the modified data, we learn more

17Any dependencycoveringthe child must also be broken to
preserve projectivity. This case arises later; see footnote 25.

18Although the parser will still not be able to find it if it is
non-projective (possible in German). Arguably we should have
defined “feasible” to also require projectivity, but we did not.

appropriate statistics for bothR$ and the other au-
tomata. If we trained on the original trees, we would
inaptly learn thatR$ always generates a single root
rather than a certain kind of sequence of roots.

For evaluation, we score tree dependencies in our
feasible parses against the tree dependencies in the
unmodifiedgold standard parses, which are not nec-
essarily feasible. We also show oracle performance.

4.3 Approach #1: FSA Parsing

Since we are now dealing with a regular language,
it is possible in principle to use a weighted finite-
state automaton (FSA) to search for the best feasible
parse. The idea is to find the highest-weighted path
that accepts the input stringω = w1w2 . . . wn. Us-
ing the Viterbi algorithm, this takes timeO(n).

The trouble is that this linear runtime hides a con-
stant factor, which depends on the size of the rele-
vant part of the FSA and may be enormous for any
correct FSA.19

Consider an example from Fig 1b. Af-
ter nondeterministically readingw1 . . . w11 =
According. . . insideralong thecorrectpath, the FSA
state must record (at least) thatinsiderhas no parent
yet and thatR$ andRcut are in particular states that

19The full runtime isO(nE), whereE is the number of FSA
edges, or for a tighter estimate, the number of FSA edges that
can be traversed by readingω.
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may still accept more children. Else the FSA cannot
know whether to accept a continuationw12 . . . wn.

In general, after parsing a prefixw1 . . . wj , the
FSA state must somehow record information about
all incompletely linked words in the past. It must
record the sequence of past wordswi (i ≤ j) that
still need a parent or child in the future; ifwi still
needs a child, it must also record the state ofRwi .

Our restriction to dependency length≤ k is what
allows us to build afinite-state machine (as opposed
to some kind of pushdown automaton with an un-
bounded number of configurations). We need only
build thefinitelymany states where the incompletely
linked words are limited to at mostw0 = $ and thek
most recent words,wj−k+1 . . . wj . Other states can-
not extend into a feasible parse, and can be pruned.

However, this still allows the FSA to be in
O(2ktk+1) different states after readingw1 . . . wj .
Then the runtime of the Viterbi algorithm, though
linear inn, is exponential ink.

4.4 Approach #2: Ordinary Chart Parsing

A much better idea for most purposes is to use a
chart parser. This allows the usual dynamic pro-
gramming techniques for reusing computation. (The
FSA in the previous section failed to exploit many
such opportunities: exponentially many states would
have proceeded redundantly by building the same
wj+1wj+2wj+3 constituent.)

It is simple to restrict our algorithm of Fig. 2a to
find only feasible parses. It is the ATTACH rules

@@ + �� that add dependencies: simply use a
side condition to block them from applying unless
|h− h′| ≤ k (short tree dependency) orh = 0 (vine

dependency). This ensures that allH
H

and ��

will have width≤ k or have their left edge at 0.
One might now incorrectly expect runtime linear

in n: the number of possible ATTACH combinations
is reduced fromO(n3) toO(nk2), becausei andh′

are now restricted to a narrow range givenh.

Unfortunately, the half-constituents@@ and

�� may still be arbitrarily wide, thanks to arbi-
trary right- and left-branching: a feasible vine parse

may be a sequence of wide trees�� @@ . Thus there
areO(n2k) possible COMPLETE combinations, not
to mentionO(n2) ATTACH-RIGHT combinations
for whichh = 0. So the runtime remains quadratic.

4.5 Approach #3: Specialized Chart Parsing

How, then, do we get linear runtimeand a rea-
sonable grammar constant? We give two ways to
achieve runtime ofO(nk2).

First, we observe without details that we can eas-
ily achieve this by starting instead with the algo-
rithm of Eisner (2000),20 rather than Eisner and
Satta (1999), and again refusing to add long tree de-
pendencies. That algorithm effectively concatenates
only trapezoids, not triangles. Each is spanned by a
single dependency and so has width≤ k. The vine
dependencies do lead to wide trapezoids, but these
are constrained to start at 0, where$ is. So the algo-
rithm tries at mostO(nk2) combinations of the form

h i + i j (like the ATTACH combinations above)
andO(nk) combinations of the form0 i + i j,
wherei− h ≤ k, j − i ≤ k. The precise runtime is
O(nk(k + t′)tg3).

We now propose a hybrid linear-time algorithm
that further improves runtime toO(nk(k + t′)tg2),
saving a factor ofg in the grammar constant.21 We
observe that since within-tree dependencies must
have length≤ k, they can all be captured within
Eisner-Satta trapezoids of width≤ k. So our VG

parse �� @@ ∗ can be assembled by simplyconcate-

natinga sequence( ��
�� ∗ HH ∗ @@ )∗ of these

narrow trapezoids interspersed with width-0 trian-
gles. As this is aregular sequence, we can assem-
ble it in linear time from left to right (rather than in
the order of Eisner and Satta (1999)), multiplying
the items’ probabilities together. Whenever we start

adding the right half HH ∗ @@ of a tree along the
vine, we have discovered that tree’s root, so we mul-
tiply in the probability of a$← root dependency.

Formally, our hybrid parsing algorithm restricts
the original rules of Fig. 2a to build only trapezoids
of width ≤ k and triangles of width< k.22 The
additional inference rules in Fig. 2b then assemble
the final VG parse as just described.

20With a small change that when two items are combined, the
right item (rather than the left) must be simple.

21This savings comes from building the internal structure of
a trapezoid from both ends inward rather than from left to right.
The corresponding unrestricted algorithms (Eisner, 2000; Eis-
ner and Satta, 1999, respectively) have exactly the same run-
times withk replaced byn.

22For the experiments of§4.7, wherek varied by type, we
restricted these rules as tightly as possible givenh andh′.
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Figure 3: Trading precision and recall: Imposing bounds can
improve precision at the expense of recall, for English and Chi-
nese. German performance suffers more. Bounds shown are
k = {1, 2, ..., 10, 15, 20}. The dotted lines show constantF -
measure of the unbounded model.

4.6 Experiments with Hard Constraints

Our experiments used the asymptotically fast hybrid
parsing algorithm above. We used the same left and
right automata as in model C, the best-performing
model from§3.2. However, we now defineR$ to
be a first-order (bigram) Markov model (§4.1). We
trained and tested on the same headed treebanks as
before (§3.7), except that we modified thetraining
trees to make them feasible (§4.2).

Results are shown in Figures 3 (precision/recall
tradeoff) and 4 (accuracy/speed tradeoff), fork ∈
{1, 2, ..., 10, 15, 20}. Dots correspond to different
values ofk. On English and Chinese, some values of
k actually achieve betterF -measure accuracy than
the unbounded parser, by eliminating errors.23

We observed that changingR$ from a bigram
to a unigram model significantly hurt performance,
showing that it is in fact useful to empirically model
likely sequencesof parse fragments.

4.7 Finer-Grained Hard Constraints

The dependency length boundk need not be a sin-
gle value. Substantially better accuracy can be re-
tained if each dependency type—each(h, c, d) =
(head tag, child tag, direction) tuple—has its own

23Because our prototype implementation of each kind of
parser (baseline, soft constraints, single-bound, and type-
specific bounds) is known to suffer from different inefficiencies,
runtimes in milliseconds are not comparable across parsers. To
give a general idea, 60-word English sentences parsed in around
300ms with no bounds, but at around 200ms with either a dis-
tance modelp(∆|d, h, c) or a generous hard bound ofk = 10.

boundk(h, c, d). We call thesetype-specificbounds:
they create a many-dimensional space of possible
parsers. We measured speed and accuracy along a
sensible path through this space, gradually tighten-
ing the bounds using the following process:
1. Initialize each boundk(h, c, d) to the maximum

distance observed in training (or 1 for unseen
triples).24

2. Greedily choose a boundk(h, c, d) such that, if
its value is decremented and trees that violate the
new bound are accordingly broken, thefewestde-
pendencies will be broken.25

3. Decrement the boundk(h, c, d) and modify the
training data to respect the bound by breaking de-
pendencies that violate the bound and “grafting”
the loose portion onto the vine. Retrain the parser
on the training data.

4. If all bounds are not equal to 1, go to step 2.
The performance of every 200th model along the

trajectory of this search is plotted in Fig. 4.26 The
graph shows that type-specific bounds can speed up
the parser to a given level with less loss in accuracy.

5 Related Work

As discussed in footnote 3, Collins (1997) and Mc-
Donald et al. (2005) considered the POS tags inter-
vening between a head and child. These soft con-
straints were very helpful, perhaps in part because
they helped capture the short dependency preference
(§2). Collins used them as conditioning variables
and McDonald et al. as log-linear features, whereas
our §3 predicted them directly in a deficient model.

As for hard constraints (§4), our limitation on de-
pendency length can be regarded as approximating
a context-free language by a subset that is a regular

24In the case of the German TIGER corpus, which contains
non-projective dependencies, we first make the training trees
into projective vines by raising all non-projective child nodes to
become heads on the vine.

25Not counting dependencies that must be broken indirectly
in order to maintain projectivity. (If word 4 depends on word
7 which depends on word 2, and the4 → 7 dependency is
broken, making 4 a root, then we must also break the2 → 7
dependency.)

26Note thatk(h, c, right) = 7 bounds the width of @@ +

�� =
��

. For a finer-grained approach, we could in-

stead separately bound the widths of@@ and �� , say by
kr(h, c, right) = 4 andkl(h, c, right) = 2.
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language. Our “vines” then let us concatenate sev-
eral strings in this subset, which typically yields a
superset of the original context-free language. Sub-
set and superset approximations of (weighted) CFLs
by (weighted) regular languages, usually by pre-
venting center-embedding, have been widely ex-
plored; Nederhof (2000) gives a thorough review.
We limit all dependency lengths (not just center-
embedding).27 Further, we derive weights from a
modified treebank rather than by approximating the
true weights. And though regular grammar approxi-
mations are useful for other purposes, we argue that
for parsing it is more efficient to perform the approx-
imation in the parser, not in the grammar.

Brants (1999) described a parser that encoded the
grammar as a set of cascaded Markov models. The
decoder was applied iteratively, with each iteration
transforming the best (orn-best) output from the
previous one until only the root symbol remained.
This is a greedy variant of CFG parsing where the
grammar is in Backus-Naur form.

Bertsch and Nederhof (1999) gave a linear-time
recognition algorithm for the recognition of the reg-
ular closure of deterministic context-free languages.
Our result is related; instead of a closure ofdeter-
ministicCFLs, we deal in a closure of CFLs that are
assumed (by the parser) to obey some constraint on
trees (like a maximum dependency length).

6 Future Work

The simple POS-sequence models we used as an ex-
perimental baseline are certainly not among the best
parsers available today. They were chosen to illus-
trate how modeling and exploiting distance in syntax
can affect various performance measures. Our ap-
proach may be helpful for other kinds of parsers as
well. First, we hope that our results will generalize
to more expressive grammar formalisms such as lex-
icalized CFG, CCG, and TAG, and to more expres-
sively weighted grammars, such as log-linear mod-
els that can include head-child distance among other
rich features. The parsing algorithms we presented
also admitinside-outsidevariants, allowing iterative
estimation methods for log-linear models (see, e.g.,
Miyao and Tsujii, 2002).

27Of course, this still allows right-branching or left-
branching to unbounded depth.
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Figure 4: Trading off speed and accuracy by varying the set
of feasible parses: The baseline (no length bound) is shown
as +. Tighter bounds always improve speed, except for the
most lax bounds, for which vine construction overhead incurs
a slowdown. Type-specific bounds tend to maintain goodF -
measure at higher speeds than the single-bound approach. The
vertical error bars show the “oracle” accuracy for each experi-
ment (i.e., theF -measure if we had recovered the best feasible
parse, as constructed from the gold-standard parse by grafting:
see§4.2). Runtime is measured as the number of items per word

(i.e., @@ , �� ,
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,
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XXyXXy

) built
by the agenda parser. The “soft constraint” point marked with
× represents thep(∆ | d, h, c)-augmented model from§3.
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Second, fast approximate parsing may play a role
in more accurate parsing. It might be used to rapidly
compute approximate outside-probability estimates
to prioritize best-first search (e.g., Caraballo and
Charniak, 1998). It might also be used to speed up
the early iterations of training a weighted parsing
model, which for modern training methods tends to
require repeated parsing (either for the best parse, as
by Taskar et al., 2004, or all parses, as by Miyao and
Tsujii, 2002).

Third, it would be useful to investigate algorith-
mic techniques and empirical benefits for limiting
dependency length in more powerful grammar for-
malisms. Our runtime reduction fromO(n3) →
O(nk2) for a length-k bound applies only to a
“split” bilexical grammar.28 Various kinds ofsyn-
chronousgrammars, in particular, are becoming im-
portant in statistical machine translation. Their high
runtime complexity might be reduced by limiting
monolingual dependency length (for a related idea
see Schafer and Yarowsky, 2003).

Finally, consider the possibility of limiting depen-
dency length during grammar induction. We reason
that a learner might start with simple structures that
focus on local relationships, and gradually relax this
restriction to allow more complex models.

7 Conclusion

We have described a novel reason for identifying
headword-to-headword dependencies while parsing:
to consider their length. We have demonstrated
that simple bilexical parsers of English, Chinese,
and German can exploit a “short-dependency pref-
erence.” Notably,soft constraints on dependency
length can improve both speed and accuracy, and
hardconstraints allow improved precision and speed
with some loss in recall (on English and Chinese,
remarkably little loss). Further, for the hard con-
straint “length≤ k,” we have given anO(nk2) par-
tial parsing algorithm for split bilexical grammars;
the grammar constant is no worse than for state-of-
the-artO(n3) algorithms. This algorithm strings to-
gether the partial trees’ roots along a “vine.”

28The obvious reduction for unsplit head automaton gram-
mars, say, is onlyO(n4) → O(n3k), following (Eisner and
Satta, 1999). Alternatively, one can convert the unsplit HAG to
a split one that preserves the set of feasible (length≤ k) parses,
but theng becomes prohibitively large in the worst case.

Our approach might be adapted to richer parsing
formalisms, including synchronous ones, and should
be helpful as an approximation to full parsing when
fast, high-precision recovery of syntactic informa-
tion is needed.
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Abstract

We present a corrective model for recov-
ering non-projective dependency struc-
tures from trees generated by state-of-the-
art constituency-based parsers. The con-
tinuity constraint of these constituency-
based parsers makes it impossible for
them to posit non-projective dependency
trees. Analysis of the types of depen-
dency errors made by these parsers on a
Czech corpus show that the correct gov-
ernor is likely to be found within a local
neighborhood of the governor proposed
by the parser. Our model, based on a
MaxEnt classifier, improves overall de-
pendency accuracy by .7% (a 4.5% reduc-
tion in error) with over 50% accuracy for
non-projective structures.

1 Introduction

Statistical parsing models have been shown to
be successful in recovering labeled constituencies
(Collins, 2003; Charniak and Johnson, 2005; Roark
and Collins, 2004) and have also been shown to
be adequate in recovering dependency relationships
(Collins et al., 1999; Levy and Manning, 2004;
Dubey and Keller, 2003). The most successful mod-
els are based on lexicalized probabilistic context
free grammars (PCFGs) induced from constituency-
based treebanks. The linear-precedence constraint
of these grammars restricts the types of dependency

structures that can be encoded in such trees.1 A
shortcoming of the constituency-based paradigm for
parsing is that it is inherently incapable of repre-
senting non-projective dependencies trees (we de-
fine non-projectivity in the following section). This
is particularly problematic when parsing free word-
order languages, such as Czech, due to the frequency
of sentences with non-projective constructions.

In this work, we explore a corrective model which
recovers non-projective dependency structures by
training a classifier to select correct dependency
pairs from a set of candidates based on parses gen-
erated by a constituency-based parser. We chose to
use this model due to the observations that the de-
pendency errors made by the parsers are generally
local errors. For the nodes with incorrect depen-
dency links in the parser output, the correct gov-
ernor of a node is often found within a local con-
text of the proposed governor. By considering al-
ternative dependencies based on local deviations of
the parser output we constrain the set of candidate
governors for each node during the corrective proce-
dure. We examine two state-of-the-art constituency-
based parsers in this work: the Collins Czech parser
(1999) and a version of the Charniak parser (2001)
that was modified to parse Czech.

Alternative efforts to recover dependency struc-
ture from English are based on reconstructing the
movement traces encoded in constituency trees
(Collins, 2003; Levy and Manning, 2004; Johnson,
2002; Dubey and Keller, 2003). In fact, the fea-

1In order to correctly capture the dependency structure, co-
indexed movement traces are used in a form similar to govern-
ment and Binding theory, GPSG, etc.
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Figure 1: Examples of projective and non-projective trees. The trees on the left and center are both projec-
tive. The tree on the right is non-projective.

tures we use in the current model are similar to those
proposed by Levy and Manning (2004). However,
the approach we propose discards the constituency
structure prior to the modeling phase; we model cor-
rective transformations of dependency trees.

The technique proposed in this paper is similar to
that of recent parser reranking approaches (Collins,
2000; Charniak and Johnson, 2005); however, while
reranking approaches allow a parser to generate a
likely candidate set according to a generative model,
we consider a set of candidates based on local per-
turbations of the single most likely tree generated.
The primary reason for such an approach is that we
allow dependency structures which would never be
hypothesized by the parser. Specifically, we allow
for non-projective dependencies.

The corrective algorithm proposed in this paper
shares the motivation of the transformation-based
learning work (Brill, 1995). We do consider local
transformations of the dependency trees; however,
the technique presented here is based on a generative
model that maximizes the likelihood of good depen-
dents. We consider a finite set of local perturbations
of the tree and use a fixed model to select the best
tree by independently choosing optimal dependency
links.

In the remainder of the paper we provide a defini-
tion of a dependency tree and the motivation for us-
ing such trees as well as a description of the particu-
lar dataset that we use in our experiments, the Prague
Dependency Treebank (PDT). In Section 3 we de-
scribe the techniques used to adapt constituency-
based parsers to train from and generate dependency
trees. Section 4 describes corrective modeling as
used in this work and Section 4.2 describes the par-

ticular features with which we have experimented.
Section 5 presents the results of a set of experiments
we performed on data from the PDT.

2 Syntactic Dependency Trees and the
Prague Dependency Treebank

A dependency tree is a set of nodes Ω =
{w0, w1, . . . , wk} where w0 is the imaginary root
node2 and a set of dependency links G =
{g1, . . . , gk} where gi is an index into Ω represent-
ing the governor of wi. In other words g3 = 1 in-
dicates that the governor of w3 is w1. Finally, every
node has exactly one governor except for w0, which
has no governor (the tree constraints).3 The index of
the nodes represents the surface order of the nodes
in the sequence (i.e., wi precedes wj in the sentence
if i < j).

A tree is projective if for every three nodes: wa,
wb, and wc where a < b < c; if wa is governed by
wc then wb is transitively governed by wc or if wc

is governed by wa then wb is transitively governed
by wa.4 Figure 1 shows examples of projective and
non-projective trees. The rightmost tree, which is
non-projective, contains a subtree consisting of wa

and wc but not wb; however, wb occurs between wa

and wc in the linear ordering of the nodes. Projec-
tivity in a dependency tree is akin to the continuity
constraint in a constituency tree; such a constraint is

2The imaginary root node simplifies notation.
3The dependency structures here are very similar to those

described by Mel’čuk (1988); however the nodes of the depen-
dency trees discussed in this paper are limited to the words of
the sentence and are always ordered according to the surface
word-order.

4Node wa is said to transitively govern node wb if wb is a
descendant of wa in the dependency tree.
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implicitly imposed by trees generated from context
free grammars (CFGs).

Strict word-order languages, such as English, ex-
hibit non-projective dependency structures in a rel-
atively constrained set of syntactic configurations
(e.g., right-node raising). Traditionally, these move-
ments are encoded in syntactic analyses as traces.
In languages with free word-order, such as Czech,
constituency-based representations are overly con-
strained (Sgall et al., 1986). Syntactic dependency
trees encode syntactic subordination relationships
allowing the structure to be non-specific about the
underlying deep representation. The relationship
between a node and its subordinates expresses a
sense of syntactic (functional) entailment.

In this work we explore the dependency struc-
tures encoded in the Prague Dependency Treebank
(Hajič, 1998; Böhmová et al., 2002). The PDT 1.0
analytical layer is a set of Czech syntactic depen-
dency trees; the nodes of which contain the word
forms, morphological features, and syntactic anno-
tations. These trees were annotated by hand and
are intended as an intermediate stage in the annota-
tion of the Tectogrammatical Representation (TR),
a deep-syntactic or syntacto-semantic theory of lan-
guage (Sgall et al., 1986). All current automatic
techniques for generating TR structures are based on
syntactic dependency parsing.

When evaluating the correctness of dependency
trees, we only consider the structural relationships
between the words of the sentence (unlabeled depen-
dencies). However, the model we propose contains
features that are considered part of the dependency
rather than the nodes in isolation (e.g., agreement
features). We do not propose a model for correctly
labeling dependency structures in this work.

3 Constituency Parsing for Dependency
Trees

A pragmatic justification for using constituency-
based parsers in order to predict dependency struc-
tures is that currently the best Czech dependency-
tree parser is a constituency-based parser (Collins et
al., 1999; Zeman, 2004). In fact both Charniak’s
and Collins’ generative probabilistic models con-

tain lexical dependency features.5 From a gener-
ative modeling perspective, we use the constraints
imposed by constituents (i.e., projectivity) to enable
the encapsulation of syntactic substructures. This di-
rectly leads to efficient parsing algorithms such as
the CKY algorithm and related agenda-based pars-
ing algorithms (Manning and Schütze, 1999). Addi-
tionally, this allows for the efficient computation of
the scores for the dynamic-programming state vari-
ables (i.e., the inside and outside probabilities) that
are used in efficient statistical parsers. The computa-
tional complexity advantages of dynamic program-
ming techniques along with efficient search tech-
niques (Caraballo and Charniak, 1998; Klein and
Manning, 2003) allow for richer predictive models
which include local contextual information.

In an attempt to extend a constituency-based pars-
ing model to train on dependency trees, Collins
transforms the PDT dependency trees into con-
stituency trees (Collins et al., 1999). In order to
accomplish this task, he first normalizes the trees
to remove non-projectivities. Then, he creates ar-
tificial constituents based on the parts-of-speech of
the words associated with each dependency node.
The mapping from dependency tree to constituency
tree is not one-to-one. Collins describes a heuristic
for choosing trees that work well with his parsing
model.

3.1 Training a Constituency-based Parser

We consider two approaches to creating projec-
tive trees from dependency trees exhibiting non-
projectivities. The first is based on word-reordering
and is the model that was used with the Collins
parser. This algorithm identifies non-projective
structures and deterministically reorders the words
of the sentence to create projective trees. An alter-
native method, used by Charniak in the adaptation
of his parser for Czech6 and used by Nivre and Nils-
son (2005), alters the dependency links by raising
the governor to a higher node in the tree whenever

5Bilexical dependencies are components of both the Collins
and Charniak parsers and effectively model the types of syntac-
tic subordination that we wish to extract in a dependency tree.
(Bilexical models were also proposed by Eisner (Eisner, 1996)).
In the absence of lexicalization, both parsers have dependency
features that are encoded as head-constituent to sibling features.

6This information was provided by Eugene Charniak in a
personal communication.
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Figure 2: Statistical distribution of correct governor positions in the Charniak (left) and Collins (right) parser output of parsed
PDT development data.

a non-projectivity is observed. The trees are then
transformed into Penn Treebank style constituen-
cies using the technique described in (Collins et al.,
1999).

Both of these techniques have advantages and dis-
advantages which we briefly outline here:

Reordering The dependency structure is preserved,
but the training procedure will learn statistics
for structures over word-strings that may not be
part of the language. The parser, however, may
be capable of constructing parses for any string
of words if a smoothed grammar is being used.

Governor–Raising The dependency structure is
corrupted leading the parser to incorporate ar-
bitrary dependency statistics into the model.
However, the parser is trained on true sen-
tences, the words of which are in the correct
linear order. We expect the parser to predict
similar incorrect dependencies when sentences
similar to the training data are observed.

Although the results presented in (Collins et al.,
1999) used the reordering technique, we have exper-
imented with his parser using the governor–raising
technique and observe an increase in dependency ac-
curacy. For the remainder of the paper, we assume
the governor–raising technique.

The process of generating dependency trees from
parsed constituency trees is relatively straight-

forward. Both the Collins and Charniak parsers pro-
vide head-word annotation on each constituent. This
is precisely the information that we encode in an un-
labeled dependency tree, so the dependency struc-
ture can simply be extracted from the parsed con-
stituency trees. Furthermore, the constituency labels
can be used to identify the dependency labels; how-
ever, we do not attempt to identify correct depen-
dency labels in this work.

3.2 Constituency-based errors

We now discuss a quantitative measure for the types
of dependency errors made by constituency-based
parsing techniques. For node wi and the correct gov-
ernor wg∗i the distance between the two nodes in the
hypothesized dependency tree is:

dist(wi, wg∗i )

=

⎧⎪⎨
⎪⎩

d(wi, wg∗i ) iff wg∗i is ancestor of wi

d(wi, wg∗i ) iff wg∗i is sibling/cousin of wi

−d(wi, wg∗i ) iff wg∗i is descendant of wi

Ancestor, sibling, cousin, and descendant have the
standard interpretation in the context of a tree. The
dependency distance d(wi, wg∗i ) is the minimum
number of dependency links traversed on the undi-
rected path from wi to wg∗i in the hypothesized de-
pendency tree. The definition of the dist function
makes a distinction between paths through the par-
ent of wi (positive values) and paths through chil-
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CORRECT(W )
1 Parse sentence W using the constituency-based parser
2 Generate a dependency structure from the constituency tree
3 for wi ∈ W
4 do for wc ∈ N (wgh

i
) // Local neighborhood of proposed governor

5 do l(c) ← P (g∗i = c|wi,N (wgh
i
))

6 g
′
i ← arg maxc l(c) // Pick the governor in which we are most confident

Table 1: Corrective Modeling Procedure

dren of wi (negative values). We found that a vast
majority of the correct governors were actually hy-
pothesized as siblings or grandparents (a dist values
of 2) – an extreme local error.

Figure 2 shows a histogram of the fraction of
nodes whose correct governor was within a particu-
lar dist in the hypothesized tree. A dist of 1 indicates
the correct governor was selected by the parser; in
these graphs, the density at dist = 1 (on the x axis)
shows the baseline dependency accuracy of each
parser. Note that if we repaired only the nodes that
are within a dist of 2 (grandparents and siblings),
we can recover more than 50% of the incorrect de-
pendency links (a raw accuracy improvement of up
to 9%). We believe this distribution to be indirectly
caused by the governor raising projectivization rou-
tine. In the cases where non-projective structures
can be repaired by raising the node’s governor to its
parent, the correct governor becomes a sibling of the
node.

4 Corrective Modeling

The error analysis of the previous section suggests
that by looking only at a local neighborhood of the
proposed governor in the hypothesized trees, we can
correct many of the incorrect dependencies. This
fact motivates the corrective modeling procedure
employed here.

Table 1 presents the pseudo-code for the correc-
tive procedure. The set gh contains the indices of
governors as predicted by the parser. The set of gov-
ernors predicted by the corrective procedure is de-
noted as g

′
. The procedure independently corrects

each node of the parsed trees meaning that there
is potential for inconsistent governor relationships
to exist in the proposed set; specifically, the result-

ing dependency graph may have cycles. We em-
ploy a greedy search to remove cycles when they are
present in the output graph.

The final line of the algorithm picks the governor
in which we are most confident. We use the correct-
governor classification likelihood,
P (g∗i = j|wi,N (wgh

i
)), as a measure of the confi-

dence that wc is the correct governor of wi where
the parser had proposed wgh

i
as the governor. In ef-

fect, we create a decision list using the most likely
decision if we can (i.e., there are no cycles). If the
dependency graph resulting from the most likely de-
cisions does not result in a tree, we use the decision
lists to greedily select the tree for which the product
of the independent decisions is maximal.

Training the corrective model requires pairs of
dependency trees; each pair contains a manually-
annotated tree (i.e., the gold standard tree) and a tree
generated by the parser. This data is trivially trans-
formed into per-node samples. For each node wi in
the tree, there are |N (wgh

i
)| samples; one for each

governor candidate in the local neighborhood.

One advantage to the type of corrective algorithm
presented here is that it is completely disconnected
from the parser used to generate the tree hypotheses.
This means that the original parser need not be sta-
tistical or even constituency based. What is critical
for this technique to work is that the distribution of
dependency errors be relatively local as is the case
with the errors made by the Charniak and Collins
parsers. This can be determined via data analysis
using the dist metric. Determining the size of the lo-
cal neighborhood is data dependent. If subordinate
nodes are considered as candidate governors, then a
more robust cycle removal technique is be required.
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4.1 MaxEnt Estimation

We have chosen a MaxEnt model to estimate the
governor distributions, P (g∗i = j|wi,N (wgh

i
)). In

the next section we outline the feature set with which
we have experimented, noting that the features are
selected based on linguistic intuition (specifically
for Czech). We choose not to factor the feature vec-
tor as it is not clear what constitutes a reasonable
factorization of these features. For this reason we
use the MaxEnt estimator which provides us with
the flexibility to incorporate interdependent features
independently while still optimizing for likelihood.

The maximum entropy principle states that we
wish to find an estimate of p(y|x) ∈ C that maxi-
mizes the entropy over a sample set X for some set
of observations Y , where x ∈ X is an observation
and y ∈ Y is a outcome label assigned to that obser-
vation,

H(p) ≡ −
∑

x∈X,y∈Y

p̃(x)p(y|x) log p(y|x)

The set C is the candidate set of distributions from
which we wish to select p(y|x). We define this set
as the p(y|x) that meets a feature-based expectation
constraint. Specifically, we want the expected count
of a feature, f(x, y), to be equivalent under the dis-
tribution p(y|x) and under the observed distribution
p̃(y|x).

∑
x∈X,y∈Y

p̃(x)p(y|x)fi(x, y)

=
∑

x∈X,y∈Y

p̃(x)p̃(y|x)fi(x, y)

fi(x, y) is a feature of our model with which we
capture correlations between observations and out-
comes. In the following section, we describe a set of
features with which we have experimented to deter-
mine when a word is likely to be the correct governor
of another word.

We incorporate the expected feature-count con-
straints into the maximum entropy objective using
Lagrange multipliers (additionally, constraints are
added to ensure the distributions p(y|x) are consis-
tent probability distributions):

H(p)

+
∑

i

αi

∑
x∈X,y∈Y

(
p̃(x)p(y|x)fi(x, y)

−p̃(x)p̃(y|x)fi(x, y)
)

+ γ
∑
y∈Y

p(y|x)− 1

Holding the αi’s constant, we compute the uncon-
strained maximum of the above Lagrangian form:

pα(y|x) =
1

Zα(x)
exp(

∑
i

αifi(x, y))

Zα(x) =
∑
y∈Y

exp(
∑

i

αifi(x, y))

giving us the log-linear form of the distributions
p(y|x) in C (Z is a normalization constant). Finally,
we compute the αi’s that maximize the objective
function:

−
∑
x∈X

p̃(x) log Zα(x) +
∑

i

αip̃(x, y)fi(x, y)

A number of algorithms have been proposed to ef-
ficiently compute the optimization described in this
derivation. For a more detailed introduction to max-
imum entropy estimation see (Berger et al., 1996).

4.2 Proposed Model

Given the above formulation of the MaxEnt estima-
tion procedure, we define features over pairs of ob-
servations and outcomes. In our case, the observa-
tions are simply wi, wc, and N (wgh

i
) and the out-

come is a binary variable indicating whether c = g∗i
(i.e., wc is the correct governor). In order to limit
the dimensionality of the feature space, we consider
feature functions over the outcome, the current node
wi, the candidate governor node wc and the node
proposed as the governor by the parser wgh

i
.

Table 2 describes the general classes of features
used. We write Fi to indicate the form of the current
child node, Fc for the form of the candidate, and Fg

as the form of the governor proposed by the parser.
A combined feature is denoted as LiTc and indicates
we observed a particular lemma for the current node
with a particular tag of the candidate.
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Feature Type Id Description
Form F the fully inflected word form as it appears in the data
Lemma L the morphologically reduced lemma
MTag T a subset of the morphological tag as described in (Collins et al., 1999)
POS P major part-of-speech tag (first field of the morphological tag)
ParserGov G true if candidate was proposed as governor by parser
ChildCount C the number of children
Agreement A(x, y) check for case/number agreement between word x and y

Table 2: Description of the classes of features used

In all models, we include features containing the
form, the lemma, the morphological tag, and the
ParserGov feature. We have experimented with dif-
ferent sets of feature combinations. Each combina-
tion set is intended to capture some intuitive linguis-
tic correlation. For example, the feature component
LiTc will fire if a particular child’s lemma Li is ob-
served with a particular candidate’s morphological
tag Tc. This feature is intended to capture phenom-
ena surrounding particles; for example, in Czech,
the governor of the reflexive particle se will likely
be a verb.

4.3 Related Work

Recent work by Nivre and Nilsson introduces a tech-
nique where the projectivization transformation is
encoded in the non-terminals of constituents dur-
ing parsing (Nivre and Nilsson, 2005). This al-
lows for a deterministic procedure that undoes the
projectivization in the generated parse trees, creat-
ing non-projective structures. This technique could
be incorporated into a statistical parsing frame-
work, however we believe the sparsity of such non-
projective configurations may be problematic when
using smoothed backed-off grammars. We suspect
that the deterministic procedure employed by Nivre
and Nilsson enables their parser to greedily consider
non-projective constructions when possible. This
may also explain the relatively low overall perfor-
mance of their parser.

A primary difference between the Nivre and Nils-
son approach and what we propose in this paper is
that of determining the projectivization procedure.
While we exploit particular side-effects of the pro-
jectivization procedure, we do not assume any par-
ticular algorithm. Additionally, we consider trans-

formations for all dependency errors where their
technique explicitly addresses non-projectivity er-
rors.

We mentioned above that our approach appears to
be similar to that of reranking for statistical parsing
(Collins, 2000; Charniak and Johnson, 2005). While
it is true that we are improving upon the output of the
automatic parser, we are not considering multiple al-
ternate parses. Instead, we consider a complete set
of alternate trees that are minimal perturbations of
the best tree generated by the parser. In the context
of dependency parsing, we do this in order to gen-
erate structures that constituency-based parsers are
incapable of generating (i.e., non-projectivities).

Recent work by Smith and Eisner (2005) on con-
trastive estimation suggests similar techniques to
generate local neighborhoods of a parse; however,
the purpose in their work is to define an approxi-
mation to the partition function for log-linear esti-
mation (i.e., the normalization factor in a MaxEnt
model).

5 Empirical Results

In this section we report results from experiments on
the PDT Czech dataset. Approximately 1.9% of the
words’ dependencies are non-projective in version
1.0 of this corpus and these occur in 23.2% of the
sentences (Hajičová et al., 2004). We used the stan-
dard training, development, and evaluation datasets
defined in the PDT documentation for all experi-
ments.7 We use Zhang Lee’s implementation of the

7We have used PDT 1.0 (2002) data for the Charniak experi-
ments and PDT 2.0 (2005) data for the Collins experiments. We
use the most recent version of each parser; however we do not
have a training program for the Charniak parser and have used
the pretrained parser provided by Charniak; this was trained on
the training section of the PDT 1.0. We train our model on the
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Model Features Description
Count ChildCount count of children for the three nodes
MTagL TiTc, LiLc, LiTc, TiLc, TiPg conjunctions of MTag and Lemmas
MTagF TiTc, FiFc, FiTc, TiFc, TiPg conjunctions of MTag and Forms
POSL Pi, Pc, Pg, PiPcPg, PiPg, PcLc conjunctions of POS and Lemma
TTT TiTcTg conjunction of tags for each of the three nodes
Agr A(Ti, Tc), A(Ti, Tg) binary feature if case/number agree
Trig LiLgTc, TiLgTc, LiLgLc trigrams of Lemma/Tag

Table 3: Model feature descriptions.

Model Charniak Parse Trees Collins Parse Trees
Devel. Accuracy NonP Accuracy Devel. Accuracy NonP Accuracy

Baseline 84.3% 15.9% 82.4% 12.0%
Simple 84.3% 16.0% 82.5% 12.2%
Simple + Count 84.3% 16.7% 82.5% 13.8%
Simple + MtagL 84.8% 43.5% 83.2% 44.1%
Simple + MtagF 84.8% 42.2% 83.2% 43.2%
Simple + POS 84.3% 16.0% 82.4% 12.1%
Simple + TTT 84.3% 16.0% 82.5% 12.2%
Simple + Agr 84.3% 16.2% 82.5% 12.2%
Simple + Trig 84.9% 47.9% 83.1% 47.7%
All Features 85.0% 51.9% 83.5% 57.5%

Table 4: Comparative results for different versions of our model on the Charniak and Collins parse trees for
the PDT development data.

MaxEnt estimator using the L-BFGS optimization
algorithms and Gaussian smoothing.8

Table 4 presents results on development data for
the correction model with different feature sets. The
features of the Simple model are the form (F),
lemma (L), and morphological tag (M) for the each
node, the parser-proposed governor node, and the
candidate node; this model also contains the Parser-
Gov feature. In the table’s following rows, we show
the results for the simple model augmented with fea-
ture sets of the categories described in Table 2. Ta-
ble 3 provides a short description of each of the mod-
els. As we believe the Simple model provides the
minimum information needed to perform this task,

Collins trees via a 20-fold Jackknife training procedure.
8Using held-out development data, we determined a Gaus-

sian prior parameter setting of 4 worked best. The optimal num-
ber of training iterations was chosen on held-out data for each
experiment. This was generally in the order of a couple hun-
dred iterations of L-BFGS. The MaxEnt modeling implemen-
tation can be found at http://homepages.inf.ed.ac.
uk/s0450736/maxent_toolkit.html.

we experimented with the feature-classes as addi-
tions to it. The final row of Table 4 contains results
for the model which includes all features from all
other models.

We define NonP Accuracy as the accuracy for
the nodes which were non-projective in the original
trees. Although both the Charniak and the Collins
parser can never produce non-projective trees, the
baseline NonP accuracy is greater than zero. This
is due to the parser making mistakes in the tree such
that the originally non-projective node’s dependency
is projective.

Alternatively, we report the Non-Projective Preci-
sion and Recall for our experiment suite in Table 5.
Here the numerator of the precision is the number
of nodes that are non-projective in the correct tree
and end up in a non-projective configuration; how-
ever, this new configuration may be based on incor-
rect dependencies. Recall is the obvious counterpart
to precision. These values correspond to the NonP

49



Model Charniak Parse Trees Collins Parse Trees
Precision Recall F-measure Precision Recall F-measure

Baseline N/A 0.0% 0.000 N/A 0.0% 0.000
Simple 22.6% 0.3% 0.592 5.0% 0.2% 0.385
Simple + Count 37.3% 1.1% 2.137 16.8% 2.0% 3.574
Simple + MtagL 78.0% 29.7% 43.020 62.4% 35.0% 44.846
Simple + MtagF 78.7% 28.6% 41.953 62.0% 34.3% 44.166
Simple + POS 23.3% 0.3% 0.592 2.5% 0.1% 0.192
Simple + TTT 20.7% 0.3% 0.591 6.1% 0.2% 0.387
Simple + Agr 40.0% 0.5% 0.988 5.7% 0.2% 0.386
Simple + Trig 74.6% 35.0% 47.646 52.3% 40.2% 45.459
All Features 75.7% 39.0% 51.479 48.1% 51.6% 49.789

Table 5: Alternative non-projectivity scores for different versions of our model on the Charniak and Collins
parse trees.

accuracy results reported in Table 4. From these ta-
bles, we see that the most effective features (when
used in isolation) are the conjunctive MTag/Lemma,
MTag/Form, and Trigram MTag/Lemma features.

Model Dependency NonP
Accuracy Accuracy

Collins 81.6% N/A
Collins + Corrective 82.8% 53.1%
Charniak 84.4% N/A
Charniak + Corrective 85.1% 53.9%

Table 6: Final results on PDT evaluation datasets
for Collins’ and Charniak’s trees with and without
the corrective model

Finally, Table 6 shows the results of the full model
run on the evaluation data for the Collins and Char-
niak parse trees. It appears that the Charniak parser
fares better on the evaluation data than does the
Collins parser. However, the corrective model is
still successful at recovering non-projective struc-
tures. Overall, we see a significant improvement in
the dependency accuracy.

We have performed a review of the errors that
the corrective process makes and observed that the
model does a poor job dealing with punctuation.
This is shown in Table 7 along with other types of
nodes on which we performed well and poorly, re-
spectively. Collins (1999) explicitly added features
to his parser to improve punctuation dependency
parsing accuracy. The PARSEVAL evaluation met-

Top Five Good/Bad Repairs
Well repaired child se i si až jen
Well repaired false governor v však li na o
Well repaired real governor a je stát ba ,
Poorly repaired child , se na že -
Poorly repaired false governor a , však musı́ li
Poorly repaired real governor root sklo , je -

Table 7: Categorization of corrections and errors
made by our model on trees from the Charniak
parser. root is the artificial root node of the PDT
tree. For each node position (child, proposed parent,
and correct parent), the top five words are reported
(based on absolute count of occurrences). The par-
ticle ‘se’ occurs frequently explaining why it occurs
in the top five good and top five bad repairs.

Charniak Collins
Correct to incorrect 13.0% 20.0%
Incorrect to incorrect 21.6% 25.8%
Incorrect to correct 65.5% 54.1%

Table 8: Categorization of corrections made by our
model on Charniak and Collins trees.

ric for constituency-based parsing explicitly ignores
punctuation in determining the correct boundaries of
constituents (Harrison et al., 1991) and so should the
dependency evaluation. However, the reported re-
sults include punctuation for comparative purposes.
Finally, we show in Table 8 a coarse analysis of the
corrective performance of our model. We are repair-
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ing more dependencies than we are corrupting.

6 Conclusion

We have presented a Maximum Entropy-based cor-
rective model for dependency parsing. The goal is
to recover non-projective dependency structures that
are lost when using state-of-the-art constituency-
based parsers; we show that our technique recovers
over 50% of these dependencies. Our algorithm pro-
vides a simple framework for corrective modeling
of dependency trees, making no prior assumptions
about the trees. However, in the current model, we
focus on trees with local errors. Overall, our tech-
nique improves dependency parsing and provides
the necessary mechanism to recover non-projective
structures.
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Abstract

We discuss the relevance of k-best parsing to
recent applications in natural language pro-
cessing, and develop efficient algorithms for
k-best trees in the framework of hypergraph
parsing. To demonstrate the efficiency, scal-
ability and accuracy of these algorithms, we
present experiments on Bikel’s implementation
of Collins’ lexicalized PCFG model, and on
Chiang’s CFG-based decoder for hierarchical
phrase-based translation. We show in particu-
lar how the improved output of our algorithms
has the potential to improve results from parse
reranking systems and other applications.

1 Introduction
Many problems in natural language processing (NLP) in-
volve optimizing some objective function over a set of
possible analyses of an input string. This set is often
exponential-sized but can be compactly represented by
merging equivalent subanalyses. If the objective function
is compatible with a packed representation, then it can be
optimized efficiently by dynamic programming. For ex-
ample, the distribution of parse trees for a given sentence
under a PCFG can be represented as a packed forest from
which the highest-probability tree can be easily extracted.

However, when the objective function f has no com-
patible packed representation, exact inference would be
intractable. To alleviate this problem, one common ap-
proach from machine learning is loopy belief propaga-
tion (Pearl, 1988). Another solution (which is popular
in NLP) is to split the computation into two phases: in
the first phase, use some compatible objective function
f ′ to produce a k-best list (the top k candidates under
f ′), which serves as an approximation to the full set.
Then, in the second phase, optimize f over all the anal-
yses in the k-best list. A typical example is discrimina-
tive reranking on k-best lists from a generative module,
such as (Collins, 2000) for parsing and (Shen et al., 2004)

for translation, where the reranking model has nonlocal
features that cannot be computed during parsing proper.
Another example is minimum-Bayes-risk decoding (Ku-
mar and Byrne, 2004; Goodman, 1998),where, assum-
ing f ′ defines a probability distribution over all candi-
dates, one seeks the candidate with the highest expected
score according to an arbitrary metric (e.g., PARSEVAL
or BLEU); since in general the metric will not be com-
patible with the parsing algorithm, the k-best lists can
be used to approximate the full distribution f ′. A simi-
lar situation occurs when the parser can produce multiple
derivations that are regarded as equivalent (e.g., multiple
lexicalized parse trees corresponding to the same unlexi-
calized parse tree); if we want the maximum a posteriori
parse, we have to sum over equivalent derivations. Again,
the equivalence relation will in general not be compati-
ble with the parsing algorithm, so the k-best lists can be
used to approximate f ′, as in Data Oriented Parsing (Bod,
2000) and in speech recognition (Mohri and Riley, 2002).

Another instance of this k-best approach is cascaded
optimization. NLP systems are often cascades of mod-
ules, where we want to optimize the modules’ objective
functions jointly. However, often a module is incompati-
ble with the packed representation of the previous module
due to factors like non-local dependencies. So we might
want to postpone some disambiguation by propagating
k-best lists to subsequent phases, as in joint parsing and
semantic role labeling (Gildea and Jurafsky, 2002; Sutton
and McCallum, 2005), information extraction and coref-
erence resolution (Wellner et al., 2004), and formal se-
mantics of TAG (Joshi and Vijay-Shanker, 1999).

Moreover, much recent work on discriminative train-
ing uses k-best lists; they are sometimes used to ap-
proximate the normalization constant or partition func-
tion (which would otherwise be intractable), or to train a
model by optimizing some metric incompatible with the
packed representation. For example, Och (2003) shows
how to train a log-linear translation model not by max-
imizing the likelihood of training data, but maximizing
the BLEU score (among other metrics) of the model on
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the data. Similarly, Chiang (2005) uses the k-best pars-
ing algorithm described below in a CFG-based log-linear
translation model in order to learn feature weights which
maximize BLEU.

For algorithms whose packed representations are
graphs, such as Hidden Markov Models and other finite-
state methods, Ratnaparkhi’s MXPARSE parser (Ratna-
parkhi, 1997), and many stack-based machine transla-
tion decoders (Brown et al., 1995; Och and Ney, 2004),
the k-best paths problem is well-studied in both pure
algorithmic context (see (Eppstein, 2001) and (Brander
and Sinclair, 1995) for surveys) and NLP/Speech com-
munity (Mohri, 2002; Mohri and Riley, 2002). This pa-
per, however, aims at the k-best tree algorithms whose
packed representations are hypergraphs (Gallo et al.,
1993; Klein and Manning, 2001) (equivalently, and/or
graphs or packed forests), which includes most parsers
and parsing-based MT decoders. Any algorithm express-
ible as a weighted deductive system (Shieber et al., 1995;
Goodman, 1999; Nederhof, 2003) falls into this class. In
our experiments, we apply the algorithms to the lexical-
ized PCFG parser of Bikel (2004), which is very similar
to Collins’ Model 2 (Collins, 2003), and to a synchronous
CFG based machine translation system (Chiang, 2005).

2 Previous Work
As pointed out by Charniak and Johnson (2005), the ma-
jor difficulty in k-best parsing is dynamic programming.
The simplest method is to abandon dynamic program-
ming and rely on aggressive pruning to maintain tractabil-
ity, as is used in (Collins, 2000; Bikel, 2004). But this
approach is prohibitively slow, and produces rather low-
quality k-best lists (see Sec. 5.1.2). Gildea and Juraf-
sky (2002) described an O(k2)-overhead extension for the
CKY algorithm and reimplemented Collins’ Model 1 to
obtain k-best parses with an average of 14.9 parses per
sentence. Their algorithm turns out to be a special case
of our Algorithm 0 (Sec. 4.1), and is reported to also be
prohibitively slow.

Since the original design of the algorithm described
below, we have become aware of two efforts that are
very closely related to ours, one by Jiménez and Marzal
(2000) and another done in parallel to ours by Charniak
and Johnson (2005). Jiménez and Marzal present an al-
gorithm very similar to our Algorithm 3 (Sec. 4.4) while
Charniak and Johnson propose using an algorithm similar
to our Algorithm 0, but with multiple passes to improve
efficiency. They apply this method to the Charniak (2000)
parser to get 50-best lists for reranking, yielding an im-
provement in parsing accuracy.

Our work differs from Jiménez and Marzal’s in the
following three respects. First, we formulate the pars-
ing problem in the more general framework of hyper-
graphs (Klein and Manning, 2001), making it applica-

ble to a very wide variety of parsing algorithms, whereas
Jiménez and Marzal define their algorithm as an exten-
sion of CKY, for CFGs in Chomsky Normal Form (CNF)
only. This generalization is not only of theoretical impor-
tance, but also critical in the application to state-of-the-
art parsers such as (Collins, 2003) and (Charniak, 2000).
In Collins’ parsing model, for instance, the rules are dy-
namically generated and include unary productions, mak-
ing it very hard to convert to CNF by preprocessing,
whereas our algorithms can be applied directly to these
parsers. Second, our Algorithm 3 has an improvement
over Jiménez and Marzal which leads to a slight theoret-
ical and empirical speedup. Third, we have implemented
our algorithms on top of state-of-the-art, large-scale sta-
tistical parser/decoders and report extensive experimental
results while Jiménez and Marzal’s was tested on rela-
tively small grammars.

On the other hand, our algorithms are more scalable
and much more general than the coarse-to-fine approach
of Charniak and Johnson. In our experiments, we can ob-
tain 10000-best lists nearly as fast as 1-best parsing, with
very modest use of memory. Indeed, Charniak (p.c.) has
adopted our Algorithm 3 into his own parser implemen-
tation and confirmed our findings.

In the literature of k shortest-path problems, Minieka
(1974) generalized the Floyd algorithm in a way very
similar to our Algorithm 0 and Lawler (1977) improved
it using an idea similar to but a little slower than the bi-
nary branching case of our Algorithm 1. For hypergraphs,
Gallo et al. (1993) study the shortest hyperpath problem
and Nielsen et al. (2005) extend it to k shortest hyper-
path. Our work differes from (Nielsen et al., 2005) in two
aspects. First, we solve the problem of k-best derivations
(i.e., trees), not the k-best hyperpaths, although in many
cases they coincide (see Sec. 3 for further discussions).
Second, their work assumes non-negative costs (or prob-
abilities ≤ 1) so that they can apply Dijkstra-like algo-
rithms. Although generative models, being probability-
based, do not suffer from this problem, more general
models (e.g., log-linear models) may require negative
edge costs (McDonald et al., 2005; Taskar et al., 2004).
Our work, based on the Viterbi algorithm, is still appli-
cable as long as the hypergraph is acyclic, and is used by
McDonald et al. (2005) to get the k-best parses.

3 Formulation

Following Klein and Manning (2001), we use weighted
directed hypergraphs (Gallo et al., 1993) as an abstraction
of the probabilistic parsing problem.

Definition 1. An ordered hypergraph (henceforth hy-
pergraph) H is a tuple 〈V, E, t,R〉, where V is a finite
set of vertices, E is a finite set of hyperarcs, and R
is the set of weights. Each hyperarc e ∈ E is a triple
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e = 〈T (e), h(e), f (e)〉, where h(e) ∈ V is its head and
T (e) ∈ V∗ is a vector of tail nodes. f (e) is a weight func-
tion from R|T (e)| to R. t ∈ V is a distinguished vertex
called target vertex.

Note that our definition is different from those in previ-
ous work in the sense that the tails are now vectors rather
than sets, so that we can allow multiple occurrences of
the same vertex in a tail and there is an ordering among
the components of a tail.

Definition 2. A hypergraph H is said to be monotonic if
there is a total ordering ¹ on R such that every weight
function f in H is monotonic in each of its arguments ac-
cording to ¹, i.e., if f : Rm 7→ R, then ∀1 ≤ i ≤ m, if ai ¹

a′i , then f (a1, · · · , ai, · · · , am) ¹ f (a1, · · · , a′i , · · · , am).
We also define the comparison function min¹(a, b) to out-
put a if a ¹ b, or b if otherwise.

In this paper we will assume this monotonicity, which
corresponds to the optimal substructure property in dy-
namic programming (Cormen et al., 2001).

Definition 3. We denote |e| = |T (e)| to be the arity of the
hyperarc. If |e| = 0, then f (e) ∈ R is a constant and we
call h(e) a source vertex. We define the arity of a hyper-
graph to be the maximum arity of its hyperarcs.

Definition 4. The backward-star BS(v) of a vertex v is
the set of incoming hyperarcs {e ∈ E | h(e) = v}. The
in-degree of v is |BS (v)|.

Definition 5. A derivation D of a vertex v in a hyper-
graph H, its size |D| and its weight w(D) are recursively
defined as follows:

• If e ∈ BS (v) with |e| = 0, then D = 〈e, ε〉 is
a derivation of v, its size |D| = 1, and its weight
w(D) = f (e)().

• If e ∈ BS (v) where |e| > 0 and Di is a derivation
of Ti(e) for 1 ≤ i ≤ |e|, then D = 〈e,D1 · · ·D|e|〉 is
a derivation of v, its size |D| = 1 +

∑|e|
i=1 |Di| and its

weight w(D) = f (e)(w(D1), . . . ,w(D|e|)).

The ordering on weights in R induces an ordering on
derivations: D ¹ D′ iff w(D) ¹ w(D′).

Definition 6. Define Di(v) to be the ith-best derivation of
v. We can think of D1(v), . . . ,Dk(v) as the components of
a vector we shall denote by D(v). The k-best derivations
problem for hypergraphs, then, is to find D(t) given a hy-
pergraph 〈V, E, t,R〉.

With the derivations thus ranked, we can introduce a
nonrecursive representation for derivations that is analo-
gous to the use of back-pointers in parser implementa-
tion.

Definition 7. A derivation with back-pointers (dbp) D̂
of v is a tuple 〈e, j〉 such that e ∈ BS(v), and j ∈

{1, 2, . . . , k}|e|. There is a one-to-one correspondence ∼
between dbps of v and derivations of v:

〈e, ( j1 · · · j|e|)〉 ∼ 〈e,D j1 (T1(e)) · · ·D j|e| (T |e|(e))〉

Accordingly, we extend the weight function w to dbps:
w(D̂) = w(D) if D̂ ∼ D. This in turn induces an ordering
on dbps: D̂ ¹ D̂′ iff w(D̂) ¹ w(D̂′). Let D̂i(v) denote the
ith-best dbp of v.

Where no confusion will arise, we use the terms ‘deriva-
tion’ and ‘dbp’ interchangeably.

Computationally, then, the k-best problem can be
stated as follows: given a hypergraph H with arity a, com-
pute D̂1(t), . . . , D̂k(t).1

As shown by Klein and Manning (2001), hypergraphs
can be used to represent the search space of most parsers
(just as graphs, also known as trellises or lattices, can
represent the search space of finite-state automata or
HMMs). More generally, hypergraphs can be used to rep-
resent the search space of most weighted deductive sys-
tem (Nederhof, 2003). For example, the weighted CKY
algorithm given a context-free grammar G = 〈N,T, P, S 〉
in Chomsky Normal Form (CNF) and an input string w
can be represented as a hypergraph of arity 2 as follows.
Each item [X, i, j] is represented as a vertex v, corre-
sponding to the recognition of nonterminal X spanning
w from positions i+1 through j. For each production rule
X → YZ in P and three free indices i < j < k, we have a
hyperarc 〈((Y, i, k), (Z, k, j)), (X, i, k), f 〉 corresponding to
the instantiation of the inference rule C in the de-
ductive system of (Shieber et al., 1995), and the weight
function f is defined as f (a, b) = ab ·Pr(X → YZ), which
is the same as in (Nederhof, 2003). In this sense, hyper-
graphs can be thought of as compiled or instantiated ver-
sions of weighted deductive systems.

A parser does nothing more than traverse this hyper-
graph. In order that derivation values be computed cor-
rectly, however, we need to traverse the hypergraph in a
particular order:

Definition 8. The graph projection of a hypergraph H =
〈V, E, t,R〉 is a directed graph G = 〈V, E′〉 where E′ =

{(u, v) | ∃e ∈ BS (v), u ∈ T (e)}. A hypergraph H is said to
be acyclic if its graph projection G is a directed acyclic
graph; then a topological ordering of H is an ordering
of V that is a topological ordering in G (from sources to
target).

We assume the input hypergraph is acyclic so that we
can use its topological ordering to traverse it. In practice
the hypergraph is typically not known in advance, but the

1Note that although we have defined the weight of a deriva-
tion as a function on derivations, in practice one would store a
derivation’s weight inside the dbp itself, to avoid recomputing
it over and over.
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Figure 1: Examples of hypergraph, hyperpath, and derivation: (a) a hypergraph H, with t as the target vertex and p, q as
source vertices, (b) a hyperpath πt in H, and (c) a derivation of t in H, where vertex u appears twice with two different
(sub-)derivations. This would be impossible in a hyperpath.

topological ordering often is, so that the (dynamic) hy-
pergraph can be generated in that order. For example, for
CKY it is sufficient to generate all items [X, i, j] before all
items [Y, i′, j′] when j′ − i′ > j − i (X and Y are arbitrary
nonterminals).

Excursus: Derivations and Hyperpaths
The work of Klein and Manning (2001) introduces a cor-
respondence between hyperpaths and derivations. When
extended to the k-best case, however, that correspondence
no longer holds.

Definition 9. (Nielsen et al., 2005) Given a hypergraph
H = 〈V, E, t,R〉, a hyperpath πv of destination v ∈ V is an
acyclic minimal hypergraph Hπ = 〈Vπ, Eπ, v,R〉 such that

1. Eπ ⊆ E

2. v ∈ Vπ =
⋃

e∈Eπ
(T (e) ∪ {h(e)})

3. ∀u ∈ Vπ, u is either a source vertex or connected to
a source vertex in Hπ.

As illustrated by Figure 1, derivations (as trees) are dif-
ferent from hyperpaths (as minimal hypergraphs) in the
sense that in a derivation the same vertex can appear more
than once with possibly different sub-derivations while it
is represented at most once in a hyperpath. Thus, the k-
best derivations problem we solve in this paper is very
different in nature from the k-shortest hyperpaths prob-
lem in (Nielsen et al., 2005).

However, the two problems do coincide when k = 1
(since all the sub-derivations must be optimal) and for
this reason the 1-best hyperpath algorithm in (Klein and
Manning, 2001) is very similar to the 1-best tree algo-
rithm in (Knuth, 1977). For k-best case (k > 1), they also
coincide when the hypergraph is isomorphic to a Case-
Factor Diagram (CFD) (McAllester et al., 2004) (proof
omitted). The derivation forest of CFG parsing under the
CKY algorithm, for instance, can be represented as a
CFD while the forest of Earley algorithm can not. An

(A→ α.Bβ, i, j)

(A→ α.Bβ, i, j)

(B→ .γ, j, j)

· · · · · ·

(B→ γ., j, k)

(A→ αB.β, i, k)

Figure 2: An Earley derivation. Note that item (A →
α.Bβ, i, j) appears twice (predict and complete).

1: procedure V(k)
2: for v ∈ V in topological order do
3: for e ∈ BS(v) do . for all incoming hyperarcs
4: D̂1(v)← min¹(D̂1(v), 〈e, 1〉) . update

Figure 3: The generic 1-best Viterbi algorithm

item (or equivalently, a vertex in hypergraph) can appear
twice in an Earley derivation because of the prediction
rule (see Figure 2 for an example).

The k-best derivations problem has potentially more
applications in tree generation (Knight and Graehl,
2005), which can not be modeled by hyperpaths. But de-
tailed discussions along this line are out of the scope of
this paper.

4 Algorithms
The traditional 1-best Viterbi algorithm traverses the hy-
pergraph in topological order and for each vertex v, cal-
culates its 1-best derivation D1(v) using all incoming hy-
perarcs e ∈ BS(v) (see Figure 3). If we take the arity of
the hypergraph to be constant, then the overall time com-
plexity of this algorithm is O(|E|).

4.1 Algorithm 0: naı̈ve
Following (Goodman, 1999; Mohri, 2002), we isolate
two basic operations in line 4 of the 1-best algorithm that
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can be generalized in order to extend the algorithm: first,
the formation of the derivation 〈e, 1〉 out of |e| best sub-
derivations (this is a generalization of the binary operator
⊗ in a semiring); second, min¹, which chooses the better
of two derivations (same as the ⊕ operator in an idem-
potent semiring (Mohri, 2002)). We now generalize these
two operations to operate on k-best lists.

Let r = |e|. The new multiplication operation,
mult¹k(e), is performed in three steps:

1. enumerate the kr derivations {〈e, j1 · · · jr〉 | ∀i, 1 ≤
ji ≤ k}. Time: O(kr).

2. sort these kr derivations (according to weight).
Time: O(kr log(kr)) = O(rkr log k).

3. select the first k elements from the sorted list of kr

elements. Time: O(k).

So the overall time complexity of mult¹k is O(rkr log k).
We also have to extend min¹ to merge¹k, which takes

two vectors of length k (or fewer) as input and outputs the
top k (in sorted order) of the 2k elements. This is similar
to merge-sort (Cormen et al., 2001) and can be done in
linear time O(k). Then, we only need to rewrite line 4 of
the Viterbi algorithm (Figure 3) to extend it to the k-best
case:

4: D̂(v) ← merge¹k(D̂(v),mult¹k(e))

and the time complexity for this line is O(|e|k|e| log k),
making the overall complexity O(|E|ka log k) if we con-
sider the arity a of the hypergraph to be constant.2 The
overall space complexity is O(|V |k) since for each vertex
we need to store a vector of length k.

In the context of CKY parsing for CFG, the 1-best
Viterbi algorithm has complexity O(n3|P|) while the k-
best version is O(n3|P|k2 log k), which is slower by a fac-
tor of O(k2 log k).

4.2 Algorithm 1: speed up mult¹k

First we seek to exploit the fact that input vectors are all
sorted and the function f is monotonic; moreover, we are
only interested in the top k elements of the k|e| possibili-
ties.

Define 1 to be the vector whose elements are all 1; de-
fine bi to be the vector whose elements are all 0 except
bi

i = 1.
As we compute pe = mult¹k(e), we maintain a candi-

date set C of derivations that have the potential to be the
next best derivation in the list. If we picture the input as an
|e|-dimensional space, C contains those derivations that

2Actually, we do not need to sort all k|e| elements in order
to extract the top k among them; there is an efficient algorithm
(Cormen et al., 2001) that can select the kth best element from
the k|e| elements in time O(k|e|). So we can improve the overhead
to O(ka).

have not yet been included in pe, but are on the bound-
ary with those which have. It is initialized to {〈e, 1〉}. At
each step, we extract the best derivation from C—call it
〈e, j〉—and append it to pe. Then 〈e, j〉 must be replaced
in C by its neighbors,

{〈e, j + bl〉 | 1 ≤ l ≤ |e|}

(see Figure 4.2 for an illustration). We implement C as a
priority queue (Cormen et al., 2001) to make the extrac-
tion of its best derivation efficient. At each iteration, there
are one E-M and |e| I operations. If we use
a binary-heap implementation for priority queues, we get
O(|e| log k|e|) time complexity for each iteration.3 Since
we are only interested in the top k elements, there are
k iterations and the time complexity for a single mult¹k

is O(k|e| log k|e|), yielding an overall time complexity of
O(|E|k log k) and reducing the multiplicative overhead by
a factor of O(ka−1) (again, assuming a is constant). In
the context of CKY parsing, this reduces the overhead
to O(k log k). Figure 5 shows the additional pseudocode
needed for this algorithm. It is integrated into the Viterbi
algorithm (Figure 3) simply by rewriting line 4 of to in-
voke the function M(e, k):

4: D̂(v) ← merge¹k(D̂(v),M(e, k))

4.3 Algorithm 2: combine merge¹k into mult¹k

We can further speed up both merge¹k and mult¹k by a
similar idea. Instead of letting each mult¹k generate a full
k derivations for each hyperarc e and only then applying
merge¹k to the results, we can combine the candidate sets
for all the hyperarcs into a single candidate set. That is,
we initialize C to {〈e, 1〉 | e ∈ BS (v)}, the set of all the
top parses from each incoming hyperarc (cf. Algorithm
1). Indeed, it suffices to keep only the top k out of the
|BS (v)| candidates in C, which would lead to a significant
speedup in the case where |BS (v)| À k. 4 Now the top
derivation in C is the top derivation for v. Then, whenever
we remove an element 〈e, j〉 from C, we replace it with
the |e| elements {〈e, j + bl〉 | 1 ≤ l ≤ |e|} (again, as in
Algorithm 1). The full pseudocode for this algorithm is
shown in Figure 6.

4.4 Algorithm 3: compute mult¹k lazily
Algorithm 2 exploited the idea of lazy computation: per-
forming mult¹k only as many times as necessary. But this
algorithm still calculates a full k-best list for every ver-
tex in the hypergraph, whereas we are only interested in

3If we maintain a Min-Heap along with the Min-Heap, we
can reduce the per-iteration cost to O(|e| log k), and with Fi-
bonacci heap we can further improve it to be O(|e| + log k). But
these techniques do not change the overall complexity when a
is constant, as we will see.

4This can be implemented by a linear-time randomized-
selection algorithm (a.k.a. quick-select) (Cormen et al., 2001).
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Figure 4: An illustration of Algorithm 1 in |e| = 2 dimensions. Here k = 3, ¹ is the numerical ≤, and the monotonic
function f is defined as f (a, b) = a + b. Italic numbers on the x and y axes are ai’s and b j’s, respectively. We want
to compute the top 3 results from f (ai, b j) with 1 ≤ i, j ≤ 3. In each iteration the current frontier is shown in oval
boxes, with the bold-face denoting the best element among them. That element will be extracted and replaced by its
two neighbors (⇑ and⇒) in the next iteration.

1: function M(e, k)
2: cand ← {〈e, 1〉} . initialize the heap
3: p← empty list . the result of mult¹k

4: while |p| < k and |cand| > 0 do
5: AN(cand,p, k)
6: return p
7:
8: procedure AN(cand, p)
9: 〈e, j〉 ← E-M(cand)

10: append 〈e, j〉 to p
11: for i← 1 . . . |e| do . add the |e| neighbors
12: j′ ← j + bi

13: if j′i ≤ |D̂(Ti(e))| and 〈e, j′〉 < cand then
14: I(cand, 〈e, j′〉) . add to heap

Figure 5: Part of Algorithm 1.

1: procedure FAKB(k)
2: for v ∈ V in topological order do
3: FKB(v, k)
4:
5: procedure FKB(v, k)
6: GC(v, k) . initialize the heap
7: while |D̂(v)| < k and |cand[v]| > 0 do
8: AN(cand[v], D̂(v))
9:

10: procedure GC(v, k)
11: temp← {〈e, 1〉 | e ∈ BS (v)}
12: cand[v]← the top k elements in temp . prune

away useless candidates
13: H(cand[v])

Figure 6: Algorithm 2

1: procedure LKB(v, k, k′) . k′ is the global k
2: if |D̂(v)| ≥ k then . kth derivation already computed?
3: return
4: if cand[v] is not defined then . first visit of vertex v?
5: GC(v, k′) . initialize the heap
6: append E-M(cand[v]) to D̂(v) . 1-best
7: while |D̂(v)| < k and |cand[v]| > 0 do
8: 〈e, j〉 ← D̂|D̂(v)|(v) . last derivation
9: LN(cand[v], e, j, k′) . update the heap, adding the successors of last derivation

10: append E-M(cand[v]) to D̂(v) . get the next best derivation and delete it from the heap
11:
12: procedure LN(cand, e, j, k′)
13: for i← 1 . . . |e| do . add the |e| neighbors
14: j′ ← j + bi

15: LKB(Ti(e), j′i , k
′) . recursively solve a sub-problem

16: if j′i ≤ |D̂(Ti(e))| and 〈e, j′〉 < cand then . if it exists and is not in heap yet
17: I(cand, 〈e, j′〉) . add to heap

Figure 7: Algorithm 3
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Algorithm Time Complexity
1-best Viterbi O(E)
Algorithm 0 O(Eka log k)
Algorithm 1 O(Ek log k)
Algorithm 2 O(E + Vk log k)
Algorithm 3 O(E + |Dmax|k log k)

generalized J&M O(E + |Dmax|k log(d + k))

Table 1: Summary of Algorithms.

the k-best derivations of the target vertex (goal item). We
can therefore take laziness to an extreme by delaying the
whole k-best calculation until after parsing. Algorithm 3
assumes an initial parsing phase that generates the hyper-
graph and finds the 1-best derivation of each item; then
in the second phase, it proceeds as in Algorithm 2, but
starts at the goal item and calls itself recursively only as
necessary. The pseudocode for this algorithm is shown in
Figure 7. As a side note, this second phase should be ap-
plicable also to a cyclic hypergraph as long as its deriva-
tion weights are bounded.

Algorithm 2 has an overall complexity of O(|E| +
|V |k log k) and Algorithm 3 is O(|E|+ |Dmax|k log k) where
|Dmax| is the size of the longest among all top k deriva-
tions (for CFG in CNF, |D| = 2n−1 for all D, so |Dmax| is
O(n)). These are significant improvements against Algo-
rithms 0 and 1 since it turns the multiplicative overhead
into an additive overhead. In practice, |E| usually dom-
inates, as in CKY parsing of CFG. So theoretically the
running times grow very slowly as k increases, which is
exactly demonstrated by our experiments below.

4.5 Summary and Discussion of Algorithms
The four algorithms, along with the 1-best Viterbi algo-
rithm and the generalized Jiménez and Marzal algorithm,
are compared in Table 1.

The key difference between our Algorithm 3 and
Jiménez and Marzal’s algorithm is the restriction of top
k candidates before making heaps (line 11 in Figure 6,
see also Sec. 4.3). Without this line Algorithm 3 could
be considered as a generalization of the Jiménez and
Marzal algorithm to the case of acyclic monotonic hy-
pergraphs. This line is also responsible for improving
the time complexity from O(|E| + |Dmax|k log(d + k))
(generalized Jiménez and Marzal algorithm) to O(|E| +
|Dmax|k log k), where d = maxv |BS (v)| is the maximum
in-degree among all vertices. So in case k < d, our algo-
rithm outperforms Jiménez and Marzal’s.

5 Experiments
We report results from two sets of experiments. For prob-
abilistic parsing, we implemented Algorithms 0, 1, and
3 on top of a widely-used parser (Bikel, 2004) and con-
ducted experiments on parsing efficiency and the qual-

ity of the k-best-lists. We also implemented Algorithms 2
and 3 in a parsing-based MT decoder (Chiang, 2005) and
report results on decoding speed.

5.1 Experiment 1: Bikel Parser
Bikel’s parser (2004) is a state-of-the-art multilingual
parser based on lexicalized context-free models (Collins,
2003; Eisner, 2000). It does support k-best parsing, but,
following Collins’ parse-reranking work (Collins, 2000)
(see also Section 5.1.2), it accomplishes this by sim-
ply abandoning dynamic programming, i.e., no items
are considered equivalent (Charniak and Johnson, 2005).
Theoretically, the time complexity is exponential in n (the
input sentence length) and constant in k, since, without
merging of equivalent items, there is no limit on the num-
ber of items in the chart. In practice, beam search is used
to reduce the observed time.5 But with the standard beam
width of 10−4, this method becomes prohibitively expen-
sive for n ≥ 25 on Bikel’s parser. Collins (2000) used
a narrower 10−3 beam and further applied a cell limit of
100,6 but, as we will show below, this has a detrimental
effect on the quality of the output. We therefore omit this
method from our speed comparisons, and use our imple-
mentation of Algorithm 0 (naı̈ve) as the baseline.

We implemented our k-best Algorithms 0, 1, and 3 on
top of Bikel’s parser and conducted experiments on a 2.4
GHz 64-bit AMD Opteron with 32 GB memory. The pro-
gram is written in Java 1.5 running on the Sun JVM in
server mode with a maximum heap size of 5 GB. For this
experiment, we used sections 02–21 of the Penn Tree-
bank (PTB) (Marcus et al., 1993) as the training data and
section 23 (2416 sentences) for evaluation, as is now stan-
dard. We ran Bikel’s parser using its settings to emulate
Model 2 of (Collins, 2003).

5.1.1 Efficiency
We tested our algorithms under various conditions. We

first did a comparison of the average parsing time per
sentence of Algorithms 0, 1, and 3 on section 23, with
k ≤ 10000 for the standard beam of width 10−4. Fig-
ure 8(a) shows that the parsing speed of Algorithm 3 im-
proved dramatically against the other algorithms and is
nearly constant in k, which exactly matches the complex-
ity analysis. Algorithm 1 (k log k) also significantly out-
performs the baseline naı̈ve algorithm (k2 log k).

We also did a comparison between our Algorithm 3
and the Jiménez and Marzal algorithm in terms of average

5In beam search, or threshold pruning, each cell in the chart
(typically containing all the items corresponding to a span [i, j])
is reduced by discarding all items that are worse than β times the
score of the best item in the cell. This β is known as the beam
width.

6In this type of pruning, also known as histogram pruning,
only the α best items are kept in each cell. This α is called the
cell limit.
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Figure 8: Efficiency results of the k-best Algorithms, compared to Jiménez and Marzal’s algorithm

heap size. Figure 8(b) shows that for larger k, the two al-
gorithms have the same average heap size, but for smaller
k, our Algorithm 3 has a considerably smaller average
heap size. This difference is useful in applications where
only short k-best lists are needed. For example, McDon-
ald et al. (2005) find that k = 5 gives optimal parsing
accuracy.

5.1.2 Accuracy

Our efficient k-best algorithms enable us to search over
a larger portion of the whole search space (e.g. by less
aggressive pruning), thus producing k-best lists with bet-
ter quality than previous methods. We demonstrate this
by comparing our k-best lists to those in (Ratnaparkhi,
1997), (Collins, 2000) and the parallel work by Char-
niak and Johnson (2005) in several ways, including oracle
reranking and average number of found parses.

Ratnaparkhi (1997) introduced the idea of oracle
reranking: suppose there exists a perfect reranking
scheme that magically picks the best parse that has the
highest F-score among the top k parses for each sentence.
Then the performance of this oracle reranking scheme
is the upper bound of any actual reranking system like
(Collins, 2000).As k increases, the F-score is nondecreas-
ing, and there is some k (which might be very large) at
which the F-score converges.

Ratnaparkhi reports experiments using oracle rerank-
ing with his statistical parser MXPARSE, which can
compute its k-best parses (in his experiments, k = 20).
Collins (2000), in his parse-reranking experiments, used
his Model 2 parser (Collins, 2003) with a beam width of
10−3 together with a cell limit of 100 to obtain k-best lists;
the average number of parses obtained per sentence was

29.2, the maximum, 101.7 Charniak and Johnson (2005)
use coarse-to-fine parsing on top of the Charniak (2000)
parser and get 50-best lists for section 23.

Figure 9(a) compares the results of oracle reranking.
Collins’ curve converges at around k = 50 while ours
continues to increase. With a beam width of 10−4 and
k = 100, our parser plus oracle reaches an F-score of
96.4%, compared to Collins’ 94.9%. Charniak and John-
son’s work, however, is based on a completely different
parser whose 1-best F-score is 1.5 points higher than the
1-bests of ours and Collins’, making it difficult to com-
pare in absolute numbers. So we instead compared the
relative improvement over 1-best. Figure 9(b) shows that
our work has the largest percentage of improvement in
terms of F-score when k > 20.

To further explore the impact of Collins’ cell limit on
the quality of k-best lists, we plotted average number of
parses for a given sentence length (Figure 10). Generally
speaking, as input sentences get longer, the number of
parses grows (exponentially). But we see that the curve
for Collins’ k-best list goes down for large k (> 40). We
suspect this is due to the cell limit of 100 pruning away
potentially good parses too early in the chart. As sen-
tences get longer, it is more likely that a lower-probability
parse might contribute eventually to the k-best parses. So
we infer that Collins’ k-best lists have limited quality for
large k, and this is demonstrated by the early convergence
of its oracle-reranking score. By comparison, our curves
of both beam widths continue to grow with k = 100.

All these experiments suggest that our k-best parses are
of better quality than those from previous k-best parsers,

7The reason the maximum is 101 and not 100 is that Collins
merged the 100-best list using a beam of 10−3 with the 1-best
list using a beam of 10−4 (Collins, p.c.).
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Figure 9: Absolutive and Relative F-scores of oracle reranking for the top k (≤ 100) parses for section 23, compared
to (Charniak and Johnson, 2005), (Collins, 2000) and (Ratnaparkhi, 1997).
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Figure 11: Algorithm 2 compared with Algorithm 3 (of-
fline) on MT decoding task. Average time (both exclud-
ing initial 1-best phase) vs. k (log-log).

and similar quality to those from (Charniak and Johnson,
2005) which has so far the highest F-score after rerank-
ing, and this might lead to better results in real parse
reranking.

5.2 Experiment 2: MT decoder

Our second experiment was on a CKY-based decoder
for a machine translation system (Chiang, 2005), imple-
mented in Python 2.4 accelerated with Psyco 1.3 (Rigo,
2004). We implemented Algorithms 2 and 3 to compute
k-best English translations of Mandarin sentences. Be-
cause the CFG used in this system is large to begin with
(millions of rules), and then effectively intersected with
a finite-state machine on the English side (the language
model), the grammar constant for this system is quite
large. The decoder uses a relatively narrow beam search
for efficiency.

We ran the decoder on a 2.8 GHz Xeon with 4 GB of
memory, on 331 sentences from the 2002 NIST MTEval
test set. We tested Algorithm 2 for k = 2i, 3 ≤ i ≤ 10, and
Algorithm 3 (offline algorithm) for k = 2i, 3 ≤ i ≤ 20.
For each sentence, we measured the time to calculate the
k-best list, not including the initial 1-best parsing phase.
We then averaged the times over our test set to produce
the graph of Figure 11, which shows that Algorithm 3
runs an average of about 300 times faster than Algorithm
2. Furthermore, we were able to test Algorithm 3 up to
k = 106 in a reasonable amount of time.8

8The curvature in the plot for Algorithm 3 for k < 1000
may be due to lack of resolution in the timing function for short
times.

6 Conclusion

The problem of k-best parsing and the effect of k-best list
size and quality on applications are subjects of increas-
ing interest for NLP research. We have presented here
a general-purpose algorithm for k-best parsing and ap-
plied it to two state-of-the-art, large-scale NLP systems:
Bikel’s implementation of Collins’ lexicalized PCFG
model (Bikel, 2004; Collins, 2003) and Chiang’s syn-
chronous CFG based decoder (Chiang, 2005) for machine
translation. We hope that this work will encourage further
investigation into whether larger and better k-best lists
will improve performance in NLP applications, questions
which we ourselves intend to pursue as well.
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Abstract

We adapt the “hook” trick for speeding up
bilexical parsing to the decoding problem
for machine translation models that are
based on combining a synchronous con-
text free grammar as the translation model
with an n-gram language model. This
dynamic programming technique yields
lower complexity algorithms than have
previously been described for an impor-
tant class of translation models.

1 Introduction

In a number of recently proposed synchronous
grammar formalisms, machine translation of new
sentences can be thought of as a form of parsing on
the input sentence. The parsing process, however,
is complicated by the interaction of the context-free
translation model with an m-gram1 language model
in the output language. While such formalisms ad-
mit dynamic programming solutions having poly-
nomial complexity, the degree of the polynomial is
prohibitively high.

In this paper we explore parallels between transla-
tion and monolingual parsing with lexicalized gram-
mars. Chart items in translation must be augmented
with words from the output language in order to cap-
ture language model state. This can be thought of as
a form of lexicalization with some similarity to that
of head-driven lexicalized grammars, despite being
unrelated to any notion of syntactic head. We show

1We speak of m-gram language models to avoid confusion
with n, which here is the length of the input sentence for trans-
lation.

that techniques for parsing with lexicalized gram-
mars can be adapted to the translation problem, re-
ducing the complexity of decoding with an inversion
transduction grammar and a bigram language model
from O(n7) to O(n6). We present background on
this translation model as well as the use of the tech-
nique in bilexicalized parsing before describing the
new algorithm in detail. We then extend the al-
gorithm to general m-gram language models, and
to general synchronous context-free grammars for
translation.

2 Machine Translation using Inversion
Transduction Grammar

The Inversion Transduction Grammar (ITG) of Wu
(1997) is a type of context-free grammar (CFG) for
generating two languages synchronously. To model
the translational equivalence within a sentence pair,
ITG employs a synchronous rewriting mechanism to
relate two sentences recursively. To deal with the
syntactic divergence between two languages, ITG
allows the inversion of rewriting order going from
one language to another at any recursive level. ITG
in Chomsky normal form consists of unary produc-
tion rules that are responsible for generating word
pairs:

X → e/f

X → e/ε

X → ε/f

where e is a source language word, f is a foreign lan-
guage word, and ε means the null token, and binary
production rules in two forms that are responsible
for generating syntactic subtree pairs:

X → [Y Z]
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and
X → 〈Y Z〉

The rules with square brackets enclosing the
right-hand side expand the left-hand side symbol
into the two symbols on the right-hand side in the
same order in the two languages, whereas the rules
with angled brackets expand the left hand side sym-
bol into the two right-hand side symbols in reverse
order in the two languages. The first class of rules
is called straight rule. The second class of rules is
called inverted rule.

One special case of 2-normal ITG is the so-called
Bracketing Transduction Grammar (BTG) which
has only one nonterminal A and two binary rules

A → [AA]

and
A → 〈AA〉

By mixing instances of the inverted rule with
those of the straight rule hierarchically, BTG can
meet the alignment requirements of different lan-
guage pairs. There exists a more elaborate version
of BTG that has 4 nonterminals working together
to guarantee the property of one-to-one correspon-
dence between alignments and synchronous parse
trees. Table 1 lists the rules of this BTG. In the
discussion of this paper, we will consider ITG in 2-
normal form.

By associating probabilities or weights with the
bitext production rules, ITG becomes suitable for
weighted deduction over bitext. Given a sentence
pair, searching for the Viterbi synchronous parse
tree, of which the alignment is a byproduct, turns out
to be a two-dimensional extension of PCFG parsing,
having time complexity of O(n6), where n is the
length of the English string and the foreign language
string. A more interesting variant of parsing over bi-
text space is the asymmetrical case in which only the
foreign language string is given so that Viterbi pars-
ing involves finding the English string “on the fly”.
The process of finding the source string given its tar-
get counterpart is decoding. Using ITG, decoding is
a form of parsing.

2.1 ITG Decoding

Wu (1996) presented a polynomial-time algorithm
for decoding ITG combined with an m-gram lan-

guage model. Such language models are commonly
used in noisy channel models of translation, which
find the best English translation e of a foreign sen-
tence f by finding the sentence e that maximizes the
product of the translation model P (f |e) and the lan-
guage model P (e).

It is worth noting that since we have specified ITG
as a joint model generating both e and f , a language
model is not theoretically necessary. Given a foreign
sentence f , one can find the best translation e∗:

e∗ = argmax
e

P (e, f)

= argmax
e

∑

q

P (e, f, q)

by approximating the sum over parses q with the
probability of the Viterbi parse:

e∗ = argmax
e

max
q

P (e, f, q)

This optimal translation can be computed in using
standard CKY parsing over f by initializing the
chart with an item for each possible translation of
each foreign word in f , and then applying ITG rules
from the bottom up.

However, ITG’s independence assumptions are
too strong to use the ITG probability alone for ma-
chine translation. In particular, the context-free as-
sumption that each foreign word’s translation is cho-
sen independently will lead to simply choosing each
foreign word’s single most probable English trans-
lation with no reordering. In practice it is beneficial
to combine the probability given by ITG with a local
m-gram language model for English:

e∗ = argmax
e

max
q

P (e, f, q)Plm(e)α

with some constant language model weight α. The
language model will lead to more fluent output by
influencing both the choice of English words and the
reordering, through the choice of straight or inverted
rules. While the use of a language model compli-
cates the CKY-based algorithm for finding the best
translation, a dynamic programming solution is still
possible. We extend the algorithm by storing in each
chart item the English boundary words that will af-
fect the m-gram probabilities as the item’s English
string is concatenated with the string from an adja-
cent item. Due to the locality of m-gram language
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Structural Rules Lexical Rules

S → A
S → B
S → C

A → [AB]
A → [BB]
A → [CB]
A → [AC]
A → [BC]
A → [CC]

B → 〈AA〉
B → 〈BA〉
B → 〈CA〉
B → 〈AC〉
B → 〈BC〉
B → 〈CC〉

C → ei/fj

C → ε/fj

C → ei/ε

Table 1: Unambiguous BTG

model, only m−1 boundary words need to be stored
to compute the new m-grams produced by combin-
ing two substrings. Figure 1 illustrates the combi-
nation of two substrings into a larger one in straight
order and inverted order.

3 Hook Trick for Bilexical Parsing

A traditional CFG generates words at the bottom of
a parse tree and uses nonterminals as abstract rep-
resentations of substrings to build higher level tree
nodes. Nonterminals can be made more specific to
the actual substrings they are covering by associ-
ating a representative word from the nonterminal’s
yield. When the maximum number of lexicalized
nonterminals in any rule is two, a CFG is bilexical.
A typical bilexical CFG in Chomsky normal form
has two types of rule templates:

A[h] → B[h]C[h′]

or
A[h] → B[h′]C[h]

depending on which child is the head child that
agrees with the parent on head word selection.
Bilexical CFG is at the heart of most modern statisti-
cal parsers (Collins, 1997; Charniak, 1997), because
the statistics associated with word-specific rules are
more informative for disambiguation purposes. If
we use A[i, j, h] to represent a lexicalized con-
stituent, β(·) to represent the Viterbi score function
applicable to any constituent, and P (·) to represent
the rule probability function applicable to any rule,
Figure 2 shows the equation for the dynamic pro-
gramming computation of the Viterbi parse. The two
terms of the outermost max operator are symmetric
cases for heads coming from left and right. Contain-
ing five free variables i,j,k,h′,h, ranging over 1 to
n, the length of input sentence, both terms can be

instantiated in n5 possible ways, implying that the
complexity of the parsing algorithm is O(n5).

Eisner and Satta (1999) pointed out we don’t have
to enumerate k and h′ simultaneously. The trick,
shown in mathematical form in Figure 2 (bottom) is
very simple. When maximizing over h′, j is irrele-
vant. After getting the intermediate result of maxi-
mizing over h′, we have one less free variable than
before. Throughout the two steps, the maximum
number of interacting variables is 4, implying that
the algorithmic complexity is O(n4) after binarizing
the factors cleverly. The intermediate result

max
h′,B

[β(B[i, k, h′]) · P (A[h] → B[h′]C[h])]

can be represented pictorially as

C[h]

A

i k . The
same trick works for the second max term in
Equation 1. The intermediate result coming from
binarizing the second term can be visualized as

A

k

B[h]

j. The shape of the intermediate re-
sults gave rise to the nickname of “hook”. Melamed
(2003) discussed the applicability of the hook trick
for parsing bilexical multitext grammars. The anal-
ysis of the hook trick in this section shows that it is
essentially an algebraic manipulation. We will for-
mulate the ITG Viterbi decoding algorithm in a dy-
namic programming equation in the following sec-
tion and apply the same algebraic manipulation to
produce hooks that are suitable for ITG decoding.

4 Hook Trick for ITG Decoding

We start from the bigram case, in which each de-
coding constituent keeps a left boundary word and
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Figure 1: ITG decoding using 3-gram language model. Two boundary words need to be kept on the left (u)
and right (v) of each constituent. In (a), two constituents Y and Z spanning substrings s, S and S, t of the
input are combined using a straight rule X → [Y Z]. In (b), two constituents are combined using a inverted
rule X → 〈Y Z〉. The dashed line boxes enclosing three words are the trigrams produced from combining
two substrings.

β(A[i, j, h]) = max











max
k,h′,B,C

[

β(B[i, k, h′]) · β(C[k, j, h]) · P (A[h] → B[h′]C[h])
]

,

max
k,h′,B,C

[

β(B[i, k, h]) · β(C[k, j, h′]) · P (A[h] → B[h]C[h′])
]











(1)

max
k,h′,B,C

[

β(B[i, k, h′]) · β(C[k, j, h]) · P (A[h] → B[h′]C[h])
]

= max
k,C

[

max
h′,B

[

β(B[i, k, h′]) · P (A[h] → B[h′]C[h])
]

· β(C[k, j, h])

]

Figure 2: Equation for bilexical parsing (top), with an efficient factorization (bottom)

a right boundary word. The dynamic programming
equation is shown in Figure 3 (top) where i,j,k range
over 1 to n, the length of input foreign sentence, and
u,v,v1,u2 (or u,v,v2,u1) range over 1 to V , the size
of English vocabulary. Usually we will constrain the
vocabulary to be a subset of words that are probable
translations of the foreign words in the input sen-
tence. So V is proportional to n. There are seven
free variables related to input size for doing the max-
imization computation. Hence the algorithmic com-
plexity is O(n7).

The two terms in Figure 3 (top) within the first
level of the max operator, corresponding to straight
rules and inverted rules, are analogous to the two
terms in Equation 1. Figure 3 (bottom) shows how to
decompose the first term; the same method applies

to the second term. Counting the free variables en-
closed in the innermost max operator, we get five: i,
k, u, v1, and u2. The decomposition eliminates one
free variable, v1. In the outermost level, there are
six free variables left. The maximum number of in-
teracting variables is six overall. So, we reduced the
complexity of ITG decoding using bigram language
model from O(n7) to O(n6).

The hooks k

X

Zu u2

i that we have built for de-
coding with a bigram language model turn out to be
similar to the hooks for bilexical parsing if we focus
on the two boundary words v1 and u2 (or v2 and u1)
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β(X[i, j, u, v]) = max



















max
k,v1,u2,Y,Z

[

β(Y [i, k, u, v1]) · β(Z[k, j, u2, v])
· P (X → [Y Z]) · bigram(v1, u2)

]

,

max
k,v2,u1,Y,Z

[

β(Y [i, k, u1, v]) · β(Z[k, j, u, v2])
· P (X → 〈Y Z〉) · bigram(v2, u1)

]



















(2)

max
k,v1,u2,Y,Z

[

β(Y [i, k, u, v1]) · β(Z[k, j, u2, v]) · P (X → [Y Z]) · bigram(v1, u2)
]

= max
k,u2,Z

[

max
v1,Y

[

β(Y [i, k, u, v1]) · P (X → [Y Z]) · bigram(v1, u2)
]

· β(Z[k, j, u2, v])

]

Figure 3: Equation for ITG decoding (top), with an efficient factorization (bottom)

that are interacting between two adjacent decoding
constituents and relate them with the h′ and h that
are interacting in bilexical parsing. In terms of al-
gebraic manipulation, we are also rearranging three
factors (ignoring the non-lexical rules), trying to re-
duce the maximum number of interacting variables
in any computation step.

4.1 Generalization to m-gram Cases

In this section, we will demonstrate how to use the
hook trick for trigram decoding which leads us to a
general hook trick for any m-gram decoding case.

We will work only on straight rules and use icons
of constituents and hooks to make the equations eas-
ier to interpret.

The straightforward dynamic programming equa-
tion is:

i

X
u1u2 v1v2

j = max
v11,v12,u21,u22,

k,Y,Z

u22

i k j

X
Y Z

u1u2 v2v1
][

v11v12 u21

(3)

By counting the variables that are dependent
on input sentence length on the right hand side
of the equation, we know that the straightfor-
ward algorithm’s complexity is O(n11). The max-
imization computation is over four factors that
are dependent on n: β(Y [i, k, u1, u2, v11, v12]),
β(Z[k, j, u21, u22, v1, v2]), trigram(v11, v12, u21),
and trigram(v12, u21, u22). As before, our goal is
to cleverly bracket the factors.

By bracketing trigram(v11, v12, u21) and
β(Y [i, k, u1, u2, v11, v12]) together and maximizing
over v11 and Y , we can build the the level-1 hook:

u21

i k

X
Z

u1u2
][

v12

= max
v11,Y

u21

i k

X
Y Z

u1u2
][

v11v12

The complexity is O(n7).
Grouping the level-1 hook and

trigram(v12, u21, u22), maximizing over v12,
we can build the level-2 hook:

u21

i k

X
Z

u1u2
][

u22

= max
v12

u21

i k

X
Z

u1u2
][

v12 u22

The complexity is O(n7). Finally,
we can use the level-2 hook to com-
bine with Z[k, j, u21, u22, v1, v2] to build
X[i, j, u1, u2, v1, v2]. The complexity is O(n9)
after reducing v11 and v12 in the first two steps.

i

X
u1u2 v1v2

j = max
u21,u22,k,Z

u22

i k j

X
Z

u1u2 v2v1
][

u21

(4)

Using the hook trick, we have reduced the com-
plexity of ITG decoding using bigrams from O(n7)
to O(n6), and from O(n11) to O(n9) for trigram
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case. We conclude that for m-gram decoding of
ITG, the hook trick can change the the time com-
plexity from O(n3+4(m−1)) to O(n3+3(m−1)). To
get an intuition of the reduction, we can compare
Equation 3 with Equation 4. The variables v11 and
v12 in Equation 3, which are independent of v1 and
v2 for maximizing the product have been concealed
under the level-2 hook in Equation 4. In general,
by building m − 1 intermediate hooks, we can re-
duce m − 1 free variables in the final combination
step, hence having the reduction from 4(m − 1) to
3(m− 1).

5 Generalization to Non-binary Bitext
Grammars

Although we have presented our algorithm as a de-
coder for the binary-branching case of Inversion
Transduction Grammar, the same factorization tech-
nique can be applied to more complex synchronous
grammars. In this general case, items in the dy-
namic programming chart may need to represent
non-contiguous span in either the input or output
language. Because synchronous grammars with in-
creasing numbers of children on the right hand side
of each production form an infinite, non-collapsing
hierarchy, there is no upper bound on the number
of discontinuous spans that may need to be repre-
sented (Aho and Ullman, 1972). One can, however,
choose to factor the grammar into binary branching
rules in one of the two languages, meaning that dis-
continuous spans will only be necessary in the other
language.

If we assume m is larger than 2, it is likely that
the language model combinations dominate com-
putation. In this case, it is advantageous to factor
the grammar in order to make it binary in the out-
put language, meaning that the subrules will only
need to represent adjacent spans in the output lan-
guage. Then the hook technique will work in the
same way, yielding O(n2(m−1)) distinct types of
items with respect to language model state, and
3(m−1) free indices to enumerate when combining
a hook with a complete constituent to build a new
item. However, a larger number of indices point-
ing into the input language will be needed now that
items can cover discontinuous spans. If the gram-
mar factorization yields rules with at most R spans

in the input language, there may be O(n2R) dis-
tinct types of chart items with respect to the input
language, because each span has an index for its
beginning and ending points in the input sentence.
Now the upper bound of the number of free in-
dices with respect to the input language is 2R + 1,
because otherwise if one rule needs 2R + 2 in-
dices, say i1, · · · , i2R+2, then there are R + 1 spans
(i1, i2), · · · , (i2R+1, i2R+2), which contradicts the
above assumption. Thus the time complexity at the
input language side is O(n2R+1), yielding a total al-
gorithmic complexity of O(n3(m−1)+(2R+1)).

To be more concrete, we will work through a 4-
ary translation rule, using a bigram language model.
The standard DP equation is:

i

u v

j

A

= max
v3,u1,v1,u4,v4,u2,

k1,k2,k3,
B,C,D,E

B C D E
A

v3u u1 v1 u4 v4 u2 v

i k1 k2 k3 j (5)

This 4-ary rule is a representative difficult case.
The underlying alignment pattern for this rule is as
follows:

D

C

E

B

A

It is a rule that cannot be binarized in the bitext
space using ITG rules. We can only binarize it in
one dimension and leave the other dimension having
discontinuous spans. Without applying binarization
and hook trick, decoding parsing with it according
to Equation 5 requires time complexity of O(n13).

However, we can build the following partial con-
stituents and hooks to do the combination gradually.

The first step finishes a hook by consuming one
bigram. Its time complexity is O(n5):

C D E
A

u1u

k2 k3 = max
v3,B

B C D E
A

u v3 u1

k2 k3

The second step utilizes the hook we just built and
builds a partial constituent. The time complexity is
O(n7):
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D E
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u v1

i k1 k2 k3 = max
u1,C

C D E
A

u u1 v1

i k1 k2 k3

By “eating” another bigram, we build the second
hook using O(n7):

D E
A

u u4

i k1 k2 k3 = max
v1

D E
A

u v1 u4

i k1 k2 k3

We use the last hook. This step has higher com-
plexity: O(n8):

E
A

u v4

i k1 k2 j = max
u4,k3,D

v4u4

k2 k3

D E
A

jk1i

u

The last bigram involved in the 4-ary rule is com-
pleted and leads to the third hook, with time com-
plexity of O(n7):

E
A

jk2k1i

u u2

= max
v4

E
A

u v4 u2

i k1 k2 j

The final combination is O(n7):
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u v

j

A

= max
u2,k1,k2,E

u

i k1 k2

E
A

u2

j

v

The overall complexity has been reduced to
O(n8) after using binarization on the output side and
using the hook trick all the way to the end. The result
is one instance of our general analysis: here R = 2,
m = 2, and 3(m− 1) + (2R + 1) = 8.

6 Implementation

The implementation of the hook trick in a practi-
cal decoder is complicated by the interaction with

pruning. If we build hooks looking for all words
in the vocabulary whenever a complete constituent
is added to the chart, we will build many hooks
that are never used, because partial hypotheses with
many of the boundary words specified by the hooks
may never be constructed due to pruning. In-
stead of actively building hooks, which are inter-
mediate results, we can build them only when we
need them and then cache them for future use. To
make this idea concrete, we sketch the code for bi-
gram integrated decoding using ITG as in Algo-
rithm 1. It is worthy of noting that for clarity we

are building hooks in shape of

v

k j

v’
Z

, instead

of

X

Y v

k j

v’

as we have been showing in the
previous sections. That is, the probability for the
grammar rule is multiplied in when a complete con-
stituent is built, rather than when a hook is created.
If we choose the original representation, we would
have to create both straight hooks and inverted hooks
because the straight rules and inverted rules are to be
merged with the “core” hooks, creating more speci-
fied hooks.

7 Conclusion

By showing the parallels between lexicalization for
language model state and lexicalization for syntac-
tic heads, we have demonstrated more efficient al-
gorithms for previously described models of ma-
chine translation. Decoding for Inversion Transduc-
tion Grammar with a bigram language model can be
done in O(n6) time. This is the same complexity
as the ITG alignment algorithm used by Wu (1997)
and others, meaning complete Viterbi decoding is
possible without pruning for realistic-length sen-
tences. More generally, ITG with an m-gram lan-
guage model is O(n3+3(m−1)), and a synchronous
context-free grammar with at most R spans in the
input language is O(n3(m−1)+(2R+1)). While this
improves on previous algorithms, the degree in n
is probably still too high for complete search to
be practical with such models. The interaction of
the hook technique with pruning is an interesting
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Algorithm 1 ITGDecode(Nt)
for all s, t such that 0 ≤ s < t ≤ Nt do

for all S such that s < S < t do
� straight rule
for all rules X → [Y Z] ∈ G do

for all (Y, u1, v1) possible for the span of (s, S) do
� a hook who is on (S, t), nonterminal as Z, and outside expectation being v1 is required
if not exist hooks(S, t, Z, v1) then

build hooks(S, t, Z, v1)
end if
for all v2 possible for the hooks in (S, t, Z, v1) do

� combining a hook and a hypothesis, using straight rule
β(s, t, X, u1, v2) =

max
{

β(s, t, X, u1, v2), β(s, S, Y, u1, v1) · β
+(S, t, Z, v1, v2) · P (X → [Y Z])

}

end for
end for

end for
� inverted rule
for all rules X → 〈Y Z〉 ∈ G do

for all (Z, u2, v2) possible for the span of (S, t) do
� a hook who is on (s, S), nonterminal as Y , and outside expectation being v2 is required
if not exist hooks(s, S, Y, v2) then

build hooks(s, S, Y, v2)
end if
for all v1 possible for the hooks in (s, S, Y, v2) do

� combining a hook and a hypothesis, using inverted rule
β(s, t, X, u2, v1) =

max
{

β(s, t, X, u2, v1), β(S, t, Z, u2, v2) · β
+(s, S, Y, v2, v1) · P (X → 〈Y Z〉)

}

end for
end for

end for
end for

end for

routine build hooks(s, t, X, v′)
for all (X, u, v) possible for the span of (s, t) do

� combining a bigram with a hypothesis
β+(s, t, X, v′, v) =

max
{

β+(s, t, X, v′, v), bigram(v′, u) · β(s, t, X, u, v)
}

end for
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area for future work. Building the chart items with
hooks may take more time than it saves if many of
the hooks are never combined with complete con-
stituents due to aggressive pruning. However, it may
be possible to look at the contents of the chart in or-
der to build only those hooks which are likely to be
useful.
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Abstract

We introduce a method for transferring
annotation from a syntactically annotated
corpus in a source language to a target lan-
guage. Our approach assumes only that
an (unannotated) text corpus exists for the
target language, and does not require that
the parameters of the mapping between
the two languages are known. We outline
a general probabilistic approach based on
Data Augmentation, discuss the algorith-
mic challenges, and present a novel algo-
rithm for sampling from a posterior distri-
bution over trees.

1 Introduction

Annotated corpora are valuable resources for Natu-
ral Language Processing (NLP) which often require
significant effort to create. Syntactically annotated
corpora –treebanks, for short – currently exist for a
small number of languages; but for the vast majority
of the world’s languages, treebanks are unavailable
and unlikely to be created any time soon.

The situation is especially difficult for dialectal
variants of many languages. A prominent exam-
ple is Arabic: syntactically annotated corpora ex-
ist for the common written variety (Modern Stan-
dard Arabic or MSA), but the spoken regional di-
alects have a lower status in written communication
and lack annotated resources. This lack of dialect
treebanks hampers the development of syntax-based
NLP tools, such as parsers, for Arabic dialects.

On the bright side, there exist very large anno-
tated (Maamouri et al., 2003, 2004a,b) corpora for

Modern Standard Arabic. Furthermore, unannotated
text corpora for the various Arabic dialects can also
be assembled from various sources on the Internet.
Finally, the syntactic differences between the Ara-
bic dialects and Modern Standard Arabic are rela-
tively minor (compared with the lexical, phonologi-
cal, and morphological differences). The overall re-
search question is then how to combine and exploit
these resources and properties to facilitate, and per-
haps even automate, the creation of syntactically an-
notated corpora for the Arabic dialects.

We describe a general approach to this problem,
which we call treebank transfer: the goal is to
project an existing treebank, which exists in a source
language, to a target language which lacks annotated
resources. The approach we describe is not tied in
any way to Arabic, though for the sake of concrete-
ness one may equate the source language with Mod-
ern Standard Arabic and the target language with a
dialect such as Egyptian Colloquial Arabic.

We link the two kinds of resources that are avail-
able – a treebank for the source language and an
unannotated text corpus for the target language –
in a generative probability model. Specifically, we
construct a joint distribution over source-language
trees, target-language trees, as well as parameters,
and draw inferences by iterative simulation. This al-
lows us to impute target-language trees, which can
then be used to train target-language parsers and
other NLP components.

Our approach does not require aligned data,
unlike related proposals for transferring annota-
tions from one language to another. For exam-
ple,Yarowksy and Ngai(2001) consider the transfer
of word-level annotation (part-of-speech labels and
bracketed NPs). Their approach is based on aligned
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corpora and only transfers annotation, as opposed to
generating the raw data plus annotation as in our ap-
proach.

We describe the underlying probability model of
our approach inSection 2and discuss issues per-
taining to simulation and inference inSection 3.
Sampling from the posterior distribution of target-
language trees is one of the key problems in iterative
simulation for this model. We present a novel sam-
pling algorithm inSection 4. Finally inSection 5we
summarize our approach in its full generality.

2 The Probability Model

Our approach assumes that two kinds of resources
are available: a source-language treebank, and a
target-language text corpus. This is a realistic
assumption, which is applicable to many source-
language/target-language pairs. Furthermore, some
knowledge of the mapping between source-language
syntax and target-language syntax needs to be incor-
porated into the model. Parallel corpora are not re-
quired, but may help when constructing this map-
ping.

We view the source-language treebank as a se-
quence of treesS1, . . . ,Sn, and assume that these
trees are generated by a common process from a
corresponding sequence of latent target-language
treesT1, . . . ,Tn. The parameter vector of the pro-
cess which maps target-language trees to source-
language trees will be denoted byΞ. The mapping
itself is expressed as a conditional probability distri-
bution p(Si | Ti ,Ξ) over source-language trees. The
parameter vectorΞ is assumed to be generated ac-
cording to a prior distributionp(Ξ | ξ ) with hyper-
parameterξ , assumed to be fixed and known.

We further assume that each target-language tree
Ti is generated from a common language modelΛ
for the target language,p(Ti |Λ). For expository rea-
sons we assume thatΛ is a bigram language model
over the terminal yield (also known as thefringe) of
Ti . Generalizations to higher-ordern-gram models
are completely straightforward; more general mod-
els that can be expressed as stochastic finite au-
tomata are also possible, as discussed inSection 5.
Let t1, . . . , tk be the terminal yield of treeT. Then

p(T | Λ) = Λ(t1 | #)

(
k

∏
j=2

Λ(t j | t j−1)

)
Λ($ | tk),

where # marks the beginning of the string and $
marks the end of the string.

There are two options for incorporating the lan-
guage modelΛ into the overall probability model.
In the first case – which we call thefull model –
Λ is generated by an informative prior distribution
p(Λ | λ ) with hyper-parameterλ . In the second case
– thereduced model– the language modelΛ is fixed.

The structure of the full model is specified graph-
ically in Figure 1. In a directed acyclic graphical
model such as this one, we equate vertices with ran-
dom variables. Directed edges are said to go from a
parent to a child node. Each vertex depends directly
on all of its parents. Any particular vertex is condi-
tionally independent from all other vertices given its
parents, children, and the parents of its children.

The portion of the full model we are interested in
is the following factored distribution, as specified by
Figure 1:

p(S1, . . . ,Sn,T1, . . . ,Tn,Λ,Ξ | λ ,ξ )

= p(Λ | λ ) p(Ξ | ξ )
n

∏
i=1

p(Ti | Λ) p(Si | Ti ,Ξ) (1)

In the reduced model, we drop the leftmost term/
vertex, corresponding to the prior forΛ with hyper-
parameterλ , and condition onΛ instead:

p(S1, . . . ,Sn,T1, . . . ,Tn,Ξ | Λ,ξ )

= p(Ξ | ξ )
n

∏
i=1

p(Ti | Λ) p(Si | Ti ,Ξ) (2)

The difference between the full model(1) and the
reduced model(2) is that the reduced model assumes
that the language modelΛ is fixed and will not be
informed by the latent target-language treesTi . This
is an entirely reasonable assumption in a situation
where the target-language text corpus is much larger
than the source-language treebank. This will typ-
ically be the case, since it is usually very easy to
collect large corpora of unannotated text which ex-
ceed the largest existing annotated corpora by sev-
eral orders of magnitude. When a sufficiently large
target-language text corpus is available,Λ is simply
a smoothed bigram model which is estimated once
from the target-language corpus.

If the target-language corpus is relatively small,
then the bigram modelΛ can be refined on the ba-
sis of the imputed target-language trees. A bigram
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Figure 1: The graphical structure of the full probability model. Bold circles indicate observed variables,
dotted circles indicate parameters.

model is simply a discrete collection of multinomial
distributions. A simple prior forΛ takes the form
of a product of Dirichlet distributions, so that the
hyper-parameterλ is a vector of bigram counts. In
the full model(1), we assumeλ is fixed and set it to
the observed bigram counts (plus a constant) in the
target-language text corpus. This gives us an infor-
mative prior forΛ. If the bigram counts are suffi-
ciently large,Λ will be fully determined by this in-
formative prior distribution, and the reduced model
(2) can be used instead.

By contrast, usually very little is known a pri-
ori about the syntactic transfer modelΞ. InsteadΞ
needs to be estimated from data. We assume thatΞ
too is a discrete collection of multinomial distribu-
tions, governed by Dirichlet priors. However, unlike
in the case ofΛ, the priors forΞ are noninforma-
tive. This is not a problem, since a lot of informa-
tion about the target language is provided by the lan-
guage modelΛ.

As one can see inFigure 1 and equation(1),
the overall probability model constrains the latent
target-language treesTi in two ways: From the left,
the language modelΛ serves as a prior distribution
over target-language trees. On the one hand,Λ is
an informative prior, based on large bigram counts
obtained from the target-language text corpus; on
the other hand, it only informs us about the fringe
of the target-language trees and has very little di-
rectly to say about their syntactic structure. From the
right, the observed source-language trees constrain
the latent target-language trees in a complementary

fashion. Each target-language treeTi gives rise to a
corresponding source-language treeSi according to
the syntactic transfer mappingΞ. This mapping is
initially known only qualitatively, and comes with a
noninformative prior distribution.

Our goal is now to simultaneously estimate the
transfer parameterΞ and impute the latent treesTi .
This is simplified by the following observation: if
T1, . . . ,Tn are known, then findingΞ is easy; vice
versa, if Ξ is known, then findingTi is easy. Si-
multaneous inference forΞ andT1, . . . ,Tn is possible
via Data Augmentation (Tanner and Wong, 1987),
or, more generally, Gibbs sampling (Geman and Ge-
man, 1984).

3 Simulation of the Joint Posterior
Distribution

We now discuss the simulation of the joint poste-
rior distribution over the latent treesT1, . . . ,Tn, the
transfer model parameterΞ, and the language model
parameterΛ. This joint posterior is derived from the
overall full probability model(1). Using the reduced
model(2) instead of the full model amounts to sim-
ply omittingΛ from the joint posterior. We will deal
primarily with the more general full model in this
section, since the simplification which results in the
reduced model will be straightforward.

The posterior distribution we focus on is
p(T1, . . . ,Tn,Λ,Ξ | S1, . . . ,Sn,λ ,ξ ), which provides
us with information about all the variables of inter-
est, including the latent target-language treesTi , the
syntactic transfer modelΞ, and the target-language
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language modelΛ. It is possible to simulate this
joint posterior distribution using simple sampling-
based approaches (Gelfand and Smith, 1990), which
are instances of the general Markov-chain Monte
Carlo method (see, for example,Liu, 2001).

Posterior simulation proceeds iteratively, as fol-
lows. In each iteration we draw the three kinds of
random variables – latent trees, language model pa-
rameters, and transfer model parameters – from their
conditional distributions while holding the values of
all other variables fixed. Specifically:

• Initialize Λ and Ξ by drawing each from its
prior distribution.

• Iterate the following three steps:

1. Draw eachTi from its posterior distribu-
tion givenSi , Λ, andΞ.

2. Draw Λ from its posterior distribution
givenT1, . . . ,Tn andλ .

3. Draw Ξ from its posterior distribution
givenS1, . . . ,Sn, T1, . . . ,Tn, andξ .

This simulation converges in the sense that the draws
of T1, . . . ,Tn, Λ, and Ξ converge in distribution to
the joint posterior distribution over those variables.
Further details can be found, for example, inLiu,
2001, as well as the references cited above.

We assume that the bigram modelΛ is a family of
multinomial distributions, and we writeΛ(t j | t j−1)
for the probability of the wordt j following t j−1.
Using creative notation,Λ( · | t j−1) can be seen as
a multinomial distribution. Its conjugate prior is
a Dirichlet distribution whose parameter vectorλw

are the counts of words types occurring immediately
after the word typew of t j−1. Under the conven-
tional assumptions of exchangeability and indepen-
dence, the prior distribution forΛ is just a product of
Dirichlet priors. Since we employ a conjugate prior,
the posterior distribution ofΛ

p(Λ | S1, . . . ,Sn,T1, . . . ,Tn,Ξ,λ ,ξ )
= p(Λ | T1, . . . ,Tn,λ ) (3)

has the same form as the prior – it is likewise a prod-
uct of Dirichlet distributions. In fact, for each word
typew the posterior Dirichlet density has parameter
λw+cw, whereλw is the parameter of the prior distri-
bution andcw is a vector of counts for all word forms

appearing immediately afterw along the fringe of
the imputed trees.

We make similar assumptions about the syntactic
transfer modelΞ and its posterior distribution, which
is

p(Ξ | S1, . . . ,Sn,T1, . . . ,Tn,Λ,λ ,ξ )
= p(Ξ | S1, . . . ,Sn,T1, . . . ,Tn,ξ ). (4)

In particular, we assume that syntactic transfer in-
volves only multinomial distributions, so that the
prior and posterior forΞ are products of Dirichlet
distributions. This means that samplingΛ and Ξ
from their posterior distributions is straightforward.

The difficult part is the first step in each scan of
the Gibbs sampler, which involves sampling each
target-language latent tree from the corresponding
posterior distribution. For a particular treeTj , the
posterior takes the following form:

p(Tj |S1, . . . ,Sn,T1, . . . ,Tj−1,Tj+1, . . . ,Tn,Λ,Ξ,λ ,ξ )

= p(Tj | Sj ,Λ,Ξ) =
p(Tj ,Sj | Λ,Ξ)

∑Tj
p(Tj ,Sj | Λ,Ξ)

∝ p(Tj | Λ) p(Sj | Tj ,Ξ) (5)

The next section discusses sampling from this poste-
rior distribution in the context of a concrete example
and presents an algorithmic solution.

4 Sampling from the Latent Tree Posterior

We are faced with the problem of samplingTj from
its posterior distribution, which is proportional to the
product of its language model priorp(Tj | Λ) and
transfer model likelihoodp(Sj | Tj ,Ξ). Rejection
sampling using the prior as the proposal distribution
will not work, for two reasons: first, the prior is only
defined on the yield of a tree and there are poten-
tially very many tree structures with the same fringe;
second, even if the first problem could be overcome,
it is unlikely that a random draw from ann-gram
prior would result in a target-language tree that cor-
responds to a particular source-language tree, as the
prior has no knowledge of the source-language tree.

Fortunately, efficient direct sampling from the la-
tent tree posterior is possible, under one very rea-
sonable assumption: the set of all target-language
trees which map to a given source-language treeSj
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Figure 2: Syntax tree illustrating SVO constituent
order within a sentence, and prenominal adjectives
within noun phrases.

should be finite and representable as a packed for-
est. More specifically, we assume that there is a
compact (polynomial space) representation of po-
tentially exponentially many trees. Moreover, each
tree in the packed forest has an associated weight,
corresponding to its likelihood under the syntactic
transfer model.

If we rescale the weights of the packed forest so
that it becomes a normalized probabilistic context-
free grammar (PCFG), we can sample from this new
distribution (corresponding to the normalized likeli-
hood) efficiently. For example, it is then possible to
use the PCFG as a proposal distribution for rejection
sampling.

However, we can go even further and sample
from the latent tree posterior directly. The key
idea is to intersect the packed forest with then-
gram language model and then to normalize the re-
sulting augmented forest. The intersection opera-
tion is a special case of the intersection construction
for context-free grammars and finite automata (Bar-
Hillel et al., 1961, pp. 171–172). We illustrate it here
for a bigram language model.

Consider the tree inFigure 2 and assume it is
a source-language tree, whose root is a clause (C)
which consists of a subject (S), verb (v) and object
(O). The subject and object are noun phrases consist-
ing of an adjective (a) and a noun (n). For simplicity,
we treat the part-of-speech labels (a, n, v) as termi-
nal symbols and add numbers to distinguish multiple
occurrences. The syntactic transfer model is stated
as a conditional probability distribution over source-

language trees conditional on target language trees.
Syntactic transfer amounts to independently chang-
ing the order of the subject, verb, and object, and
changing the order of adjectives and nouns, for ex-
ample as follows:

p(SvO| SvO) = Ξ1

p(SOv| SvO) = (1−Ξ1)Ξ2

p(vSO| SvO) = (1−Ξ1)(1−Ξ2)

p(SvO| SOv) = Ξ3

p(SOv| SOv) = (1−Ξ3)Ξ4

p(vSO| SOv) = (1−Ξ3)(1−Ξ4)

p(SvO| vSO) = Ξ5

p(SOv| vSO) = (1−Ξ5)Ξ6

p(vSO| vSO) = (1−Ξ5)(1−Ξ6)

p(an | an) = Ξ7

p(na | an) = 1−Ξ7

p(an | na) = Ξ8

p(na | na) = 1−Ξ8

Under this transfer model, the likelihood of a target-
language tree[Av[Sa1n1][On2a2]] corresponding to
the source-language tree shown inFigure 2is Ξ5×
Ξ7×Ξ8. It is easy to construct a packed forest of all
target-language trees with non-zero likelihood that
give rise to the source-language tree inFigure 2.
Such a forest is shown inFigure 3. Forest nodes are
shown as ellipses, choice points as rectangles con-
nected by dashed lines. A forest node is to be un-
derstood as an (unordered) disjunction of the choice
points directly underneath it, and a choice point as
an (ordered, as indicated by numbers) conjunction
of the forest nodes directly underneath it. In other
words, a packed forest can be viewed as an acyclic
and-or graph, where choice points represent and-
nodes (whose children are ordered). As a simpli-
fying convention, for nodes that dominate a single
choice node, that choice node is not shown. The for-
est inFigure 3representsSvO, SOv, andvSOpermu-
tations at the sentence level andan, napermutations
below the two noun phrases. The twelve overall per-
mutations are represented compactly in terms of two
choices for the subject, two choices for the object,
and three choices for the root clause.
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Figure 3: Plain forest of target-language trees that can correspond to the source-language tree inFigure 2.

We intersect/compose the packed forest with the
bigram language modelΛ by augmenting each node
in the forest with a left context word and a right pe-
ripheral word: a nodeN is transformed into a triple
(a,N,b) that dominates those trees whichN domi-
nates in the original forest and which can occur after
a worda and end with a wordb. The algorithm is
roughly1 as shown inFigure 5for binary branching
forests; it requires memoization (not shown) to be
efficient. The generalization to forests with arbitrary
branching factors is straightforward, but the presen-
tation of that algorithm less so. At the root level, we
call forest_composition with a left context of #
(indicating the start of the string) and add dummy
nodes of the form(a,$,$) (indicating the end of the
string). Further details can be found in the prototype
implementation. Each node in the original forest is
augmented with two words; if there aren leaf nodes
in the original forest, the total number of nodes in
the augmented forest will be at mostn2 times larger
than in the original forest. This means that the com-
pact encoding property of the packed forest (expo-
nentially many trees can be represented in polyno-
mial space) is preserved by the composition algo-
rithm. An example of composing a packed forest

1A detailed implementation is available fromhttp://www.
cs.columbia.edu/∼jansche/transfer/.

with a bigram language model appears inFigure 4,
which shows the forest that results from composing
the forest inFigure 3with a bigram language model.

The result of the composition is an augmented
forest from which sampling is almost trivial. The
first thing we have to do is to recursively propagate
weights from the leaves upwards to the root of the
forest and associate them with nodes. In the non-
recursive case of leaf nodes, their weights are pro-
vided by the bigram score of the augmented forest:
observe that leaves in the augmented forest have la-
bels of the form(a,b,b), wherea andb are terminal
symbols, anda represents the immediately preced-
ing left context. The score of such a leaf is sim-
ply Λ(b | a). There are two recursive cases: For
choice nodes (and-nodes), their weight is the prod-
uct of the weights of the node’s children times a lo-
cal likelihood score. For example, the node(v,O,n)
in Figure 4 dominates a single choice node (not
shown, per the earlier conventions), whose weight
is Λ(a | v) Λ(n | a) Ξ7. For other forest nodes (or-
nodes), their weight is the sum of the weights of the
node’s children (choice nodes).

Given this very natural weight-propagation algo-
rithm (and-nodes correspond to multiplication, or-
nodes to summation), it is clear that the weight of the
root node is the sum total of the weights of all trees
in the forest, where the weight of a tree is the prod-
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Figure 4: Augmented forest obtained by intersecting the forest inFigure 3with a bigram language model.
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forest_composition(N, a):
if N is a terminal:
return { (a,N,N) }

else:
nodes = {}
for each (L,R) in N.choices:
left_nodes <- forest_composition(L, a)
for each (a,L,b) in left_nodes:
right_nodes <- forest_composition(R, b)
for each (b,R,c) in right_nodes:
new_n = (a,N,c)
nodes <- nodes + { new_n }
new_n.choices <- new_n.choices + [((a,L,b), (b,R,c))]

return nodes

Figure 5: Algorithm for computing the intersection of a binary forest with a bigram language model.

uct of the local likelihood scores times the language
model score of the tree’s terminal yield. We can
then associate outgoing normalized weights with the
children (choice points) of each or-node, where the
probability of going to a particular choice node from
a given or-node is equal to the weight of the choice
node divided by the weight of the or-node.

This means we have managed to calculate the
normalizing constant of the latent tree posterior(5)
without enumerating the individual trees in the for-
est. Normalization ensures that we can sample from
the augmented and normalized forest efficiently, by
proceeding recursively in a top-down fashion, pick-
ing a child of an or-node at random with probability
proportional to the outgoing weight of that choice.
It is easy to see (by a telescoping product argument)
that by multiplying together the probabilities of each
such choice we obtain the posterior probability of a
latent tree. We thus have a method for sampling la-
tent trees efficiently from their posterior distribution.

The sampling procedure described here is very
similar to the lattice-based generation procedure
with n-gram rescoring developed byLangkilde
(2000), and is in fact based on the same intersection
construction (Langkilde seems to be unaware that
the CFG-intersection construction from (Bar-Hillel
et al., 1961) is involved). However,Langkildeis in-
terested in optimization (finding the best tree in the
forest), which allows her to prune away less prob-
able trees from the composed forest in a procedure

that combines composition, rescoring, and pruning.
Alternatively, for a somewhat different but related
formulation of the probability model, the sampling
method developed byMark et al.(1992) can be used.
However, its efficiency is not well understood.

5 Conclusions

The approach described in this paper was illustrated
using very simple examples. The simplicity of the
exposition should not obscure the full generality of
our approach: it is applicable in the following situa-
tions:

• A prior over latent trees is defined in terms of
stochastic finite automata.

We have described the special case of bigram
models, and pointed out how our approach
will generalize to higher-ordern-gram models.
However, priors are not generally constrained
to be n-gram models; in fact, any stochastic
finite automaton can be employed as a prior,
since the intersection of context-free grammars
and finite automata is well-defined. However,
the intersection construction that appears to be
necessary for sampling from the posterior dis-
tribution over latent trees may be rather cum-
bersome when higher-ordern-gram models or
more complex finite automata are used as pri-
ors.
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• The inverse image of an observed tree under the
mapping from latent trees to observed trees can
be expressed in terms of a finite context-free
language, or equivalently, a packed forest.

The purpose of Gibbs sampling is to simulate the
posterior distribution of the unobserved variables in
the model. As the sampling procedure converges,
knowledge contained in the informative but struc-
turally weak priorΛ is effectively passed to the syn-
tactic transfer modelΞ. Once the sampling proce-
dure has converged to a stationary distribution, we
can run it for as many additional iterations as we
want and sample the imputed target-language trees.
Those trees can then be collected in a treebank, thus
creating novel syntactically annotated data in the tar-
get language, which can be used for further process-
ing in syntax-based NLP tasks.
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Abstract

In this paper, we explore two extensions
to an existing statistical parsing model to
produce richer parse trees, annotated with
function labels. We achieve significant
improvements in parsing by modelling di-
rectly the specific nature of function la-
bels, as both expressions of the lexical se-
mantics properties of a constituent and as
syntactic elements whose distribution is
subject to structural locality constraints.
We also reach state-of-the-art accuracy
on function labelling. Our results sug-
gest that current statistical parsing meth-
ods are sufficiently robust to produce ac-
curate shallow functional or semantic an-
notation, if appropriately biased.

1 Introduction

Natural language processing methods producing
shallow semantic output are starting to emerge as the
next step towards successful developments in natural
language understanding. Incremental, robust pars-
ing systems will be the core enabling technology for
interactive, speech-based question answering and di-
alogue systems. In recent years, corpora annotated
with semantic and function labels have seen the light
(Palmer et al., 2005; Baker et al., 1998) and semantic
role labelling has taken centre-stage as a challenging
new task. State-of-the-art statistical parsers have not
yet responded to this challenge.

State-of-the-art statistical parsers trained on the
Penn Treebank (PTB) (Marcus et al., 1993) pro-
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Figure 1: A sample syntactic structure with function
labels.

duce trees annotated with bare phrase structure la-
bels (Collins, 1999; Charniak, 2000). The trees of
the Penn Treebank, however, are also decorated with
function labels, labels that indicate the grammatical
and semantic relationship of phrases to each other
in the sentence. Figure 1 shows the simplified tree
representation with function labels for a sample sen-
tence from the PTB corpus (section 00) The Gov-
ernment’s borrowing authority dropped at midnight
Tuesday to 2.80 trillion from 2.87 trillion. Unlike
phrase structure labels, function labels are context-
dependent and encode a shallow level of phrasal and
lexical semantics, as observed first in (Blaheta and
Charniak, 2000). For example, while the authority
in Figure 1 will always be a Noun Phrase, it could
be a subject, as in the example, or an object, as in
the sentence They questioned his authority, depend-
ing on its position in the sentence. To some extent,
function labels overlap with semantic role labels as
defined in PropBank (Palmer et al., 2005). Table 1
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Syntactic Labels Semantic Labels
DTV dative ADV adverbial
LGS logical subject BNF benefactive
PRD predicate DIR direction
PUT compl of put EXT extent
SBJ surface subject LOC locative
VOC vocative MNR manner
Miscellaneous Labels NOM nominal
CLF it-cleft PRP purpose or rea-

son
HLN headline TMP temporal
TTL title Topic Labels
CLR closely related TPC topicalized

Table 1: Complete set of function labels in the Penn
Treebank.

illustrates the complete list of function labels in the
Penn Treebank, partitioned into four classes. 1

Current statistical parsers do not use or output
this richer information because performance of the
parser usually decreases considerably, since a more
complex task is being solved. (Klein and Manning,
2003), for instance report a reduction in parsing ac-
curacy of an unlexicalised PCFG from 77.8% to
72.9% if using function labels in training. (Blaheta,
2004) also reports a decrease in performance when
attempting to integrate his function labelling system
with a full parser. Conversely, researchers interested
in producing richer semantic outputs have concen-
trated on two-stage systems, where the semantic la-
belling task is performed on the output of a parser,
in a pipeline architecture divided in several stages
(Gildea and Jurafsky, 2002; Nielsen and Pradhan,
2004; Xue and Palmer, 2004). See also the com-
mon task of (CoNLL, 2004; CoNLL, 2005; Sense-
val, 2004), where parsing has sometimes not been
used and has been replaced by chunking.

In this paper, we present a parser that produces
richer output using information available in a corpus
incrementally. Specifically, the parser outputs addi-
tional labels indicating the function of a constituent
in the tree, such as NP-SBJ or PP-TMP in the tree

1(Blaheta and Charniak, 2000) talk of function tags.We will
instead use the term function label, to indicate function identi-
fiers, as they can decorate any node in the tree. We keep the
word tag to indicate only those labels that decorate preterminal
nodes in a tree – part-of-speech tags – as is standard use.

shown in Figure 1.
Following (Blaheta and Charniak, 2000), we con-

centrate on syntactic and semantic function labels.
We will ignore the other two classes, for they do
not form natural classes. Like previous work, con-
stituents that do not bear any function label will re-
ceive a NULL label. Strictly speaking, this label cor-
responds to two NULL labels: the SYN-NULL and the
SEM-NULL. A node bearing the SYN-NULL label is
a node that does not bear any other syntactic label.
Analogously, the SEM-NULL label completes the set
of semantic labels. Note that both the SYN-NULL

label and the SEM-NULL are necessary, since both a
syntactic and a semantic label can label a given con-
stituent.

We present work to test the hypothesis that a cur-
rent statistical parser (Henderson, 2003) can out-
put richer information robustly, that is without any
degradation of the parser’s accuracy on the original
parsing task, by explicitly modelling function labels
as the locus where the lexical semantics of the ele-
ments in the sentence and syntactic locality domains
interact. Briefly, our method consists in augmenting
the parser with features and biases that capture both
lexical semantics projections and structural regulari-
ties underlying the distribution of sequences of func-
tion labels in a sentence. We achieve state-of-the-art
results both in parsing and function labelling. This
result has several consequences.

On the one hand, we show that it is possible to
build a single integrated robust system successfully.
This is an interesting achievement, as a task com-
bining function labelling and parsing is more com-
plex than simple parsing. While the function of a
constituent and its structural position are often cor-
related, they sometimes diverge. For example, some
nominal temporal modifiers occupy an object posi-
tion without being objects, like Tuesday in the tree
above. Moreover, given current limited availabil-
ity of annotated tree banks, this more complex task
will have to be solved with the same overall amount
of data, aggravating the difficulty of estimating the
model’s parameters due to sparse data. Solving this
more complex problem successfully, then, indicates
that the models used are robust. Our results also pro-
vide some new insights into the discussion about the
necessity of parsing for function or semantic role la-
belling (Gildea and Palmer, 2002; Punyakanok et al.,
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2005), showing that parsing is beneficial.

On the other hand, function labelling while pars-
ing opens the way to interactive applications that are
not possible in a two-stage architecture. Because the
parser produces richer output incrementally at the
same time as parsing, it can be integrated in speech-
based applications, as well as be used for language
models. Conversely, output annotated with more in-
formative labels, such as function or semantic labels,
underlies all domain-independent question answer-
ing (Jijkoun et al., 2004) or shallow semantic inter-
pretation systems (Collins and Miller, 1998; Ge and
Mooney, 2005).

2 The Basic Architecture

To achieve the complex task of assigning function
labels while parsing, we use a family of statisti-
cal parsers, the Simple Synchrony Network (SSN)
parsers (Henderson, 2003), which do not make any
explicit independence assumptions, and are there-
fore likely to adapt without much modification to the
current problem. This architecture has shown state-
of-the-art performance.

SSN parsers comprise two components, one
which estimates the parameters of a stochastic
model for syntactic trees, and one which searches for
the most probable syntactic tree given the parame-
ter estimates. As with many other statistical parsers
(Collins, 1999; Charniak, 2000), SSN parsers use
a history-based model of parsing. Events in such
a model are derivation moves. The set of well-
formed sequences of derivation moves in this parser
is defined by a Predictive LR pushdown automaton
(Nederhof, 1994), which implements a form of left-
corner parsing strategy.

This pushdown automaton operates on config-
urations of the form (Γ, v), where Γ represents
the stack, whose right-most element is the top,
and v the remaining input. The initial configu-
ration is (ROOT,w) where ROOT is a distin-
guished non-terminal symbol. The final configu-
ration is (ROOT, ε). Assuming standard notation
for context-free grammars (Nederhof, 1994), three
derivation moves are defined:

shift
([B → β], av) ` ([B → β][A → a], v)
where A → a and B → βCγ are productions
such that A is a left-corner of C .

project
([B → β][A → α], v) `

([B → β][D → A], v)
where A → α, D → Aδ and B → βCγ are
productions such that D is a left-corner of C .

attach
([B → β][A → α], v) ` ([B → βA], v)
where both A → α and B → βAγ are produc-
tions.

The joint probability of a phrase-structure tree and
its terminal yield can be equated to the probability
of a finite (but unbounded) sequence of derivation
moves. To bound the number of parameters, stan-
dard history-based models partition the set of well-
formed sequences of transitions into equivalence
classes. While such a partition makes the problem
of searching for the most probable parse polyno-
mial, it introduces hard independence assumptions:
a derivation move only depends on the equivalence
class to which its history belongs. SSN parsers, on
the other hand, do not state any explicit indepen-
dence assumptions: they use a neural network ar-
chitecture, called Simple Synchrony Network (Hen-
derson and Lane, 1998), to induce a finite his-
tory representation of an unbounded sequence of
moves. The history representation of a parse history
d1, . . . , di−1, which we denote h(d1, . . . , di−1), is
assigned to the constituent that is on the top of the
stack before the ith move.

The representation h(d1, . . . , di−1) is computed
from a set f of features of the derivation move di−1

and from a finite set D of recent history representa-
tions h(d1, . . . , dj), where j < i − 1. Because the
history representation computed for the move i−1 is
included in the inputs to the computation of the rep-
resentation for the next move i, virtually any infor-
mation about the derivation history could flow from
history representation to history representation and
be used to estimate the probability of a derivation
move. However, the recency preference exhibited
by recursively defined neural networks biases learn-
ing towards information which flows through fewer
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history representations. (Henderson, 2003) exploits
this bias by directly inputting information which is
considered relevant at a given step to the history
representation of the constituent on the top of the
stack before that step. To determine which history
representations are input to which others and pro-
vide SSNs with a linguistically appropriate induc-
tive bias, the set D includes history representations
which are assigned to constituents that are struc-
turally local to a given node on the top of the stack.
In addition to history representations, the inputs to
h(d1, . . . , di−1) include hand-crafted features of the
derivation history that are meant to be relevant to
the move to be chosen at step i. For each of the ex-
periments reported here, the set D that is input to
the computation of the history representation of the
derivation moves d1, . . . , di−1 includes the most re-
cent history representation of the following nodes:
topi, the node on top of the pushdown stack be-
fore the ith move; the left-corner ancestor of topi

(that is, the second top-most node on the parser’s
stack); the leftmost child of topi; and the most re-
cent child of topi, if any. The set of features f in-
cludes the last move in the derivation, the label or
tag of topi, the tag-word pair of the most recently
shifted word, and the leftmost tag-word pair that
topi dominates. Given the hidden history represen-
tation h(d1, · · · , di−1) of a derivation, a normalized
exponential output function is computed by SSNs to
estimate a probability distribution over the possible
next derivation moves di.2

The second component of SSN parsers, which
searches for the best derivation given the parame-
ter estimates, implements a severe pruning strategy.
Such pruning handles the high computational cost
of computing probability estimates with SSNs, and
renders the search tractable. The space of possible
derivations is pruned in two different ways. The first
pruning occurs immediately after a tag-word pair
has been pushed onto the stack: only a fixed beam of
the 100 best derivations ending in that tag-word pair
are expanded. For training, the width of such beam
is set to five. A second reduction of the search space
prunes the space of possible project or attach deriva-

2The on-line version of Backpropagation is used to train
SSN parsing models. It performs the gradient descent with a
maximum likelihood objective function and weight decay regu-
larization (Bishop, 1995).

tion moves: the best-first search strategy is applied
to the five best alternative decisions only.

3 Learning Lexical Projection and
Locality Domains of Function Labels

Recent approaches to functional or semantic labels
are based on two-stage architectures. The first stage
selects the elements to be labelled, while the sec-
ond determines the labels to be assigned to the se-
lected elements. While some of these models are
based on full parse trees (Gildea and Jurafsky, 2002;
Blaheta, 2004), other methods have been proposed
that eschew the need for a full parse (CoNLL, 2004;
CoNLL, 2005). Because of the way the problem has
been formulated, – as a pipeline of parsing feeding
into labelling – specific investigations of the inter-
action of lexical projections with the relevant struc-
tural parsing notions during function labelling has
not been studied.

The starting point of our augmentation of SSN
models is the observation that the distribution of
function labels can be better characterised struc-
turally than sequentially. Function labels, similarly
to semantic roles, represent the interface between
lexical semantics and syntax. Because they are pro-
jections of the lexical semantics of the elements in
the sentence, they are projected bottom-up, they tend
to appear low in the tree and they are infrequently
found on the higher levels of the parse tree, where
projections of grammatical, as opposed to lexical,
elements usually reside. Because they are the inter-
face level with syntax, function and semantic labels
are also subject to distributional constraints that gov-
ern syntactic dependencies, especially those govern-
ing the distribution of sequences of long distance
elements. These relations often correspond to top-
down constraints. For example, languages like Ital-
ian allow inversion of the subject (the Agent) in
transitive sentences, giving rise to a linear sequence
where the Theme precedes the Agent (Mangia la
mela Gianni, eats the apple Gianni). Despite this
freedom in the linear order, however, it is never the
case that the structural positions can be switched. It
is a well-attested typological generalisation that one
does not find sentences where the subject is a Theme
and the object is the Agent. The hierarchical de-
scription, then, captures the underlying generalisa-
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Figure 2: Flow of information in an SSN parser (dashed lines), enhanced by biases specific to function labels
to capture the notion of c-command (solid lines).

tion better than a model based on a linear sequence.

In our augmented model, inputs to each history
representation are selected according to a linguis-
tically motivated notion of structural locality over
which dependencies such as argument structure or
subcategorization could be specified. We attempt to
capture the sequence and the structural position by
indirectly modelling the main definition of syntac-
tic domain, the notion of c-command. Recall that
the c-command relation defines the domain of in-
teraction between two nodes in a tree, even if they
are not close to each other, provided that the first
node dominating one node also dominates the other.
This notion of c-command captures both linear and
hierarchical constraints and defines the domain in
which semantic role labelling applies, as well as
many other linguistic operations.

In SSN parsing models, the set D of nodes that
are structurally local to a given node on the top of
the stack defines the structural distance between this
given node and other nodes in the tree. Such a no-
tion of distance determines the number of history
representations through which information passes to
flow from the representation assigned to a node i to
the representation assigned to a node j. By adding
nodes to the set D, one can shorten the structural
distance between two nodes and enlarge the locality
domain over which dependencies can be specified.
To capture a locality domain appropriate for func-
tion parsing, we include two additional nodes in the
set D: the most recent child of topi labelled with a

syntactic function label and the most recent child of
topi labelled with a semantic function label. These
additions yield a model that is sensitive to regulari-
ties in structurally defined sequences of nodes bear-
ing function labels, within and across constituents.
First, in a sequence of nodes bearing function labels
within the same constituent – possibly interspersed
with nodes not bearing function labels – the struc-
tural distance between a node bearing a function la-
bel and any of its right siblings is shortened and con-
stant. This effect comes about because the represen-
tation of a node bearing a function label is directly
input to the representation of its parent, until a far-
ther node with a function label is attached. Second,
the distance between a node labelled with a function
label and any node that it c-commands is kept con-
stant: since the structural distance between a node
[A → α] on top of the stack and its left-corner an-
cestor [B → β] is constant, the distance between the
most recent child node of B labelled with a func-
tion label and any child of A is kept constant. This
modification of the biases is illustrated in Figure 2.

This figure displays two constituents, S and VP
with some of their respective child nodes. The VP
node is assumed to be on the top of the parser’s
stack, and the S one is supposed to be its left-corner
ancestor. The directed arcs represent the informa-
tion that flows from one node to another. Accord-
ing to the original SSN model in (Henderson, 2003),
only the information carried over by the leftmost
child and the most recent child of a constituent di-
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rectly flows to that constituent. In the figure above,
only the information conveyed by the nodes α and
δ is directly input to the node S. Similarly, the only
bottom-up information directly input to the VP node
is conveyed by the child nodes ε and θ. In both the
no-biases and H03 models, nodes bearing a function
label such as φ1 and φ2 are not directly input to their
respective parents. In our extended model, informa-
tion conveyed by φ1 and φ2 directly flows to their re-
spective parents. So the distance between the nodes
φ1 and φ2, which stand in a c-command relation, is
shortened and kept constant.

As well as being subject to locality constraints,
functional labels are projected by the lexical seman-
tics of the words in the sentence. We introduce this
bottom-up lexical information by fine-grained mod-
elling of function tags in two ways. On the one hand,
extending a technique presented in (Klein and Man-
ning, 2003), we split some part-of-speech tags into
tags marked with semantic function labels. The la-
bels attached to a non-terminal which appeared to
cause the most trouble to the parser in a separate ex-
periment (DIR, LOC, MNR, PRP or TMP) were prop-
agated down to the pre-terminal tag of its head. To
affect only labels that are projections of lexical se-
mantics properties, the propagation takes into ac-
count the distance of the projection from the lexical
head to the label, and distances greater than two are
not included. Figure 3 illustrates the result of the tag
splitting operation.

On the other hand, we also split the NULL label
into mutually exclusive labels. We hypothesize that
the label NULL (ie. SYN-NULL and SEM-NULL) is a
mixture of types, some of which of semantic nature,
such as CLR, which will be more accurately learnt
separately. The NULL label was split into the mu-
tually exclusive labels CLR, OBJ and OTHER. Con-
stituents were assigned the OBJ label according to
the conditions stated in (Collins, 1999). Roughly, an
OBJ non-terminal is an NP, SBAR or S whose parent
is an S, VP or SBAR. Any such non-terminal must
not bear either syntactic or semantic function labels,
or the CLR label. In addition, the first child following
the head of a PP is marked with the OBJ label. (For
more detail on this lexical semantics projection, see
(Merlo and Musillo, 2005).)

We report the effects of these augmentations on
parsing results in the experiments described below.
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Figure 3: A sample syntactic structure with function
labels lowered onto the preterminals.

4 Experiments and Discussion

To assess the relevance of our fine-grained tags and
history representations for functional labelling, we
compare two augmented models to two baseline
models without these augmentations indicated in Ta-
ble 2 as no-biases and H03. The baseline called H03
refers to our runs of the parser described in (Hen-
derson, 2003), which is not trained on input anno-
tated with function labels. Comparison to this model
gives us an external reference to whether function
labelling improves parsing. The baseline called no-
biases refers to a model without any structural or
lexical biases, but trained on input annotated with
function labels. This comparison will tell us if the
biases are useful or if the reported improvements
could have been obtained without explicit manipu-
lation of the parsing biases.

All SSN function parsers were trained on sec-
tions 2-21 from the PTB and validated on section 24.
They are trained on parse trees whose labels include
syntactic and semantic function labels. The mod-
els, as well as the parser described in (Henderson,
2003), are run only once. This explains the little dif-
ference in performance between our results for H03
in our table of results and those cited in (Henderson,
2003), where the best of three runs on the valida-
tion set is chosen. To evaluate the performance of
our function parsing experiments, we extend stan-
dard Parseval measures of labelled recall and preci-
sion to include function labels.

The augmented models have a total of 188 non-
terminals to represents labels of constituents, instead
of the 33 of the baseline H03 parser. As a result
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FLABEL FLABEL-less
F R P F R P

H03 88.6 88.3 88.9
no-biases 84.6 84.4 84.9 88.2 88.0 88.4
split-tags 86.1 85.8 86.5 88.9 88.6 89.3
split-tags+locality 86.4 86.1 86.8 89.2 88.9 89.5

Table 2: Percentage F-measure (F), recall (R), and precision (P) of the SSN baseline and augmented parsers.

of lowering the five function labels, 83 new part-of-
speech tags were introduced to partition the original
tag set. SSN parsers do not tag their input sentences.
To provide the augmented models with tagged input
sentences, we trained an SVM tagger whose features
and parameters are described in detail in (Gimenez
and Marquez, 2004). Trained on section 2-21, the
tagger reaches a performance of 95.8% on the test
set (section 23) of the PTB using our new tag set.

Both parsing results taking function labels into
account in the evaluation (FLABEL) and results
not taking them into account in the evaluation
(FLABEL-less) are reported in Table 2, which
shows results on the test set, section 23 of the PTB.
Both the model augmented only with lexical in-
formation (through tag splitting) and the one aug-
mented both with finer-grained tags and represen-
tations of syntactic locality perform better than our
comparison baseline H03, but only the latter is sig-
nificantly better (p < .01, using (Yeh, 2000)’s ran-
domised test). This indicates that while information
projected from the lexical items is very important,
only a combination of lexical semantics information
and careful modelling of syntactic domains provides
a significant improvement.

Parsing results outputting function labels (FLA-
BEL columns) reported in Table 2 indicate that pars-
ing function labels is more difficult than parsing bare
phrase-structure labels (compare the FLABEL col-
umn to the FLABEL-less column). They also show
that our model including finer-grained tags and lo-
cality biases performs better than the one including
only finer-grained tags when outputting function la-
bels. This suggests that our model with both lex-
ical and structural biases performs better than our
no-biases comparison baseline precisely because it
is able to learn to parse function labels more accu-
rately. Comparisons to the baseline without biases

indicates clearly that the observed improvements,
both on function parsing and on parsing without
taking function labels into consideration would not
have been obtained without explicit biases.

Individual performance on syntactic and seman-
tic function labelling compare favourably to previ-
ous attempts (Blaheta, 2004; Blaheta and Charniak,
2000). Note that the maximal precision or recall
score of function labelling is strictly smaller than
one-hundred percent if the precision or the recall of
the parser is less than one-hundred percent. Follow-
ing (Blaheta and Charniak, 2000), incorrectly parsed
constituents will be ignored (roughly 11% of the to-
tal) in the evaluation of the precision and recall of
the function labels, but not in the evaluation of the
parser. Of the correctly parsed constituents, some
bear function labels, but the overwhelming major-
ity do not bear any label, or rather, in our notation,
they bear a NULL label. To avoid calculating ex-
cessively optimistic scores, constituents bearing the
NULL label are not taken into consideration for com-
puting overall recall and precision figures. NULL-
labelled constituents are only needed to calculate the
precision and recall of other function labels. For
example, consider the confusion matrix M in Ta-
ble 3 below, which reports scores for the semantic
labels recovered by the no-biases model. Precision

is computed as

∑
i∈{ADV···TMP} M [i,i]

∑
j∈{ADV···TMP} M [SUM,j]

. Recall is

computed analogously. Notice that M [n, n], that is
the [SEM-NULL,SEM-NULL] cell in the matrix, is never
taken into account.

Syntactic labels are recovered with very high ac-
curacy (F 96.5%, R 95.5% and P 97.5%) by the
model with both lexical and structural biases, and
so are semantic labels, which are considerably more
difficult (F 85.6%, R 81.5% and P 90.2%). (Bla-
heta, 2004) uses specialised models for the two types
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ASSIGNED LABELS

ADV BNF DIR EXT LOC MNR NOM PRP TMP SEM-NULL SUM

ADV 143 0 0 0 0 0 0 1 3 11 158
BNF 0 0 0 0 0 0 0 0 0 1 1
DIR 0 0 39 0 3 4 0 0 1 51 98
EXT 0 0 0 37 0 0 0 0 0 17 54

ACTUAL LOC 0 0 1 0 345 3 0 0 15 148 512
LABELS MNR 0 0 0 0 3 35 0 0 16 40 94

NOM 2 0 0 0 0 0 88 0 0 4 94
PRP 0 0 0 0 0 0 0 54 1 33 88
TMP 18 0 1 0 24 11 0 1 479 105 639
SEM-NULL 12 0 13 5 81 28 12 24 97 20292 20564
SUM 175 0 54 42 456 81 100 80 612 20702 22302

Table 3: Confusion matrix for the no-biases baseline model, tested on the validation set (section 24 of PTB).

of function labels, reaching an F-measure of 98.7%
for syntactic labels and 83.4% for semantic labels as
best accuracy measure. Previous work that uses, like
us, a single model for both types of labels reaches an
F measure of 95.7% for syntactic labels and 79.0%
for semantic labels (Blaheta and Charniak, 2000).

Although functional information is explicitly an-
notated in the PTB, it has not yet been exploited by
any state-of-the-art statistical parser with the notable
exception of the second parsing model of (Collins,
1999). Collins’s second model uses a few func-
tion labels to discriminate between arguments and
adjuncts, and includes parameters to generate sub-
categorisation frames. Subcategorisation frames are
modelled as multisets of arguments that are sisters
of a lexicalised head child. Some major differ-
ences distinguish Collins’s subcategorisation para-
meters from our structural biases. First, lexicalised
head children are not explicitly represented in our
model. Second, we do not discriminate between ar-
guments and adjuncts: we only encode the distinc-
tions between syntactic function labels and seman-
tic ones. As shown in (Merlo, 2003; Merlo and
Esteve-Ferrer, 2004) this difference does not corre-
spond to the difference between arguments and ad-
juncts. Finally, our model does not implement any
distinction between right and left subcategorisation
frames. In Collins’s model, the left and right sub-
categorisation frames are conditionally independent
and arguments occupying a complement position (to
the right of the head) are independent of arguments
occurring in a specifier position (to the left of the
head). In our model, no such independence assump-
tions are stated, because the model is biased towards

phrases related to each other by the c-command re-
lation. Such relation could involve both elements
at the left and at the right of the head. Relations
of functional assignments between subjects and ob-
jects, for example, could be captured.

The most important observation, however, is that
modelling function labels as the interface between
syntax and semantics yields a significant improve-
ment on parsing performance, as can be verified
in the FLABEL-less column of Table 2. This is a
crucial observation in the light of the current ap-
proaches to function or semantic role labelling and
its relation to parsing. An improvement in parsing
performance by better modelling of function labels
indicates that this complex problem is better solved
as a single integrated task and that current two-step
architectures might be missing on successful ways
to improve both the parsing and the labelling task.

In particular, recent models of semantic role la-
belling separate input indicators of the correlation
between the structural position in the tree and the
semantic label, such as path, from those indicators
that encode constraints on the sequence, such as the
previously assigned role (Kwon et al., 2004). In this
way, they can never encode directly the constraining
power of a certain role in a given structural position
onto a following node in its structural position. In
our augmented model, we attempt to capture these
constraints by directly modelling syntactic domains.

Our results confirm the findings in (Palmer et al.,
2005). They take a critical look at some commonly
used features in the semantic role labelling task,
such as the path feature. They suggest that the path
feature is not very effective because it is sparse. Its
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sparseness is due to the occurrence of intermediate
nodes that are not relevant for the syntactic relations
between an argument and its predicate. Our model
of domains is less noisy, because it can focus only on
c-commanding nodes bearing function labels, thus
abstracting away from those nodes that smear the
pertinent relations.

(Yi and Palmer, 2005) share the motivation of our
work, although they apply it to a different task. Like
the current work, they observe that the distributions
of semantic labels could potentially interact with
the distributions of syntactic labels and redefine the
boundaries of constituents, thus yielding trees that
reflect generalisations over both these sources of in-
formation.

Our results also confirm the importance of lexi-
cal information, the lesson drawn from (Thompson
et al., 2004), who find that correctly modelling se-
quence information is not sufficient. Lexical infor-
mation is very important, as it reflects the lexical se-
mantics of the constituents. Both factors, syntactic
domains and lexical information, are needed to sig-
nificantly improve parsing.

5 Conclusions

In this paper, we have explored a new way to im-
prove parsing results in a current statistical parser
while at the same time enriching its output. We
achieve significant improvements in parsing and
function labelling by modelling directly the specific
nature of function labels, as both expressions of
the lexical semantics properties of a constituent and
as syntactic elements whose distribution is subject
to structural locality constraints. Differently from
other approaches, the method we adopt integrates
function labelling directly in the parsing process.
Future work will lie in exploring new ways of cap-
turing syntactic domains, different from the ones at-
tempted in the current paper, such as developing new
derivation moves for nodes bearing function labels.
A more detailed analysis of the parser will also shed
light on its behaviour on sequences of function la-
bels. Finally, we plan to extend this work to learn
Propbank-style semantic role labels, which might re-
quire explicit modelling of long distance dependen-
cies and syntactic movement.
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Abstract

We describe probabilistic models for a
chart generator based on HPSG. Within
the research field of parsing with lex-
icalized grammars such as HPSG, re-
cent developments have achieved efficient
estimation of probabilistic models and
high-speed parsing guided by probabilis-
tic models. The focus of this paper is
to show that two essential techniques –
model estimation on packed parse forests
and beam search during parsing – are suc-
cessfully exported to the task of natural
language generation. Additionally, we re-
port empirical evaluation of the perfor-
mance of several disambiguation models
and how the performance changes accord-
ing to the feature set used in the models
and the size of training data.

1 Introduction

Surface realization is the final stage of natural lan-
guage generation which receives a semantic rep-
resentation and outputs a corresponding sentence
where all words are properly inflected and ordered.
This paper presents log-linear models to address the
ambiguity which arises when HPSG (Head-driven
Phrase Structure Grammar (Pollard and Sag, 1994))
is applied to sentence generation. Usually a single
semantic representation can be realized as several
sentences. For example, consider the following two
sentences generated from the same input.

� The complicated language in the huge new law
has muddied the fight.

� The language in the huge new law complicated
has muddied the fight.

The latter is not an appropriate realization because
“complicated” tends to be wrongly interpreted to
modify “law”. Therefore the generator needs to se-
lect a candidate sentence which is more fluent and
easier to understand than others.

In principle, we need to enumerate all alternative
realizations in order to estimate a log-linear model
for generation. It therefore requires high compu-
tational cost to estimate a probabilistic model for a
wide-coverage grammar because there are consider-
able ambiguities and the alternative realizations are
hard to enumerate explicitly. Moreover, even after
the model has been estimated, to explore all possible
candidates in runtime is also expensive. The same
problems also arise with HPSG parsing, and recent
studies (Tsuruoka et al., 2004; Miyao and Tsujii,
2005; Ninomiya et al., 2005) proposed a number of
solutions including the methods of estimating log-
linear models using packed forests of parse trees and
pruning improbable candidates during parsing.

The aim of this paper is to apply these techniques
to generation. Since parsing and generation both
output the best probable tree under some constraints,
we expect that techniques that work effectively in
parsing are also beneficial for generation. First, we
enabled estimation of log-linear models with less
cost by representing a set of generation trees in a
packed forest. The forest representation was ob-
tained by adopting chart generation (Kay, 1996; Car-
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roll et al., 1999) where ambiguous candidates are
packed into an equivalence class and mapping a
chart into a forest in the same way as parsing. Sec-
ond, we reduced the search space in runtime by
adopting iterative beam search (Tsuruoka and Tsu-
jii, 2004) that efficiently pruned improbable candi-
dates. We evaluated the generator on the Penn Tree-
bank (Marcus et al., 1993), which is highly reliable
corpus consisting of real-world texts.

Through a series of experiments, we compared
the performance of several disambiguation mod-
els following an existing study (Velldal and Oepen,
2005) and examined how the performance changed
according to the size of training data, the feature set,
and the beam width. Comparing the latter half of the
experimental results with those on parsing (Miyao
and Tsujii, 2005), we investigated similarities and
differences between probabilistic models for parsing
and generation. The results indicated that the tech-
niques exported from parsing to generation worked
well while the effects were slightly different in de-
tail.

The Nitrogen system (Langkilde and Knight,
1998; Langkilde, 2000) maps semantic relations to a
packed forest containing all realizations and selects
the best one with a bigram model. Our method ex-
tends their approach in that we can utilize syntactic
features in the disambiguation model in addition to
the bigram.

From the perspective of using a lexicalized gram-
mar developed for parsing and importing pars-
ing techniques, our method is similar to the fol-
lowing approaches. The Fergus system (Banga-
lore and Rambow, 2000) uses LTAG (Lexicalized
Tree Adjoining Grammar (Schabes et al., 1988))
for generating a word lattice containing realizations
and selects the best one using a trigram model.
White and Baldridge (2003) developed a chart gen-
erator for CCG (Combinatory Categorial Gram-
mar (Steedman, 2000)) and proposed several tech-
niques for efficient generation such as best-first
search, beam thresholding and chunking the input
logical forms (White, 2004). Although some of the
techniques look effective, the models to rank can-
didates are still limited to simple language mod-
els. Carroll et al. (1999) developed a chart gen-
erator using HPSG. After the generator outputs all
the sentences the grammar allows, the ranking mod-
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Figure 1: PASs for “He bought the book.”

ule (Velldal and Oepen, 2005) selects the best one
using a log-linear model. Their model is trained us-
ing only 864 sentences where all realizations can be
explicitly enumerated.

As a grammar is extended to support more lin-
guistic phenomena and to achieve higher cover-
age, the number of alternative realizations increases
and the enumeration requires much higher compu-
tational cost. Moreover, using a variety of syntactic
features also increases the cost. By representing a
set of realizations compactly with a packed forest,
we trained the models with rich features on a large
corpus using a wide-coverage grammar.

2 Background

This section describes background of this work in-
cluding the representation of the input to our gener-
ator, the algorithm of chart generation, and proba-
bilistic models for HPSG.

2.1 Predicate-argument structures

The grammar we adopted is the Enju grammar,
which is an English HPSG grammar extracted from
the Penn Treebank by Miyao et al. (2004). In
parsing a sentence with the Enju grammar, seman-
tic relations of words is output included in a parse
tree. The semantic relations are represented by a
set of predicate-argument structures (PASs), which
in turn becomes the input to our generator. Figure
1 shows an example input to our generator which
corresponds to the sentence “He bought the book.”,
which consists of four predicates. REL expresses
the base form of the word corresponding to the pred-
icate. INDEX expresses a semantic variable to iden-
tify each word in the set of relations. ARG1 and
ARG2 express relationships between the predicate
and its arguments, e.g., the circled part in Figure 1
shows “he” is the subject of “buy” in this example.
The other constraints in the parse tree are omitted
in the input for the generator. Since PASs abstract
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away superficial differences, generation from a set
of PASs contains ambiguities in the order of modi-
fiers like the example in Section 1 or the syntactic
categories of phrases. For example, the PASs in Fig-
ure 1 can generate the NP, “the book he bought.”

When processing the input PASs, we split a single
PAS into a set of relations like (1) representing the
first PAS in Figure 1.
���������
	�������������
	�������������������	������ �"!#������$�	

(1)

This representation is very similar to the notion of
HLDS (Hybrid Logic Dependency Semantics) em-
ployed by White and Baldridge (2003), which is
a related notion to MRS (Minimal Recursion Se-
mantics) employed by Carroll et al. (1999). The
most significant difference between our current in-
put representation (not PAS itself) and the other rep-
resentations is that each word corresponds to exactly
one PAS while words like infinitival “to” have no
semantic relations in HLDS. This means that “The
book was bought by him.” is not generated from the
same PASs as Figure 1 because there must be the
PASs for “was” and “by” to generate the sentence.

We currently adopt this constraint for simple im-
plementation, but it is possible to use the input where
PASs for words like “to” are removed. As proposed
and implemented in the previous studies (Carroll
et al., 1999; White and Baldridge, 2003), handling
such inputs is feasible by modification in chart gen-
eration described in the following section. The algo-
rithms proposed in this paper can be integrated with
their algorithms although the implementation is left
for future research.

2.2 Chart generation

Chart generation is similar to chart parsing, but what
an edge covers is the semantic relations associated
with it. We developed a CKY-like generator which
deals with binarized grammars including the Enju.
Figure 2 shows a chart for generating “He bought
the book.” First, lexical edges are assigned to each
PAS. Then the following loop is repeated from %'&!

to the cardinality of the input.
� Apply binary rules to existing edges to generate

new edges holding % PASs.

� Apply unary rules to the new edges generated
in the previous process.

� Store the edges generated in the current loop
into the chart1.

In Figure 2, boxes in the chart represent ( �*)+)�, , which
contain edges covering the same PASs, and solid
arrows represent rule applications. Each edge is
packed into an equivalence class and stored in a cell.
Equivalence classes are identified with their signs
and the semantic relations they cover. Edges with
different strings (e.g., NPs associated with “a big
white dog” and “a white big dog”) can be packed
into the same equivalence class if they have the same
feature structure.

In parsing, each edge must be combined with its
adjacent edges. Since there is no such constraint
in generation, the combinations of edges easily ex-
plodes. We followed two partial solutions to this
problem by Kay (1996).

The one is indexing edges with the semantic vari-
ables (e.g., circled

$
in Figure 2). For example, since

the SUBCAT feature of the edge for “bought the
book” specifies that it requires an NP with an in-
dex

�
, we can find the required edges efficiently by

checking the edges indexed with
�

.
The other is prohibiting proliferation of gram-

matically correct, but unusable sub-phrases. Dur-
ing generating the sentence “Newspaper reports said
that the tall young Polish athlete ran fast”, sub-
phrases with incomplete modifiers such as “the tall
young athlete” or “the young Polish athlete” do not
construct the final output, but slow down the gener-
ation because they can be combined with the rest of
the input to construct grammatically correct phrases
or sentences. Carroll et al. (1999) and White (2004)
proposed different algorithms to address the same
problem. We adopted Kay’s simple solution in the
current ongoing work, but logical form chunking
proposed by White is also applicable to our system.

2.3 Probabilistic models for generation with
HPSG

Some existing studies on probabilistic models for
HPSG parsing (Malouf and van Noord, 2004; Miyao
and Tsujii, 2005) adopted log-linear models (Berger
et al., 1996). Since log-linear models allow us to

1To introduce an edge with no semantic relations as men-
tioned in the previous section, we need to combine the edges
with edges having no relations.
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Figure 2: The chart for “He bought the book.”

use multiple overlapping features without assuming
independence among features, the models are suit-
able for HPSG parsing where feature structures with
complicated constraints are involved and dividing
such constraints into independent features is diffi-
cult. Log-linear models have also been used for
HPSG generation by Velldal and Oepen (2005). In
their method, the probability of a realization � given
a semantic representation

,
is formulated as

��� � ��� , 	 & ���
 �
	��� ����� � � 	�		��������������

���
 � 	 �� � ��� � �"! 	�	

�

where
� � � � 	 is a feature function observed in � ,

 �
is

the weight of
�"�

, and # ��, 	 represents the set of all
possible realizations of

,
. To estimate

 �
, pairs of� � � # ��, 	�	 are needed, where � is the most preferred

realization for
,
. Their method first automatically

generates a paraphrase treebank, where $%� � , � # ��, 	'&
are enumerated. Then, a log-linear model is trained
with this treebank, i.e., each

 �
is estimated so as to

maximize the likelihood of training data. As well
as features used in their previous work on statistical
parsing (Toutanova and Manning, 2002), an addi-
tional feature that represents sentence probabilities

of 4-gram model is incorporated. They showed that
the combined model outperforms the model without
the 4-gram feature.

3 Disambiguation models for chart
generation

3.1 Packed representation of a chart

As mentioned in Section 2.3, to estimate log-linear
models for HPSG generation, we need all alterna-
tive derivation trees ( ��, 	 generated from the input

,
.

However, the size of ( ��,
	 is exponential to the cardi-
nality of

,
and they cannot be enumerated explicitly.

This problem is especially serious in wide-coverage
grammars because such grammars are designed to
cover a wide variety of linguistic phenomena, and
thus produce many realizations. In this section, we
present a method of making the estimation tractable
which is similar to a technique developed for HPSG
parsing.

When estimating log-linear models, we map ( ��, 	
in the chart into a packed representation called a fea-
ture forest, intuitively an “AND-OR” graph. Miyao
and Tsujii (2005) represented a set of HPSG parse
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Figure 3: Feature forest for “He bought the book.”

trees using a feature forest and succeeded in esti-
mating � ��� � � 	 given a sentence � and a parse tree

�
using dynamic programming without unpacking the
chart. If ( ��, 	 is represented in a feature forest in
generation, � ��� � ,
	 can also be estimated in the same
way.

Figure 3 shows a feature forest representing the
chart in Figure 2. Each node corresponds to either
a lexical entry or a tuple of $ ��� � ��� � � � & where

���
,���

and
� �

are respectively the mother edge, the left
daughter, and the right daughter in a single rule ap-
plication. Nodes connected by dotted lines repre-
sent OR-nodes, i.e., equivalence classes in the same
cell. Feature functions are assigned to OR-nodes.
By doing so, we can capture important features for
disambiguation in HPSG, i.e., combinations of a
mother and its daughter(s). Nodes connected by
solid arrows represent AND-nodes corresponding to
the daughters of the parent node. By using feature
forests, we can efficiently pack the node generated
more than once in the set of trees. For example, the
nodes corresponding to “the book” in “He bought
the book.” and “the book he bought” are identical
and described only once in the forest. The merits
of using forest representations in generation instead

of lattices or simple enumeration are discussed thor-
oughly by Langkilde (2000).

3.2 Model variation

We implemented and compared four different dis-
ambiguation models as Velldal and Oepen (2005)
did. Throughout the models, we assigned a score
called figure-of-merit (FOM) on each edge and cal-
culated the FOM of a mother edge by dynamic pro-
gramming. FOM represents the log probability of an
edge which is not normalized.

Baseline model We started with a simple baseline
model, � ��� � , 	 &�� � ��� � �+) � � 	 , where �
	 , is a PAS
in the input semantic representation

,
and

)
is a lexi-

cal entry assigned to � . The FOM of the mother edge� ������	
is computed simply as

� ������	 & � ����� 	�� ��� � 	
. All the other models use this model as a ref-

erence distribution (Miyao and Tsujii, 2005), i.e.,
 �

is estimated to maximize the likelihood of the train-
ing data �� , which is calculated with the following
equation.

�� � ��� � , 	 &��� ��� � �+) � � 	�� ���
 � 	��  ����� ��� 	�	

	�� � ��� �����
���
 � 	��  � ��� ��� ! 	�	
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Bigram model The second model is a log-linear
model with only one feature that corresponds to
bigram probabilities for adjacent word-pairs in the
sentence. We estimated a bigram language model
using a part of the British National Corpus as train-
ing data2. In the chart each edge is identified with
the first and last word in the phrase as well as
its feature structure and covered relations. When
two edges are combined,

� ��� � 	
is computed as� ������	 & � ����� 	  � ��� � 	 �  � � ��� ��� � � � � � � � 	 , where

is the weight of the bigram feature, � � is the
last word of the left daughter, � �

is the first word
of the right daughter, and � � ��� ��� � represents a log
probability of a bigram. Contrary to the method of
Velldal and Oepen (2005) where the input is a set
of sentences and ���
	 � ��� � is computed on a whole
sentence, we computed � � ��� ��� � on each phrase as
Langkilde (2000) did The language model can be
extended to % -gram if each edge holds last % � �
words although the number of edges increase.

Syntax model The third model incorporates a
variety of syntactic features and lexical features
where

� ������	
is computed as

� ����� 	  � ��� � 	 
	 �  � ��� ��� � � ��� � � � 	

. The feature set consists of com-
binations of atomic features shown in Table 1. The
atomic features and their combinations are imported
from the previous work on HPSG parsing (Miyao
and Tsujii, 2005). We defined three types of fea-
ture combinations to capture the characteristics of
binary and unary rule applications and root edges as
described below.

� � � � � �� & � ������� ���������"�����! " � ��$#���%�&+���(') *&+��+,������&������-&+��$#���%�. ���/'! 0. ��+,������. �����-.21
�43 � � �� & $ ������� ���(') ��+,���5� ���6� &

� ��7�7 � & $ �(') '��+,����� ���6� &
An example of extracted features is shown in Fig-

ure 4 where “bought the book” is combined with
its subject “he”. Since the mother edge is a root
edge, two features (

� ��7�7 �
and

� � � � � �8 ) are extracted
from this node. In the

� ��787 �
feature, the phrasal cat-

egory SYM becomes S (sentence), the head word
2The model estimation was done using the CMU-Cambridge

Statistical Language Modeling toolkit (Clarkson and Rosenfeld,
1997).
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Table 1: Atomic features
RULE the name of the applied schema
DIST the distance between the head words of

the daughters
COMMA whether a comma exists between daughters

and/or inside of daughter phrases
SPAN the number of words dominated by the phrase
SYM the symbol of the phrasal category

(e.g., NP, VP)
WORD the surface form of the head word

LE the lexical entry assigned to the head word

WORD becomes “bought”, and its lexical entry LE
becomes that of transitive verbs. In the

� � � � � �� fea-
ture, properties of the left and right daughters are
instantiated in addition to those of the mother edge.

Combined model The fourth and final model is
the combination of the syntax model and the bigram
model. This model is obtained by simply adding the
bigram feature to the syntax model.

4 Iterative beam search

For efficient statistical generation with a wide-
coverage grammar, we reduce the search space by
pruning edges during generation. We use beam
search where edges with low FOMs are pruned dur-
ing generation. We use two parameters, % and 9 :
in each cell, the generator prunes except for top %
edges, and edges whose FOMs are lower than that
of the top edge 9 are also pruned.

Another technique for achieving efficiency is it-
erative generation which is adopted from iterative
CKY parsing (Tsuruoka and Tsujii, 2004). When
beam width is too narrow, correct edges to consti-
tute a correct sentence may be discarded during gen-
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Table 2: Averaged generation time and accuracy by four models

Model Baseline Bigram Syntax Combined
Coverage (%) 91.15 90.15 90.75 90.56
Time (ms) 3512 4085 3821 4315
BLEU � � ���

�����	�
(89 sentences) 0.7776 0.7503 0.8195 0.7359��
 � � ���

����� ��
(179 sentences) 0.5544 0.6323 0.7339 0.7305���
 � � ���

����� ���
(326 sentences) 0.5809 0.6415 0.7735 0.7384����
 � � ���

����� !�
(412 sentences) 0.5863 0.6542 0.7835 0.7533

Total (1,006 sentences) 0.5959 0.6544 0.7733 0.7420

eration and it causes degradation in coverage, i.e.,
the ratio the generator successfully outputs a sen-
tence. The appropriate beam width depends on in-
puts and cannot be predefined. In iterative genera-
tion, the process of chart generation is repeated with
increasing beam width until a complete sentence is
generated or the beam width exceeds the predefined
maximum.

5 Experiments

In this section, we present five experiments: com-
parison among four models described in Section 3.2,
syntax models with different features, different cor-
pus sizes, different beam widths, and the distribution
of generation time. The bigram model was trained
using 100,000 sentences in the BNC. The unigram
and syntax model was trained using Section 02-21 of
the WSJ portion of the Penn Treebank (39,832 sen-
tences). Section 22 (1,700 sentences) and 23 (2,416
sentences) were used as the development and test
data, respectively.

Because the generator is still slow to gener-
ate long sentences, sentences with more than 20
words were not used. We converted the treebank
into HPSG-style derivation trees by the method of
Miyao et al. (2004) and extracted the semantic rela-
tions, which are used as the inputs to the generator.
The sentences where this conversion failed were also
eliminated although such sentences were few (about
0.3% of the eliminated data). The resulting training
data consisted of 18,052 sentences and the test data
consisted of 1,006 sentences. During training, un-
covered sentences – where the lexicon does not in-
clude the lexical entry to construct correct derivation
– were also ignored, while such sentences remained

in the test data. The final training data we can utilize
consisted of 15,444 sentences. The average sentence
length of the test data was 12.4, which happens to be
close to that of Velldal and Oepen (2005) though the
test data is different.

The accuracy of the generator outputs was eval-
uated by the BLEU score (Papineni et al., 2001),
which is commonly used for the evaluation of ma-
chine translation and recently used for the evalua-
tion of generation (Langkilde-Geary, 2002; Velldal
and Oepen, 2005). BLEU is the weighted average of
n-gram precision against the reference sentence. We
used the sentences in the Penn Treebank as the refer-
ence sentences. The beam width was increased from� % � 9 	 & ���������� 	

to
��!� �*����� 	

in two steps. The pa-
rameters were empirically determined using the de-
velopment set. All the experiments were conducted
on AMD Opteron servers with a 2.0-GHz CPU and
12-GB memory.

Table 2 shows the average generation time and the
accuracy of the models presented in Section 3. The
generation time includes time for the input for which
the generator could not output a sentence, while the
accuracy was calculated only in the case of success-
ful generation. All models succeeded in generation
for over 90% of the test data.

Contrary to the result of the Velldal and Oepen
(2005), the syntax model outperformed the com-
bined model. We observed the same result when we
varied the parameters for beam thresholding. This
is possibly just because the language model was not
trained enough as that of the previous research (Vell-
dal and Oepen, 2005) where the model was 4-gram
and trained with the entire BNC3.

3We could not use the entire corpus for training because of
a problem in implementation. This problem will be fixed in the
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Figure 5: Size of training data vs. performance

Table 3: Feature set vs. performance

Feature BLEU diff.
All 0.7734
-COMMA 0.7492 -0.0242
-DIST 0.7702 -0.0032
-LE 0.7423 -0.0311
-RULE 0.7709 -0.0025
-SPAN 0.7640 -0.0094
-SYM 0.7400 -0.0334
-WORD 0.7610 -0.0124
None 0.5959 -0.1775

Although the accuracy shown in Table 2 was
lower than that of Velldal and Oepen, there is lit-
tle point in direct comparison between the accuracy
of the two systems because the settings are consider-
ably different in terms of the grammar, the input rep-
resentation, and the training and test set. The algo-
rithm we proposed does not depend on our specific
setting and can be integrated and evaluated within
their setting. We used larger training data (15,444
sentences) and test data (1,006 sentences), compared
to their treebank of 864 sentences where the log-
linear models were evaluated by cross validation.
This is the advantage of adopting feature forests to
efficiently estimate the log-linear models.

Figure 5 shows the relationship between the size
of training data and the accuracy. All the following
experiments were conducted on the syntax model.
The accuracy seems to saturate around 4000 sen-
tences, which indicates that a small training set is
enough to train the current syntax model and that

future development.

Table 4: % vs. performance

% Coverage (%) Time (ms) BLEU
4 66.10 768 0.7685
8 82.91 3359 0.7654

12 87.89 7191 0.7735
16 89.46 11051 0.7738
20 90.56 15530 0.7723

Table 5: 9 vs. performance9 Coverage (%) Time (ms) BLEU
4.0 78.23 2450 0.7765
6.0 89.56 9083 0.7693
8.0 91.15 19320 0.7697

10.0 89.86 35897 0.7689

we could use an additional feature set to improve
the accuracy. Similar results are reported in pars-
ing (Miyao and Tsujii, 2005) while the accuracy sat-
urated around 16,000 sentences. When we use more
complicated features or train the model with longer
sentences, possibly the size of necessary training
data will increase.

Table 3 shows the performance of syntax mod-
els with different feature sets. Each row represents
a model where one of the atomic features in Table
1 was removed. The “None” row is the baseline
model. The rightmost column represents the differ-
ence of the accuracy from the model trained with
all features. SYM, LE, and COMMA features had a
significant influence on the performance. These re-
sults are different from those in parsing reported by
Miyao and Tsujii (2005) where COMMA and SPAN
especially contributed to the accuracy. This observa-
tion implies that there is still room for improvement
by tuning the combination of features for generation.

We compared the performance of the generator
with different beam widths to investigate the effect
of iterative beam search. Table 4 shows the results
when we varied % , which is the number of edges,
while thresholding by FOM differences is disabled,
and Table 5 shows the results when we varied only9 , which is the FOM difference.

Intuitively, beam search may decrease the accu-
racy because it cannot explore all possible candi-
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Figure 6: Distribution of generation time

dates during generation. Iterative beam search is
more likely to decrease the accuracy than ordinary
beam search. However, the results show that the ac-
curacy did not drastically decrease at small widths.
Moreover, the accuracy of iterative beam search was
almost the same as that of % & !�

. On the other
hand, generation time significantly increased as % or9 increased, indicating that iterative beam search ef-
ficiently discarded unnecessary edges without loos-
ing the accuracy. Although the coverage increases as
the beam width increases, the coverage at % & !� or9 & �����

is lower than that of iterative beam search
(Table 2)4.

Finally, we examined the distribution of genera-
tion time without the limitation of sentence length
in order to investigate the strategy to improve the ef-
ficiency of the generator. Figure 6 is a histogram of
generation time for 500 sentences randomly selected
from the development set, where 418 sentences were
successfully generated and the average BLEU score
was 0.705. The average sentence length was 22.1
and the maximum length was 60, and the aver-
age generation time was 27.9 sec, which was much
longer than that for short sentences. It shows that a
few sentences require extremely long time for gen-
eration although about 70% of the sentences were
generated within 5 sec. Hence, the average time pos-
sibly decreases if we investigate what kind of sen-
tences require especially long time and improve the

4This is because the generator fails when the number of
edges exceeds 10,000. Since the number of edges significantly
increases when � or

�
is large, generation fails even if the cor-

rect edges are in the chart.

algorithm to remove such time-consuming fractions.
The investigation is left for future research.

The closest empirical evaluations on the same task
is that of Langkilde-Geary (2002) which reported
the performance of the HALogen system while the
approach is rather different. Hand-written mapping
rules are used to make a forest containing all can-
didates and the best candidate is selected using the
bigram model. The performance of the generator
was evaluated on Section 23 of the Penn Treebank
in terms of the number of ambiguities, generation
time, coverage, and accuracy. Several types of in-
put specifications were examined in order to mea-
sure how specific the input should be for generat-
ing valid sentences. One of the specifications named
“permute, no dir” is similar to our input in that the
order of modifiers is not determined at all. The gen-
erator produced outputs for 82.7% of the inputs with
average generation time 30.0 sec and BLEU score
0.757. The results of our last experiment are com-
parable to these results though the used section is
different.

6 Conclusion

We presented a chart generator using HPSG and de-
veloped log-linear models which we believe was es-
sential to develop a sentence generator. Several tech-
niques developed for parsing also worked in genera-
tion. The introduced techniques were an estimation
method for log-linear models using a packed for-
est representation of HPSG trees and iterative beam
search. The system was evaluated through applica-
tion to real-world texts. The experimental results
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showed that the generator was able to output a sen-
tence for over 90% of the test data when the data was
limited to short sentences. The accuracy was signif-
icantly improved by incorporating syntactic features
into the log-linear model. As future work we intend
to tune the feature set for generation. We also plan
to further increase the efficiency of the generator so
as to generate longer sentences.
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Abstract

We investigated the performance efficacy
of beam search parsing and deep parsing
techniques in probabilistic HPSG parsing
using the Penn treebank. We first tested
the beam thresholding and iterative pars-
ing developed for PCFG parsing with an
HPSG. Next, we tested three techniques
originally developed for deep parsing: quick
check, large constituent inhibition, and hy-
brid parsing with a CFG chunk parser. The
contributions of the large constituent inhi-
bition and global thresholding were not sig-
nificant, while the quick check and chunk
parser greatly contributed to total parsing
performance. The precision, recall and av-
erage parsing time for the Penn treebank
(Section 23) were 87.85%, 86.85%, and 360
ms, respectively.

1 Introduction

We investigated the performance efficacy of beam
search parsing and deep parsing techniques in
probabilistic head-driven phrase structure grammar
(HPSG) parsing for the Penn treebank. We first
applied beam thresholding techniques developed for
CFG parsing to HPSG parsing, including local
thresholding, global thresholding (Goodman, 1997),
and iterative parsing (Tsuruoka and Tsujii, 2005b).

Next, we applied parsing techniques developed for
deep parsing, including quick check (Malouf et al.,
2000), large constituent inhibition (Kaplan et al.,
2004) and hybrid parsing with a CFG chunk parser
(Daum et al., 2003; Frank et al., 2003; Frank, 2004).
The experiments showed how each technique con-
tributes to the final output of parsing in terms of
precision, recall, and speed for the Penn treebank.

Unification-based grammars have been extensively
studied in terms of linguistic formulation and com-
putation efficiency. Although they provide precise
linguistic structures of sentences, their processing is
considered expensive because of the detailed descrip-
tions. Since efficiency is of particular concern in prac-
tical applications, a number of studies have focused
on improving the parsing efficiency of unification-
based grammars (Oepen et al., 2002). Although sig-
nificant improvements in efficiency have been made,
parsing speed is still not high enough for practical
applications.

The recent introduction of probabilistic models of
wide-coverage unification-based grammars (Malouf
and van Noord, 2004; Kaplan et al., 2004; Miyao
and Tsujii, 2005) has opened up the novel possibil-
ity of increasing parsing speed by guiding the search
path using probabilities. That is, since we often re-
quire only the most probable parse result, we can
compute partial parse results that are likely to con-
tribute to the final parse result. This approach has
been extensively studied in the field of probabilistic
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CFG (PCFG) parsing, such as Viterbi parsing and
beam thresholding.

While many methods of probabilistic parsing for
unification-based grammars have been developed,
their strategy is to first perform exhaustive pars-
ing without using probabilities and then select the
highest probability parse. The behavior of their al-
gorithms is like that of the Viterbi algorithm for
PCFG parsing, so the correct parse with the high-
est probability is guaranteed. The interesting point
of this approach is that, once the exhaustive pars-
ing is completed, the probabilities of non-local de-
pendencies, which cannot be computed during pars-
ing, are computed after making a packed parse for-
est. Probabilistic models where probabilities are as-
signed to the CFG backbone of the unification-based
grammar have been developed (Kasper et al., 1996;
Briscoe and Carroll, 1993; Kiefer et al., 2002), and
the most probable parse is found by PCFG parsing.
This model is based on PCFG and not probabilis-
tic unification-based grammar parsing. Geman and
Johnson (Geman and Johnson, 2002) proposed a dy-
namic programming algorithm for finding the most
probable parse in a packed parse forest generated by
unification-based grammars without expanding the
forest. However, the efficiency of this algorithm is
inherently limited by the inefficiency of exhaustive
parsing.

In this paper we describe the performance of beam
thresholding, including iterative parsing, in proba-
bilistic HPSG parsing for a large-scale corpora, the
Penn treebank. We show how techniques developed
for efficient deep parsing can improve the efficiency
of probabilistic parsing. These techniques were eval-
uated in experiments on the Penn Treebank (Marcus
et al., 1994) with the wide-coverage HPSG parser de-
veloped by Miyao et al. (Miyao et al., 2005; Miyao
and Tsujii, 2005).

2 HPSG and probabilistic models

HPSG (Pollard and Sag, 1994) is a syntactic theory
based on lexicalized grammar formalism. In HPSG,
a small number of schemata describe general con-
struction rules, and a large number of lexical en-
tries express word-specific characteristics. The struc-
tures of sentences are explained using combinations
of schemata and lexical entries. Both schemata and
lexical entries are represented by typed feature struc-
tures, and constraints represented by feature struc-
tures are checked with unification.

Figure 1 shows an example of HPSG parsing of
the sentence “Spring has come.” First, each of the
lexical entries for “has” and “come” is unified with a
daughter feature structure of the Head-Complement

Spring

HEAD  noun
SUBJ  < >
COMPS  < > 2

HEAD  verb
SUBJ  <    >
COMPS  <    >

1

has

HEAD  verb
SUBJ  <    >
COMPS  < >

1

come

2

head-comp

HEAD  verb

SUBJ  < >

COMPS  < >

HEAD  noun
SUBJ  < >
COMPS  < >

1

=⇒

Spring

HEAD  noun
SUBJ  < >
COMPS  < > 2

HEAD  verb
SUBJ  <    >
COMPS  <    >

1

has

HEAD  verb
SUBJ  <    >
COMPS  < >

1

come

2

HEAD  verb
SUBJ  <    >
COMPS  < >

1

HEAD  verb
SUBJ  < >
COMPS  < >

1

subject-head

head-comp

Figure 1: HPSG parsing

Schema. Unification provides the phrasal sign of
the mother. The sign of the larger constituent is
obtained by repeatedly applying schemata to lexi-
cal/phrasal signs. Finally, the parse result is output
as a phrasal sign that dominates the sentence.

Given set W of words and set F of feature struc-
tures, an HPSG is formulated as a tuple, G = 〈L,R〉,
where

L = {l = 〈w,F 〉|w ∈ W, F ∈ F} is a set of lexical
entries, and

R is a set of schemata, i.e., r ∈ R is a partial
function: F × F → F .

Given a sentence, an HPSG computes a set of phrasal
signs, i.e., feature structures, as a result of parsing.

Previous studies (Abney, 1997; Johnson et al.,
1999; Riezler et al., 2000; Miyao et al., 2003; Mal-
ouf and van Noord, 2004; Kaplan et al., 2004; Miyao
and Tsujii, 2005) defined a probabilistic model of
unification-based grammars as a log-linear model or
maximum entropy model (Berger et al., 1996). The
probability of parse result T assigned to given sen-
tence w = 〈w1, . . . , wn〉 is

p(T |w) =
1

Zw

exp

(

∑

i

λifi(T )

)

Zw =
∑

T ′

exp

(

∑

i

λifi(T
′)

)

,

where λi is a model parameter, and fi is a feature
function that represents a characteristic of parse tree
T . Intuitively, the probability is defined as the nor-
malized product of the weights exp(λi) when a char-
acteristic corresponding to fi appears in parse result
T . Model parameters λi are estimated using numer-
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ical optimization methods (Malouf, 2002) so as to
maximize the log-likelihood of the training data.

However, the above model cannot be easily esti-
mated because the estimation requires the computa-
tion of p(T |w) for all parse candidates assigned to
sentence w. Because the number of parse candidates
is exponentially related to the length of the sentence,
the estimation is intractable for long sentences.

To make the model estimation tractable, Ge-
man and Johnson (Geman and Johnson, 2002) and
Miyao and Tsujii (Miyao and Tsujii, 2002) proposed
a dynamic programming algorithm for estimating
p(T |w). They assumed that features are functions
on nodes in a packed parse forest. That is, parse tree
T is represented by a set of nodes, i.e., T = {c}, and
the parse forest is represented by an and/or graph
of the nodes. From this assumption, we can redefine
the probability as

p(T |w) =
1

Zw

exp

(

∑

c∈T

∑

i

λifi(c)

)

Zw =
∑

T ′

exp

(

∑

c∈T ′

∑

i

λifi(c)

)

.

A packed parse forest has a structure similar to a
chart of CFG parsing, and c corresponds to an edge
in the chart. This assumption corresponds to the
independence assumption in PCFG; that is, only
a nonterminal symbol of a mother is considered in
further processing by ignoring the structure of its
daughters. With this assumption, we can compute
the figures of merit (FOMs) of partial parse results.

This assumption restricts the possibility of feature
functions that represent non-local dependencies ex-
pressed in a parse result. Since unification-based
grammars can express semantic relations, such as
predicate-argument relations, in their structure, the
assumption unjustifiably restricts the flexibility of
probabilistic modeling. However, previous research
(Miyao et al., 2003; Clark and Curran, 2004; Kaplan
et al., 2004) showed that predicate-argument rela-
tions can be represented under the assumption of
feature locality. We thus assumed the locality of fea-
ture functions and exploited it for the efficient search
of probable parse results.

3 Techniques for efficient deep

parsing

Many of the techniques for improving the parsing
efficiency of deep linguistic analysis have been de-
veloped in the framework of lexicalized grammars
such as lexical functional grammar (LFG) (Bresnan,

1982), lexicalized tree adjoining grammar (LTAG)
(Shabes et al., 1988), HPSG (Pollard and Sag, 1994)
or combinatory categorial grammar (CCG) (Steed-
man, 2000). Most of them were developed for ex-
haustive parsing, i.e., producing all parse results that
are given by the grammar (Matsumoto et al., 1983;
Maxwell and Kaplan, 1993; van Noord, 1997; Kiefer
et al., 1999; Malouf et al., 2000; Torisawa et al., 2000;
Oepen et al., 2002; Penn and Munteanu, 2003). The
strategy of exhaustive parsing has been widely used
in grammar development and in parameter training
for probabilistic models.

We tested three of these techniques.

Quick check Quick check filters out non-unifiable
feature structures (Malouf et al., 2000). Sup-
pose we have two non-unifiable feature struc-
tures. They are destructively unified by travers-
ing and modifying them, and then finally they
are found to be not unifiable in the middle of the
unification process. Quick check quickly judges
their unifiability by peeping the values of the
given paths. If one of the path values is not
unifiable, the two feature structures cannot be
unified because of the necessary condition of uni-
fication. In our implementation of quick check,
each edge had two types of arrays. One con-
tained the path values of the edge’s sign; we
call this the sign array. The other contained the
path values of the right daughter of a schema
such that its left daughter is unified with the
edge’s sign; we call this a schema array. When
we apply a schema to two edges, e1 and e2, the
schema array of e1 and the sign array of e2 are
quickly checked. If it fails, then quick check re-
turns a unification failure. If it succeeds, the
signs are unified with the schemata, and the re-
sult of unification is returned.

Large constituent inhibition (Kaplan et al.,
2004) It is unlikely for a large medial edge to
contribute to the final parsing result if it spans
more than 20 words and is not adjacent to the
beginning or ending of the sentence. Large
constituent inhibition prevents the parser from
generating medial edges that span more than
some word length.

HPSG parsing with a CFG chunk parser A
hybrid of deep parsing and shallow parsing
was recently found to improve the efficiency
of deep parsing (Daum et al., 2003; Frank et
al., 2003; Frank, 2004). As a preprocessor, the
shallow parsing must be very fast and achieve
high precision but not high recall so that the

105



procedure Viterbi(〈w1, . . . , wn〉, 〈L
′, R〉, κ, δ, θ)

for i = 1 to n
foreach Fu ∈ {F |〈wi, F 〉 ∈ L}

α =
∑

i
λifi(Fu)

π[i− 1, i]← π[i− 1, i] ∪ {Fu}
if (α > ρ[i− 1, i, Fu]) then

ρ[i− 1, i, Fu]← α
for d = 1 to n

for i = 0 to n− d
j = i + d
for k = i + 1 to j − 1

foreach Fs ∈ π[i, k], Ft ∈ π[k, j], r ∈ R
if F = r(Fs, Ft) has succeeded

α = ρ[i, k, Fs] + ρ[k, j, Ft] +
∑

i
λifi(F )

π[i, j]← π[i, j] ∪ {F}
if (α > ρ[i, j, F ]) then

ρ[i, j, F ]← α

Figure 2: Pseudo-code of Viterbi algorithms for probabilistic HPSG parsing

total parsing performance in terms of precision,
recall and speed is not degraded. Because there
is trade-off between speed and accuracy in
this approach, the total parsing performance
for large-scale corpora like the Penn treebank
should be measured. We introduce a CFG
chunk parser (Tsuruoka and Tsujii, 2005a) as a
preprocessor of HPSG parsing. Chunk parsers
meet the requirements for preprocessors; they
are very fast and have high precision. The
grammar for the chunk parser is automatically
extracted from the CFG treebank translated
from the HPSG treebank, which is generated
during grammar extraction from the Penn
treebank. The principal idea of using the chunk
parser is to use the bracket information, i.e.,
parse trees without non-terminal symbols, and
prevent the HPSG parser from generating edges
that cross brackets.

4 Beam thresholding for HPSG

parsing

4.1 Simple beam thresholding

Many algorithms for improving the efficiency of
PCFG parsing have been extensively investigated.
They include grammar compilation (Tomita, 1986;
Nederhof, 2000), the Viterbi algorithm, controlling
search strategies without FOM such as left-corner
parsing (Rosenkrantz and Lewis II, 1970) or head-
corner parsing (Kay, 1989; van Noord, 1997), and
with FOM such as the beam search, the best-first
search or A* search (Chitrao and Grishman, 1990;
Caraballo and Charniak, 1998; Collins, 1999; Rat-
naparkhi, 1999; Charniak, 2000; Roark, 2001; Klein

and Manning, 2003). The beam search and best-
first search algorithms significantly reduce the time
required for finding the best parse at the cost of los-
ing the guarantee of finding the correct parse.

The CYK algorithm, which is essentially a bottom-
up parser, is a natural choice for non-probabilistic
HPSG parsers. Many of the constraints are ex-
pressed as lexical entries in HPSG, and bottom-up
parsers can use those constraints to reduce the search
space in the early stages of parsing.

For PCFG, extending the CYK algorithm to out-
put the Viterbi parse is straightforward (Ney, 1991;
Jurafsky and Martin, 2000). The parser can effi-
ciently calculate the Viterbi parse by taking the max-
imum of the probabilities of the same nonterminal
symbol in each cell. With the probabilistic model
defined in Section 2, we can also define the Viterbi
search for unification-based grammars (Geman and
Johnson, 2002). Figure 2 shows the pseudo-code of
Viterbi algorithm. The π[i, j] represents the set of
partial parse results that cover words wi+1, . . . , wj ,
and ρ[i, j, F ] stores the maximum FOM of partial
parse result F at cell (i, j). Feature functions are
defined over lexical entries and results of rule appli-
cations, which correspond to conjunctive nodes in a
feature forest. The FOM of a newly created partial
parse, F , is computed by summing the values of ρ of
the daughters and an additional FOM of F .

The Viterbi algorithm enables various pruning
techniques to be used for efficient parsing. Beam
thresholding (Goodman, 1997) is a simple and effec-
tive technique for pruning edges during parsing. In
each cell of the chart, the method keeps only a por-
tion of the edges which have higher FOMs compared
to the other edges in the same cell.
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procedure BeamThresholding(〈w1, . . . , wn〉, 〈L
′, R〉, κ, δ, θ)

for i = 1 to n
foreach Fu ∈ {F |〈wi, F 〉 ∈ L}

α =
∑

i
λifi(Fu)

π[i− 1, i]← π[i− 1, i] ∪ {Fu}
if (α > ρ[i− 1, i, Fu]) then

ρ[i− 1, i, Fu]← α
for d = 1 to n

for i = 0 to n− d
j = i + d
for k = i + 1 to j − 1

foreach Fs ∈ π[i, k], Ft ∈ π[k, j], r ∈ R
if F = r(Fs, Ft) has succeeded

α = ρ[i, k, Fs] + ρ[k, j, Ft] +
∑

i
λifi(F )

π[i, j]← π[i, j] ∪ {F}
if (α > ρ[i, j, F ]) then

ρ[i, j, F ]← α
LocalThresholding(κ, δ)

GlobalThresholding(n, θ)

procedure LocalThresholding(κ, δ)
sort π[i, j] according to ρ[i, j, F ]
π[i, j]← {π[i, j]1, . . . , π[i, j]κ}
αmax = maxF ρ[i, j, F ]
foreach F ∈ π[i, j]

if ρ[i, j, F ] < αmax − δ
π[i, j]← π[i, j]\{F}

procedure GlobalThresholding(n, θ)
f [0..n]← {0,−∞ −∞, . . . ,−∞}
b[0..n]← {−∞,−∞, . . . ,−∞, 0}
#forward
for i = 0 to n− 1

for j = i + 1 to n
foreach F ∈ π[i, j]

f [j]← max(f [j], f [i] + ρ[i, j, F ])
#backward
for i = n− 1 to 0

for j = i + 1 to n
foreach F ∈ π[i, j]

b[i]← max(b[i], b[j] + ρ[i, j, F ])
#global thresholding
αmax = f [n]
for i = 0 to n− 1

for j = i + 1 to n
foreach F ∈ π[i, j]

if f [i] + ρ[i, j, F ] + b[j] < αmax − θ then
π[i, j]← π[i, j]\{F}

Figure 3: Pseudo-code of local beam search and global beam search algorithms for probabilistic HPSG
parsing
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procedure IterativeBeamThresholding(w, G, κ0, δ0, θ0, ∆κ, ∆δ, ∆θ, κlast, δlast, θlast)
κ← κ0; δ ← δ0; θ ← θ0

loop while κ ≤ κlast and δ ≤ δlast and θ ≤ θlast
call BeamThresholding(w, G, κ, δ, θ)
if π[1, n] 6= ∅ then exit
κ← κ + ∆κ; δ ← δ + ∆δ; θ ← θ + ∆θ

Figure 4: Pseudo-code of iterative beam thresholding

We tested three selection schemes for deciding
which edges to keep in each cell.

Local thresholding by number of edges Each
cell keeps the top κ edges based on their FOMs.

Local thresholding by beam width Each cell
keeps the edges whose FOM is greater than
αmax − δ, where αmax is the highest FOM
among the edges in the cell.

Global thresholding by beam width Each cell
keeps the edges whose global FOM is greater
than αmax−θ, where αmax is the highest global
FOM in the chart.

Figure 3 shows the pseudo-code of local beam
search, and global beam search algorithms for prob-
abilistic HPSG parsing. The code for local thresh-
olding is inserted at the end of the computation for
each cell. In Figure 3, π[i, j]k denotes the k-th ele-
ment in sorted set π[i, j]. We first take the first κ

elements that have higher FOMs and then remove
the elements with FOMs lower than αmax − δ.

Global thresholding is also used for pruning edges,
and was originally proposed for CFG parsing (Good-
man, 1997). It prunes edges based on their global
FOM and the best global FOM in the chart. The
global FOM of an edge is defined as its FOM plus its
forward and backward FOMs, where the forward and
backward FOMs are rough estimations of the outside
FOM of the edge. The global thresholding is per-
formed immediately after each line of the CYK chart
is completed. The forward FOM is calculated first,
and then the backward FOM is calculated. Finally,
all edges with a global FOM lower than αmax − θ

are pruned. Figure 3 gives further details of the al-
gorithm.

4.2 Iterative beam thresholding

We tested the iterative beam thresholding proposed
by Tsuruoka and Tsujii (2005b). We started the
parsing with a narrow beam. If the parser output
results, they were taken as the final parse results. If
the parser did not output any results, we widened the

Table 1: Abbreviations used in experimental results

num local beam thresholding by number
width local beam thresholding by width
global global beam thresholding by width
iterative iterative parsing with local beam

thresholding by number and width
chp parsing with CFG chunk parser

beam, and reran the parsing. We continued widen-
ing the beam until the parser output results or the
beam width reached some limit.

The pseudo-code is presented in Figure 4. It calls
the beam thresholding procedure shown in Figure 3
and increases parameters κ and δ until the parser
outputs results, i.e., π[1, n] 6= ∅.

Preserved iterative parsing Our implemented
CFG parser with iterative parsing cleared the
chart and edges at every iteration although the
parser regenerated the same edges using those
generated in the previous iteration. This is
because the computational cost of regenerating
edges is smaller than that of reusing edges to
which the rules have already been applied. For
HPSG parsing, the regenerating cost is even
greater than that for CFG parsing. In our
implementation of HPSG parsing, the chart
and edges were not cleared during the iterative
parsing. Instead, the pruned edges were marked
as thresholded ones. The parser counted the
number of iterations, and when edges were
generated, they were marked with the iteration
number, which we call the generation. If
edges were thresholded out, the generation was
replaced with the current iteration number plus
1. Suppose we have two edges, e1 and e2. The
grammar rules are applied iff both e1 and e2 are
not thresholded out, and the generation of e1

or e2 is equal to the current iteration number.
Figure 5 shows the pseudo-code of preserved
iterative parsing.
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procedure BeamThresholding(〈w1, . . . , wn〉, 〈L
′, R〉, κ, δ, θ, iternum)

for i = 1 to n
foreach Fu ∈ {F |〈wi, F 〉 ∈ L}

α =
∑

i
λifi(Fu)

π[i− 1, i]← π[i− 1, i] ∪ {Fu}
if (α > ρ[i− 1, i, Fu]) then

ρ[i− 1, i, Fu]← α
for d = 1 to n

for i = 0 to n− d
j = i + d
for k = i + 1 to j − 1

foreach Fs ∈ φ[i, k], Ft ∈ φ[k, j], r ∈ R
if gen[i, k, Fs] = iternum ∨ gen[k, j, Ft] = iternum

if F = r(Fs, Ft) has succeeded
gen[i, j, F ]← iternum
α = ρ[i, k, Fs] + ρ[k, j, Ft] +

∑

i
λifi(F )

π[i, j]← π[i, j] ∪ {F}
if (α > ρ[i, j, F ]) then

ρ[i, j, F ]← α
LocalThresholding(κ, δ, iternum)

GlobalThresholding(n, θ, iternum)

procedure LocalThresholding(κ, δ, iternum)
sort π[i, j] according to ρ[i, j, F ]
φ[i, j]← {π[i, j]1, . . . , π[i, j]κ}
αmax = maxF ρ[i, j, F ]
foreach F ∈ φ[i, j]

if ρ[i, j, F ] < αmax − δ
φ[i, j]← φ[i, j]\{F}

foreach F ∈ (π[i, j]− φ[i, j])
gen[i, j, F ]← iternum + 1

procedure GlobalThresholding(n, θ, iternum)
f [0..n]← {0,−∞ −∞, . . . ,−∞}
b[0..n]← {−∞,−∞, . . . ,−∞, 0}
#forward
for i = 0 to n− 1

for j = i + 1 to n
foreach F ∈ π[i, j]

f [j]← max(f [j], f [i] + ρ[i, j, F ])
#backward
for i = n− 1 to 0

for j = i + 1 to n
foreach F ∈ π[i, j]

b[i]← max(b[i], b[j] + ρ[i, j, F ])
#global thresholding
αmax = f [n]
for i = 0 to n− 1

for j = i + 1 to n
foreach F ∈ φ[i, j]

if f [i] + ρ[i, j, F ] + b[j] < αmax − θ then
φ[i, j]← φ[i, j]\{F}

foreach F ∈ (π[i, j]− φ[i, j])
gen[i, j, F ]← iternum + 1

procedure IterativeBeamThresholding(w, G, κ0, δ0, θ0, ∆κ, ∆δ, ∆θ, κlast, δlast, θlast)
κ← κ0; δ ← δ0; θ ← θ0; iternum = 0
loop while κ ≤ κlast and δ ≤ δlast and θ ≤ θlast

call BeamThresholding(w, G, κ, δ, θ, iternum)
if π[1, n] 6= ∅ then exit
κ← κ + ∆κ; δ ← δ + ∆δ; θ ← θ + ∆θ; iternum← iternum + 1

Figure 5: Pseudo-code of preserved iterative parsing for HPSG
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Table 2: Experimental results for development set (section 22) and test set (section 23)

Precision Recall F-score Avg. Time (ms) No. of failed sentences
development set 88.21% 87.32% 87.76% 360 12
test set 87.85% 86.85% 87.35% 360 15
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Figure 7: Parsing time for the sentences in Section 24 of less than 15 words of Viterbi parsing (none) (Left)
and iterative parsing (iterative) (Right)
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Figure 6: Parsing time versus sentence length for the
sentences in Section 23 of less than 40 words

5 Evaluation

We evaluated the efficiency of the parsing techniques
by using the HPSG for English developed by Miyao
et al. (2005). The lexicon of the grammar was ex-
tracted from Sections 02-21 of the Penn Treebank
(Marcus et al., 1994) (39,832 sentences). The gram-
mar consisted of 2,284 lexical entry templates for
10,536 words1. The probabilistic disambiguation
model of the grammar was trained using the same
portion of the treebank (Miyao and Tsujii, 2005).

1Lexical entry templates for POS are also developed.
They are assigned to unknown words.

The model included 529,856 features. The param-
eters for beam searching were determined manually
by trial and error using Section 22; δ0 = 12,∆δ =
6, δlast = 30, κ0 = 6.0,∆κ = 3.0, κlast = 15.1,
θ0 = 8.0,∆θ = 4.0, and θlast = 20.1. We used
the chunk parser developed by Tsuruoka and Tsu-
jii (2005a). Table 1 shows the abbreviations used in
presenting the results.

We measured the accuracy of the predicate-
argument relations output by the parser. A
predicate-argument relation is defined as a tuple
〈σ,wh, a, wa〉, where σ is the predicate type (e.g., ad-
jective, intransitive verb), wh is the head word of the
predicate, a is the argument label (MODARG, ARG1,

..., ARG4), and wa is the head word of the argu-
ment. Precision/recall is the ratio of tuples correctly
identified by the parser. This evaluation scheme was
the same as used in previous evaluations of lexical-
ized grammars (Hockenmaier, 2003; Clark and Cur-
ran, 2004; Miyao and Tsujii, 2005). The experiments
were conducted on an AMD Opteron server with a
2.4-GHz CPU. Section 22 of the Treebank was used
as the development set, and performance was evalu-
ated using sentences of less than 40 words in Section
23 (2,164 sentences, 20.3 words/sentence). The per-
formance of each parsing technique was analyzed us-
ing the sentences in Section 24 of less than 15 words
(305 sentences) and less than 40 words (1145 sen-
tences).

Table 2 shows the parsing performance using all
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Figure 8: F-score versus average parsing time
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Figure 9: F-score versus average parsing time with/without chunk parser
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Table 3: Viterbi parsing versus beam thresholding versus iterative parsing

Precision Recall F-score Avg. Time (ms) No. of failed sentences
viterbi parsing (none) 88.22% 87.94% 88.08% 103923 2
beam search parsing (num+width) 88.96% 82.38% 85.54% 88 26
iterative parsing (iterative) 87.61% 87.24% 87.42% 99 2

Table 4: Contribution to performance of each implementation

Precision Recall F-score Avg. Time (ms) diff(*) No. of failed sentences
full 85.49% 84.21% 84.84% 407 0 13
full−piter 85.74% 84.70% 85.22% 631 224 10
full−qc 85.49% 84.21% 84.84% 562 155 13
full−chp 85.77% 84.76% 85.26% 510 103 10
full−global 85.23% 84.32% 84.78% 434 27 9
full−lci 85.68% 84.40% 85.03% 424 17 13
full−piter−qc−chp−global−lci 85.33% 84.71% 85.02% 1033 626 6

full ... iterative + global + chp
piter ... preserved iterative parsing
qc ... quick check
lci ... large constituent inhibition
diff(*) ... (Avg. Time of full) - (Avg. Time)

thresholding techniques and implementations de-
scribed in Section 4 for the sentences in the devel-
opment set (Section 22) and the test set (Section 23)
of less than 40 words. In the table, precision, recall,
average parsing time per sentence, and the number of
sentences that the parser failed to parse are detailed.
Figure 6 shows the distribution of parsing time for
the sentence length.

Table 3 shows the performance of the Viterbi pars-
ing, beam search parsing, and iterative parsing for
the sentences in Section 24 of less than 15 words
2. The parsing without beam searching took more
than 1,000 times longer than with beam searching.
However, the beam searching reduced the recall from
87.9% to 82.4%. The main reason for this reduc-
tion was parsing failure. That is, the parser could
not output any results when the beam was too nar-
row instead of producing incorrect parse results. Al-
though iterative parsing was originally developed for
efficiency, the results revealed that it also increases
the recall. This is because the parser continues try-
ing until some results are output. Figure 7 shows the
logarithmic graph of parsing time for the sentence
length. The left side of the figure shows the parsing
time of the Viterbi parsing and the right side shows
the parsing time of the iterative parsing.

Figure 8 shows the performance of the parsing
techniques for different parameters for the sentences
in Section 24 of less than 40 words. The combina-
tions of thresholding techniques achieved better re-

2The sentence length was limited to 15 words because
of inefficiency of Viterbi parsing

sults than the single techniques. Local thresholding
using the width (width) performed better than that
using the number (num). The combination of us-
ing width and number (num+width) performed bet-
ter than single local and single global thresholding.
The superiority of iterative parsing (iterative) was
again demonstrated in this experiment. Although we
did not observe significant improvement with global
thresholding, the global plus iterative combination
slightly improved performance.

Figure 9 shows the performance with and with-
out the chunk parser. The lines with white symbols
represent parsing without the chunk parser, and the
lines with black symbols represent parsing with the
chunk parser. The chunk parser improved the to-
tal parsing performance significantly. The improve-
ments with global thresholding were less with the
chunk parser.

Finally, Table 4 shows the contribution to perfor-
mance of each implementation for the sentences in
Section 24 of less than 40 words. The ‘full’ means
the parser including all thresholding techniques and
implementations described in Section 4. The ‘full
− x’ means the full minus x. The preserved itera-
tive parsing, the quick check, and the chunk parser
greatly contributed to the final parsing speed, while
the global thresholding and large constituent inhibi-
tion did not.

6 Conclusion

We have described the results of experiments with a
number of existing techniques in head-driven phrase
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structure grammar (HPSG) parsing. Simple beam
thresholding, similar to that for probabilistic CFG
(PCFG) parsing, significantly increased the parsing
speed over Viterbi algorithm, but reduced the re-
call because of parsing failure. Iterative parsing sig-
nificantly increased the parsing speed without de-
grading precision or recall. We tested three tech-
niques originally developed for deep parsing: quick
check, large constituent inhibition, and HPSG pars-
ing with a CFG chunk parser. The contributions
of the large constituent inhibition and global thresh-
olding were not significant, while the quick check and
chunk parser greatly contributed to total parsing per-
formance. The precision, recall and average parsing
time for the Penn treebank (Section 23) were 87.85%,
86.85%, and 360 ms, respectively.
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Abstract

Although state-of-the-artparsers for nat-
ural language are lexicalized, it was re-
cently shown that anaccurateunlexical-
ized parser for the Penn tree-bank can be
simply read off a manually refined tree-
bank. Whilelexicalizedparsers often suf-
fer from sparse data,manual mark-upis
costly and largely based on individual lin-
guistic intuition. Thus, across domains,
languages, and tree-bank annotations, a
fundamental question arises: Is it possible
to automaticallyinduce anaccurateparser
from a tree-bank without resorting to full
lexicalization? In this paper, we show how
to induce head-driven probabilistic parsers
with latent heads from a tree-bank. Our
automatically trained parser has a perfor-
mance of 85.7% (LP/LR F1), which is al-
ready better than that of earlylexicalized
ones.

1 Introduction

State-of-the-art statistical parsers for natural lan-
guage are based on probabilistic grammars acquired
from transformed tree-banks. The method of trans-
forming the tree-bank is of major influence on the
accuracy and coverage of the statistical parser. The
most important tree-bank transformation in the lit-
erature is lexicalization: Each node in a tree is la-
beled with its head word, the most important word of
the constituent under the node (Magerman (1995),
Collins (1996), Charniak (1997), Collins (1997),
Carroll and Rooth (1998), etc.). It turns out, how-
ever, that lexicalization is not unproblematic: First,

there is evidence that full lexicalization does not
carry over across different tree-banks for other lan-
guages, annotations or domains (Dubey and Keller,
2003). Second, full lexicalization leads to a serious
sparse-data problem, which can only be solved by
sophisticated smoothing and pruning techniques.

Recently, Klein and Manning (2003) showed that
a carefully performed linguistic mark-up of the tree-
bank leads to almost the same performance results as
lexicalization. This result is attractive since unlexi-
calized grammars are easy to estimate, easy to parse
with, and time- and space-efficient: Klein and Man-
ning (2003) do not smooth grammar-rule probabil-
ities, except unknown-word probabilities, and they
do not prune since they are able to determine the
most probable parse of eachfull parse forest. Both
facts are noteworthy in the context of statistical pars-
ing with a tree-bank grammar. A drawback of their
method is, however, that manual linguistic mark-up
is not based on abstract rules but rather on individual
linguistic intuition, which makes it difficult to repeat
their experiment and to generalize their findings to
languages other than English.

Is it possible to automatically acquire a more re-
fined probabilistic grammar from a given tree-bank
without resorting to full lexicalization? We present
a novel method that is able to induce a parser that
is located between two extremes: a fully-lexicalized
parser on one sideversusan accurate unlexicalized
parser based on a manually refined tree-bank on the
other side.

In short, our method is based on the same lin-
guistic principles of headedness as other methods:
We do believe that lexical information represents
an important knowledge source. To circumvent
data sparseness resulting from full lexicalization
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with words, we simply follow the suggestion of
various advanced linguistic theories, e.g. Lexical-
Functional Grammar (Bresnan and Kaplan, 1982),
where more complex categories based on feature
combinations represent the lexical effect. We com-
plement this by a learning paradigm: lexical entries
carry latent information to be used as head informa-
tion, and this head information is induced from the
tree-bank.

In this paper, we study two different latent-head
models, as well as two different estimation meth-
ods: The first model is built around completely hid-
den heads, whereas the second one uses relatively
fine-grained combinations of Part-Of-Speech (POS)
tags with hidden extra-information; The first esti-
mation method selects a head-driven probabilistic
context-free grammar (PCFG) by exploiting latent-
head distributions for each node in the tree-bank,
whereas the second one is more traditional, reading
off the grammar from the tree-bank annotated with
the most probable latent heads only. In other words,
both models and estimation methods differ in the de-
gree of information incorporated into them as prior
knowledge. In general, it can be expected that the
better (sharper or richer, or more accurate) the in-
formation is, the better the induced grammar will
be. Our empirical results, however, are surprising:
First, estimation with latent-head distributions out-
performs estimation with most-probable-head anno-
tation. Second, modeling with completely hidden
heads is almost as good as modeling with latent
heads based on POS tags, and moreover, results in
much smaller grammars.

We emphasize that our task is to automatically in-
duce a more refined grammar based on a few linguis-
tic principles. With automatic refinement it is harder
to guarantee improved performance than with man-
ual refinements (Klein and Manning, 2003) or with
refinements based on direct lexicalization (Mager-
man (1995), Collins (1996), Charniak (1997), etc.).
If, however, our refinement provides improved per-
formance then it has a clear advantage: it is automat-
ically induced, which suggests that it is applicable
across different domains, languages and tree-bank
annotations.

Applying our method to the benchmark Penn tree-
bank Wall-Street Journal, we obtain a refined proba-
bilistic grammar that significantly improves over the

original tree-bank grammar and that shows perfor-
mance that is on par with early work on lexicalized
probabilistic grammars. This is a promising result
given the hard task of automatic induction of im-
proved probabilistic grammars.

2 Head Lexicalization

As previously shown (Charniak (1997), Collins
(1997), Carroll and Rooth (1998), etc.), Context-
Free Grammars (CFGs) can be transformed to lexi-
calized CFGs, provided that a head-marking scheme
for rules is given. The basic idea is that the head
marking on rules is used to project lexical items up
a chain of nodes. Figure 1 displays an example.

In this Section, we focus on the approaches of
Charniak (1997) and Carroll and Rooth (1998).
These approaches are especially attractive for us for
two reasons: First, both approaches make use of an
explicit linguistic grammar. By contrast, alternative
approaches, like Collins (1997), apply an additional
transformation to each tree in the tree-bank, splitting
each rule into small parts, which finally results in a
new grammar covering many more sentences than
the explicit one. Second, Charniak (1997) and Car-
roll and Rooth (1998) rely on almost the same lex-
icalization technique. In fact, the significant differ-
ence between them is that, in one case, a lexicalized
version of thetree-bank grammaris learned from
a corpus of trees (supervised learning), whereas, in
the other case, a lexicalized version of amanually
written CFG is learned from a a text corpus (un-
supervised learning). As we will see in Section 3,
our approach is a blend of these approaches in that
it aims at unsupervised learning of a (latent-head-)
lexicalized version of the tree-bank grammar.

Starting with Charniak (1997), Figure 2 displays
an internal rule as it is used in the parse in Figure1,
and its probability as defined by Charniak. Here, H
is the head-child of the rule, which inherits the head
h from its parent C. The children D1:d1, . . ., Dm:dm

and Dm+1:dm+1, . . ., Dm+n:dm+n are left and right
modifiers of H. Eithern or m may be zero, and
n = m = 0 for unary rules. Because the probabil-
ities occurring in Charniak’s definition are already
so specific that there is no real chance of obtaining
the data empirically, they are smoothed by deleted
interpolation:
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S:rose

NP:profits

ADJ:Corporate

Corporate

N:profits

profits

VP:rose

V:rose

rose

PUNC:.

.

Internal Rules:
S:rose −→ NP:profits VP:rose PUNC:.
NP:profits−→ ADJ:Corporate N:profits
VP:rose −→ V:rose

Lexical Rules:
ADJ:Corporate−→ Corporate
N:profits −→ profits
V:rose −→ rose
PUNC:. −→ .

Figure 1: Parse tree, and a list of the rules it contains (Charniak, 1997)

C:h

D1:d1 · · · Dm:dm H:h Dm+1:dm+1 · · · Dm+n:dm+n

pCHARNIAK97( this local tree ) = p( r | C, h, Cp ) ×
∏n+m

i=1 p( di | Di, C, h )

(r is the unlexicalized rule,
Cp is C’s parent category)

Figure 2: Internal rule, and its probability (Charniak, 1997)

p( r | C, h, Cp ) = λ1 · p̂( r | C, h, Cp )
+ λ2 · p̂( r | C, h )
+ λ3 · p̂( r | C, class(h) )
+ λ4 · p̂( r | C, Cp )
+ λ5 · p̂( r | C )

p( d | D, C, h ) = λ1 · p̂( d | D, C, h )
+ λ2 · p̂( d | D, C, class(h) )
+ λ3 · p̂( d | D, C )
+ λ4 · p̂( d | D )

Here, class(h) denotes a class for the head word
h. Charniak takes these word classes from anex-
ternal distributional clustering model, but does not
describe this model in detail.

An at a first glance different lexicalization tech-
nique is described in Carroll and Rooth (1998). In
their approach, a grammar transformation is used
to lexicalize a manually written grammar. The key
step for understanding their model is to imagine that
the rule in Figure 2 is transformed to asub-tree, the
one displayed in Figure 3. After this transformation,
the sub-tree probability is simply calculated with the

PCFG’s standard model; The result is also displayed
in the figure. Comparing this probability with the
probability that Charniak assigns to the rule itself,
we see that the subtree probability equals the rule
probability1. In other words, both probability mod-
els are based on the same idea for lexicalization, but
the type of the corpora they are estimated from differ
(treesversussentences).

In more detail, Table 1 displays all four grammar-
rule types resulting from the grammar transforma-
tion of Carroll and Rooth (1998). The underlying
entities from the original CFG are: The starting sym-
bol S (also the starting symbol of the transform),
the internal rule C−→D1 . . .Dm H Dm+1 . . .Dm+n,
and the lexical rule C−→ w. From these, the
context-free transforms are generated as displayed
in the table (for all possible head wordsh andd, and
for all non-head children D=D1, . . ., Dm+n). Fig-
ure 4 displays an example parse on the basis of the

1at least, if we ignore Charniak’s conditioning on C’s parent
category Cp for the moment; Note that C’s parent category is
available in the tree-bank, but may not occur in the left-hand
sides of the rules of a manually written CFG
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C:h

D1:C:h · · ·

D1:d1

Dm:C:h

Dm:dm

H:h Dm+1:C:h · · ·

Dm+1:dm+1

Dm+n:C:h

Dm+n:dm+n

pSTANDARD-PCFG( this sub-tree )

= p( D1 :C :h . . . Dm :C :h H :h Dm+1 :C :h . . . Dm+n :C : h | C :h ) ×
∏

m+n

i=1 p( Di :di | Di :C :h )

= p( D1 . . . Dm H Dm+1 . . . Dm+n | C, h ) ×
∏

m+n

i=1 p( di | Di, C, h )

= p( r | C, h ) ×
∏

m+n

i=1 p( di | Di, C, h )

(r is the unlexicalized rule)

Figure 3: Transformed internal rule, and its standard-PCFG probability (Carroll and Rooth, 1998)

S −→ S:h (Starting Rules)
C:h −→ D1:C:h . . . Dm:C:h H:h Dm+1:C:h . . . Dm+n:C:h (Lexicalized Rules)
D:C:h −→ D:d (Dependencies)
C:w −→ w (Lexical Rules)

Table 1: Context-free rule types in the transform (Carroll and Rooth, 1998)

S

S:rose

NP:S:rose

NP:profits

ADJ:NP:profits

ADJ:Corporate

Corporate

N:profits

profits

VP:rose

V:rose

rose

PUNC:S:rose

PUNC:.

.

Starting Rule:
S−→ S:rose

Lexicalized Rules:
S:rose −→ NP:S:rose VP:rose PUNC:S:rose
NP:profits−→ ADJ:NP:profits N:profits
VP:rose −→ V:rose

Dependencies:
NP:S:rose −→ NP:profits
PUNC:S:rose −→ PUNC:.
ADJ:NP:profits−→ ADJ:Corporate

Lexical Rules:
ADJ:Corporate−→ Corporate
N:profits −→ profits
V:rose −→ rose
PUNC:. −→ .

Figure 4: Transformed parse tree, and a list of the rules it contains (Carroll and Rooth, 1998)
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transformed grammar. It is noteworthy that although
Carroll and Rooth (1998) learn from a text corpus
of about 50 million words, it is still necessary to
smooth the rule probabilities of the transform. Un-
like Charniak (1997), however, they do not use word
classes in their back-off scheme.

To summarize, the major problem of full-
lexicalization techniques is that they lead to serious
sparse-data problems. For both models presented in
this section, a large number|T | of full word forms
makes it difficult to reliably estimate the probability
weights of theO(|T |2) dependencies and theO(|T |)
lexicalized rules.

A linguistically naive approach to this problem
is to use POS tags as heads to decrease the num-
ber of heads. From a computational perspective,
the sparse data problem would then be completely
solved since the number|POS| of POS tags is tiny
compared to the number|T | of full-word forms.
Although we will demonstrate that parsing results
benefit already from this naive lexicalization rou-
tine, we expect that (computationally and linguisti-
cally) optimal head-lexicalized models are arranged
around a number|HEADS| of head elements such
that|POS| ≤ |HEADS| << |T | .

3 Latent-Head Models

This section defines two probability models over the
trees licensed by a head-lexicalized CFG with latent
head-information, thereby exploiting three simple
linguistic principles: (i) all rules have head mark-
ers, (ii) information is projected up a chain of cat-
egories marked as heads, (iii) lexical entries carry
latent head values which can be learned. Moreover,
two estimation methods for the latent-head models
are described.

Head-Lexicalized CFGs with Latent Heads

Principles (i) and (ii) are satisfied by all head lexical-
ized models we know of, and clearly, they are also
satisfied by the model of Carroll and Rooth (1998).
Principle (iii), however, deals with latent informa-
tion for lexical entries, which is beyond the capabil-
ity of this model. To see this, remember that lex-
ical rules C−→ w are unambiguously transformed
to C:w −→ w. Because this transformation is unam-
biguous, latent information does not play a role in it.

It is surprisingly simple, however, to satisfy princi-
ple (iii) with slightly modified versions of Carroll
and Rooth’s transformation of lexical rules. In the
following, we present two of them:

Lexical-Rule Transformation (Model 1): Trans-
form each lexical rule C−→ w to a set of rules, hav-
ing the form C:h −→ w, whereh ∈ {1, . . . , L}, and
L is a free parameter.

Lexical-Rule Transformation (Model 2): Trans-
form each lexical rule C−→ w to a set of rules,
having the form C:h −→ w, whereh ∈ {C} ×
{1, . . . , L}, andL is a free parameter.

Both models introduce latent heads for lexical en-
tries. The difference is that Model 1 introduces com-
pletely latent headsh, whereas Model 2 introduces
headsh on the basis of the POS tag C of the word
w: each such head is a combination of C with an ab-
stract extra-information. Figure 5 gives an example.
Because we still apply Carroll and Rooth’s gram-
mar transformation scheme to the non-lexical rules,
latent heads are percolated up a path of categories
marked as heads.

Although our modifications are small, their ef-
fect is remarkable. In contrast to Carroll and Rooth
(1998), where an unlexicalized tree is unambigu-
ously mapped to asingletransform, our models map
an unlexicalized tree tomultipletransforms (for free
parameters≥ 2). Note also that although latent in-
formation is freely introduced at the lexical level, it
is not freely distributed over the nodes of the tree.
Rather, the space of latent heads for a tree is con-
strained according the linguistic principle of head-
edness. Finally, for the caseL = 1, our models per-
form unambiguous transformations: in Model 1 the
transformation makes no relevant changes, whereas
Model 2 performs unambiguous lexicalization with
POS tags. In the rest of the paper, we show how to
learn models with hidden, richer, and more accurate
head-information from a tree-bank, ifL ≥ 2.

Unsupervised Estimation of Head-Lexicalized
CFGs with Latent Heads

In the following, we define two methods for es-
timating latent-head models. The main difficulty
here is that the rules of a head-lexicalized CFG
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S

S:hV

NP:S:hV

NP:hN

ADJ:NP:hN

ADJ:hADJ

Corporate

N:hN

profits

VP:hV

V:hV

rose

PUNC:S:hV

PUNC:hPUNC

.

Starting Rule:
S−→ S:hV

Lexicalized Rules:
S:hV −→ NP:S:hV VP:hV PUNC:S:hV
NP:hN −→ ADJ:NP:hN N:hN
VP:hV −→ V:hV

Dependencies:
NP:S:hV −→ NP:hN
PUNC:S:hV −→ PUNC:hPUNC
ADJ:NP:hN −→ ADJ:hADJ

Lexical Rules:
ADJ:hADJ −→ Corporate
N:hN −→ profits
V:hV −→ rose
PUNC:hPUNC −→ .

Model 1 (Completely Latent Heads):
hADJ, hN, hV, and hPUNC ∈ {1, . . . , L}

Model 2 (Latent Heads Based on POS Tags):
hADJ ∈ {ADJ} × {1, . . . , L}
hN ∈ {N} × {1, . . . , L}
hV ∈ {V} × {1, . . . , L}
hPUNC ∈ {PUNC} × {1, . . . , L}

Number of Latent-Head Types =

{

L for Model 1
|POS| × L for Model 2 (L is a free parameter)

Figure 5: Parse tree with latent heads, and a list of the rules it contains.

120



Initialization: Generate a randomly initialized distributionp0 for the rules ofGLEX (a head-
lexicalized CFG with latent heads as previously defined).

Iterations:
(1) for eachi = 1, 2, 3, . . ., numberof iterationsdo
(2) setp = pi−1

(3) E step: Generate a lexicalized tree-bankTLEX, by
- running over all unlexicalized treest of the original tree-bank
- generating the finite setGLEX(t) of the lexicalized transforms oft
- allocating the frequency c(t′) = c(t) · p( t′ | t ) to the lexicalized treest′ ∈ GLEX(t)

[ Here,c(t) is the frequency oft in the original tree-bank ]
(4) M step: Read the tree-bank grammar offTLEX, by

- calculating relative frequencieŝp for all rules ofGLEX as occurring inTLEX

(5) setpi = p̂
(6) end

Figure 6: Grammar induction algorithm (EM algorithm)

with latent heads cannot be directly estimated from
the tree-bank (by counting rules) since the latent
heads are not annotated in the trees. Faced with this
incomplete-data problem, we apply the Expectation-
Maximization (EM) algorithm developed for these
type of problems (Dempster et al., 1977). For details
of the EM algorithm, we refer to the numerous tuto-
rials on EM (e.g. Prescher (2003)). Here, it suffices
to know that it is a sort of meta algorithm, result-
ing for each incomplete-data problem in an iterative
estimation method that aims at maximum-likelihood
estimation on the data. Disregarding the fact that we
implement a dynamic-programming version for our
experiments (running in linear time in the size of the
trees in the tree-bank (Prescher, 2005)), the EM al-
gorithm is here as displayed in Figure 6. Beside this
pure form of the EM algorithm, we also use a variant
where the original tree-bank is annotated with most
probable heads only. Here is a characterization of
both estimation methods:

Estimation from latent-head distributions: The
key steps of the EM algorithm produce a lexicalized
tree-bankTLEX, consisting of all lexicalized versions
of the original trees (E-step), and calculate the prob-
abilities for the rules ofGLEX on the basis ofTLEX

(M-step). Clearly, all lexicalized trees inGLEX(t)
differ only in the heads of their nodes. Thus, EM
estimation uses the original tree-bank, where each
node can be thought of as annotated with alatent-

head distribution.

Estimation from most probable heads: By con-
trast, a quite different scheme is applied in Klein and
Manning (2003): extensive manual annotation en-
riches the tree-bank with information, but no trees
are added to the tree-bank. We borrow from this
scheme in that we take the best EM model to cal-
culate the most probable head-lexicalized versions
of the trees in the original tree-bank. After collect-
ing this Viterbi-style lexicalized tree-bank, the ordi-
nary tree-bank estimation yields another estimate of
GLEX. Clearly, this estimation method uses the orig-
inal tree-bank, where each node can be thought of
annotated with themost probable latent head.

4 Experiments

This section presents empirical results across our
models and estimation methods.

Data and Parameters

To facilitate comparison with previous work, we
trained our models on sections 2-21 of the WSJ sec-
tion of the Penn tree-bank (Marcus et al., 1993). All
trees were modified such that: The empty top node
got the category TOP, node labels consisted solely
of syntactic category information, empty nodes (i.e.
nodes dominating the empty string) were deleted,
and words in rules occurring less than 3 times in
the tree-bank were replaced by (word-suffix based)
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baseline

L=2
L=5
L=10

Estimation from most probable heads
Model 1

(completely latent)

(15 400) 73.5
(17 900) 76.3
(22 800) 80.7
(28 100) 83.3

∆=9.8

Model 2
(POS+latent)

(25 000) 78.9
(32 300) 81.1
(46 200) 83.3
(58 900) 82.6

∆=4.4

Estimation from head distributions
Model 1

(completely latent)

(15 400) 73.5
(25 900) 76.9
(49 200) 82.0
(79 200) 84.6

∆=11.1

Model 2
(POS+latent)

(25 000) 78.9
(49 500) 81.6

(116 300) 84.9
(224 300) 85.7

∆=6.8

Table 2: Parsing results in LP/LR F1 (the baseline isL = 1)

unknown-word symbols. No other changes were
made.

On this tree-bank, we trained several head-
lexicalized CFGs with latent-heads as described in
Section 3, but smoothed the grammar rules using
deleted interpolation; We also performed some pre-
liminary experiments without smoothing, but after
observing that about 3000 trees of our training cor-
pus were allocated a zero-probability (resulting from
the fact that too many grammar rules got a zero-
probability), we decided to smooth all rule proba-
bilities.

We tried to find optimal starting parameters by re-
peating the whole training process multiple times,
but we observed that starting parameters affect fi-
nal results only up to 0.5%. We also tried to find
optimal iteration numbers by evaluating our models
after each iteration step on a held-out corpus, and
observed that the best results were obtained with 70
to 130 iterations. Within a wide range from 50 to
200 iteration, however, iteration numbers affect fi-
nal results only up to 0.5%

Empirical Results

We evaluated on a parsing task performed on Sec-
tion 22 of the WSJ section of the Penn tree-bank. For
parsing, we mapped all unknown words to unknown
word symbols, and applied the Viterbi algorithm as
implemented in Schmid (2004), exploiting its abil-
ity to deal with highly-ambiguous grammars. That
is, we did not use any pruning or smoothing routines
for parsing sentences. We then de-transformed the
resulting maximum-probability parses to the format
described in the previous sub-section. That is, we
deleted the heads, the dependencies, and the start-

ing rules. All grammars were able to exhaustively
parse the evaluation corpus. Table 2 displays our re-
sults in terms of LP/LR F1 (Black and al., 1991).
The largest number per column is printed in italics.
The absolutely largest number is printed in boldface.
The numbers in brackets are the number of gram-
mar rules (without counting lexical rules). The gain
in LP/LR F1 per estimation method and per model
is also displayed (∆). Finally, the average training
time per iteration ranges from 2 to 4 hours (depend-
ing on bothL and the type of the model). The aver-
age parsing time is 10 seconds per sentence, which
is comparable to what is reported in Klein and Man-
ning (2003).

5 Discussion

First of all, all model instances outperform the base-
line, i.e., the original grammar (F1=73.5), and the
head-lexicalized grammar with POS tags as heads
(F1=78.9). The only plausible explanation for these
significant improvements is that useful head classes
have been learned by our method. Moreover, in-
creasingL consistently increases F1 (except for
Model 2 estimated from most probable heads;L =
10 is out of the row). We thus argue that the granu-
larity of the current head classes is not fine enough;
Further refinement may lead to even better latent-
head statistics.

Second, estimation from head distributions con-
sistently outperforms estimation from most probable
heads (for both models). Although coarse-grained
models clearly benefit from POS information in the
heads (L = 1, 2, 5), it is surprising that thebest
models with completely latent heads are on a par
with or almost as good as thebestones using POS
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LP LR F1 Exact CB
Model 1 (this paper) 84.8 84.4 84.6 26.4 1.37
Magerman (1995) 84.9 84.6 1.26
Model 2 (this paper) 85.7 85.7 85.7 29.3 1.29
Collins (1996) 86.3 85.8 1.14
Matsuzaki etal. (2005) 86.6 86.7 1.19
Klein and Manning (2003) 86.9 85.7 86.3 30.9 1.10
Charniak (1997) 87.4 87.5 1.00
Collins (1997) 88.6 88.1 0.91

Table 3: Comparison with other parsers (sentences of length≤ 40)

as head information.

Finally, our absolutely best model (F1=85.7) com-
bines POS tags with latent extra-information (L =
10) and is estimated from latent-head distributions.
Although it also has the largest number of gram-
mar rules (about 224 300), it is still much smaller
than fully-lexicalized models. The best model with
completely latent heads, however, leads to almost
the same performance (F1=84.6), and has the further
advantage of having significantly fewer rules (only
about 79 200). Moreover, it is the model which
leads to the largest gain compared to the baseline
(∆ = 11.1).

In the rest of the section, we compare our method
to related methods. To start with performance val-
ues, Table 3 displays previous results on parsing
Section 23 of the WSJ section of the Penn tree-bank.
Comparison indicates that our best model is already
better than the early lexicalized model of Mager-
man (1995). It is a bit worse than the unlexical-
ized PCFGs of Klein and Manning (2003) and Mat-
suzaki et al. (2005), and of course, it is also worse
than state-of-the-art lexicalized parsers (experience
shows that evaluation results on sections 22 and 23
do not differ much).

Beyond performance values, we believe our for-
malism and methodology have the following attrac-
tive features: first, our models incorporate con-
text and lexical information collected from the
whole tree-bank. Information is bundled into ab-
stract heads of higher-order information, which re-
sults in a drastically reduced parameter space. In
terms of Section 2, our approach does not aim at
improving the approximation of rule probabilities
p(r|C, h) and dependency probabilitiesp(d|D,C, h)

by smoothing. Rather, our approach induces head
classes for the wordsh and d from the tree-bank
and aims at a exact calculation of rule proba-
bilities p(r|C, class(h)) and dependency probabil-
ities p(class(d)|D,C, class(h)). This is in sharp
contrast to the smoothed fixed-word statistics in
most lexicalized parsing models derived from sparse
data (Magerman (1995), Collins (1996), Char-
niak (1997), etc.). Particularly, class-based depen-
dency probabilitiesp(class(d)|D,C, class(h)) in-
duced from the tree-bank are not exploited by most
of these parsers.

Second, our method results in anautomaticlin-
guistic mark-up of tree-bank grammars. In contrast,
manual linguistic mark-up of the tree-bank like in
Klein and Manning (2003) is based on individual
linguistic intuition and might be cost and time in-
tensive.

Third, our method can be thought of as a new lex-
icalization scheme of CFG based on the notion of
latent head-information, or as a successful attempt
to incorporate lexical classes into parsers, combined
with a new word clustering method based on the
context represented by tree structure. It thus com-
plements and extends the approach of Chiang and
Bikel (2002), who aim at discovering latent head
markersin tree-banks to improve manually written
head-percolation rules.

Finally, the method can also be viewed as an ex-
tension offactorial HMMs(Ghahramani and Jordan,
1995) to PCFGs: the node labels on trees are en-
riched with a latent variable and the latent variables
are learned by EM. Matsuzaki et al. (2005) inde-
pendently introduce a similar approach and present
empirical results that rival ours. In contrast to us,
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they do not use anexplicit linguistic grammar, and
they do not attempt toconstrain the space of la-
tent variablesby linguistic principles. As a conse-
quence, our best models are three orders of mag-
nitude more space efficient than theirs (with about
30 000 000 parameters). Therefore, parsing with
their models requires sophisticated smoothing and
pruning, whereas parsing with ours does not. More-
over, we calculate the most probable latent-head-
decorated parse and delete the latent heads in a post-
processing step. This is comparable to what they call
’Viterbi complete tree’ parsing. Under this regime,
our parser is on a par with theirs (F1=85.5). This
suggests that both models have learned a compara-
ble degree of information, which is surprising, be-
cause we learn latent heads only, whereas they aim
at learning general features. Crucially, a final 1%
improvement comes from selecting most-probable
parses by bagging all complete parses with the same
incomplete skeleton beforehand; Clearly, a solu-
tion to this NP-Complete problem (Sima’an, 2002)
can/should be also incorporated into our parser.

6 Conclusion

We introduced a method for inducing a head-driven
PCFG with latent-head statistics from a tree-bank.
The automatically trained parser is time and space
efficient and achieves a performance already better
than early lexicalized ones. This result suggests that
our grammar-induction method can be successfully
applied across domains, languages, and tree-bank
annotations.
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Abstract 

We present a classifier-based parser that 
produces constituent trees in linear time.  
The parser uses a basic bottom-up shift-
reduce algorithm, but employs a classifier 
to determine parser actions instead of a 
grammar.  This can be seen as an exten-
sion of the deterministic dependency 
parser of Nivre and Scholz (2004) to full 
constituent parsing.  We show that, with 
an appropriate feature set used in classifi-
cation, a very simple one-path greedy 
parser can perform at the same level of 
accuracy as more complex parsers.  We 
evaluate our parser on section 23 of the 
WSJ section of the Penn Treebank, and 
obtain precision and recall of 87.54% and 
87.61%, respectively. 

1 Introduction 

Two classifier-based deterministic dependency 
parsers for English have been proposed recently 
(Nivre and Scholz, 2004; Yamada and Matsumoto, 
2003).  Although they use different parsing algo-
rithms, and differ on whether or not dependencies 
are labeled, they share the idea of greedily pursu-
ing a single path, following parsing decisions made 
by a classifier.  Despite their greedy nature, these 
parsers achieve high accuracy in determining de-
pendencies.  Although state-of-the-art statistical 
parsers (Collins, 1997; Charniak, 2000) are more 
accurate, the simplicity and efficiency of determi-

nistic parsers make them attractive in a number of 
situations requiring fast, light-weight parsing, or 
parsing of large amounts of data.  However, de-
pendency analyses lack important information con-
tained in constituent structures.  For example, the 
tree-path feature has been shown to be valuable in 
semantic role labeling (Gildea and Palmer, 2002). 

We present a parser that shares much of the 
simplicity and efficiency of the deterministic de-
pendency parsers, but produces both dependency 
and constituent structures simultaneously.  Like the 
parser of Nivre and Scholz (2004), it uses the basic 
shift-reduce stack-based parsing algorithm, and 
runs in linear time.  While it may seem that the 
larger search space of constituent trees (compared 
to the space of dependency trees) would make it 
unlikely that accurate parse trees could be built 
deterministically, we show that the precision and 
recall of constituents produced by our parser are 
close to those produced by statistical parsers with 
higher run-time complexity. 

One desirable characteristic of our parser is its 
simplicity.  Compared to other successful ap-
proaches to corpus-based constituent parsing, ours 
is remarkably simple to understand and implement.  
An additional feature of our approach is its modu-
larity with regard to the algorithm and the classifier 
that determines the parser’s actions.  This makes it 
very simple for different classifiers and different 
sets of features to be used with the same parser 
with very minimal work.  Finally, its linear run-
time complexity allows our parser to be considera-
bly faster than lexicalized PCFG-based parsers.  
On the other hand, a major drawback of the classi-
fier-based parsing framework is that, depending on 
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the classifier used, its training time can be much 
longer than that of other approaches. 

Like other deterministic parsers (and unlike 
many statistical parsers), our parser considers the 
problem of syntactic analysis separately from part-
of-speech (POS) tagging.  Because the parser 
greedily builds trees bottom-up in one pass, con-
sidering only one path at any point in the analysis, 
the task of assigning POS tags to words is done 
before other syntactic analysis.  In this work we 
focus only on the processing that occurs once POS 
tagging is completed.  In the sections that follow, 
we assume that the input to the parser is a sentence 
with corresponding POS tags for each word. 

2 Parser Description 

Our parser employs a basic bottom-up shift-reduce 
parsing algorithm, requiring only a single pass over 
the input string.  The algorithm considers only 

trees with unary and binary branching.  In order to 
use trees with arbitrary branching for training, or 
generating them with the parser, we employ an 
instance of the transformation/detransformation 
process described in (Johnson, 1998).  In our case, 
the transformation step involves simply converting 
each production with n children (where n > 2) into 
n – 1 binary productions.  Trees must be lexical-
ized1, so that the newly created internal structure of 
constituents with previous branching of more than 
two contains only subtrees with the same lexical 
head as the original constituent.  Additional non-
terminal symbols introduced in this process are 
clearly marked.  The transformed (or “binarized”) 
trees may then be used for training.  Detransforma-
tion is applied to trees produced by the parser.  
This involves the removal of non-terminals intro-

                                                           
1 If needed, constituent head-finding rules such as those men-
tioned in Collins (1996) may be used. 

 
                                        Transform 
 
 
                                                                                NP 
 
                    NP                                                               NP*                                          
                                                                                                                                                                                                                              
                                    PP                                                      NP*                                   
                                                                                                                                                                                                                                     
                                           NP                                                       PP                                       
                                                                                                                                                                  
  Det     Adj     N        P         N                                                              NP                                                                                             
                                                                                                                                                                                            
   The    big    dog    with    fleas                    Det   Adj      N       P         N                       
                                                                                                                                                                                                                     
                                                                      The   big    dog    with    fleas                    
                                                                                                                                                                                                                              
                                                                                                                                                                                                                              
                                     Detransform                                                                                                                                                        
                                                                                                                              
                                                                                                                              

Figure 1: An example of the binarization transform/detransform.  The original tree (left) has one 
node (NP) with four children.  In the transformed tree, internal structure (marked by nodes with as-
terisks) was added to the subtree rooted by the node with more than two children.  The word “dog” 
is the head of the original NP, and it is kept as the head of the transformed NP, as well as the head of 
each NP* node. 
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duced in the transformation process, producing 
trees with arbitrary branching.  An example of 
transformation/detransformation is shown in figure 
1. 

2.1 Algorithm Outline 

The parsing algorithm involves two main data 
structures: a stack S, and a queue W.  Items in S 
may be terminal nodes (POS-tagged words), or 
(lexicalized) subtrees of the final parse tree for the 
input string.  Items in W are terminals (words 
tagged with parts-of-speech) corresponding to the 
input string.  When parsing begins, S is empty and 
W is initialized by inserting every word from the 
input string in order, so that the first word is in 
front of the queue. 

Only two general actions are allowed: shift and 
reduce.  A shift action consists only of removing 
(shifting) the first item (POS-tagged word) from W 
(at which point the next word becomes the new 
first item), and placing it on top of S.  Reduce ac-
tions are subdivided into unary and binary cases.  
In a unary reduction, the item on top of S is 
popped, and a new item is pushed onto S.  The new 
item consists of a tree formed by a non-terminal 
node with the popped item as its single child.  The 
lexical head of the new item is the same as the 
lexical head of the popped item.  In a binary reduc-
tion, two items are popped from S in sequence, and 
a new item is pushed onto S.  The new item con-
sists of a tree formed by a non-terminal node with 
two children: the first item popped from S is the 
right child, and the second item is the left child.  
The lexical head of the new item is either the lexi-
cal head of its left child, or the lexical head of its 
right child. 

If S is empty, only a shift action is allowed.  If 
W is empty, only a reduce action is allowed.  If 
both S and W are non-empty, either shift or reduce 
actions are possible.  Parsing terminates when W is 
empty and S contains only one item, and the single 
item in S is the parse tree for the input string.  Be-
cause the parse tree is lexicalized, we also have a 
dependency structure for the sentence.  In fact, the 
binary reduce actions are very similar to the reduce 
actions in the dependency parser of Nivre and 
Scholz (2004), but they are executed in a different 
order, so constituents can be built.  If W is empty, 
and more than one item remain in S, and no further 
reduce actions take place, the input string is re-
jected. 

2.2 Determining Actions with a Classifier 

A parser based on the algorithm described in the 
previous section faces two types of decisions to be 
made throughout the parsing process.  The first 
type concerns whether to shift or reduce when both 
actions are possible, or whether to reduce or reject 
the input when only reduce actions are possible.  
The second type concerns what syntactic structures 
are created.  Specifically, what new non-terminal is 
introduced in unary or binary reduce actions, or 
which of the left or right children are chosen as the 
source of the lexical head of the new subtree pro-
duced by binary reduce actions.  Traditionally, 
these decisions are made with the use of a gram-
mar, and the grammar may allow more than one 
valid action at any single point in the parsing proc-
ess.  When multiple choices are available, a gram-
mar-driven parser may make a decision based on 
heuristics or statistical models, or pursue every 
possible action following a search strategy.  In our 
case, both types of decisions are made by a classi-
fier that chooses a unique action at every point, 
based on the local context of the parsing action, 
with no explicit grammar.  This type of classifier-
based parsing where only one path is pursued with 
no backtracking can be viewed as greedy or deter-
ministic. 

In order to determine what actions the parser 
should take given a particular parser configuration, 
a classifier is given a set of features derived from 
that configuration.  This includes, crucially, the 
two topmost items in the stack S, and the item in 
front of the queue W.  Additionally, a set of context 
features is derived from a (fixed) limited number 
of items below the two topmost items of S, and 
following the item in front of W.  The specific fea-
tures are shown in figure 2. 

The classifier’s target classes are parser actions 
that specify both types of decisions mentioned 
above.  These classes are: 

• SHIFT: a shift action is taken; 

• REDUCE-UNARY-XX: a unary reduce ac-
tion is taken, and the root of the new subtree 
pushed onto S is of type XX (where XX is a 
non-terminal symbol, typically NP, VP, PP, 
for example); 

• REDUCE-LEFT-XX: a binary reduce action 
is taken, and the root of the new subtree 
pushed onto S is of non-terminal type XX.  
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Additionally, the head of the new subtree is 
the same as the head of the left child of the 
root node; 

• REDUCE-RIGHT-XX: a binary reduce ac-
tion is taken, and the root of the new subtree 
pushed onto S is of non-terminal type XX.  
Additionally, the head of the new subtree is 
the same as the head of the right child of the 
root node. 

2.3 A Complete Classifier-Based Parser than 
Runs in Linear Time 

When the algorithm described in section 2.1 is 
combined with a trained classifier that determines 
its parsing actions as described in section 2.2, we 
have a complete classifier-based parser.  Training 
the parser is accomplished by training its classifier.  
To that end, we need training instances that consist 
of sets of features paired with their classes corre-

Let: 
 
 S(n) denote the nth item from the top of the stack S, and 
 W(n) denote the nth item from the front of the queue W. 
 
Features: 
 

• The head-word (and its POS tag) of: S(0), S(1), S(2), and S(3)  

• The head-word (and its POS tag) of: W(0), W(1), W(3) and W(3)  

• The non-terminal node of the root of: S(0), and S(1) 

• The non-terminal node of the left child of the root of: S(0), and S(1) 

• The non-terminal node of the right child of the root of: S(0), and S(1) 

• The non-terminal node of the left child of the root of: S(0), and S(1) 

• The non-terminal node of the left child of the root of: S(0), and S(1) 

• The linear distance (number of words apart) between the head-words of S(0) and S(1) 

• The number of lexical items (words) that have been found (so far) to be dependents of 
the head-words of: S(0), and S(1) 

• The most recently found lexical dependent of the head of the head-word of S(0) that is 
to the left of S(0)’s head 

• The most recently found lexical dependent of the head of the head-word of S(0) that is 
to the right of S(0)’s head 

• The most recently found lexical dependent of the head of the head-word of S(0) that is 
to the left of S(1)’s head 

• The most recently found lexical dependent of the head of the head-word of S(0) that is 
to the right of S(1)’s head 

Figure 2: Features used for classification.  The features described in items 1 – 7 are more di-
rectly related to the lexicalized constituent trees that are built during parsing, while the fea-
tures described in items 8 – 13 are more directly related to the dependency structures that are 
built simultaneously to the constituent structures. 

128



sponding to the correct parsing actions.  These in-
stances can be obtained by running the algorithm 
on a corpus of sentences for which the correct 
parse trees are known.  Instead of using the classi-
fier to determine the parser’s actions, we simply 
determine the correct action by consulting the cor-
rect parse trees.  We then record the features and 
corresponding actions for parsing all sentences in 
the corpus into their correct trees.  This set of fea-
tures and corresponding actions is then used to 
train a classifier, resulting in a complete parser. 

When parsing a sentence with n words, the 
parser takes n shift actions (exactly one for each 
word in the sentence).  Because the maximum 
branching factor of trees built by the parser is two, 
the total number of binary reduce actions is n – 1, 
if a complete parse is found.  If the input string is 
rejected, the number of binary reduce actions is 
less than n – 1.  Therefore, the number of shift and 
binary reduce actions is linear with the number of 
words in the input string.  However, the parser as 
described so far has no limit on the number of 
unary reduce actions it may take.  Although in 
practice a parser properly trained on trees reflect-
ing natural language syntax would rarely make 
more than 2n unary reductions, pathological cases 
exist where an infinite number of unary reductions 
would be taken, and the algorithm would not ter-
minate.  Such cases may include the observation in 
the training data of sequences of unary productions 
that cycle through (repeated) non-terminals, such 
as A->B->A->B.  During parsing, it is possible that 
such a cycle may be repeated infinitely. 

This problem can be easily prevented by limit-
ing the number of consecutive unary reductions 
that may be made to a finite number.  This may be 
the number of non-terminal types seen in the train-
ing data, or the length of the longest chain of unary 
productions seen in the training data.  In our ex-
periments (described in section 3), we limited the 
number of consecutive unary reductions to three, 
although the parser never took more than two 
unary reduction actions consecutively in any sen-
tence.  When we limit the number of consecutive 
unary reductions to a finite number m, the parser 
makes at most (2n – 1)m unary reductions when 
parsing a sentence of length n.  Placing this limit 
not only guarantees that the algorithm terminates, 
but also guarantees that the number of actions 
taken by the parser is O(n), where n is the length of 
the input string.  Thus, the parser runs in linear 

time, assuming that classifying a parser action is 
done in constant time. 

3 Similarities to Previous Work 

As mentioned before, our parser shares similarities 
with the dependency parsers of Yamada and Ma-
tsumoto (2003) and Nivre and Scholz (2004) in 
that it uses a classifier to guide the parsing process 
in deterministic fashion.  While Yamada and Ma-
tsumoto use a quadratic run-time algorithm with 
multiple passes over the input string, Nivre and 
Scholz use a simplified version of the algorithm 
described here, which handles only (labeled or 
unlabeled) dependency structures. 

Additionally, our parser is in some ways similar 
to the maximum-entropy parser of Ratnaparkhi 
(1997).  Ratnaparkhi’s parser uses maximum-
entropy models to determine the actions of a shift-
reduce-like parser, but it is capable of pursuing 
several paths and returning the top-K highest scor-
ing parses for a sentence.  Its observed time is lin-
ear, but parsing is somewhat slow, with sentences 
of length 20 or more taking more than one second 
to parse, and sentences of length 40 or more taking 
more than three seconds.  Our parser only pursues 
one path per sentence, but it is very fast and of 
comparable accuracy (see section 4).  In addition, 
Ratnaparkhi’s parser uses a more involved algo-
rithm that allows it to work with arbitrary branch-
ing trees without the need of the binarization 
transform employed here.  It breaks the usual re-
duce actions into smaller pieces (CHECK and 
BUILD), and uses two separate passes (not includ-
ing the POS tagging pass) for determining chunks 
and higher syntactic structures separately. 

Finally, there have been other deterministic 
shift-reduce parsers introduced recently, but their 
levels of accuracy have been well below the state-
of-the-art.  The parser in Kalt (2004) uses a similar 
algorithm to the one described here, but the classi-
fication task is framed differently.  Using decision 
trees and fewer features, Kalt’s parser has signifi-
cantly faster training and parsing times, but its ac-
curacy is much lower than that of our parser.  
Kalt’s parser achieves precision and recall of about 
77% and 76%, respectively (with automatically 
tagged text), compared to our parser’s 86% (see 
section 4).  The parser of Wong and Wu (1999) 
uses a separate NP-chunking step and, like Ratna-
parkhi’s parser, does not require a binary trans-
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form.  It achieves about 81% precision and 82% 
recall with gold-standard tags (78% and 79% with 
automatically tagged text).  Wong and Wu’s parser 
is further differentiated from the other parsers 
mentioned here in that it does not use lexical items, 
working only from part-of-speech tags. 

4 Experiments 

We conducted experiments with the parser de-
scribed in section 2 using two different classifiers: 
TinySVM (a support vector machine implementa-
tion by Taku Kudo)2, and the memory-based 
learner TiMBL (Daelemans et al., 2004).  We 
trained and tested the parser on the Wall Street 
Journal corpus of the Penn Treebank (Marcus et 
al., 1993) using the standard split: sections 2-21 
were used for training, section 22 was used for de-
velopment and tuning of parameters and features, 
and section 23 was used for testing.  Every ex-
periment reported here was performed on a Pen-
tium IV 1.8GHz with 1GB of RAM. 

Each tree in the training set had empty-node 
and function tag information removed, and the 

                                                           
2 http://chasen.org/~taku/software/TinySVM 

trees were lexicalized using similar head-table 
rules as those mentioned in (Collins, 1996).  The 
trees were then converted into trees containing 
only unary and binary branching, using the binari-
zation transform described in section 2.  Classifier 
training instances of features paired with classes 
(parser actions) were extracted from the trees in the 
training set, as described in section 2.3.  The total 
number of training instances was about 1.5 million. 

The classifier in the SVM-based parser (de-
noted by SVMpar) uses the polynomial kernel with 
degree 2, following the work of Yamada and Ma-
tsumoto (2003) on SVM-based deterministic de-
pendency parsing, and a one-against-all scheme for 
multi-class classification.  Because of the large 
number of training instances, we used Yamada and 
Matsumoto’s idea of splitting the training instances 
into several parts according to POS tags, and train-
ing classifiers on each part.  This greatly reduced 
the time required to train the SVMs, but even with 
the splitting of the training set, total training time 
was about 62 hours.  Training set splitting comes 
with the cost of reduction in accuracy of the parser, 
but training a single SVM would likely take more 
than one week.  Yamada and Matsumoto experi-
enced a reduction of slightly more than 1% in de-

 Precision Recall Dependency Time (min) 

Charniak 89.5 89.6 92.1 28 

Collins 88.3 88.1 91.5 45 

Ratnaparkhi 87.5 86.3 Unk Unk 

Y&M - - 90.3 Unk 

N&S - - 87.3 21 

MBLpar 80.0 80.2 86.3 127 

SVMpar 87.5 87.6 90.3 11 

 

Table 1: Summary of results on labeled precision and recall of constituents, dependency accu-
racy, and time required to parse the test set.  The parsers of Yamada and Matsumoto (Y&M) and 
Nivre and Scholz (N&S) do not produce constituent structures, only dependencies.  “unk” indi-
cates unknown values.  Results for MBLpar and SVMpar using correct POS tags (if automatically 
produced POS tags are used, accuracy figures drop about 1.5% over all metrics).  
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pendency accuracy due to training set splitting, and 
we expect that a similar loss is incurred here. 

When given perfectly tagged text (gold tags ex-
tracted from the Penn Treebank), SVMpar has la-
beled constituent precision and recall of 87.54% 
and 87.61%, respectively, and dependency accu-
racy of 90.3% over all sentences in the test set.  
The total time required to parse the entire test set 
was 11 minutes.  Out of more than 2,400 sen-
tences, only 26 were rejected by the parser (about 
1.1%).  For these sentences, partial analyses were 
created by combining the items in the stack in flat 
structures, and these were included in the evalua-
tion.  Predictably, the labeled constituent precision 
and recall obtained with automatically POS-tagged 
sentences were lower, at 86.01% and 86.15%.  The 
part-of-speech tagger used in our experiments was 
SVMTool (Giménez and Márquez, 2004), and its 
accuracy on the test set is 97%. 

The MBL-based parser (denoted by MBLpar) 
uses the IB1 algorithm, with five nearest 
neighbors, and the modified value difference met-
ric (MVDM), following the work of Nivre and 
Scholz (2004) on MBL-based deterministic de-
pendency parsing.  MBLpar was trained with all 
training instances in under 15 minutes, but its ac-
curacy on the test set was much lower than that of 
SVMpar, with constituent precision and recall of 
80.0% and 80.2%, and dependency accuracy of 
86.3% (24 sentences were rejected).  It was also 
much slower than SVMpar in parsing the test set, 
taking 127 minutes.  In addition, the total memory 
required for running MBLpar (including the classi-
fier) was close to 1 gigabyte (including the trained 
classifier), while SVMpar required only about 200 
megabytes (including all the classifiers). 

Table 1 shows a summary of the results of our 
experiments with SVMpar and MBLpar, and also 
results obtained with the Charniak (2000) parser, 
the Bikel (2003) implementation of the Collins 
(1997) parser, and the Ratnaparkhi (1997) parser.  
We also include the dependency accuracy from 
Yamada and Matsumoto’s (2003) SVM-based de-
pendency parser, and Nivre and Scholz’s (2004) 
MBL-based dependency parser.  These results 
show that the choice of classifier is extremely im-
portant in this task.  SVMpar and MBLpar use the 
same algorithm and features, and differ only on the 
classifiers used to make parsing decisions.  While 
in many natural language processing tasks different 
classifiers perform at similar levels of accuracy, we 

have observed a dramatic difference between using 
support vector machines and a memory-based 
learner.  Although the reasons for such a large dis-
parity in results is currently the subject of further 
investigation, we speculate that a relatively small 
difference in initial classifier accuracy results in 
larger differences in parser performance, due to the 
deterministic nature of the parser (certain errors 
may lead to further errors).  We also believe classi-
fier choice to be one major source of the difference 
in accuracy between Nivre and Scholz’s parser and 
Yamada and Matsumoto’s parser.  

While the accuracy of SVMpar is below that of 
lexicalized PCFG-based statistical parsers, it is 
surprisingly good for a greedy parser that runs in 
linear time.  Additionally, it is considerably faster 
than lexicalized PCFG-based parsers, and offers a 
good alternative for when fast parsing is needed.  
MBLpar, on the other hand, performed poorly in 
terms of accuracy and speed. 

5 Conclusion and Future Work 

We have presented a simple shift-reduce parser 
that uses a classifier to determine its parsing ac-
tions and runs in linear time.  Using SVMs for 
classification, the parser has labeled constituent 
precision and recall higher than 87% when using 
the correct part-of-speech tags, and slightly higher 
than 86% when using automatically assigned part-
of-speech tags.  Although its accuracy is not as 
high as those of state-of-the-art statistical parsers, 
our classifier-based parser is considerably faster 
than several well-known parsers that employ 
search or dynamic programming approaches.  At 
the same time, it is significantly more accurate 
than previously proposed deterministic parsers for 
constituent structures. 

We have also shown that much of the success 
of a classifier-based parser depends on what classi-
fier is used.  While this may seem obvious, the dif-
ferences observed here are much greater than what 
would be expected from looking, for example, at 
results from chunking/shallow parsing (Zhang et 
al., 2001; Kudo and Matsumoto, 2001; Veenstra 
and van den Bosch, 2000). 

Future work includes the investigation of the ef-
fects of individual features, the use of additional 
classification features, and the use of different clas-
sifiers.  In particular, the use of tree features seems 
appealing.  This may be accomplished with SVMs 
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using a tree kernel, or the tree boosting classifier 
BACT described in (Kudo and Matsumoto, 2004).  
Additionally, we plan to investigate the use of the 
beam strategy of Ratnaparkhi (1997) to pursue 
multiple parses while keeping the run-time linear. 
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Abstract

Chunk parsing is conceptually appealing
but its performance has not been satis-
factory for practical use. In this pa-
per we show that chunk parsing can
perform significantly better than previ-
ously reported by using a simple sliding-
window method and maximum entropy
classifiers for phrase recognition in each
level of chunking. Experimental results
with the Penn Treebank corpus show that
our chunk parser can give high-precision
parsing outputs with very high speed (14
msec/sentence). We also present a pars-
ing method for searching the best parse by
considering the probabilities output by the
maximum entropy classifiers, and show
that the search method can further im-
prove the parsing accuracy.

1 Introduction

Chunk parsing (Tjong Kim Sang, 2001; Brants,
1999) is a simple parsing strategy both in imple-
mentation and concept. The parser first performs
chunking by identifying base phrases, and convert
the identified phrases to non-terminal symbols. The
parser again performs chunking on the updated se-
quence and convert the newly recognized phrases
into non-terminal symbols. The parser repeats this
procedure until there are no phrases to be chunked.
After finishing these chunking processes, we can
reconstruct the complete parse tree of the sentence
from the chunking results.

Although the conceptual simplicity of chunk pars-
ing is appealing, satisfactory performance for prac-
tical use has not yet been achieved with this pars-
ing strategy. Sang achieved an f-score of 80.49 on
the Penn Treebank by using the IOB tagging method
for each level of chunking (Tjong Kim Sang, 2001).
However, there is a very large gap between their per-
formance and that of widely-used practical parsers
(Charniak, 2000; Collins, 1999).

The performance of chunk parsing is heavily de-
pendent on the performance of phrase recognition in
each level of chunking. We show in this paper that
the chunk parsing strategy is indeed appealing in that
it can give considerably better performance than pre-
viously reported by using a different approach for
phrase recognition and that it enables us to build a
very fast parser that gives high-precision outputs.

This advantage could open up the possibility of
using full parsers for large-scale information extrac-
tion from the Web corpus and real-time information
extraction where the system needs to analyze the
documents provided by the users on run-time.

This paper is organized as follows. Section 2
introduces the overall chunk parsing strategy em-
ployed in this work. Section 3 describes the sliding-
window based method for identifying chunks. Two
filtering methods to reduce the computational cost
are presented in sections 4 and 5. Section 6 explains
the maximum entropy classifier and the feature set.
Section 7 describes methods for searching the best
parse. Experimental results on the Penn Treebank
corpus are given in Section 8. Section 10 offers
some concluding remarks.
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Estimated  volume  was   a   light  2.4  million  ounces  .

VBN         NN    VBD DT  JJ    CD     CD NNS   .

QPNP

Figure 1: Chunk parsing, the 1st iteration.

volume          was   a   light    million       ounces .

NP             VBD DT  JJ          QP            NNS   .

NP

Figure 2: Chunk parsing, the 2nd iteration.

2 Chunk Parsing

For the overall strategy of chunk parsing, we fol-
low the method proposed by Sang (Tjong Kim Sang,
2001). Figures 1 to 4 show an example of chunk
parsing. In the first iteration, the chunker identifies
two base phrases, (NP Estimated volume) and (QP
2.4 million), and replaces each phrase with its non-
terminal symbol and head. The head word is identi-
fied by using the head-percolation table (Magerman,
1995). In the second iteration, the chunker identifies
(NP a light million ounces) and converts this phrase
into NP. This chunking procedure is repeated until
the whole sentence is chunked at the fourth itera-
tion, and the full parse tree is easily recovered from
the chunking history.

This parsing strategy converts the problem of full
parsing into smaller and simpler problems, namely,
chunking, where we only need to recognize flat
structures (base phrases). Sang used the IOB tag-
ging method proposed by Ramshow(Ramshaw and
Marcus, 1995) and memory-based learning for each
level of chunking and achieved an f-score of 80.49
on the Penn Treebank corpus.

3 Chunking with a sliding-window
approach

The performance of chunk parsing heavily depends
on the performance of each level of chunking. The
popular approach to this shallow parsing is to con-
vert the problem into a tagging task and use a variety

volume          was                    ounces          .

NP             VBD                    NP           .

VP

Figure 3: Chunk parsing, the 3rd iteration.

volume                           was                   .

NP                               VP                .

S

Figure 4: Chunk parsing, the 4th iteration.

of machine learning techniques that have been de-
veloped for sequence labeling problems such as Hid-
den Markov Models, sequential classification with
SVMs (Kudo and Matsumoto, 2001), and Condi-
tional Random Fields (Sha and Pereira, 2003).

One of our claims in this paper is that we should
not convert the chunking problem into a tagging
task. Instead, we use a classical sliding-window
method for chunking, where we consider all sub-
sequences as phrase candidates and classify them
with a machine learning algorithm. Suppose, for ex-
ample, we are about to perform chunking on the se-
quence in Figure 4.

NP-volume VBD-was .-.

We consider the following sub sequences as the
phrase candidates in this level of chunking.

1. (NP-volume) VBD-was .-.

2. NP-volume (VBD-was) .-.

3. NP-volume VBD-was (.-.)

4. (NP-volume VBD-was) .-.

5. NP-volume (VBD-was .-.)

6. (NP-volume VBD-was .-.)

The merit of taking the sliding window approach
is that we can make use of a richer set of features on
recognizing a phrase than in the sequential labeling
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approach. We can define arbitrary features on the
target candidate (e.g. the whole sequence of non-
terminal symbols of the target) and the surrounding
context, which are, in general, not available in se-
quential labeling approaches.

We should mention here that there are some other
modeling methods for sequence labeling which al-
low us to define arbitrary features on the target
phrase. Semi-markov conditional random fields
(Semi-CRFs) are one of such modeling methods
(Sarawagi and Cohen, 2004). Semi-CRFs could
give better performance than the sliding-window
approach because they can incorporate features on
other phrase candidates on the same level of chunk-
ing. However, they require additional computational
resources for training and parsing, and the use of
Semi-CRFs is left for future work.

The biggest disadvantage of the sliding window
approach is the cost for training and parsing. Since
there are � � �������	��
 phrase candidates when the
length of the sequence is � , a naive application of
machine learning easily leads to prohibitive con-
sumption of memory and time.

In order to reduce the number of phrase candi-
dates to be considered by machine learning, we in-
troduce two filtering phases into training and pars-
ing. One is done by a rule dictionary. The other is
done by a naive Bayes classifier.

4 Filtering with the CFG Rule Dictionary

We use an idea that is similar to the method pro-
posed by Ratnaparkhi (Ratnaparkhi, 1996) for part-
of-speech tagging. They used a Tag Dictionary, with
which the tagger considers only the tag-word pairs
that appear in the training sentences as the candidate
tags.

A similar method can be used for reducing the
number of phrase candidates. We first construct a
rule dictionary consisting of all the CFG rules used
in the training data. In both training and parsing, we
filter out all the sub-sequences that do not match any
of the entry in the dictionary.

4.1 Normalization

The rules used in the training data do not cover all
the rules in unseen sentences. Therefore, if we take
a naive filtering method using the rule dictionary, we

Original Symbol Normalized Symbol

NNP, NNS, NNPS, PRP NN
RBR, RBS RB

JJR, JJS, PRP$ JJ
VBD, VBZ VBP

: ,
”, “ NULL

Table 1: Normalizing preterminals.
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substantially lose recall in parsing unseen data.
To alleviate the problem of the coverage of rules,

we conduct normalization of the rules. We first con-
vert preterminal symbols into equivalent sets using
the conversion table provided in Table 1. This con-
version reduces the sparseness of the rules.

We further normalize the Right-Hand-Side (RHS)
of the rules with the following heuristics.

� “X CC X” is converted to “X”.

� “X , X” is converted to “X”.

Figure 5 shows the effectiveness of this normal-
ization method. The figure illustrates how the num-
ber of rules increases in the rule dictionary as we
add training sentences. Without the normalization,
the number of rules continues to grow rapidly even
when the entire training set is read. The normaliza-
tion methods reduce the growing rate, which con-
siderably alleviates the sparseness problem (i.e. the
problems of unknown rules).
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5 Filtering with the Naive Bayes classifier

Although the use of the rule dictionary significantly
reduced the number of phrase candidates, we still
found it difficult to train the parser using the entire
training set when we used a rich set of features.

To further reduce the cost required for training
and parsing, we propose to use a naive Bayes classi-
fier for filtering the candidates. A naive Bayes clas-
sifier is simple and requires little storage and com-
putational cost.

We construct a binary naive Bayes classifier for
each phrase type using the entire training data. We
considered the following information as the features.

� The Right-Hand-Side (RHS) of the CFG rule

� The left-adjacent nonterminal symbol.

� The right-adjacent nonterminal symbol.

By assuming the conditional independence
among the features, we can compute the probability
for filtering as follows:

� ����� ���	�
��� ��
� �����	������� � � � ��� �� �����	����� �


� ����� � � � ���	� � � � ����� � � � ��� ���� � ����� � � � ����� � � � ����� � � � ��� �

�

where
�

is a binary output indicating whether the
candidate is a phrase of the target type or not,

�
is

the RHS of the CFG rule,
�

is the symbol on the
left, and

�
is the symbol on the right. We used

the Laplace smoothing method for computing each
probability. Note that the information about the re-
sult of the rule application, i.e., the LHS symbol, is
considered in this filtering scheme because different
naive Bayes classifiers are used for different LHS
symbols (phrase types).

Table 2 shows the filtering performance in train-
ing with sections 02-21 on the Penn Treebank. We
set the threshold probability for filtering to be 0.0001
for the experiments reported in this paper. The
naive Bayes classifiers effectively reduced the num-
ber of candidates with little positive samples that
were wrongly filtered out.

6 Phrase Recognition with a Maximum
Entropy Classifier

For the candidates which are not filtered out in the
above two phases, we perform classification with
maximum entropy classifiers (Berger et al., 1996).

We construct a binary classifier for each type of
phrases using the entire training set. The training
samples for maximum entropy consist of the phrase
candidates that have not been filtered out by the CFG
rule dictionary and the naive Bayes classifier.

One of the merits of using a maximum entropy
classifier is that we can obtain a probability from
the classifier in each decision. The probability of
each decision represents how likely the candidate is
a correct chunk. We accept a chunk only when the
probability is larger than the predefined threshold.
With this thresholding scheme, we can control the
trade-off between precision and recall by changing
the threshold value.

Regularization is important in maximum entropy
modeling to avoid overfitting to the training data.
For this purpose, we use the maximum entropy mod-
eling with inequality constraints (Kazama and Tsu-
jii, 2003). This modeling has one parameter to
tune as in Gaussian prior modeling. The parame-
ter is called the width factor. We set this parame-
ter to be 1.0 throughout the experiments. For nu-
merical optimization, we used the Limited-Memory
Variable-Metric (LMVM) algorithm (Benson and
Moré, 2001).

6.1 Features

Table 3 lists the features used in phrase recognition
with the maximum entropy classifier. Information
about the adjacent non-terminal symbols is impor-
tant. We use unigrams, bigrams, and trigrams of the
adjacent symbols. Head information is also useful.
We use unigrams and bigrams of the neighboring
heads. The RHS of the CFG rule is also informa-
tive. We use the features on RHSs combined with
symbol features.

7 Searching the best parse

7.1 Deterministic parsing

The deterministic version of chunk parsing is
straight-forward. All we need to do is to repeat
chunking until there are no phrases to be chunked.
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Symbol # candidates # remaining candidates # positives # false negative

ADJP 4,043,409 1,052,983 14,389 53
ADVP 3,459,616 1,159,351 19,765 78

NP 7,122,168 3,935,563 313,042 117
PP 3,889,302 1,181,250 94,568 126
S 3,184,827 1,627,243 95,305 99

VP 4,903,020 2,013,229 145,878 144

Table 2: Effectiveness of the naive Bayes filtering on some representative nonterminals.

Symbol Unigrams ����� � , ����� �
Symbol Bigrams � � � � , � �	� � � ��� � , � ��� � � ��� � , � ��� � � ��� �
Symbol Trigrams � ��� � � �	� � � ��� � , � ��� � � ��� � � ��� � , � ��� � � ��� � � ��� � , � ��� � � ��� � � ��� �
Head Unigrams 
 ��� � , 
 ��� �
Head Bigrams 
���� � 
���� � , 
��	� � ���� � , 
���� � 
���� �
Symbol-Head Unigrams � � 
 � , � � 
 � , ����
�� ������������� � �
CFG Rule �����
CFG Rule + Symbol Unigram � ��� � ����� , � ��� � �����
CFG Rule + Symbol Bigram ����� � ����� � �����

Table 3: Feature templates used in chunking. � � and � � represent the non-terminal symbols at the beginning
and the ending of the target phrase respectively. 
 � and 
 � represent the head at the beginning and the ending
of the target phrase respectively. RHS represents the Right-Hand-Side of the CFG rule.

If the maximum entropy classifiers give contra-
dictory chunks in each level of chunking, we choose
the chunk which has a larger probability than the
other ones.

7.2 Parsing with search

We tried to perform searching in chunk parsing in
order to investigate whether or not extra effort of
searching gives a gain in parsing performance.

The problem is that because the modeling of our
chunk parsing provides no explicit probabilistic dis-
tribution over the entire parse tree, there is no deci-
sive way to properly evaluate the correctness of each
parse. Nevertheless, we can consider the following
score on each parse tree.

� �! ��#"  $��%�&'�(�)+*
� � � (1)

where
� � is the probability of a phrase given by the

maximum entropy classifier.
Because exploring all the possibilities of chunk-

ing requires prohibitive computational cost, we re-
duce the search space by focusing only on “uncer-
tain” chunk candidates for the search. In each level

of chunking, the chunker provides chunks with their
probabilities. We consider only the chunks whose
probabilities are within the predefined margin from, �.-

. In other words, the chunks whose probabilities
are larger than

� , �.- �0/21 �435� � � are considered as
assured chunks, and thus are fixed when we gener-
ate alternative hypotheses of chunking. The chunks
whose probabilities are smaller than

� , �.-76 /21 �435� � �
are simply ignored.

We generate alternative hypotheses in each level
of chunking, and search the best parse in a depth-
first manner.

7.3 Iterative parsing

We also tried an iterative parsing strategy, which
was successfully used in probabilistic HPSG pars-
ing (Ninomiya et al., 2005). The parsing strategy is
simple. The parser starts with a very low margin and
tries to find a successful parse. If the parser cannot
find a successful parse, then it increases the margin
by a certain step and tries to parse with the wider
margin.
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8 Experiments

We ran parsing experiments using the Penn Tree-
bank corpus, which is widely used for evaluating
parsing algorithms. The training set consists of sec-
tions 02-21. We used section 22 as the development
data, with which we tuned the feature set and param-
eters for parsing. The test set consists of section 23
and we report the performance of the parser on the
set.

We used the evalb script provided by Sekine and
Collins for evaluating the labeled recall/precision
(LR/LP) of the parser outputs 1. All the experiments
were carried out on a server having a 2.6 GHz AMD
Opteron CPU and 16GB memory.

8.1 Speed and Accuracy

First, we show the performance that achieved by de-
terministic parsing. Table 4 shows the results. We
parsed all the sentences in section 23 using gold-
standard part-of-speech (POS) tags. The trade-off
between precision and recall can be controlled by
changing the threshold for recognizing chunks. The
fifth row gives the performance achieved with the
default threshold (=0.5), where the precision is over
90% but the recall is low (75%). By lowering the
threshold, we can improve the recall up to around
81% with 2% loss of precision. The best f-score is
85.06.

The parsing speed is very high. The parser takes
only about 34 seconds to parse the entire section.
Since this section contains 2,416 sentences, the av-
erage time required for parsing one sentence is 14
msec. The parsing speed slightly dropped when we
used a lower threshold (0.1).

Table 5 shows the performance achieved when we
used the search algorithm described in Section 7.2.
We limited the maximum number of the nodes in
the search space to 100 because further increase of
the nodes had shown little improvement in parsing
accuracy.

The search algorithm significantly boosted the
precisions and recalls and achieved an f-score of
86.52 when the margin was 0.3. It should be noted
that we obtain no gain when we use a tight margin.
We need to consider phrases having low probabili-
ties in order for the search to work.

1We used the parameter file “COLLINS.prm”

Threshold LR LP F-score Time (sec)
0.9 47.61 96.43 63.75 30.6
0.8 58.06 94.29 71.87 32.4
0.7 65.33 92.82 76.69 33.2
0.6 70.89 91.67 79.95 33.2
0.5 75.38 90.71 82.34 34.5
0.4 79.11 89.87 84.15 34.2
0.3 80.95 88.80 84.69 33.9
0.2 82.59 87.69 85.06 33.6
0.1 82.32 85.02 83.65 46.9

Table 4: Parsing performance on section 23 (all sen-
tences, gold-standard POS tags) with the determin-
istic algorithm.

Margin LR LP F-score Time (sec)
0.0 75.65 90.81 82.54 41.2
0.1 79.63 90.16 84.57 74.4
0.2 82.70 89.57 86.00 94.8
0.3 84.60 88.53 86.52 110.2
0.4 84.91 86.99 85.94 116.3

Table 5: Parsing performance on section 23 (all sen-
tences, gold-standard POS tags) with the search al-
gorithm.

One of the advantages of our chunk parser is its
parsing speed. For comparison, we show the trade-
off between parsing time and performance in Collins
parser (Collins, 1999) and our chunk parser in Fig-
ure 6. Collins parser allows the user to change the
size of the beam in parsing. We used Model-2 be-
cause it gave better performance than Model-3 when
the beam size was smaller than 1000. As for the
chunk parser, we controlled the trade-off by chang-
ing the maximum number of nodes in the search.
The uncertainty margin for chunk recognition was
0.3. Figure 6 shows that Collins parser clearly out-
performs our chunk parser when the beam size is
large. However, the performance significantly drops
with a smaller beam size. The break-even point is at
around 200 sec (83 msec/sentence).

8.2 Comparison with previous work

Table 6 summarizes our parsing performance on sec-
tion 23 together with the results of previous studies.
In order to make the results directly comparable, we
produced POS tags as the input of our parsers by us-
ing a POS tagger (Tsuruoka and Tsujii, 2005) which
was trained on sections 0-18 in the WSJ corpus.

The table also shows the performance achieved
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Figure 6: Time vs F-score on section 23. The x-
axis represents the time required to parse the entire
section. The time required for making a hash table
in Collins parser is excluded.

LR LP F-score
Ratnaparkhi (1997) 86.3 87.5 86.9

Collins (1999) 88.1 88.3 88.2
Charniak (2000) 89.6 89.5 89.5

Kudo (2005) 89.3 89.6 89.4
Sang (2001) 78.7 82.3 80.5

Deterministic (tagger-POSs) 81.2 86.5 83.8
Deterministic (gold-POSs) 82.6 87.7 85.1

Search (tagger-POSs) 83.2 87.1 85.1
Search (gold-POSs) 84.6 88.5 86.5

Iterative Search (tagger-POSs) 85.0 86.8 85.9
Iterative Search (gold-POSs) 86.2 88.0 87.1

Table 6: Comparison with other work. Parsing per-
formance on section 23 (all sentences).

with the iterative parsing method presented in sec-
tion 7.3. Our chunk parser achieved an f-score of
83.8 with the deterministic parsing methods using
the POS-tagger tags. This f-score is better than that
achieved by the previous study on chunk parsing by
3.3 points (Tjong Kim Sang, 2001). The search al-
gorithms gave an additional 1.3 point improvement.
Finally, the iterative parsing method achieved an f-
score of 85.9.

Although our chunk parser showed considerably
better performance than the previous study on chunk
parsing, the performance is still significantly lower
than those achieved by state-of-the-art parsers.

9 Discussion

There is a number of possible improvements in our
chunk parser. We used a rule dictionary to reduce
the cost required for training and parsing. However,
the use of the rule dictionary makes the parser fail
to identify a correct phrase if the phrase is not con-
tained in the rule dictionary. Although we applied
some normalization techniques in order to allevi-
ate this problem, we have not completely solved the
problem. Figure 5 indicates that still we will face
unknown rules even when we have constructed the
rule dictionary using the whole training data (note
that the dotted line does not saturate).

Additional feature sets for the maximum entropy
classifiers could improve the performance. The
bottom-up parsing strategy allows us to use infor-
mation about sub-trees that have already been con-
structed. We thus do not need to restrict ourselves
to use only head-information of the partial parses.
Since many researchers have reported that informa-
tion on partial parse trees plays an important role
for achieving high performance (Bod, 1992; Collins
and Duffy, 2002; Kudo et al., 2005), we expect that
additional features will improve the performance of
chunk parsing.

Also, the methods for searching the best parse
presented in sections 7.2 and 7.3 have much room
for improvement. the search method does not have
the device to avoid repetitive computations on the
same nonterminal sequence in parsing. A chart-like
structure which effectively stores the partial parse
results could enable the parser to explore a broader
search space and produce better parses.

Our chunk parser exhibited a considerable im-
provement in parsing accuracy over the previous
study on chunk parsing. However, the reason is not
completely clear. We believe that the sliding win-
dow approach, which enabled us to exploit a richer
set of features than the so-called IOB approach,
was the main contributer of the better performance.
However, the combination of the IOB approach and
a state-of-the-art machine learning algorithm such
as support vector machines could produce a simi-
lar level of performance. In our preliminary experi-
ments, the IOB tagging method with maximum en-
tropy markov models has not yet achieved a compa-
rable performance to the sliding window method.
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10 Conclusion

In this paper we have shown that chunk parsing
can perform significantly better than previously re-
ported by using a simple sliding-window method
and maximum entropy classifiers in each level of
chunking. Experimental results on the Penn Tree-
bank corpus show that our chunk parser can give
high-precision parsing outputs with very high speed
(14 msec/sentence). We also show that searching
can improve the performance and the f-score reaches
85.9.

Although there is still a large gap between the
accuracy of our chunk parser and the state-of-the-
art, our parser can produce better f-scores than a
widely-used parser when the parsing speed is really
needed. This could open up the possibility of using
full-parsing for large-scale information extraction.
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Abstract

Ordinary classification techniques can
drive a conceptually simple constituent
parser that achieves near state-of-the-art
accuracy on standard test sets. Here we
present such a parser, which avoids some
of the limitations of other discriminative
parsers. In particular, it does not place
any restrictions upon which types of fea-
tures are allowed. We also present sev-
eral innovations for faster training of dis-
criminative parsers: we show how train-
ing can be parallelized, how examples
can be generated prior to training with-
out a working parser, and how indepen-
dently trained sub-classifiers that have
never done any parsing can be effectively
combined into a working parser. Finally,
we propose a new figure-of-merit for best-
first parsing with confidence-rated infer-
ences. Our implementation is freely avail-
able at: http://cs.nyu.edu/˜turian/
software/parser/

1 Introduction

Discriminative machine learning methods have im-
proved accuracy on many NLP tasks, such as POS-
tagging (Toutanova et al., 2003), machine translation
(Och & Ney, 2002), and relation extraction (Zhao &
Grishman, 2005). There are strong reasons to believe
the same would be true of parsing. However, only
limited advances have been made thus far, perhaps

due to various limitations of extant discriminative
parsers. In this paper, we present some innovations
aimed at reducing or eliminating some of these lim-
itations, specifically for the task of constituent pars-
ing:

• We show how constituent parsing can be per-
formed using standard classification techniques.
• Classifiers for different non-terminal labels can be

induced independently and hence training can be
parallelized.
• The parser can use arbitrary information to evalu-

ate candidate constituency inferences.
• Arbitrary confidence scores can be aggregated in

a principled manner, which allows beam search.

In Section 2 we describe our approach to parsing. In
Section 3 we present experimental results.

The following terms will help to explain our work.
A span is a range over contiguous words in the in-
put sentence. Spans cross if they overlap but nei-
ther contains the other. An item (or constituent) is
a (span, label) pair. A state is a set of parse items,
none of which may cross. A parse inference is a pair
(S , i), given by the current state S and an item i to be
added to it. A parse path (or history) is a sequence
of parse inferences over some input sentence (Klein
& Manning, 2001). An item ordering (ordering, for
short) constrains the order in which items may be in-
ferred. In particular, if we prescribe a complete item
ordering, the parser is deterministic (Marcus, 1980)
and each state corresponds to a unique parse path.
For some input sentence and gold-standard parse, a
state is correct if the parser can infer zero or more
additional items to obtain the gold-standard parse. A
parse path is correct if it leads to a correct state. An
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inference is correct if adding its item to its state is
correct.

2 Parsing by Classification

Recall that with typical probabilistic parsers, our
goal is to output the parse P̂ with the highest like-
lihood for the given input sentence x:

P̂ = arg max
P∈P(x)

Pr(P) (1)

= arg max
P∈P(x)

∏

I∈P

Pr(I) (2)

or, equivalently,

= arg max
P∈P(x)

∑

I∈P

log(Pr(I)) (3)

where each I is a constituency inference in the parse
path P.
In this work, we explore a generalization in which

each inference I is assigned a real-valued confidence
score Q(I) and individual confidences are aggre-
gated using some function A, which need not be a
sum or product:

P̂ = arg max
P∈P(x)

A
I∈P

Q(I) (4)

In Section 2.1 we describe how we induce scoring
function Q(I). In Section 2.2 we discuss the aggre-
gation function A. In Section 2.3 we describe the
method used to restrict the size of the search space
over P(x).

2.1 Learning the Scoring Function Q(I)

During training, our goal is to induce the scoring
function Q, which assigns a real-valued confidence
score Q(I) to each candidate inference I (Equa-
tion 4). We treat this as a classification task: If infer-
ence I is correct, we would like Q(I) to be a positive
value, and if inference I is incorrect, we would like
Q(I) to be a negative value.

Training discriminative parsers can be computa-
tionally very expensive. Instead of having a single
classifier score every inference, we parallelize train-
ing by inducing 26 sub-classifiers, one for each con-
stituent label λ in the Penn Treebank (Taylor, Mar-
cus, & Santorini, 2003): Q(Iλ) = Qλ(Iλ), where
Qλ is the λ-classifier and Iλ is an inference that in-
fers a constituent with label λ. For example, the VP-
classifier QVP would score the VP-inference in Fig-
ure 1, preferably assigning it a positive confidence.

Figure 1 A candidate VP-inference, with head-
children annotated using the rules given in (Collins,
1999).

VP (was)

NP (timing) VBD / was ADJP (perfect)

DT / The NN / timing JJ / perfect

Each λ-classifier is independently trained on training
set Eλ, where each example eλ ∈ Eλ is a tuple (Iλ, y),
Iλ is a candidate λ-inference, and y ∈ {±1}. y = +1 if
Iλ is a correct inference and −1 otherwise. This ap-
proach differs from that of Yamada and Matsumoto
(2003) and Sagae and Lavie (2005), who parallelize
according to the POS tag of one of the child items.

2.1.1 Generating Training Examples

Our method of generating training examples does
not require a working parser, and can be run prior to
any training. It is similar to the method used in the
literature by deterministic parsers (Yamada & Mat-
sumoto, 2003; Sagae & Lavie, 2005) with one ex-
ception: Depending upon the order constituents are
inferred, there may be multiple bottom-up paths that
lead to the same final parse, so to generate training
examples we choose a single random path that leads
to the gold-standard parse tree.1 The training ex-
amples correspond to all candidate inferences con-
sidered in every state along this path, nearly all of
which are incorrect inferences (with y = −1). For
instance, only 4.4% of candidate NP-inferences are
correct.

2.1.2 Training Algorithm

During training, for each label λ we induce scor-
ing function Qλ to minimize the loss over training
examples Eλ:

Qλ = arg min
Q′
λ

∑

(Iλ,y)∈Eλ

L(y · Q′λ(Iλ)) (5)

1 The particular training tree paths used in our experiments are
included in the aforementioned implementation so that our
results can be replicated under the same experimental condi-
tions.
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where y · Qλ(Iλ) is the margin of example (Iλ, y).
Hence, the learning task is to maximize the margins
of the training examples, i.e. induce scoring function
Qλ such that it classifies correct inferences with pos-
itive confidence and incorrect inferences with nega-
tive confidence. In our work, we minimized the lo-
gistic loss:

L(z) = log(1 + exp(−z)) (6)

i.e. the negative log-likelihood of the training sam-
ple.

Our classifiers are ensembles of decisions trees,
which we boost (Schapire & Singer, 1999) to min-
imize the above loss using the update equations
given in Collins, Schapire, and Singer (2002). More
specifically, classifier QT

λ
is an ensemble comprising

decision trees q1
λ
, . . . , qT

λ
, where:

QT
λ (Iλ) =

T
∑

t=1

qt
λ(Iλ) (7)

At iteration t, decision tree qt
λ

is grown, its leaves
are confidence-rated, and it is added to the ensemble.
The classifier for each constituent label is trained in-
dependently, so we henceforth omit λ subscripts.

An example (I, y) is assigned weight wt(I, y):2

wt(I, y) =
1

1 + exp(y · Qt−1(I))
(8)

The total weight of y-value examples that fall in leaf
f is W t

f ,y:

W t
f ,y =

∑

(I,y′)∈E
y′=y, I∈ f

wt(I, y) (9)

and this leaf has loss Zt
f :

Zt
f = 2 ·

√

W t
f ,+ ·W

t
f ,− (10)

Growing the decision tree: The loss of the entire
decision tree qt is

Z(qt) =
∑

leaf f∈qt

Zt
f (11)

2 If we were to replace this equation with wt(I, y) =

exp(y·Qt−1(I))−1, but leave the remainder of the algorithm un-
changed, this algorithm would be confidence-rated AdaBoost
(Schapire & Singer, 1999), minimizing the exponential loss
L(z) = exp(−z). In preliminary experiments, however, we
found that the logistic loss provided superior generalization
accuracy.

We will use Zt as a shorthand for Z(qt). When grow-
ing the decision tree, we greedily choose node splits
to minimize this Z (Kearns & Mansour, 1999). In
particular, the loss reduction of splitting leaf f us-
ing feature φ into two children, f ∧ φ and f ∧ ¬φ, is
∆Zt

f (φ):

∆Zt
f (φ) = Zt

f − (Zt
f∧φ + Zt

f∧¬φ) (12)

To split node f , we choose the φ̂ that reduces loss
the most:

φ̂ = arg max
φ∈Φ

∆Zt
f (φ) (13)

Confidence-rating the leaves: Each leaf f is
confidence-rated as κtf :

κtf =
1
2
· log

W t
f ,+ + ε

W t
f ,− + ε

(14)

Equation 14 is smoothed by the ε term (Schapire
& Singer, 1999) to prevent numerical instability in
the case that either W t

f ,+ or W t
f ,− is 0. In our ex-

periments, we used ε = 10−8. Although our exam-
ple weights are unnormalized, so far we’ve found
no benefit from scaling ε as Collins and Koo (2005)
suggest. All inferences that fall in a particular leaf
node are assigned the same confidence: if inference
I falls in leaf node f in the tth decision tree, then
qt(I) = κtf .

2.1.3 Calibrating the Sub-Classifiers

An important concern is when to stop growing the
decision tree. We propose the minimum reduction
in loss (MRL) stopping criterion: During training,
there is a value Θt at iteration t which serves as a
threshold on the minimum reduction in loss for leaf
splits. If there is no splitting feature for leaf f that
reduces loss by at least Θt then f is not split. For-
mally, leaf f will not be bisected during iteration t if
maxφ∈Φ ∆Zt

f (φ) < Θ
t. The MRL stopping criterion

is essentially `0 regularization:Θt corresponds to the
`0 penalty parameter and each feature with non-zero
confidence incurs a penalty of Θt, so to outweigh the
penalty each split must reduce loss by at least Θt.
Θt decreases monotonically during training at

the slowest rate possible that still allows train-
ing to proceed. We start by initializing Θ1 to ∞,
and at the beginning of iteration t we decrease Θt

only if the root node ∅ of the decision tree can-
not be split. Otherwise, Θt is set to Θt−1. Formally,
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Θt = min(Θt−1,maxφ∈Φ ∆Zt
∅
(φ)). In this manner, the

decision trees are induced in order of decreasing Θt.

During training, the constituent classifiers Qλ
never do any parsing per se, and they train at dif-
ferent rates: If λ , λ′, then Θt

λ
isn’t necessarily

equal to Θt
λ′

. We calibrate the different classifiers by
picking some meta-parameter Θ̂ and insisting that
the sub-classifiers comprised by a particular parser
have all reached some fixed Θ in training. Given Θ̂,
the constituent classifier for label λ is Qt

λ
, where

Θt
λ
≥ Θ̂ > Θt+1

λ
. To obtain the final parser, we

cross-validate Θ̂, picking the value whose set of con-
stituent classifiers maximizes accuracy on a devel-
opment set.

2.1.4 Types of Features used by the Scoring
Function

Our parser operates bottom-up. Let the frontier of
a state be the top-most items (i.e. the items with no
parents). The children of a candidate inference are
those frontier items below the item to be inferred, the
left context items are those frontier items to the left
of the children, and the right context items are those
frontier items to the right of the children. For exam-
ple, in the candidate VP-inference shown in Figure 1,
the frontier comprises the NP, VBD, and ADJP items,
the VBD and ADJP items are the children of the VP-
inference (the VBD is its head child), the NP is the left
context item, and there are no right context items.

The design of some parsers in the literature re-
stricts the kinds of features that can be usefully and
efficiently evaluated. Our scoring function and pars-
ing algorithm have no such limitations. Q can, in
principle, use arbitrary information from the history
to evaluate constituent inferences. Although some of
our feature types are based on prior work (Collins,
1999; Klein & Manning, 2003; Bikel, 2004), we
note that our scoring function uses more history in-
formation than typical parsers.

All features check whether an item has some
property; specifically, whether the item’s la-
bel/headtag/headword is a certain value. These fea-
tures perform binary tests on the state directly, un-
like Henderson (2003) which works with an inter-
mediate representation of the history. In our baseline
setup, feature set Φ contained five different feature
types, described in Table 1.

Table 2 Feature item groups.
• all children
• all non-head children
• all non-leftmost children
• all non-rightmost children
• all children left of the head
• all children right of the head
• head-child and all children left of the head
• head-child and all children right of the head

2.2 Aggregating Confidences

To get the cumulative score of a parse path P, we ap-
ply aggregatorA over the confidences Q(I) in Equa-
tion 4. Initially, we definedA in the customary fash-
ion as summing the loss of each inference’s confi-
dence:

P̂ = arg max
P∈P(x)















−
∑

I∈P

L (Q(I))















(15)

with the logistic loss L as defined in Equation 6. (We
negate the final sum because we want to minimize
the loss.) This definition of A is motivated by view-
ing L as a negative log-likelihood given by a logistic
function (Collins et al., 2002), and then using Equa-
tion 3. It is also inspired by the multiclass loss-based
decoding method of Schapire and Singer (1999).
With this additive aggregator, loss monotonically in-
creases as inferences are added, as in a PCFG-based
parser in which all productions decrease the cumu-
lative probability of the parse tree.

In preliminary experiments, this aggregator gave
disappointing results: precision increased slightly,
but recall dropped sharply. Exploratory data analy-
sis revealed that, because each inference incurs some
positive loss, the aggregator very cautiously builds
the smallest trees possible, thus harming recall. We
had more success by defining A to maximize the
minimum confidence. Essentially,

P̂ = arg max
P∈P(x)

min
I∈P

Q(I) (16)

Ties are broken according to the second lowest con-
fidence, then the third lowest, and so on.

2.3 Search

Given input sentence x, we choose the parse path P
in P(x) with the maximum aggregated score (Equa-
tion 4). Since it is computationally intractable to
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Table 1 Types of features.
• Child item features test if a particular child item has some property. E.g. does the item one right of the

head have headword “perfect”? (True in Figure 1)
• Context item features test if a particular context item has some property. E.g. does the first item of left

context have headtag NN? (True)
• Grandchild item features test if a particular grandchild item has some property. E.g. does the leftmost

child of the rightmost child item have label JJ? (True)
• Exists features test if a particular group of items contains an item with some property. E.g. does some

non-head child item have label ADJP? (True) Exists features select one of the groups of items specified in
Table 2. Alternately, they can select the terminals dominated by that group. E.g. is there some terminal
item dominated by non-rightmost children items that has headword “quux”? (False)

consider every possible sequence of inferences, we
use beam search to restrict the size of P(x). As
an additional guard against excessive computation,
search stopped if more than a fixed maximum num-
ber of states were popped from the agenda. As usual,
search also ended if the highest-priority state in the
agenda could not have a better aggregated score than
the best final parse found thus far.

3 Experiments

Following Taskar, Klein, Collins, Koller, and Man-
ning (2004), we trained and tested on ≤ 15 word sen-
tences in the English Penn Treebank (Taylor et al.,
2003), 10% of the entire treebank by word count.3

We used sections 02–21 (9753 sentences) for train-
ing, section 24 (321 sentences) for development,
and section 23 (603 sentences) for testing, prepro-
cessed as per Table 3. We evaluated our parser us-
ing the standard PARSEVAL measures (Black et
al., 1991): labelled precision, recall, and F-measure
(LPRC, LRCL, and LFMS, respectively), which are
computed based on the number of constituents in the
parser’s output that match those in the gold-standard
parse. We tested whether the observed differences in
PARSEVAL measures are significant at p = 0.05 us-
ing a stratified shuffling test (Cohen, 1995, Section
5.3.2) with one million trials.4

As mentioned in Section 1, the parser cannot in-
fer any item that crosses an item already in the state.

3 There was insufficient time before deadline to train on all
sentences.

4 The shuffling test we used was originally implemented
by Dan Bikel (http://www.cis.upenn.edu/˜dbikel/
software.html) and subsequently modified to compute p-
values for LFMS differences.

We placed three additional candidacy restrictions
on inferences: (a) Items must be inferred under the
bottom-up item ordering; (b) To ensure the parser
does not enter an infinite loop, no two items in a state
can have both the same span and the same label;
(c) An item can have no more than K = 5 children.
(Only 0.24% of non-terminals in the preprocessed
development set have more than five children.) The
number of candidate inferences at each state, as well
as the number of training examples generated by the
algorithm in Section 2.1.1, is proportional to K. In
our experiment, there were roughly |Eλ| ≈ 1.7 mil-
lion training examples for each classifier.

3.1 Baseline

In the baseline setting, context item features (Sec-
tion 2.1.4) could refer to the two nearest items of
context in each direction. The parser used a beam
width of 1000, and was terminated in the rare event
that more than 10,000 states were popped from the
agenda. Figure 2 shows the accuracy of the base-
line on the development set as training progresses.
Cross-validating the choice of Θ̂ against the LFMS
(Section 2.1.3) suggested an optimum of Θ̂ = 1.42.
At this Θ̂, there were a total of 9297 decision tree
splits in the parser (summed over all constituent
classifiers), LFMS = 87.16, LRCL = 86.32, and
LPRC = 88.02.

3.2 Beam Width

To determine the effect of the beam width on the
accuracy, we evaluated the baseline on the devel-
opment set using a beam width of 1, i.e. parsing
entirely greedily (Wong & Wu, 1999; Kalt, 2004;
Sagae & Lavie, 2005). Table 4 compares the base-
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Table 3 Steps for preprocessing the data. Starred steps are performed only on input with tree structure.
1. * Strip functional tags and trace indices, and remove traces.
2. * Convert PRT to ADVP. (This convention was established by Magerman (1995).)
3. Remove quotation marks (i.e. terminal items tagged ‘‘ or ’’). (Bikel, 2004)
4. * Raise punctuation. (Bikel, 2004)
5. Remove outermost punctuation.a

6. * Remove unary projections to self (i.e. duplicate items with the same span and label).
7. POS tag the text using Ratnaparkhi (1996).
8. Lowercase headwords.
9. Replace any word observed fewer than 5 times in the (lower-cased) training sentences with UNK.

a As pointed out by an anonymous reviewer of Collins (2003), removing outermost punctuation may discard useful information.
It’s also worth noting that Collins and Roark (2004) saw a LFMS improvement of 0.8% over their baseline discriminative parser
after adding punctuation features, one of which encoded the sentence-final punctuation.

Figure 2 PARSEVAL scores of the baseline on the ≤ 15 words development set of the Penn Treebank. The
top x-axis shows accuracy as the minimum reduction in loss Θ̂ decreases. The bottom shows the correspond-
ing number of decision tree splits in the parser, summed over all classifiers.
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line results on the development set with a beam
width of 1 and a beam width of 1000.5 The wider
beam seems to improve the PARSEVAL scores of
the parser, although we were unable to detect a sta-
tistically significant improvement in LFMS on our
relatively small development set.

5 Using a beam width of 100,000 yielded output identical to
using a beam width of 1000.

3.3 Context Size

Table 5 compares the baseline to parsers that could
not examine as many context items. A significant
portion of the baseline’s accuracy is due to contex-
tual clues, as evidenced by the poor accuracy of the
no context run. However, we did not detect a signif-
icant difference between using one context item or
two.
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Table 4 PARSEVAL results on the ≤ 15 words
development set of the baseline, varying the beam
width. Also, the MRL that achieved this LFMS and
the total number of decision tree splits at this MRL.

Dev Dev Dev MRL #splits
LFMS LRCL LPRC Θ̂ total

Beam=1 86.36 86.20 86.53 2.03 7068
Baseline 87.16 86.32 88.02 1.42 9297

Table 5 PARSEVAL results on the ≤ 15 words de-
velopment set, given the amount of context avail-
able. is statistically significant. The score differences
between “context 0” and “context 1” are significant,
whereas the differences between “context 1” and the
baseline are not.

Dev Dev Dev MRL #splits

LFMS LRCL LPRC Θ̂ total

Context 0 75.15 75.28 75.03 3.38 3815
Context 1 86.93 85.78 88.12 2.45 5588
Baseline 87.16 86.32 88.02 1.42 9297

Table 6 PARSEVAL results of decision stumps on
the ≤ 15 words development set, through 8200
splits. The differences between the stumps run and
the baseline are statistically significant.

Dev Dev Dev MRL #splits

LFMS LRCL LPRC Θ̂ total

Stumps 85.72 84.65 86.82 2.39 5217
Baseline 87.07 86.05 88.12 1.92 7283

3.4 Decision Stumps

Our features are of relatively fine granularity. To test
if a less powerful machine could provide accuracy
comparable to the baseline, we trained a parser in
which we boosted decisions stumps, i.e. decision
trees of depth 1. Stumps are equivalent to learning
a linear discriminant over the atomic features. Since
the stumps run trained quite slowly, it only reached
8200 splits total. To ensure a fair comparison, in Ta-
ble 6 we chose the best baseline parser with at most
8200 splits. The LFMS of the stumps run on the de-
velopment set was 85.72%, significantly less accu-
rate than the baseline.

For example, Figure 3 shows a case where NP
classification better served by the informative con-
junction φ1 ∧ φ2 found by the decision trees. Given

Figure 3 An example of a decision (a) stump and
(b) tree for scoring NP-inferences. Each leaf’s value
is the confidence assigned to all inferences that fall
in this leaf. φ1 asks “does the first child have a de-
terminer headtag?”. φ2 asks “does the last child have
a noun label?”. NP classification is better served by
the informative conjunction φ1∧φ2 found by the de-
cision trees.

(a)

φ1
true f alse

+0.5 0

(b)

φ1
true f alse

φ2
true f alse

0

+1.0 -0.2

Table 7 PARSEVAL results of deterministic parsers
on the ≤ 15 words development set through 8700
splits. A shaded cell means that the difference be-
tween this value and that of the baseline is statisti-
cally significant. All differences between l2r and r2l
are significant.

Dev Dev Dev MRL #splits

LFMS LRCL LPRC Θ̂ total

l2r 83.61 82.71 84.54 3.37 2157
r2l 85.76 85.37 86.15 3.39 1881
Baseline 87.07 86.05 88.12 1.92 7283

the sentence “The man left”, at the initial state there
are six candidate NP-inferences, one for each span,
and “(NP The man)” is the only candidate inference
that is correct. φ1 is true for the correct inference and
two of the incorrect inferences (“(NP The)” and “(NP
The man left)”). φ1 ∧ φ2, on the other hand, is true
only for the correct inference, and so it is better at
discriminating NPs over this sample.

3.5 Deterministic Parsing

Our baseline parser simulates a non-deterministic
machine, as at any state there may be several correct
decisions. We trained deterministic variations of the
parser, for which we imposed strict left-to-right (l2r)
and right-to-left (r2l) item orderings. For these vari-
ations we generated training examples using the cor-
responding unique path to each gold-standard train-
ing tree. The r2l run reached only 8700 splits to-
tal, so in Table 7 we chose the best baseline and l2r
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Table 8 PARSEVAL results of the full vocabulary
parser on the ≤ 15 words development set. The dif-
ferences between the full vocabulary run and the
baseline are not statistically significant.

Dev Dev Dev MRL #splits

LFMS LRCL LPRC Θ total

Baseline 87.16 86.32 88.02 1.42 9297
Full vocab 87.50 86.85 88.15 1.27 10711

parser with at most 8700 splits.
r2l parsing is significantly more accurate than l2r.

The reason is that the deterministic runs (l2r and r2l)
must avoid prematurely inferring items that come
later in the item ordering. This puts the l2r parser
in a tough spot. If it makes far-right decisions, it’s
more likely to prevent correct subsequent decisions
that are earlier in the l2r ordering, i.e. to the left.
But if it makes far-left decisions, then it goes against
the right-branching tendency of English sentences.
In contrast, the r2l parser is more likely to be correct
when it infers far-right constituents.

We also observed that the accuracy of the de-
terministic parsers dropped sharply as training pro-
gressed (See Figure 4). This behavior was unex-
pected, as the accuracy curve levelled off in every
other experiment. In fact, the accuracy of the deter-
ministic parsers fell even when parsing the training
data. To explain this behavior, we examined the mar-
gin distributions of the r2l NP-classifier (Figure 5).
As training progressed, the NP-classifier was able to
reduce loss by driving up the margins of the incor-
rect training examples, at the expense of incorrectly
classifying a slightly increased number of correct
training examples. However, this is detrimental to
parsing accuracy. The more correct inferences with
negative confidence, the less likely it is at some state
that the highest confidence inference is correct. This
effect is particularly pronounced in the deterministic
setting, where there is only one correct inference per
state.

3.6 Full Vocabulary

As in traditional parsers, the baseline was smoothed
by replacing any word that occurs fewer than five
times in the training data with the special token UNK
(Table 3.9). Table 8 compares the baseline to a full
vocabulary run, in which the vocabulary contained

all words observed in the training data. As evidenced
by the results therein, controlling for lexical sparsity
did not significantly improve accuracy in our setting.
In fact, the full vocabulary run is slightly more ac-
curate than the baseline on the development set, al-
though this difference was not statistically signifi-
cant. This was a late-breaking result, and we used
the full vocabulary condition as our final parser for
parsing the test set.

3.7 Test Set Results

Table 9 shows the results of our best parser on the
≤ 15 words test set, as well as the accuracy reported
for a recent discriminative parser (Taskar et al.,
2004) and scores we obtained by training and test-
ing the parsers of Charniak (2000) and Bikel (2004)
on the same data. Bikel (2004) is a “clean room”
reimplementation of the Collins parser (Collins,
1999) with comparable accuracy. Both Charniak
(2000) and Bikel (2004) were trained using the gold-
standard tags, as this produced higher accuracy on
the development set than using Ratnaparkhi (1996)’s
tags.

3.8 Exploratory Data Analysis

To gain a better understanding of the weaknesses of
our parser, we examined a sample of 50 develop-
ment sentences that the full vocabulary parser did
not get entirely correct. Besides noise and cases of
genuine ambiguity, the following list outlines all er-
ror types that occurred in more than five sentences,
in roughly decreasing order of frequency. (Note that
there is some overlap between these groups.)

• ADVPs and ADJPs A disproportionate amount of
the parser’s error was due to ADJPs and ADVPs.
Out of the 12.5% total error of the parser on the
development set, an absolute 1.0% was due to
ADVPs, and 0.9% due to ADJPs. The parser had
LFMS = 78.9%,LPRC = 82.5%,LRCL = 75.6%
on ADVPs, and LFMS = 68.0%,LPRC =

71.2%,LRCL = 65.0% on ADJPs.
These constructions can sometimes involve tricky
attachment decisions. For example, in the frag-
ment “to get fat in times of crisis”, the parser’s
output was “(VP to (VP get (ADJP fat (PP in (NP
(NP times) (PP of (NP crisis)))))))” instead of the
correct construction “(VP to (VP get (ADJP fat) (PP
in (NP (NP times) (PP of (NP crisis))))))”.

148



Figure 4 LFMS of the baseline and the deterministic runs on the ≤ 15 words development set of the Penn
Treebank. The x-axis shows the LFMS as training progresses and the number of decision tree splits in-
creases.
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Figure 5 The margin distributions of the r2l NP-classifier, early in training and late in training, (a) over the
incorrect training examples and (b) over the correct training examples.
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The amount of noise present in ADJP and ADVP
annotations in the PTB is unusually high. Annota-
tion of ADJP and ADVP unary projections is partic-
ularly inconsistent. For example, the development
set contains the sentence “The dollar was trading
sharply lower in Tokyo .”, with “sharply lower”

bracketed as “(ADVP (ADVP sharply) lower)”.
“sharply lower” appears 16 times in the complete
training section, every time bracketed as “(ADVP
sharply lower)”, and “sharply higher” 10 times,
always as “(ADVP sharply higher)”. Because of the
high number of negative examples, the classifiers’
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Table 9 PARSEVAL results of on the ≤ 15 words test set of various parsers in the literature. The differ-
ences between the full vocabulary run and Bikel or Charniak are significant. Taskar et al. (2004)’s output
was unavailable for significance testing, but presumably its differences from the full vocab parser are also
significant.

Test Test Test Dev Dev Dev
LFMS LRCL LPRC LFMS LRCL LPRC

Full vocab 87.13 86.47 87.80 87.50 86.85 88.15
Bikel (2004) 88.85 88.31 89.39 86.82 86.43 87.22
Taskar et al. (2004) 89.12 89.10 89.14 89.98 90.22 89.74
Charniak (2000) 90.09 90.01 90.17 89.50 89.69 89.32

bias is to cope with the noise by favoring negative
confidences predictions for ambiguous ADJP and
ADVP decisions, hence their abysmal labelled re-
call. One potential solution is the weight-sharing
strategy described in Section 3.5.
• Tagging Errors Many of the parser’s errors

were due to poor tagging. Preprocessing sentence
“Would service be voluntary or compulsory ?”
gives “would/MD service/VB be/VB voluntary/JJ
or/CC UNK/JJ” and, as a result, the parser brack-
ets “service . . . compulsory” as a VP instead of
correctly bracketing “service” as an NP. We also
found that the tagger we used has difficulties with
completely capitalized words, and tends to tag
them NNP. By giving the parser access to the same
features used by taggers, especially rich lexical
features (Toutanova et al., 2003), the parser might
learn to compensate for tagging errors.
• Attachment decisions The parser does not de-

tect affinities between certain word pairs, so it has
difficulties with bilexical dependency decisions.
In principle, bilexical dependencies can be rep-
resented as conjunctions of feature given in Sec-
tion 2.1.4. Given more training data, the parser
might learn these affinities.

4 Conclusions

In this work, we presented a near state-of-the-
art approach to constituency parsing which over-
comes some of the limitations of other discrimina-
tive parsers. Like Yamada and Matsumoto (2003)
and Sagae and Lavie (2005), our parser is driven by
classifiers. Even though these classifiers themselves
never do any parsing during training, they can be
combined into an effective parser. We also presented

a beam search method under the objective function
of maximizing the minimum confidence.

To ensure efficiency, some discriminative parsers
place stringent requirements on which types of fea-
tures are permitted. Our approach requires no such
restrictions and our scoring function can, in prin-
ciple, use arbitrary information from the history to
evaluate constituent inferences. Even though our
features may be of too fine granularity to dis-
criminate through linear combination, discrimina-
tively trained decisions trees determine useful fea-
ture combinations automatically, so adding new fea-
tures requires minimal human effort.

Training discriminative parsers is notoriously
slow, especially if it requires generating examples by
repeatedly parsing the treebank (Collins & Roark,
2004; Taskar et al., 2004). Although training time
is still a concern in our setup, the situation is ame-
liorated by generating training examples in advance
and inducing one-vs-all classifiers in parallel, a tech-
nique similar in spirit to the POS-tag parallelization
in Yamada and Matsumoto (2003) and Sagae and
Lavie (2005).

This parser serves as a proof-of-concept, in that
we have not fully exploited the possibilities of en-
gineering intricate features or trying more complex
search methods. Its flexibility offers many oppor-
tunities for improvement, which we leave to future
work.
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Abstract 

We present a strictly lexical parsing 
model where all the parameters are based 
on the words. This model does not rely 
on part-of-speech tags or grammatical 
categories. It maximizes the conditional 
probability of the parse tree given the 
sentence. This is in contrast with most 
previous models that compute the joint 
probability of the parse tree and the sen-
tence. Although the maximization of 
joint and conditional probabilities are 
theoretically equivalent, the conditional 
model allows us to use distributional 
word similarity to generalize the ob-
served frequency counts in the training 
corpus. Our experiments with the Chi-
nese Treebank show that the accuracy of 
the conditional model is 13.6% higher 
than the joint model and that the strictly 
lexicalized conditional model outper-
forms the corresponding unlexicalized 
model based on part-of-speech tags. 

1 Introduction 

There has been a great deal of progress in statisti-
cal parsing in the past decade (Collins, 1996; 
Collins, 1997; Chaniak, 2000). A common charac-
teristic of these parsers is their use of lexicalized 
statistics. However, it was discovered recently that 
bi-lexical statistics (parameters that involve two 
words) actually played much smaller role than 
previously believed.  It was found in (Gildea, 

2001) that the removal of bi-lexical statistics from 
a state-of-the-art PCFG parser resulted very small 
change in the output. Bikel (2004) observed that 
the bi-lexical statistics accounted for only 1.49% 
of the bigram statistics used by the parser. When 
considering only bigram statistics involved in the 
highest probability parse, this percentage becomes 
28.8%. However, even when the bi-lexical statis-
tics do get used, they are remarkably similar to 
their back-off values using part-of-speech tags. 
Therefore, the utility of bi-lexical statistics be-
comes rather questionable. Klein and Manning 
(2003) presented an unlexicalized parser that 
eliminated all lexicalized parameters. Its perform-
ance was close to the state-of-the-art lexicalized 
parsers. 

We present a statistical dependency parser that 
represents the other end of spectrum where all 
statistical parameters are lexical and the parser 
does not require part-of-speech tags or grammati-
cal categories. We call this strictly lexicalized 
parsing. 

A part-of-speech lexicon has always been con-
sidered to be a necessary component in any natu-
ral language parser. This is true in early rule-based 
as well as modern statistical parsers and in de-
pendency parsers as well as constituency parsers. 
The need for part-of-speech tags arises from the 
sparseness of natural language data. They provide 
generalizations of words that are critical for pars-
ers to deal with the sparseness. Words belonging 
to the same part-of-speech are expected to have 
the same syntactic behavior. 

Instead of part-of-speech tags, we rely on dis-
tributional word similarities computed automati-
cally from a large unannotated text corpus. One of 
the benefits of strictly lexicalized parsing is that 
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the parser can be trained with a treebank that only 
contains the dependency relationships between 
words. The annotators do not need to annotate 
parts-of-speech or non-terminal symbols (they 
don’t even have to know about them), making the 
construction of the treebank easier.  

Strictly lexicalized parsing is especially benefi-
cial for languages such as Chinese, where parts-
of-speech are not as clearly defined as English. In 
Chinese, clear indicators of a word's part-of-
speech such as suffixes -ment, -ous or function 
words such as the, are largely absent. In fact, 
monolingual Chinese dictionaries that are mainly 
intended for native speakers almost never contain 
part-of-speech information. 

In the next section, we present a method for 
modeling the probabilities of dependency trees. 
Section 3 applies similarity-based smoothing to 
the probability model to deal with data sparseness. 
We then present experimental results with the 
Chinese Treebank in Section 4 and discuss related 
work in Section 5.  

2 A Probabilistic Dependency Model 

Let S be a sentence. The dependency structure T 
of S is a directed tree connecting the words in S. 
Each link in the tree represents a dependency rela-
tionship between two words, known as the head 
and the modifier. The direction of the link is from 
the head to the modifier. We add an artificial root 
node (⊥) at the beginning of each sentence and a 
dependency link from ⊥ to the head of the sen-
tence so that the head of the sentence can be 
treated in the same way as other words. Figure 1 
shows an example dependency tree. 

We denote a dependency link l by a triple (u, v, 
d), where u and v are the indices (u < v) of the 
words connected by l, and d specifies the direction 
of the link l. The value of d is either L or R. If d = 
L, v is the index of the head word; otherwise, u is 
the index of the head word.  

Dependency trees are typically assumed to be 
projective (without crossing arcs), which means 
that if there is an arc from h to m, h is an ancestor 
of all the words between h and m. Let F(S) be the 
set of possible directed, projective trees spanning 
on S. The parsing problem is to find  
 

( ) ( )STPSFT |maxarg ∈  
 
 Generative parsing models are usually defined 

recursively from top down, even though the de-
coders (parsers) for such models almost always 
take a bottom-up approach. The model proposed 
here is a bottom-up one. Like previous ap-
proaches, we decompose the generation of a parse 
tree into a sequence of steps and define the prob-
ability of each step.  The probability of the tree is 
simply the product of the probabilities of the steps 
involved in the generation process. This scheme 
requires that different sequences of steps must not 
lead to the same tree. We achieve this by defining 
a canonical ordering of the links in a dependency 
tree. Each generation step corresponds to the con-
struction of a dependency link in the canonical 
order. 

Given two dependency links l and l' with the 
heads being h and h' and the modifiers being m 
and m', respectively, the order between l and l' are 
determined as follows: 
• If h ≠ h' and there is a directed path from one 

(say h) to the other (say h’), then l’ precedes l. 
• If h ≠ h' and there does not exist a directed path 

between h and h’, the order between l and l’ is 
determined by the order of h and h’ in the sen-
tence (h precedes h’ ⇒ l precedes l’). 

• If h = h' and the modifiers m and m’ are on dif-
ferent sides of h, the link with modifier on the 
right precedes the other. 

• If h = h' and the modifiers m and m’ are on the 
same side of the head h, the link with its modi-
fier closer to h precedes the other one. 

 

Figure 1. An Example Dependency Tree. 
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For example, the canonical order of the links in 
the dependency tree in Figure 1 is: (1, 2, L), (5, 6, 
R), (8, 9, L), (7, 9, R), (5, 7, R), (4, 5, R), (3, 4, 
R), (2, 3, L), (0, 3, L). 

The generation process according to the ca-
nonical order is similar to the head outward gen-
eration process in (Collins, 1999), except that it is 
bottom-up whereas Collins’ models are top-down. 

Suppose the dependency tree T is constructed in 
steps G1, …, GN in the canonical order of the de-
pendency links, where N is the number of words 
in the sentence. We can compute the probability 
of T as follows: 
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Following (Klein and Manning, 2004), we re-
quire that the creation of a dependency link from 
head h to modifier m be preceded by placing a left 
STOP and a right STOP around the modifier m 
and ¬STOP between h and m. 

Let L
wE  (and R

wE ) denote the event that there 

are no more modifiers on the left (and right) of a 
word w. Suppose the dependency link created in 
the step i is (u, v, d).  If d = L, Gi is the conjunc-
tion of the four events: R

uE , L
uE , L

vE¬ and 
linkL(u, v). If d = R, Gi consists of four events: 

L
vE , R

vE , R
uE¬ and linkR(u, v).  

The event Gi is conditioned on 11,...,, −iGGS , 
which are the words in the sentence and a forest of 
trees constructed up to step i-1. Let L

wC  (and R
wC ) 

be the number of modifiers of w on its left (and 
right). We make the following independence as-
sumptions: 
• Whether there is any more modifier of w on 

the d side depends only on the number of 
modifiers already found on the d side of w. 
That is, d

wE  depends only on w and d
wC .  

• Whether there is a dependency link from a 
word h to another word m depends only on the 
words h and m and the number of modifiers of 
h between m and h. That is,  
o linkR(u,v) depends only on u, v, and R

uC . 

o linkL(u,v) depends only on u, v, and L
vC . 

Suppose Gi corresponds to a dependency link (u, 
v, L). The probability ( )11,...,,| −ii GGSGP  can be 
computed as: 
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The events R

wE  and L
wE  correspond to the 

STOP events in (Collins, 1999) and (Klein and 
Manning, 2004). They are crucial for modeling 
the number of dependents. Without them, the 
parse trees often contain some ‘obvious’ errors, 
such as determiners taking arguments, or preposi-
tions having arguments on their left (instead of 
right). 

Our model requires three types of parameters: 
• ( )d

w
d
w CwEP ,| , where w is a word, d is a di-

rection (left or right). This is the probability of 
a STOP after taking d

wC  modifiers on the d 
side. 

• ( )( )R
uR CvuvulinkP ,,|,  is the probability of v 

being the ( 1+R
uC )’th modifier of u on the 

right. 
• ( )( )L

vL CvuvulinkP ,,|,  is the probability of u 

being the ( 1+L
vC )’th modifier of v on the 

left. 
 
The Maximum Likelihood estimations of these 

parameters can be obtained from the frequency 
counts in the training corpus: 
• C(w, c, d): the frequency count of  w with c 

modifiers on the d side. 
• C(u, v, c, d): If d = L, this is the frequency 

count words u and v co-occurring in a sen-
tence and v has c modifiers between itself and 
u. If d = R, this is the frequency count words u 
and v co-occurring in a sentence and u has c 
modifiers between itself and v. 

• K(u, v, c, d): similar to C(u, v, c, d) with an 
additional constraint that linkd(u, v) is true. 
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where  c = R
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where  c = L
vC . 

We compute the probability of the tree condi-
tioned on the words. All parameters in our model 
are conditional probabilities where the left sides of 
the conditioning bar are binary variables. In con-
trast, most previous approaches compute joint 
probability of the tree and the words in the tree. 
Many of their model parameters consist of the 
probability of a word in a given context. 

We use a dynamic programming algorithm 
similar to chart parsing as the decoder for this 
model. The algorithm builds a packed parse forest 
from bottom up in the canonical order of the 
parser trees. It attaches all the right children be-
fore attaching the left ones to maintain the canoni-
cal order as required by our model.  

3 Similarity-based Smoothing 

3.1 Distributional Word Similarity 

Words that tend to appear in the same contexts 
tend to have similar meanings. This is known as 
the Distributional Hypothesis in linguistics (Harris, 
1968). For example, the words test and exam are 
similar because both of them follow verbs such as 
administer, cancel, cheat on, conduct, ... and both of 
them can be preceded by adjectives such as aca-
demic, comprehensive, diagnostic, difficult, ... 

Many methods have been proposed to compute 
distributional similarity between words (Hindle, 
1990; Pereira et al., 1993; Grefenstette, 1994; Lin, 
1998). Almost all of the methods represent a word 
by a feature vector where each feature corre-
sponds to a type of context in which the word ap-
peared. They differ in how the feature vectors are 
constructed and how the similarity between two 
feature vectors is computed.   

We define the features of a word w to be the set 
of words that occurred within a small context win-
dow of w in a large corpus. The context window 
of an instance of w consists of the closest non-
stop-word on each side of w and the stop-words in 
between. In our experiments, the set of stop-words 
are defined as the top 100 most frequent words in 
the corpus. The value of a feature w' is defined as 
the point-wise mutual information between the w' 
and w: 

( ) ( )
( ) ( )
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where P(w, w’) is the probability of w and w’ co-
occur in a context window. 

The similarity between two vectors is computed 
as the cosine of the angle between the vectors. 
The following are the top similar words for the 
word keystone obtained from the English Giga-
word Corpus: 

centrepiece 0.28, figment 0.27, fulcrum 0.21, culmi-
nation 0.20, albatross 0.19, bane 0.19, pariahs 0.18, 
lifeblood 0.18, crux 0.18, redoubling 0.17, apotheo-
sis 0.17, cornerstones 0.17, perpetuation 0.16, fore-
runners 0.16, shirking 0.16, cornerstone 0.16, 
birthright 0.15, hallmark 0.15, centerpiece 0.15, evi-
denced 0.15, germane 0.15, gist 0.14, reassessing 
0.14, engrossed 0.14, Thorn 0.14, biding 0.14, nar-
rowness 0.14, linchpin 0.14, enamored 0.14, formal-
ised 0.14, tenths 0.13, testament 0.13, certainties 
0.13, forerunner 0.13, re-evaluating 0.13, antithetical 
0.12, extinct 0.12, rarest 0.12, imperiled 0.12, remiss 
0.12, hindrance 0.12, detriment 0.12, prouder 0.12, 
upshot 0.12, cosponsor 0.12, hiccups 0.12, premised 
0.12, perversion 0.12, destabilisation 0.12, prefaced 
0.11, …… 

3.2 Similarity-based Smoothing 

The parameters in our model consist of condi-
tional probabilities P(E|C) where E is the binary 
variable linkd(u, v) or d

wE  and the context C is 

either [ ]d
wCw,  or [ ]d

wCvu ,, , which involves one 
or two words in the input sentence. Due to the 
sparseness of natural language data, the contexts 
observed in the training data only covers a tiny 
fraction of the contexts whose probability distri-
bution are needed during parsing. The standard 
approach is to back off the probability to word 
classes (such as part-of-speech tags). We have 
taken a different approach. We search in the train-
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ing data to find a set of similar contexts to C and 
estimate the probability of E based on its prob-
abilities in the similar contexts that are observed 
in the training corpus. 

Similarity-based smoothing was used in (Dagan 
et al., 1999) to estimate word co-occurrence prob-
abilities. Their method performed almost 40% 
better than the more commonly used back-off 
method. Unfortunately, similarity-based smooth-
ing has not been successfully applied to statistical 
parsing up to now.  

In (Dagan et al., 1999), the bigram probability 
P(w2|w1) is computed as the weighted average of 
the conditional probability of w2 given similar 
words of w1. 
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where ( )11 ', wwsim  denotes the similarity (or an 
increasing function of the similarity) between w1 
and w’1, S(w1) denote the set of words that are 
most similar to w1 and norm(w1) is the normaliza-
tion factor ( ) ( )

( )
∑
∈

=
11'

111 ',
wSw

wwsimwnorm .   

The underlying assumption of this smoothing 
scheme is that a word is more likely to occur after 
w1 if it tends to occur after similar words of w1.  

We make a similar assumption: the probability 
P(E|C) of event E given the context C is computed 
as the weight average of P(E|C’) where C’ is a 
similar context of C and is attested in the training 
corpus:  
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where S(C) is the set of top-K most similar con-
texts of C (in the experiments reported in this pa-
per, K = 50); O is the set of contexts observed in 
the training corpus, sim(C,C’) is the similarity 
between two contexts  and  norm(C) is the nor-
malization factor.  

In our model, a context is either  [ ]d
wCw,  or 

[ ]d
wCvu ,, . Their similar contexts are defined as:  
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where S(w) is the set of top-K similar words of w 
(K = 50). 

Since all contexts used in our model contain at 
least one word, we compute the similarity be-
tween two contexts, sim(C, C’), as the geometric 
average of the similarities between corresponding 
words: 
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Similarity-smoothed probability is only neces-
sary when the frequency count of the context C in 
the training corpus is low. We therefore compute  

P(E | C) = α PMLE(E | C) + (1 – α) PSIM(E | C) 

where the smoothing factor 
5||
1||

+
+

=
C
Cα  and |C| is 

the frequency count of the context C in the train-
ing data. 

A difference between similarity-based smooth-
ing in (Dagan et al., 1999) and our approach is 
that our model only computes probability distribu-
tions of binary variables. Words only appear as 
parts of contexts on the right side of the condition-
ing bar. This has two important implications. 
Firstly, when a context contains two words, we 
are able to use the cross product of the similar 
words, whereas (Dagan et al., 1999) can only use 
the similar words of one of the words. This turns 
out to have significant impact on the performance 
(see Section 4).  

Secondly, in (Dagan et al., 1999), the distribu-
tion P(•|w’1) may itself be sparsely observed. 
When ( )12 '| wwPMLE  is 0, it is often due to data 
sparseness. Their smoothing scheme therefore 
tends to under-estimate the probability values. 
This problem is avoided in our approach. If a con-
text did not occur in the training data, we do not 
include it in the average. If it did occur, the 
Maximum Likelihood estimation is reasonably 
accurate even if the context only occurred a few 
times, since the entropy of the probability distri-
bution is upper-bounded by log 2. 

4 Experimental Results 

We experimented with our parser on the Chinese 
Treebank (CTB) 3.0.  We used the same data split 
as (Bikel, 2004): Sections 1-270 and 400-931 as 
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the training set, Sections 271-300 as testing and 
Sections 301-325 as the development set. The 
CTB contains constituency trees. We converted 
them to dependency trees using the same method 
and the head table as (Bikel, 2004).  Parsing Chi-
nese generally involve segmentation as a pre-
processing step. We used the gold standard seg-
mentation in the CTB.  

The distributional similarities between the Chi-
nese words are computed using the Chinese Gi-
gaword corpus. We did not segment the Chinese 
corpus when computing the word similarity.  

We measure the quality of the parser by the un-
directed accuracy, which is defined as the number 
of correct undirected dependency links divided by 
the total number of dependency links in the corpus 
(the treebank parse and the parser output always 
have the same number of links). The results are 
summarized in Table 1. It can be seen that the per-
formance of the parser is highly correlated with 
the length of the sentences. 
 
Max Sentence Length 10 15 20 40 
Undirected Accuracy 90.8 85.6 84.0 79.9 

Table 1. Evaluation Results on CTB 3.0 

 
We also experimented with several alternative 

models for dependency parsing. Table 2 summer-
izes the results of these models on the test corpus 
with sentences up to 40 words long. 

One of the characteristics of our parser is that it 
uses the similar words of both the head and the 
modifier for smoothing. The similarity-based 
smoothing method in (Dagan et al., 1999) uses the 
similar words of one of the words in a bigram. We 
can change the definition of similar context as 
follows so that only one word in a similar context 
of C may be different from a word in C (see 
Model (b) in Table 2): 
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where w is either v or u depending on whether d is 
L or R. This change led to a 2.2% drop in accuracy 
(compared with Model (a) in Table 2), which we 
attribute to the fact that many contexts do not have 
similar contexts in the training corpus.  

Since most previous parsing models maximize 
the joint probability of the parse tree and the sen-
tence P(T, S) instead of P(T | S),  we also imple-
mented a joint model (see Model (c) in Table 2): 
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where hi and mi are the head and the modifier of 
the i'th dependency link. The probability 
( )i

i

d
hii ChmP ,|  is smoothed by averaging the 

probabilities ( )i

i

d
hii ChmP ,'| , where h’i is a similar 

word of hi, as in (Dagan et al., 1999). The result 
was a dramatic decrease in accuracy from the con-
ditional model’s 79.9%. to 66.3%.  

 Our use of distributional word similarity can 
be viewed as assigning soft clusters to words. In 
contrast, parts-of-speech can be viewed as hard 
clusters of words. We can modify both the condi-
tional and joint models to use part-of-speech tags, 
instead of words. Since there are only a small 
number of tags, the modified models used MLE  
without any smoothing except using a small con-
stant as the probability of unseen events. Without 
smoothing, maximizing the conditional model is 
equivalent to maximizing the joint model. The 
accuracy of the unlexicalized models (see Model 
(d) and Model (e) in Table 2) is 71.1% which is 
considerably lower than the strictly lexicalized 
conditional model, but higher than the strictly 
lexicalized joint model. This demonstrated that 
soft clusters obtained through distributional word 
similarity perform better than the part-of-speech 
tags when used appropriately. 
 

Models Accuracy 

(a) Strictly lexicalized conditional 
model 79.9 

(b)   At most one word is different in 
a similar context 77.7 

(c)  Strictly lexicalized  joint model 66.3 

(d)  Unlexicalized conditional mod-
els 71.1 

(e)  Unlexicalized joint models 71.1 

Table 2. Performance of Alternative Models 

 

157



5 Related Work  

Previous parsing models (e.g., Collins, 1997; 
Charniak, 2000) maximize the joint probability 
P(S, T) of a sentence S and its parse tree T. We 
maximize the conditional probability P(T | S). Al-
though they are theoretically equivalent, the use of 
conditional model allows us to take advantage of 
similarity-based smoothing. 

Clark et al. (2002) also computes a conditional 
probability of dependency structures. While the 
probability space in our model consists of all pos-
sible non-projective dependency trees, their prob-
ability space is constrained to all the dependency 
structures that are allowed by a Combinatorial 
Category Grammar (CCG) and a category diction-
ary (lexicon). They therefore do not need the 
STOP markers in their model. Another major dif-
ference between our model and (Clark et al., 
2002) is that the parameters in our model consist 
exclusively of conditional probabilities of binary 
variables. 

Ratnaparkhi’s maximum entropy model (Rat-
naparkhi, 1999) is also a conditional model. How-
ever, his model maximizes the probability of the 
action during each step of the parsing process, 
instead of overall quality of the parse tree.  

Yamada and Matsumoto (2002) presented a de-
pendency parsing model using support vector ma-
chines. Their model is a discriminative model that 
maximizes the differences between scores of the 
correct parse and the scores of the top competing 
incorrect parses.  

In many dependency parsing models such as 
(Eisner, 1996) and (MacDonald et al., 2005), the 
score of a dependency tree is the sum of the scores 
of the dependency links, which are computed in-
dependently of other links. An undesirable conse-
quence of this is that the parser often creates 
multiple dependency links that are separately 
likely but jointly improbable (or even impossible). 
For example, there is nothing in such models to 
prevent the parser from assigning two subjects to 
a verb. In the DMV model (Klein and Manning, 
2004), the probability of a dependency link is 
partly conditioned on whether or not there is a 
head word of the link already has a modifier. Our 
model is quite similar to the DMV model, except 
that we compute the conditional probability of the 

parse tree given the sentence, instead of the joint 
probability of the parse tree and the sentence. 

There have been several previous approaches to 
parsing Chinese with the Penn Chinese Treebank 
(e.g., Bikel and Chiang, 2000; Levy and Manning, 
2003). Both of these approaches employed phrase-
structure joint models and used part-of-speech 
tags in back-off smoothing. Their results were 
evaluated with the precision and recall of the 
bracketings implied in the phrase structure parse 
trees. In contrast, the accuracy of our model is 
measured in terms of the dependency relation-
ships. A dependency tree may correspond to more 
than one constituency trees.  Our results are there-
fore not directly comparable with the precision 
and recall values in previous research. Moreover, 
it was argued in (Lin 1995) that dependency based 
evaluation is much more meaningful for the appli-
cations that use parse trees, since the semantic 
relationships are generally embedded in the de-
pendency relationships. 

6 Conclusion 

To the best of our knowledge, all previous natural 
language parsers have to rely on part-of-speech 
tags. We presented a strictly lexicalized model for 
dependency parsing that only relies on word sta-
tistics. We compared our parser with an unlexical-
ized parser that employs the same probabilistic 
model except that the parameters are estimated 
using gold standard tags in the Chinese Treebank. 
Our experiments show that the strictly lexicalized 
parser significantly outperformed its unlexicalized 
counter-part. 

An important distinction between our statistical 
model from previous parsing models is that all the 
parameters in our model are conditional probabil-
ity of binary variables. This allows us to take ad-
vantage of similarity-based smoothing, which has 
not been successfully applied to parsing before. 
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Abstract

We present a novel approach for applying
the Inside-Outside Algorithm to a packed
parse forest produced by a unification-
based parser. The approach allows a node
in the forest to be assigned multiple inside
and outside probabilities, enabling a set of
‘weighted GRs’ to be computed directly
from the forest. The approach improves
on previous work which either loses effi-
ciency by unpacking the parse forest be-
fore extracting weighted GRs, or places
extra constraints on which nodes can be
packed, leading to less compact forests.
Our experiments demonstrate substantial
increases in parser accuracy and through-
put for weighted GR output.

1 Introduction

RASP is a robust statistical analysis system for
English developed by Briscoe and Carroll (2002).
It contains a syntactic parser which can output
analyses in a number of formats, including (n-
best) syntactic trees, robust minimal recursion se-
mantics (Copestake, 2003), grammatical relations
(GRs), and weighted GRs. The weighted GRs for
a sentence comprise the set of grammatical relations
in all parses licensed for that sentence, each GR is
weighted based on the probabilities of the parses
in which it occurs. This weight is normalised to
fall within the range � 0,1 � where ����� indicates that
all parses contain the GR. Therefore, high precision
GR sets can be determined by thresholding on the
GR weight (Carroll and Briscoe, 2002). Carroll and

Briscoe compute weighted GRs by first unpacking
all parses or the n-best subset from the parse forest.
Hence, this approach is either (a) inefficient (and for
some examples impracticable) if a large number of
parses are licensed by the grammar, or (b) inaccu-
rate if the number of parses unpacked is less than
the number licensed by the grammar.

In this paper, we show how to obviate the need
to trade off efficiency and accuracy by extracting
weighted GRs directly from the parse forest us-
ing a dynamic programming approach based on the
Inside-Outside algorithm (IOA) (Baker, 1979; Lari
and Young, 1990). This approach enables efficient
calculation of weighted GRs over all parses and sub-
stantially improves the throughput and memory us-
age of the parser. Since the parser is unification-
based, we also modify the parsing algorithm so that
local ambiguity packing is based on feature structure
equivalence rather than subsumption.

Similar dynamic programming techniques that
are variants of the IOA have been applied for re-
lated tasks, such as parse selection (Johnson, 2001;
Schmid and Rooth, 2001; Geman and Johnson,
2002; Miyao and Tsujii, 2002; Kaplan et al., 2004;
Taskar et al., 2004). The approach we take is similar
to Schmid and Rooth’s (2001) adaptation of the al-
gorithm, where ‘expected governors’ (similar to our
‘GR specifications’) are determined for each tree,
and alternative nodes in the parse forest have the
same lexical head. Initially, they create a packed
parse forest and during a second pass the parse forest
nodes are split if multiple lexical heads occur. The
IOA is applied over this split data structure. Simi-
larly, Clark and Curran (2004) alter their packing al-
gorithm so that nodes in the packed chart have the
same semantic head and ‘unfilled’ GRs. Our ap-
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proach is novel in that while calculating inside prob-
abilities we allow any node in the parse forest to
have multiple semantic heads.

Clark and Curran (2004) apply Miyao and Tsu-
jii’s (2002) dynamic programming approach to de-
termine weighted GRs. They outline an alterna-
tive parse selection method based on the resulting
weighted GRs: select the (consistent) GR set with
the highest average weighted GR score. We apply
this parse selection approach and achieve 3.01% rel-
ative reduction in error. Further, the GR set output
by this approach is a consistent set whereas the high
precision GR sets outlined in (Carroll and Briscoe,
2002) are neither consistent nor coherent.

The remainder of this paper is organised as fol-
lows: Section 2 gives details of the RASP sys-
tem that are relevant to this work. Section 3 de-
scribes our test suite and experimental environment.
Changes required to the current parse forest cre-
ation algorithm are discussed in Section 4, while
Section 5 outlines our dynamic programming ap-
proach for extracting weighted GRs (EWG). Sec-
tion 6 presents experimental results showing (a) im-
proved efficiency achieved by EWG, (b) increased
upper bounds of precision and recall achieved us-
ing EWG, and (c) increased accuracy achieved by
a parse selection algorithm that would otherwise be
too inefficient to consider. Finally, Section 7 out-
lines our conclusions and future lines of research.

2 The RASP System

RASP is based on a pipelined modular architec-
ture in which text is pre-processed by a series of
components including sentence boundary detection,
tokenisation, part of speech tagging, named entity
recognition and morphological analysis, before be-
ing passed to a statistical parser1 . A brief overview
of relevant aspects of syntactic processing in RASP
is given below; for full details of system compo-
nents, see Briscoe and Carroll (1995; 2002; 2005)2.

1Processing times given in this paper do not include these
pre-processing stages, since they take negligible time compared
with parsing.

2RASP is freely available for research use; visit
http://www.informatics.susx.ac.uk/research/nlp/rasp/

2.1 The Grammar

Briscoe and Carroll (2005) describe the (manually-
written) feature-based unification grammar and the
rule-to-rule mapping from local trees to GRs. The
mapping specifies for each grammar rule the seman-
tic head(s) of the rule (henceforth, head), and one or
more GRs that should be output (optionally depend-
ing on feature values instantiated at parse time). For
example, Figure 1 shows a grammar rule analysing a
verb phrase followed by a prepositional phrase mod-
ifier. The rule identifies the first daughter (1) as the
semantic head, and specifies that one of five possi-
ble GRs is to be output, depending on the value of
the PSUBCAT syntactic feature; so, for example, if the
feature has the value NP, then the relation is ncmod

(non-clausal modifier), with slots filled by the se-
mantic heads of the first and second daughters (the 1

and 2 arguments).
Before parsing, a context free backbone is derived

automatically from the grammar, and an LALR(1)
parse table is computed from this backbone (Carroll,
1993, describes the procedure in detail). Probabili-
ties are associated with actions in the parse table,
by training on around 4K sentences from the Su-
sanne corpus (Sampson, 1995), each sentence hav-
ing been semi-automatically converted from a tree-
bank bracketing to a tree conforming to the unifica-
tion grammar (Briscoe and Carroll, 1995).

2.2 The Parse Forest

When parsing, the LALR table action probabilities
are used to assign a score to each newly derived
(sub-)analysis. Additionally, on each reduce ac-
tion (i.e. complete application of a rule), the rule’s
daughters are unified with the sequence of sub-
analyses being consumed. If unification fails then
the reduce action is aborted. Local ambiguity pack-
ing (packing, henceforth) is performed on the ba-
sis of feature structure subsumption. Thus, the
parser builds and returns a compact structure that ef-
ficiently represents all parses licensed by the gram-
mar: the parse forest. Since unification often fails
it is not possible to apply beam or best first search
strategies during construction of the parse forest;
statistically high scoring paths often end up in unifi-
cation failure. Hence, the parse forest represents all
parses licensed by the grammar.
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V1/vp_pp : V1[MOD +] --> H1 P2[ADJ -, WH -] :
1 :
2 = [PSUBCAT NP], (ncmod _ 1 2) :
2 = [PSUBCAT NONE], (ncmod prt 1 2) :
2 = [PSUBCAT (VP, VPINF, VPING, VPPRT, AP)], (xmod _ 1 2) :
2 = [PSUBCAT (SFIN, SINF, SING)], (cmod _ 1 2) :
2 = [PSUBCAT PP], (pmod 1 2).

Figure 1: Example grammar rule, showing the rule name and syntactic specification (on the first line),
identification of daughter 1 as the semantic head (second line), and possible GR outputs depending on the
parse-time value of the PSUBCAT feature of daughter 2 (subsequent lines).

Figure 2 shows a simplified parse forest contain-
ing three parses generated for the following pre-
processed text3:

I PPIS1 see+ed VVD the AT man NN1

in II the AT park NN1

The GR specifications shown are instantiated based
on the values of syntactic features at daughter nodes,
as discussed in Section 2.1 above. For example, the
V1/vp pp sub-analysis (towards the left hand side of
the Figure) contains the instantiated GR specifica-
tion � 1, (ncmod 1 2) � since its second daughter has
the value NP for its PSUBCAT feature.

Henceforth, we will use the term ‘node’ to refer to
data structures in our parse forest corresponding to a
rule instantiation: a sub-analysis resulting from ap-
plication of a reduce action. Back pointers are stored
in nodes, indicating which daughters were used to
create the sub-analysis. These pointers provide a
means to traverse the parse forest during subsequent
processing stages. A ‘packed node’ is a node rep-
resenting a sub-analysis that is subsumed by, and
hence packed into, another node. Packing is consid-
ered for nodes only if they are produced in the same
LR state and represent sub-analyses with the same
word span. A parse forest can have a number of root
nodes, each one dominating analyses spanning the
whole sentence with the specified top category.

2.3 Parser Output

From the parse forest, RASP unpacks the ‘n-best’4

syntactic trees using a depth-first beam search (Car-
roll, 1993). There are a number of types of analysis

3The part of speech tagger uses a subset of the Lancaster
CLAWS2 tagset – http://www.comp.lancs.ac.uk/computing/research/
ucrel/claws2tags.html

4This number � is specified by the user, and represents the
maximal number of parses to be unpacked.

output available, including syntactic tree, grammati-
cal relations (GRs) and robust minimal recursion se-
mantics (RMRS). Each of these is computed from
the n-best trees.

Another output possibility is weighted GRs (Car-
roll and Briscoe, 2002); this is the unique set of GRs
from the n-best GRs, each GR weighted according
to the sum of the probabilities of the parses in which
it occurs. Therefore, a number of processing stages
determine this output: unpacking the n-best syntac-
tic trees, determining the corresponding n-best GR
sets and finding the unique set of GRs and corre-
sponding weights.

The GRs for each parse are computed from the
set of GR specifications at each node, passing the
(semantic) head of each sub-analysis up to the next
higher level in the parse tree (beginning from word
nodes). GR specifications for nodes (which, if re-
quired, have been instantiated based on the features
of daughter nodes) are referred to as ‘unfilled’ un-
til the slots containing numbers are ‘filled’ with the
corresponding heads of daughter nodes. For exam-
ple, the grammar rule named NP/det n has the un-
filled GR specification � 2, (det 2 1) � . Therefore, if
an NP/det n local tree has two daughters with heads
the and cat respectively, the resulting filled GR spec-
ification will be � cat, (det cat the) � , i.e. the head of
the local tree is cat and the GR output is (det cat the).

Figure 3 illustrates the n-best GRs and the
corresponding (non-normalised and normalised)
weighted GRs for the sentence I saw the man in
the park. The corresponding parse forest for this
example is shown in Figure 2. Weights on the
GRs are normalised probabilities representing the
weighted proportion of parses in which the GR
occurs. This weighting is in practice calculated
as the sum of parse probabilities for parses con-
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T/txt-sc1/- S/np_vp

I_PPIS1

V1/v_np_pp

V1/vp_pp

V1/v_np

see+ed_VVD the_AT

man_NN1

in_II

the_AT

park_NN1

N1/n

N1/n

NP/det_n

NP/det_n

PP/p1

PP/p1

PP/p1

P1/p_np

NP/det_n N1/n1_pp1

P1/p_np

P1/p_np in_II

V1/v_np

in_II
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taining the specific GR, normalised by the sum
of all parse probabilities. For example, the GR
(iobj see+ed in) is in one parse with probability
� ��� ������� ���	� , the non-normalised score. The sum of
all parse probabilities is � ��� ��� � � � ��
 � . Therefore,
the normalised probability (and final weight) of the
GR is � �

�������� ��������������������� ���������������! 
� � 
�� ��" ��� 5 .

3 Data and Methods

King et al. (2003) outline the development of the
PARC 700 Dependency Bank (henceforth, Dep-
Bank), a gold-standard set of relational dependen-
cies for 700 sentences (originally from the Wall
Street Journal) drawn at random from Section 23 of
the Penn Treebank. Briscoe and Carroll (2005) ex-
tended DepBank with a set of gold-standard RASP
GRs that we use to measure parser accuracy.

We use the same 560 sentence subset from the
DepBank utilised by Kaplan et al. (2004) in their
study of parser accuracy and efficiency. All exper-
imental results are obtained using this test suite on
an AMD Opteron 2.5GHz CPU with 1GB of Ram
on a 64 bit version of Linux. The parser’s output is
evaluated using a relational dependency evaluation
scheme (Carroll et al., 1998; Lin, 1998) and stan-
dard evaluation measures: precision, recall and F � .
4 Local Ambiguity Packing

Oepen and Carroll (2000) note that when using
subsumption-based packing with a unification-based
grammar, the parse forest may implicitly represent
some parses that are not actually licensed by the
grammar; these will have values for one or more
features that are locally but not globally consistent.
This is not a problem when computing GRs from
trees that have already been unpacked, since the rel-
evant unifications will have been checked during the
unpacking process, and will have caused the affected
trees to be filtered out. Unification fails for at least
one packed tree in approximately 10% of the sen-
tences in the test suite. However, such inconsistent

5As we are dealing with log probabilities, summation and
subtraction of these probabilities is not straightforward. Mul-
tiplication of probabilities X and Y, with log probabilities x
and y respectively is determined using the formula #%$'&)(*,+.- , division using #0/1&2( *435- , summation using
# + &6( *4+87:9�;=<?>�@BAC+DA�EGFIHKJ�L�MON and subtraction using
# 3 &.( *C+P7:9�; <?> @BA�3QA�E FIHRJSL�M N .

trees are a problem for any approach to probabil-
ity computation over the parse forest that is based
on the Inside-Outside algorithm (IOA). For our ef-
ficient weighted GR extraction technique we there-
fore modify the parsing algorithm so that packing is
based on feature structure equality rather than sub-
sumption.

Oepen and Carroll give definitions and implemen-
tation details for subsumption and equality opera-
tions, which we adopt. In the experiments below,
we refer to versions of the parser with subsumption
and equality based packing as SUB-PACKING and
EQ-PACKING respectively.

5 Extracting Weighted GRs

Parse forest unpacking consumes larger amounts of
CPU time and memory as the number of parses
to unpack (n-best) increases. Carroll and Briscoe
(2002) demonstrate that increasing the size of the n-
best list increases the upper bound on precision (i.e.
when low-weighted GRs are filtered out). Therefore,
if practicable, it is preferable to include all possible
parses when calculating weighted GRs. We describe
below a dynamic programming approach (EWG)
based on the IOA to efficiently extract weighted
GRs directly from the parse forest. EWG calcu-
lates weighted GRs over all parses represented in the
parse forest.

Inside and outside probabilities are analogous to
the forward and backward probabilities of markov
model algorithms. The inside probability repre-
sents the probability of all possible sub-analyses of a
node. Conversely, the outside probability represents
the probability of all analyses for which the node is
a sub-analysis.

The IOA is ideal for our task, as the product of
inside and outside probabilities for a sub-analysis
constitutes part of the sum for the non-normalised
weight of each GR (arising from the GR specifi-
cation in the sub-analysis). Further, we can apply
the sum of inside probabilities for each root-node, to
normalise the weighted GRs.

5.1 Implementation

Three processing stages are required to determine
weighted GRs over the parse forest, calculating
(1) filled GRs and corresponding inside probabili-

164



 −28.0201     (ncsubj see+ed_VVD I_PPIS1 _) 
 −35.1598     (ncmod _ man_NN1 in_II) 
 −28.0201     (det park_NN1 the_AT) 
 −29.1187     (ncmod _ see+ed_VVD in_II) 
 −28.0562     (iobj see+ed_VVD in_II) 
 −28.0201     (dobj see+ed_VVD man_NN1) 
 −28.0201     (dobj in_II park_NN1) 
 −28.0201     (det man_NN1 the_AT) 

parse (log) probability:−28.056154 
(ncsubj see+ed I _)
(iobj see+ed in)
(dobj see+ed man)
(dobj in park)
(det park the)
(det man the)

parse (log) probability:−29.11871 
(ncsubj see+ed I _)
(ncmod _ see+ed in)
(dobj in park)
(det park the)
(dobj see+ed man)
(det man the)

parse (log) probability:−35.159805 
(ncsubj see+ed I _)
(dobj see+ed man)
(det man the)
(ncmod _ man in)
(dobj in park)
(det park the)

Total Probability (log−sum of all parses): −28.0200896

(NORMALISED) WEIGHTED GRS

N−BEST GRS (NON NORMALISED) WEIGHTED GRS

 1.0                    (det park the)
 1.0                    (det man the)   
 1.0                    (dobj see+ed man)   
 1.0                    (dobj in park)
 0.920314          (iobj see+ed in)

 1.0                    (ncsubj see+ed I _)

 7.249102e−8    (ncmod _ man in)
 7.968584e−2    (ncmod _ see+ed in)

Figure 3: The n-best GRs, and non-normalised/normalised weighted GRs determined from three parses for
the sentence I saw the man in the park. Parse probabilities and non-normalised weights are shown as log
probabilities. Weights and parse probabilities are shown with differing precision, however RASP stores all
probabilities in log (base 10) form with double float precision.
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ties, (2) outside (and non-normalised) probabilities
of weighted GRs, and (3) normalised probabilities
of weighted GRs.6 The first two processing stages
are covered in detail in the following sections, while
the final stage simply entails normalising the prob-
abilities by dividing each weight by the sum of all
the parse probabilities (the sum of root-nodes’ in-
side probabilities).

5.1.1 Inside probability and GR

To determine inside probabilities over the nodes in
the parse forest, we need to propagate the head and
corresponding inside probability upwards after fill-
ing the node’s GR specification. The inside proba-
bility of node � is usually calculated over the parse
forest by multiplying the inside probability of the
node’s daughters and the probability � � ��� of the
node itself (i.e. the probability of the shift or reduce
action that caused the node to be created). There-
fore, if a node has daughters � � and � � , then the
inside probability ��� is calculated using:

�	�  ��
 <�� ��
� � � � ��� (1)

However, packed nodes each correspond to an al-
ternative filled GR specification. Inside probabilities
for these GR specifications need to be combined. If
packed analyses ��� occur in node � then the inside
probability of node � is:

�	�  �
��� � ��� ��� �

� � (2)

Further, the alternative GR specifications may not
necessarily specify the same head as the node’s GR
specification and multiple heads may be passed up
by the node. Hence, the summation in equation 2
needs to be conditioned on the possible heads of a
node � � ��������� , where �! � is the inside probability
of each head " for node � :

�  �  
�

��� � ��� �#� � � $ � � �&%  
� � (3)

When multiple heads are passed up by daughter
nodes, multiple filled GR specifications are found for
the node. We create one filled GR specification for

6Note that the IOA is not applied iteratively; a single pass
only is required.

each possible combination of daughters’ heads7 . For
example, consider the case where a node has daugh-
ters � � and � � with semantic heads ' dog, cat ( and
' an ( respectively. Here, we need to fill the GR spec-
ification � 2, (det 2 1) � with two sets of daughters’
heads: � dog, (det dog an) � and � cat, (det cat an) � .

As a node can have multiple filled GR specifica-
tions )+* � ���,�-��� , we alter equation 3 to:

�  �  
�

��� � �.� � � �
� �
/#��021 � � � � $ � / �3%  

� / � (4)

Here, � / (the inside probability of filled GR spec-
ification 4 ) is determined by multiplying the inside
probabilities of daughters’ heads (that filled the GR
specification) and the reduce probability of the node
itself, i.e. using a modification of equation 1. Re-
turning to the previous example, the inside proba-
bilities of � dog, (det dog an) � and � cat, (det cat an) �

will be equal to the reduce probability of the node
multiplied by (a) the inside probability of head an,
and (b) the inside probabilities of the heads dog and
cat, respectively.

Hence, (a) calculation of inside probabilities takes
into account multiple semantic heads, and (b) GR
specifications are filled using every possible com-
bination of daughters’ heads. Each node � is pro-
cessed in full as follows:

5 Process each of the node’s packed nodes � � to
determine the packed node’s list of filled GR
specifications and corresponding inside proba-
bilities.

5 Process the node � , with daughters � � :

– Instantiate � ’s GR specifications based on
features of � � .

– Process each daughter in �6� to determine
a list of possible semantic heads and cor-
responding inside probabilities for each.

– Fill the GR specification of � with each
possible combination of daughters’ heads.

7The same word can appear as a head for more than one
daughter of a node. This occurs if competing analyses have
daughters with different word spans and, therefore, particular
words can be considered in the span of either daughter. As the
grammar permits both pre- and post- modifiers, it is possible
for words in the ‘overlapping’ span to be passed up as heads for
both daughters. Therefore, semantic heads are not combined
unless they are different words.
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Calculate the inside probability of each
filled GR specification.

5 Combine the alternative filled GR specifica-
tions of � and � � , determining the list of unique
semantic heads and corresponding inside prob-
abilities using equation 4.

For each node, we propagate up a set of data struc-
tures ' �  ( that each contain one possible head " and
corresponding inside probability. At word nodes, we
simply return the word and the reduce score of the
word as the semantic head and inside probability, re-
spectively. Back pointers are also included to store
the list of alternative filled GR specifications and
corresponding inside probabilities, the reduce score
for the node and the daughters’ data structures (used
to fill the GR specifications).

5.1.2 Outside probability determination

After the inside probabilities have been computed
(bottom-up) the resulting data structure at the root-
node is traversed to compute outside probabilities.
The data structure created is split into alternative se-
mantic heads for each node and, therefore, traversal
to determine outside probabilities is relatively triv-
ial: the outside probability of a filled GR specifica-
tion is equal to the outside probability of the corre-
sponding unique head of the node. Therefore, once
we have created the new data structure, outside prob-
abilities for each node can be determined over this
structure in the regular fashion.

We calculate the outside probabilities (top-down)
and, when we find filled GR specifications, we in-
crementally store the non-normalised weight of each
GR. Each data structure

�
 for head " , with outside

probability �  , is processed in full as follows:

5 Process each of the GR specifications ) * � �  � .
For each 4�� ) * � �  � :

– Let � /  �  and calculate the probability
of 4 , � /  � / � � / .

– Add � / to the (non-normalised) probabil-
ity for 4 (in a hash table).

– Process the data structure for each child
head in 4 , � � 4-� . That is, the daughters’
heads that filled the GR specification (re-
sulting in 4 ). For each ���	� � 4-� :


 Calculate the outside probability of �
(using the reduce probability of the
node � � ��� , stored in the data structure�
 ):

���  � / � � � ��� � ����� � / � � ���% � �
� (5)


 Queue the data structure � and corre-
sponding outside probability ��� .8

6 Experimentation

6.1 Efficiency and Accuracy

The dynamic programming algorithm outlined in
Section 5, EWG, provides an efficient and accurate
method of determining weighted GRs directly from
the parse forest. Figures 5 and 6 compare the ef-
ficiency of EWG to the EQ-PACKING and SUB-
PACKING methods in terms of CPU time and mem-
ory, respectively9 . Note that EWG applies equality-
based packing to ensure only parses licensed by the
grammar are considered (see Section 4).

As the maximum number of (n-best) parses in-
creases, EQ-PACKING requires more time and
memory than SUB-PACKING. However, if we com-
pare these systems with an n-best value of 1, the dif-
ference in time and memory is negligible, suggest-
ing that it is the unpacking stage which is responsi-
ble for the decreased throughput. For EWG we are
forced to use equality-based packing, but these re-
sults suggest that using equality is not hurting the
throughput of EWG.

Both figures illustrate that the time and memory
required by EWG are static because the algorithm
considers all parses represented in the parse forest
regardless of the value of n-best specified. There-
fore, the ‘cross-over points’ are of particular inter-
est: at which n-best value is EWG’s efficiency the
same as that of the current system? This value is

8We apply a breadth first search (FIFO queue) to minimise
multiple processing of shared data structures. If an outside
probability is determined for a data structure already queued,
then the probability is appended to the queued item. The steps
are modified to enable multiple outside probabilities, i.e. sum-
mation over each outside probability when calculating ��� and���

.
9CPU time and memory usage are as reported using the

time function in Allegro Common Lisp 7.0 and do not include
system start-up overheads or the time required for garbage col-
lection.
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approximately 580 and 100 for time and memory,
respectively (comparing EWG to EQ-PACKING).
Given that there are on average around 9000 parses
per sentence in the test suite, these results indicate
a substantial improvement in both efficiency and ac-
curacy for weighted GR calculation. However, the
median number of parses per sentence is around 50,
suggesting that large parse numbers for a small sub-
set of the test suite are skewing the arithmetic mean.
Therefore, the complexity of this subset will signif-
icantly decrease throughput and EWG will improve
efficiency for these sentences more so than for oth-
ers.

The general relationship between sentence length
and number of parses suggests that the EWG will
be more beneficial for longer sentences. Figure 4
shows the distribution of number of parses over sen-
tence length. The figure illustrates that the number
of parses can not be reliably predicted from sentence
length. Considering the cross-over points for time
and memory, the number of sentences with more
than 580 and 100 parses were 216 and 276, respec-
tively. Thus, the EWG out-performs the current al-
gorithm for around half of the sentences in the data
set. The relative gain achieved reflects that a sub-
set of sentences can significantly decrease through-
put. Hence, the EWG is expected to improve the
efficiency if a) longer sentences are present in the
data set and b) n-best is set to a value greater than
the cross-over point(s).

Upper bounds on precision and recall can be de-
termined using weight thresholds over the GRs of
1.0 and 0.0, respectively10 . Upper bounds of pre-
cision and recall provided by EWG are 79.57 and
82.02, respectively, giving an F � upper bound of
81.22%. However, considering the top 100 parses
only, we achieve upper bounds on precision and re-
call of 78.77% and 81.18% respectively, resulting
in an F � upper bound of 79.96%. Therefore, using
EWG, we are able to achieve a relative increase of
6.29% for the F � upper bound on the task. Similarly,
Carroll and Briscoe (2002) demonstrate (on an ear-
lier, different test suite) that increasing the number
of parses (n-best) from 100 to 1000 increases preci-
sion of weighted GR sets from 89.59% to 90.24%,

10In fact, in these experiments we use a threshold of A 3��
(with � ( E�� E�EREGA ) instead of a threshold of A�� E to reduce the
influence of very low ranked parses.
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Figure 4: Scatter graph of number of parses to sen-
tence length (one point per sentence). The cross-
over points are illustrated for time and memory. The
maximum number of parses shown is 1000, points
plotted at 1000 correspond to equal to or greater than
1000 parses.
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168



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  100  200  300  400  500  600  700  800  900 1000

M
em

or
y 

(G
B

)

Maximum number of parses (n−best)

SUB−PACKING
EQ−PACKING

EWG
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the different versions of the system for calculation
of weighted GRs over the n-best parses.

a relative error reduction (RER) of 6.8%. There-
fore, EWG achieves a substantial improvement in
both efficiency and accuracy for weighted GR cal-
culation; providing increased precision for thresh-
olded GR sets and an increased F � upper bound on
the task.

6.2 Parse Selection

Section 6.1 illustrated the increased level of effi-
ciency achieved by EWG compared to the current
system’s method for calculating weighted GRs. This
section briefly considers a parse selection algorithm
using EWG that would otherwise be too inefficient
to apply.

Clark and Curran (2004) determine weighted GRs
directly from a packed chart using Miyao and Tsu-
jii’s (2002) dynamic programming algorithm. They
outline a parse selection algorithm which maximises
the expected recall of dependencies by selecting the
n-best GR set with the highest average GR score
based on the weights from the weighted GRs. We
can apply this parse selection algorithm in two ways:
either (a) re-rank the n-best GR sets based on the av-
erage weight of GRs and select the highest ranking
set, or (b) apply a simple variant of the Viterbi algo-
rithm to select the GR set with the highest average

weighted score over the data structure built during
EWG. The latter approach, based on the parse selec-
tion algorithm in Clark and Curran (2004), takes into
account all possible parses and effectively re-ranks
all parses using weights output by EWG. These ap-
proaches will be referred to as RE-RANK (over the
top 1000 parses) and BEST-AVG, respectively.

The GR set corresponding to the system’s top
parse achieves an F � of 71.24%. By applying BEST-
AVG and RE-RANK parse selection, we achieve a
relative error reduction of 3.01% and 0.90%, respec-
tively. Therefore, BEST-AVG achieves higher accu-
racy and is more efficient than RE-RANK. It is also
worth noting that these parse selection schemes are
able to output a consistent set of GRs unlike the set
corresponding to high precision GR output.

7 Conclusions

We have described a dynamic programming ap-
proach based on the Inside Outside Algorithm for
producing weighted grammatical relation output di-
rectly from a unification-based parse forest. In an
evaluation on a standard test suite the approach
achieves substantial improvements in accuracy and
parser throughput over a previous implementation.
The approach is novel as it allows multiple heads
(and inside probabilities) per parse forest node in-
stead of manipulating the parse forest so that each
node represents only a single head.

We intend to extend this work to develop more
sophisticated parse selection schemes based on
weighted GR output. Re-ranking the n-best GR sets
results in a consistent but not necessarily a coher-
ent set of GRs. Given the increased upper bound on
precision for the high precision GR output, we hope
to boost the corresponding recall measure by deter-
mining a consistent and coherent set of GRs from the
weighted GR set.
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Abstract 

This paper explores the possibilities of 
improving parsing results by combining 
outputs of several parsers. To some ex-
tent, we are porting the ideas of Hender-
son and Brill (1999) to the world of 
dependency structures. We differ from 
them in exploring context features more 
deeply. All our experiments were con-
ducted on Czech but the method is lan-
guage-independent. We were able to 
significantly improve over the best pars-
ing result for the given setting, known so 
far. Moreover, our experiments show that 
even parsers far below the state of the art 
can contribute to the total improvement. 

1 Introduction 

Difficult and important NLP problems have the 
property of attracting whole range of researchers, 
which often leads to the development of several 
different approaches to the same problem. If these 
approaches are independent enough in terms of not 
producing the same kinds of errors, there is a hope 
that their combination can bring further improve-
ment to the field. While improving any single ap-
proach gets more and more difficult once some 
threshold has been touched, exploring the potential 
of approach combination should never be omitted, 
provided three or more approaches are available. 

Combination techniques have been successfully 
applied to part of speech tagging (van Halteren et 

al., 1998; Brill and Wu, 1998; van Halteren et al., 
2001). In both cases the investigators were able to 
achieve significant improvements over the previ-
ous best tagging results. Similar advances have 
been made in machine translation (Frederking and 
Nirenburg, 1994), speech recognition (Fiscus, 
1997), named entity recognition (Borthwick et al., 
1998), partial parsing (Inui and Inui, 2000), word 
sense disambiguation (Florian and Yarowsky, 
2002) and question answering (Chu-Carroll et al., 
2003). 

Brill and Hladká (Haji  et al., 1998) have first 
explored committee-based dependency parsing. 
However, they generated multiple parsers from a 
single one using bagging (Breiman, 1994). There 
have not been more sufficiently good parsers 
available. A successful application of voting and of 
a stacked classifier to constituent parsing followed 
in (Henderson and Brill, 1999). The authors have 
investigated two combination techniques (constitu-
ent voting and naïve Bayes), and two ways of their 
application to the (full) parsing: parser switching, 
and similarity switching. They were able to gain 
1.6 constituent F-score, using their most successful 
technique. 

In our research, we focused on dependency pars-
ing. One of the differences against Henderson and 
Brill’s situation is that a dependency parser has to 
assign exactly one governing node (parent word) to 
each word. Unlike the number of constituents in 
constituency-based frameworks, the number of 
dependencies is known in advance, the parser only 
has to assign a link (number 0 through N) to each 
word. In that sense, a dependency parser is similar 
to classifiers like POS taggers. Unless it deliber-
ately fails to assign a parent to a word (or assigns 
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several alternate parents to a word), there is no 
need for precision & recall. Instead, a single metric 
called accuracy is used. 

On the other hand, a dependency parser is not a 
real classifier: the number of its “classes”  is theo-
retically unlimited (natural numbers), and no gen-
eralization can be drawn about objects belonging 
to the same “class” (words that – sometimes – ap-
peared to find their parent at the position i). 

A combination of dependency parsers does not 
necessarily grant the resulting dependency struc-
ture being cycle-free. (This contrasts to not intro-
ducing crossing brackets in constituent parsing, 
which is granted according to Henderson and 
Brill.) We address the issue in 4.4. 

The rest of this paper is organized as follows: in 
Sections 2 and 3 we introduce the data and the 
component parsers, respectively. In Section 4 we 
discuss several combining techniques, and in Sec-
tion 5 we describe the results of the corresponding 
experiments. We finally compare our results to the 
previous work and conclude. 

2 The data 

To test our parser combination techniques, we use 
the Prague Dependency Treebank 1.0 (PDT; Haji  
et al. 2001). All the individual parsers have been 

trained on its analytical-level training section 
(73,088 sentences; 1,255,590 tokens). 

The PDT analytical d-test section has been parti-
tioned into two data sets, Tune (last 77 files; 3646 
sentences; 63,353 tokens) and Test (first 76 files; 
3673 sentences; 62,677 tokens). We used the Tune 
set to train the combining classifiers if needed. The 
Test data were used to evaluate the approach. Nei-
ther the member parsers, nor the combining classi-
fier have seen this data set during their respective 
learning runs. 

3 Component parsers 

The parsers involved in our experiments are sum-
marized in Table 1. Most of them use unique 
strategies, the exception being thl and thr, which 
differ only in the direction in which they process 
the sentence. 

The table also shows individual parser accura-
cies on our Test data. There are two state-of-the art 
parsers, four not-so-good parsers, and one quite 
poor parser. We included the two best parsers 
(ec+mc) in all our experiments, and tested the con-
tributions of various selections from the rest. 

The necessary assumption for a meaningful 
combination is that the outputs of the individual 
parsers are sufficiently uncorrelated, i.e. that the 
parsers do not produce the same errors. If some 

Accuracy Par-
ser  

Author  Br ief descr iption 
Tune Test 

ec 
Eugene 
Charniak 

A maximum-entropy inspired parser, home in constituency-based 
structures. English version described in Charniak (2000), Czech ad-
aptation 2002 – 2003, unpublished. 

83.6 85.0 

mc 
Michael 
Collins 

Uses a probabilistic context-free grammar, home in constituency-
based structures. Described in (Haji  et al., 1998; Collins et al., 
1999). 

81.7 83.3 

zž 
Zden k 
Žabokrtský 

Purely rule-based parser, rules are designed manually, just a few lexi-
cal lists are collected from the training data. 2002, unpublished. 

74.3 76.2 

dz 
Daniel 
Zeman 

A statistical parser directly modeling syntactic dependencies as word 
bigrams. Described in (Zeman, 2004). 73.8 75.5 

thr 71.0 72.3 
thl 69.5 70.3 
thp 

Tomáš 
Holan 

Three parsers. Two of them use a sort of push-down automata and 
differ from each other only in the way they process the sentence (left-
to-right or right-to-left). Described in (Holan, 2004). 62.0 63.5 

 
Table 1. A brief description of the tested parsers. Note that the Tune data is not the data used to train the 
individual parsers. Higher numbers in the right column reflect just the fact that the Test part is slightly 
easier to parse. 
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parsers produced too similar results, there would 
be the danger that they push all their errors 
through, blocking any meaningful opinion of the 
other parsers. 

To check the assumption, we counted (on the 
Tune data set) for each parser in a given parser se-
lection the number of dependencies that only this 
parser finds correctly. We show the results in Ta-
ble 2. They demonstrate that all parsers are inde-
pendent on the others at least to some extent. 

4 Combining techniques 

Each dependency structure consists of a number of 
dependencies, one for each word in the sentence. 
Our goal is to tell for each word, which parser is 
the most likely to pick its dependency correctly. 
By combining the selected dependencies we aim at 
producing a better structure. We call the complex 
system (of component parsers plus the selector) the 
superparser. 

Although we have shown how different strate-
gies lead to diversity in the output of the parsers, 
there is little chance that any parser will be able to 
push through the things it specializes in. It is very 
difficult to realize that a parser is right if most of 
the others reject its proposal. Later in this section 
we assess this issue; however, the real power is in 
majority of votes. 

4.1 Voting 

The simplest approach is to let the member parsers 
vote. At least three parsers are needed. If there are 
exactly three, only the following situations really 
matter: 1) two parsers outvote the third one; 2) a 
tie: each parser has got a unique opinion. It would 
be democratic in the case of a tie to select ran-
domly. However, that hardly makes sense once we 
know the accuracy of the involved parsers on the 
Tune set. Especially if there is such a large gap 
between the parsers’  performance, the best parser 
(here ec) should get higher priority whenever there 

Parsers compared All 7 4 best 3 best ec+mc+dz 2 best 3 worst 
Who is cor rect How many times cor rect 

ec 1.7 % 3.0 % 4.1 % 4.5 % 8.1 %  
zž 1.2 % 2.0 % 3.3 %    
mc 0.9 % 1.7 % 2.7 % 2.9 % 6.2 %  
thr 0.4 %     4.9 % 
thp 0.4 %     4.4 % 
dz 0.3 % 1.0 %  2.2 %   

a single parser 
(all other wrong) 

thl 0.3 %     4.3 % 
all seven parsers 42.5 %      
at least six 58.1 %      
at least five 68.4 %      
at least four 76.8 % 58.0 %     
at least three 84.0 % 75.1 % 63.6 % 64.7 %  50.6 % 
at least two 90.4 %  82.9 % 82.4 % 75.5 % 69.2 % 
at least one 95.8 % 94.0 % 93.0 % 92.0 % 89.8 % 82.7 % 

 
Table 2: Comparison of various groups of parsers. All percentages refer to the share of the total words in 
test data, attached correctly. The “single parser”  part shows shares of the data where a single parser is the 
only one to know how to parse them. The sizes of the shares should correlate with the uniqueness of the 
individual parsers’  strategies and with their contributions to the overall success. The “at least”  rows give 
clues about what can be got by majority voting (if the number represents over 50 % of parsers compared) 
or by hypothetical oracle selection (if the number represents 50 % of the parsers or less, an oracle would 
generally be needed to point to the parsers that know the correct attachment). 
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is no clear majority of votes. Van Halteren et al. 
(1998) have generalized this approach for higher 
number of classifiers in their TotPrecision voting 
method. The vote of each classifier (parser) is 
weighted by their respective accuracy. For in-
stance, mc + zž would outvote ec + thr, as 81.7 + 
74.3 = 156 > 154.6 = 83.6 + 71.0. 

4.2 Stacking 

If the world were ideal, we would have an oracle, 
able to always select the right parser. In such situa-
tion our selection of parsers would grant the accu-
racy as high as 95.8 %. We attempt to imitate the 
oracle by a second-level classifier that learns from 
the Tune set, which parser is right in which situa-
tions. Such technique is usually called classifier 
stacking. Parallel to (van Halteren et al., 1998), we 
ran experiments with two stacked classifiers, 
Memory-Based, and Decision-Tree-Based. This 
approach roughly corresponds to (Henderson and 
Brill, 1999)’s Naïve Bayes parse hybridization. 

4.3 Unbalanced combining 

For applications preferring precision to recall, un-
balanced combination — introduced by Brill and 
Hladká in (Haji  et al., 1998) — may be of inter-
est. In this method, all dependencies proposed by 
at least half of the parsers are included. The term 
unbalanced reflects the fact that now precision is 
not equal to recall: some nodes lack the link to 
their parents. Moreover, if the number of member 
parsers is even, a node may get two parents. 

4.4 Switching 

Finally, we develop a technique that considers the 
whole dependency structure rather than each de-
pendency alone. The aim is to check that the result-
ing structure is a tree, i.e. that the dependency-
selecting procedure does not introduce cycles.1 
Henderson and Brill prove that under certain con-
ditions, their parse hybridization approach cannot 

                                                   
1 One may argue that “ treeness”  is not a necessary condition 
for the resulting structure, as the standard accuracy measure 
does not penalize non-trees in any way (other than that there is 
at least one bad dependency). Interestingly enough, even some 
of the component parsers do not produce correct trees at all 
times. However, non-trees are both linguistically and techni-
cally problematic, and it is good to know how far we can get 
with the condition in force. 

introduce crossing brackets. This might seem an 
analogy to our problem of introducing cycles — 
but unfortunately, no analogical lemma holds. As a 
workaround, we have investigated a crossbreed 
approach between Henderson and Brill’s Parser 
Switching, and the voting methods described 
above. After each step, all dependencies that would 
introduce a cycle are banned. The algorithm is 
greedy — we do not try to search the space of de-
pendency combinations for other paths. If there are 
no allowed dependencies for a word, the whole 
structure built so far is abandoned, and the struc-
ture suggested by the best component parser is 
used instead.2 

5 Experiments and results 

5.1 Voting 

We have run several experiments where various 
selections of parsers were granted the voting right. 
In all experiments, the TotPrecision voting scheme 
of (van Halteren et al., 1998) has been used. The 
voting procedure is only very moderately affected 
by the Tune set (just the accuracy figures on that 
set are used), so we present results on both the Test 
and the Tune sets. 

 
Accuracy 

Voters 
Tune Test 

ec (baseline) 83.6 85.0 
all seven 84.0 85.4 
ec+mc+dz 84.9 86.2 
all but thp 84.9 86.3 
ec+mc+zž+dz+thr 85.1 86.5 
ec+mc+zž 85.2 86.7 
ec+mc+zž+dz 85.6 87.0 
Table 3: Results of voting experiments. 

 
According to the results, the best voters pool 

consists of the two best parsers, accompanied by 

                                                   
2 We have not encountered such situation in our test data. 
However, it indeed is possible, even if all the component pars-
ers deliver correct trees, as can be seen from the following 
example. Assume we have a sentence #ABCD and parsers P1 
(85 votes), P2 (83 votes), P3 (76 votes). P1 suggests the tree 
A→D→B→C→#, P2 suggests B→D→A→C→#, P3 suggests 
B→D→A→#, C→#. Then the superparser P gradually intro-
duces the following dependencies: 1. A→D; 2. B→D; 
3. C→#; 4. D→A or D→B possible but both lead to a cycle. 
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the two average parsers. The table also suggests 
that number of diverse strategies is more important 
than keeping high quality standard with all the 
parsers. Apart from the worst parser, all the other 
together do better than just the first two and the 
fourth. (On the other hand, the first three parsers 
are much harder to beat, apparently due to the ex-
treme distance of the strategy of zž parser from all 
the others.) 

Even the worst performing parser combination 
(all seven parsers) is significantly3 better than the 
best component parser alone. 

We also investigated some hand-invented voting 
schemes but no one we found performed better 
than the ec+mc+zž+dz combination above. 

Some illustrative results are given in the Ta-
ble 4. Votes were not weighted by accuracy in 
these experiments, but accuracy is reflected in the 
priority given to ec and mc by the human scheme 
inventor. 

 
Accuracy Voters Selection 

scheme Tune Test 

all seven 
most votes 
or ec 

82.8 84.3 

all seven 

at least 
half, or ec 
if there is 
no absolute 
majority 

84.4 85.8 

all seven 

absolute 
majority, 
or ec+2, or 
mc+2, or 
ec 

84.6 85.9 

Table 4: Voting under hand-invented schemes. 
 

5.2 Stacking – using context 

We explored several ways of using context in 
pools of three parsers.4 If we had only three parsers 
we could use context to detect two kinds of situa-
tions: 

                                                   
3 All significance claims refer to the Wilcoxon Signed Ranks 
Test at the level of p = 0.001. 
4 Similar experiments could be (and have been) run for sets of 
more parsers as well. However, the number of possible fea-
tures is much higher and the data sparser. We were not able to 
gain more accuracy on context-sensitive combination of more 
parsers. 

1. Each parser has its own proposal and a 
parser other than ec shall win. 

2. Two parsers agree on a common pro-
posal but even so the third one should 
win. Most likely the only reasonable in-
stance is that ec wins over mc + the 
third one. 

“Context”  can be represented by a number of 
features, starting at morphological tags and ending 
up at complex queries on structural descriptions. 
We tried a simple memory-based approach, and a 
more complex approach based on decision trees. 

Within the memory-based approach, we use just 
the core features the individual parsers themselves 
train on: the POS tags (morphological tags or m-
tags in PDT terminology). We consider the m-tag 
of the dependent node, and the m-tags of the gov-
ernors proposed by the individual parsers. 

We learn the context-based strengths and weak-
nesses of the individual parsers on their perform-
ance on the Tune data set. In the following table, 
there are some examples of contexts in which ec is 
better than the common opinion of mc + dz. 

 
Dep. 
tag 

Gov. 
tag 
(ec) 

Context 
occurrences 

No. of 
times 
ec was 
r ight 

Percent 
cases ec 
was 
r ight 

Ĵ  # 67 44 65.7 
Vp Ĵ  53 28 52.8 
VB Ĵ  46 26 56.5 
N1 Z, 38 21 55.3 
Rv Vp 25 13 52.0 
Z, Z, 15 8 53.3 
A1 N1 15 8 53.3 
Vje Ĵ  14 9 64.3 
N4 Vf 12 9 75.0 

Table 5: Contexts where ec is better than mc+dz. 
Ĵ  are coordination conjunctions, # is the root, V* 
are verbs, Nn are nouns in case n, R* are preposi-
tions, Z* are punctuation marks, An are adjectives. 

 
For the experiment with decision trees, we used 

the C5 software package, a commercial version of 
the well-known C4.5 tool (Quinlan, 1993). We 
considered the following features: 

For each of the four nodes involved (the de-
pendent and the three governors suggested by the 
three component parsers): 
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• 12 attributes derived from the morpho-
logical tag (part of speech, subcategory, 
gender, number, case, inner gender, in-
ner number, person, degree of compari-
son, negativeness, tense and voice) 

• 4 semantic attributes (such as Proper-
Name, Geography etc.) 

For each of the three governor-dependent pairs 
involved: 

• mutual position of the two nodes (Left-
Neighbor, RightNeighbor, LeftFar, 
RightFar) 

• mutual position expressed numerically 
• for each parser pair a binary flag 

whether they do or do not share opin-
ions 

The decision tree was trained only on situations 
where at least one of the three parsers was right 
and at least one was wrong. 

 

Voters Scheme Accuracy 
ec+mc+dz context free 86.2 
ec+mc+dz memory-based 86.3 
ec+mc+zž context free 86.7 
ec+mc+zž decision tree 86.9 
Table 6: Context-sensitive voting. Contexts trained 
on the Tune data set, accuracy figures apply to the 
Test data set. Context-free results are given for the 
sake of comparison. 

 
It turns out that there is very low potential in the 

context to improve the accuracy (the improvement 
is significant, though). The behavior of the parsers 
is too noisy as to the possibility of formulating 
some rules for prediction, when a particular parser 
is right. C5 alone provided a supporting evidence 
for that hypothesis, as it selected a very simple tree 
from all the features, just 5 levels deep (see Fig-
ure 1). 

Henderson and Brill (1999) also reported that 
context did not help them to outperform simple 
voting. Although it is risky to generalize these ob-
servations for other treebanks and parsers, our en-
vironment is quite different from that of Henderson 
and Brill, so the similarity of the two observations 
is at least suspicious. 

5.3 Unbalanced combining 

Finally we compare the balanced and unbalanced 
methods. Expectedly, precision of the unbalanced 
combination of odd number of parsers rose while 
recall dropped slightly. A different situation is ob-
served if even number of parsers vote and more 
than one parent can be selected for a node. In such 
case, precision drops in favor of recall. 

 
Method Precision Recall F-measure 
ec only 
(baseline) 

85.0 

balanced 
(all seven) 

85.4 

unbalanced 
(all seven) 90.7 78.6 84.2 

balanced 
(best four) 87.0 

unbalanced 
(best four) 

85.4 87.7 86.5 

balanced 
(ec+mc+dz) 

86.2 

unbalanced 89.5 84.0 86.7 

 agreezzmc = yes: zz (3041/1058) 
 agreezzmc = no: 
 :...agreemcec = yes: ec (7785/1026) 
     agreemcec = no: 
     :...agreezzec = yes: ec (2840/601) 
         agreezzec = no: 
         :...zz_case = 6: zz (150/54) 
             zz_case = 3: zz (34/10) 
             zz_case = X: zz (37/20) 
             zz_case = undef: ec (2006/1102) 
             zz_case = 7: zz (83/48) 
             zz_case = 2: zz (182/110) 
             zz_case = 4: zz (108/57) 
             zz_case = 1: ec (234/109) 
             zz_case = 5: mc (1) 
             zz_case = root: 
             :...ec_negat = A: mc (117/65) 
                 ec_negat = undef: ec (139/65) 
                 ec_negat = N: ec (1) 
                 ec_negat = root: ec (2) 
 
Figure 1. The decision tree for ec+mc+zž, 
learned by C5. Besides pairwise agreement be-
tween the parsers, only morphological case and 
negativeness matter. 
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Method Precision Recall F-measure 
(ec+mc+dz) 
balanced 
(ec+mc+zž) 

86.7 

unbalanced 
(ec+mc+zž) 

90.2 84.7 87.3 

Table 7: Unbalanced vs. balanced combining. All 
runs ignored the context. Evaluated on the Test 
data set. 

 

5.4 Switching 

Out of the 3,673 sentences in our Test set, 91.6 % 
have been rendered as correct trees in the balanced 
decision-tree based stacking of ec+mc+zž+dz (our 
best method). 

After we banned cycles, the accuracy dropped 
from 97.0 to 96.9 %. 

6 Comparison to related work 

Brill and Hladká in (Haji  et al., 1998) were able to 
improve the original accuracy of the mc parser on 
PDT 0.5 e-test data from 79.1 to 79.9 (a nearly 4% 
reduction of the error rate). Their unbalanced5 vot-
ing pushed the F-measure from 79.1 to 80.4 (6% 
error reduction). We pushed the balanced accuracy 
of the ec parser from 85.0 to 87.0 (13% error re-
duction), and the unbalanced F-measure from 85.0 
to 87.7 (18% reduction). Note however that there 
were different data and component parsers (Haji  
et al. found bagging the best parser better than 
combining it with other that-time-available pars-
ers). This is the first time that several strategically 
different dependency parsers have been combined. 

(Henderson and Brill, 1999) improved their best 
parser’s F-measure of 89.7 to 91.3, using their na-
ïve Bayes voting on the Penn TreeBank constituent 
structures (16% error reduction). Here, even the 
framework is different, as has been explained 
above. 

7 Conclusion 

We have tested several approaches to combining of 
dependency parsers. Accuracy-aware voting of the 
four best parsers turned out to be the best method, 
as it significantly improved the accuracy of the 
best component from 85.0 to 87.0 % (13 % error 

                                                   
5 Also alternatively called unrestricted. 

rate reduction). The unbalanced voting lead to the 
precision as high as 90.2 %, while the F-measure 
of 87.3 % outperforms the best result of balanced 
voting (87.0). 

At the same time, we found that employing con-
text to this task is very difficult even with a well-
known and widely used machine-learning ap-
proach. 

The methods are language independent, though 
the amount of accuracy improvement may vary 
according to the performance of the available pars-
ers. 

Although voting methods are themselves not 
new, as far as we know we are the first to propose 
and evaluate their usage in full dependency pars-
ing. 
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Abstract 

This paper describes our effort on the task 
of edited region identification for parsing 
disfluent sentences in the Switchboard 
corpus. We focus our attention on 
exploring feature spaces and selecting 
good features and start with analyzing the 
distributions of the edited regions and 
their components in the targeted corpus. 
We explore new feature spaces of a part-
of-speech (POS) hierarchy and relaxed for 
rough copy in the experiments. These 
steps result in an improvement of 43.98% 
percent relative error reduction in F-score 
over an earlier best result in edited 
detection when punctuation is included in 
both training and testing data [Charniak 
and Johnson 2001], and 20.44% percent 
relative error reduction in F-score over the 
latest best result where punctuation is 
excluded from the training and testing 
data [Johnson and Charniak 2004]. 

1 Introduction 

Repairs, hesitations, and restarts are common in 
spoken language, and understanding spoken 
language requires accurate methods for identifying 
such disfluent phenomena. Processing speech 
repairs properly poses a challenge to spoken dialog 
systems. Early work in this field is primarily based 
on small and proprietary corpora, which makes the 
comparison of the proposed methods difficult 
[Young and Matessa 1991, Bear et al. 1992, 
Heeman & Allen 1994]. Because of the availability 

of the Switchboard corpus [Godfrey et al. 1992] 
and other conversational telephone speech (CTS) 
corpora, there has been an increasing interest in 
improving the performance of identifying the 
edited regions for parsing disfluent sentences 
[Charniak and Johnson 2001, Johnson and 
Charniak 2004, Ostendorf et al. 2004, Liu et al. 
2005].  
 
In this paper we describe our effort towards the 
task of edited region identification with the 
intention of parsing disfluent sentences in the 
Switchboard corpus. A clear benefit of having 
accurate edited regions for parsing has been 
demonstrated by a concurrent effort on parsing 
conversational speech [Kahn et al 2005]. Since 
different machine learning methods provide similar 
performances on many NLP tasks, in this paper, 
we focus our attention on exploring feature spaces 
and selecting good features for identifying edited 
regions. We start by analyzing the distributions of 
the edited regions and their components in the 
targeted corpus. We then design several feature 
spaces to cover the disfluent regions in the training 
data. In addition, we also explore new feature 
spaces of a part-of-speech hierarchy and extend 
candidate pools in the experiments. These steps 
result in a significant improvement in F-score over 
the earlier best result reported in [Charniak and 
Johnson 2001], where punctuation is included in 
both the training and testing data of the 
Switchboard corpus, and a significant error 
reduction in F-score over the latest best result 
[Johnson and Charniak 2004], where punctuation 
is ignored in both the training and testing data of 
the Switchboard corpus.  
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In this paper, we follow the definition of [Shriberg 
1994] and others for speech repairs: A speech 
repair is divided into three parts: the reparandum, 
the part that is repaired; the interregnum, the part 
that can be either empty or fillers; and the 
repair/repeat, the part that replaces or repeats the 
reparandum. The definition can also be 
exemplified via the following utterance: 
 

repeatreparanda int erregnum

 ,  , this is  a big problem.This is you know  

 
This paper is organized as follows. In section 2, we 
examine the distributions of the editing regions in 
Switchboard data. Section 3, then, presents the 
Boosting method, the baseline system and the 
feature spaces we want to explore. Section 4 
describes, step by step, a set of experiments that 
lead to a large performance improvement. Section 
5 concludes with discussion and future work. 

2 Repair Distributions in Switchboard 

We start by analyzing the speech repairs in the 
Switchboard corpus. Switchboard has over one 
million words, with telephone conversations on 
prescribed topics [Godfrey et al. 1992]. It is full of 
disfluent utterances, and [Shriberg 1994, Shriberg 
1996] gives a thorough analysis and categorization 
of them. [Engel et al. 2002] also showed detailed 
distributions of the interregnum, including 
interjections and parentheticals. Since the majority 
of the disfluencies involve all the three parts 
(reparandum, interregnum, and repair/repeat), the 
distributions of all three parts will be very helpful 
in constructing patterns that are used to identify 
edited regions.  
 
For the reparandum and repair types, we include 
their distributions with and without punctuation. 
We include the distributions with punctuation is to 
match with the baseline system reported in 
[Charniak and Johnson 2001], where punctuation 
is included to identify the edited regions. Resent 
research showed that certain punctuation/prosody 
marks can be produced when speech signals are 
available [Liu et al. 2003]. The interregnum type, 
by definition, does not include punctuation.  
 
The length distributions of the reparanda in the 
training part of the Switchboard data with and 

without punctuation are given in Fig. 1. The 
reparanda with lengths of less than 7 words make 
up 95.98% of such edited regions in the training 
data. When we remove the punctuation marks, 
those with lengths of less than 6 words reach 
roughly 96%. Thus, the patterns that consider only 
reparanda of length 6 or less will have very good 
coverage. 

 

Length distribution of reparanda
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Figure 1. Length distribution of reparanda in 
Switchboard training data. 

 

Length distribution of 
repairs/repeats/restarts 
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Figure 2. Length distribution of 
repairs/repeats/restarts in Switchboard training data. 
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Figure 3. Length distribution of interregna in 

Switchboard training data. 
 
The two repair/repeat part distributions in the 
training part of the Switchboard are given in Fig. 2. 
The repairs/repeats with lengths less than 7 words 
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make 98.86% of such instances in the training data. 
This gives us an excellent coverage if we use 7 as 
the threshold for constructing repair/repeat patterns. 
 
The length distribution of the interregna of the 
training part of the Switchboard corpus is shown in 
Fig. 3. We see that the overwhelming majority has 
the length of one, which are mostly words such as 
“uh”, “yeah”, or “uh-huh”. 
 
In examining the Switchboard data, we noticed that 
a large number of reparanda and repair/repeat pairs 
differ on less than two words, i.e. “as to, you know, 
when to”1, and the amount of the pairs differing on 
less than two POS tags is even bigger. There are 
also cases where some of the pairs have different 
lengths. These findings provide a good base for our 
feature space. 

3 Feature Space Selection for Boosting 

We take as our baseline system the work by 
[Charniak and Johnson 2001]. In their approach, 
rough copy is defined to produce candidates for 
any potential pairs of reparanda and repairs. A 
boosting algorithm [Schapire and Singer 1999] is 
used to detect whether a word is edited. A total of 
18 variables are used in the algorithm. In the rest 
of the section, we first briefly introduce the 
boosting algorithm, then describe the method used 
in [Charniak and Johnson 2001], and finally we 
contrast our improvements with the baseline 
system. 

3.1 Boosting Algorithm 

Intuitively, the boosting algorithm is to combine a 
set of simple learners iteratively based on their 
classification results on a set of training data. 
Different parts of the training data are scaled at 
each iteration so that the parts of the data previous 
classifiers performed poorly on are weighted 
higher. The weighting factors of the learners are 
adjusted accordingly.  
 
We re-implement the boosting algorithm reported 
by [Charniak and Johnson 2001] as our baseline 
system in order to clearly identify contributing 

                                                           
1  “as to”  is the edited region. Italicized words in the 
examples are edited words 

factors in performance.  Each word token is 
characterized by a finite tuple of random variables  

(Y, X1,..., Xm ). 
Y is  the conditioned variables and ranges from    
{-1,+1}, with Y = +1 indicating that the word is 
edited. X1,..., Xm  are the conditioning variables; 
each variable jX  ranges over a finite set jχ . The 
goal of the classifer is to predict the value of Y 
given a value for X1,..., Xm .  
 
A boosting classifier is a linear combination of n 
features to define the prediction variable Z. 

                          ∑
=

=
n

i
iiFZ

1
α                (1) 

where αi is the weight to be estimated for feature φi. 
φi is a set of variable-value pairs, and each Fi has 
the form of: 
                  Fi = (X j = x j )

<X j ,x j >∈φ i

∏         (2) 

with X’s being conditioning variables and x’s being 
values.   

 
Each component in the production for Fi  is 
defined as: 
 

       (X j = x j ) =
1  < X j = x j >∈ φi

0   otherwise

⎧ 
⎨ 
⎩ 

     (3) 

 
In other words, Fi is 1 if and only if all the 
variable-value pairs for the current position belong 
to φi.  
 
The prediction made by the classifier is 

|Z| Z/ sign(Z) = . Intuitively, our goal is to adjust 
the vector of feature weights 1( ,...., )nα α α=  to 
minimize the expected misclassification rate 

]E[sign(Z) Y≠ . This function is difficult to 
minimize, so our boosting classifier minimizes the 
expected boost loss )][(exp(-YZÊt  as in [Collins 

2000], where ][Êt ⋅  is the expectation on the 
empirical training corpus distribution. In our 
implementation, each learner contains only one 
variable. The feature weights are adjusted 
iteratively, one weight per iteration. At each 
iteration, it reduces the boost loss on the training 
corpus. In our experiments, α is obtained after 
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1500 iterations, and contains around 1350 non-zero 
feature weights. 

3.2 Charniak-Johnson approach 

In [Charniak and Johnson 2001], identifying edited 
regions is considered as a classification problem, 
where each word is classified either as edited or 
normal. The approach takes two steps. The first 
step is to find rough copy. Then, a number of 
variables are extracted for the boosting algorithm. 
In particular, a total of 18 different conditioning 
variables are used to predict whether the current 
word is an edited word or a non-edited word. The 
18 different variables listed in Table 1 correspond 
to the 18 different dimensions/factors for the 
current word position. Among the 18 variables, six 
of them, Nm, Nu, Ni, Nl, Nr and Tf , depend on the 
identification of a rough copy. 
 
For convenience, their definition of a rough copy is 
repeated here. A rough copy in a string of tagged 
words has the form of 21 ∂∂ βλ , where: 

1. 1∂  (the source) and 2∂  (the copy) both 
begin   with    non-punctuation, 

2. the strings of non-punctuation POS tag 
of   1∂  and 2∂  are identical, 

3. β  (the free final) consists of zero or 
more sequences of a free final word  (see 
below) followed by optional punctuation, 

4. λ  (the interregnum) consists of 

sequences of an interregnum string (see 
below) followed by optional punctuation. 

 
The set of free final words includes all partial 
words and a small set of conjunctions, adverbs and 
miscellanea. The set of interregnum strings 
consists of a small set of expressions such as uh, 
you know, I guess, I mean, etc.  

3.3 New Improvements 

Our improvements to the Charniak-Johnson 
method can be classified into three categories with 
the first two corresponding to the twp steps in their 
method. The three categories of improvements are 
described in details in the following subsections.  

3.3.1 Relaxing Rough Copy  

We relax the definition for rough copy, because 
more than 94% of all edits have both reparandum 
and repair, while the rough copy defined in 
[Charniak and Johnson 2001] only covers 77.66% 
of such instances.  
 
Two methods are used to relax the rough copy 
definition. The first one is to adopt a hierarchical 
POS tag set: all the Switchboard POS tags are 
further classified into four major categories: N 
(noun related), V (verb related), Adj (noun 
modifiers), Adv (verb modifiers). Instead of 
requiring the exact match of two POS tag 
sequences, we also consider two sequences as a 

Variables Name Short description 
X1 W0 The current orthographic word. 
X2 – X5 P0,P1,P2,Pf Partial word flags for the current position, the next two to the right, and the first one 

in a sequence of free-final words (partial, conjunctions, etc.) to the right of the 
current position. 

X6 – X10 T-1,T0,T1,T2,Tf Part of speech tags for the left position, the current position, the next two positions 
to the right, and the first free-final word position to the right of the current position.

X11 Nm Number of words in common in reparandum and repair 
X12 Nn Number of words in reparandum but not repair 
X13 Ni Number of words in interregnum 
X14 Nl Number of words to the left edge of reparandum 
X15 Nr Number of words to the right edge of reparandum 
X16 Ct The first non-punctuation tag to the right of the current position 
X17 Cw The first non-punctuation word to the right of the current position 
X18 Ti The tag of the first word right after the interregnum that is right after the current 

word.  
 

Table 1. Descriptions of the 18 conditioning variables from [Charniak and Johnson 2001] 
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rough copy if their corresponding major categories 
match. This relaxation increases the rough copy 
coverage, (the percent of words in edited regions 
found through the definition of rough copy), from 
77.66% to 79.68%.  
 
The second is to allow one mismatch in the two 
POS sequences. The mismatches can be an 
addition, deletion, or substitution. This relaxation 
improves the coverage from 77.66% to 85.45%. 
Subsequently, the combination of the two 
relaxations leads to a significantly higher coverage 
of 87.70%. Additional relaxation leads to excessive 
candidates and worse performance in the 
development set. 

3.3.2 Adding New Features  

We also include new features in the feature set: 
one is the shortest distance (the number of words) 
between the current word and a word of the same 
orthographic form to the right, if that repeated 
word exists; another is the words around the 
current position. Based on the distributional 
analysis in section 2, we also increase the window 
sizes for POS tags ( 5 5,...,T T− ) and words 
( 5 5,...,W W− ) to ±5 and partial words ( 3 3,...,P P− ) 
to ±3, extending Ti and Pj.  

3.3.3 Post Processing Step 

In addition to the two categories, we try to use 
contextual patterns to address the independency of 
variables in the features. The patterns have been 
extracted from development and training data, to 
deal with certain sequence-related errors, e.g.,  

E N E  E E E, 
which means that if the neighbors on both sides of 
a word are classified into EDITED, it should be 
classified into EDITED as well.  

4 Experimental Results  

We conducted a number of experiments to test the 
effectiveness of our feature space exploration. 
Since the original code from [Charniak and 
Johnson 2001] is not available, we conducted our 
first experiment to replicate the result of their 
baseline system described in section 3. We used 
the exactly same training and testing data from the 
Switchboard corpus as in [Charniak and Johnson 

2001]. The training subset consists of all files in 
the sections 2 and 3 of the Switchboard corpus. 
Section 4 is split into three approximately equal 
size subsets. The first of the three, i.e., files 
sw4004.mrg to sw4153.mrg, is the testing corpus. 
The files sw4519.mrg to sw4936.mrg are the 
development corpus. The rest files are reserved for 
other purposes.  When punctuation is included in 
both training and testing, the re-established 
baseline has the precision, recall, and F-score of 
94.73%, 68.71% and 79.65%, respectively. These 
results are comparable with the results from 
[Charniak & Johnson 2001], i.e., 95.2%, 67.8%, 
and 79.2% for precision, recall, and f-score, 
correspondingly. 
 
In the subsequent experiments, the set of additional 
feature spaces described in section 3 are added, 
step-by-step. The first addition includes the 
shortest distance to the same word and window 
size increases. This step gives a 2.27% 
improvement on F-score over the baseline. The 
next addition is the introduction of the POS 
hierarchy in finding rough copies. This also gives 
more than 3% absolute improvement over the 
baseline and 1.19% over the expanded feature set 
model. The addition of the feature spaces of 
relaxed matches for words, POS tags, and POS 
hierarchy tags all give additive improvements, 
which leads to an overall of 8.95% absolute 
improvement over the re-implemented baseline, or 
43.98% relative error reduction on F-score.  
 
When compared with the latest results from 
[Johnson and Charniak 2004], where no 
punctuations are used for either training or testing 
data, we also observe the same trend of the 
improved results. Our best result gives 4.15% 
absolute improvement over their best result, or 
20.44% relative error reduction in f-scores. As a 
sanity check, when evaluated on the training data 
as a cheating experiment, we show a remarkable 
consistency with the results for testing data.  

 
For error analysis, we randomly selected 100 
sentences with 1673 words total from the test 
sentences that have at least one mistake. Errors can 
be divided into two types, miss (should be edited) 
and false alarm (should be noraml). Among the 
207 misses, about 70% of them require some 
phrase level analysis or acoustic cues for phrases. 
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For example, one miss is “because of the friends 
because of many other things”, an error we would 
have a much better chance of correct identification, 
if we were able to identify prepositional phrases 
reliably. Another example is “most of all my 
family”. Since it is grammatical by itself, certain 
prosodic information in between “most of” and “all 
my family” may help the identification. [Ostendorf 
et al. 2004] reported that interruption point could 
help parsers to improve results.  [Kahn et al. 2005] 
also showed that prosody information could help 
parse disfluent sentences. The second major class 
of the misses is certain short words that are not 
labeled consistently in the corpus. For example, 
“so”, “and”, and “or”, when they occur in the 
beginning of a sentence, are sometimes labeled as 

edited, and sometimes just as normal. The last 
category of the misses, about 5.3%, contains the 
ones where the distances between reparanda and 
repairs are often more than 10 words.  
 
Among the 95 false alarms, more than three 
quarters of misclassified ones are related to certain 
grammatical constructions. Examples include cases 
like, “the more … the more” and “I think I 
should …”. These cases may be fixable if more 
elaborated grammar-based features are used.  

5 Conclusions  

This paper reports our work on identifying edited 
regions in the Switchboard corpus. In addition to a 

Results on testing data Results on training data 
with punctuation Punctuation on both  No punctuation on both 

Method codes 

Precision Recall f-score Precision Recall f-score Precision Recall f-score
CJ’01    95.2 67.8 79.2    

JC’04 p       82.0 77.8 79.7 
 R CJ’01 94.9 71.9 81.81 94.73 68.71 79.65 91.46 64.42 75.59 

+d 94.56 78.37 85.71 94.47 72.31 81.92 91.79 68.13 78.21 
+d+h 94.23 81.32 87.30 94.58 74.12 83.11 91.56 71.33 80.19 
+d+rh 94.12 82.61 87.99 92.61 77.15 84.18 89.92 72.68 80.39 
+d+rw 96.13 82.45 88.77 94.79 75.43 84.01 92.17 70.79 80.08 

+d+rw+rh 94.42 84.67 89.28 94.57 77.93 85.45 92.61 73.46 81.93 
+d+rw+rt+wt 94.43 84.79 89.35 94.65 76.61 84.68 92.08 72.61 81.19 
+d+rw+rh+wt 94.58 85.21 89.65 94.72 79.22 86.28 92.69 75.30 83.09 

+d+rw+rh+wt+ps 93.69 88.62 91.08 93.81 83.94 88.60 89.70 78.71 83.85 
 

Table 2. Result summary for various feature spaces. 
 

Method codes Method description 

CJ’01 Charniak and Johnson 2001 
JC’04 p Johnson and Charniak 2004, parser results 
R CJ’01 Duplicated results for Charniak and Johnson 2001 
+d Distance + window sizes 
+d+h Distance + window sizes + POS hierarchy in rough copy 
+d+rh Distance + window sizes + relaxed POS hierarchy in rough copy 
+d+rw Distance + window sizes + relaxed word in rough copy 
+d+rw+rh Distance + window sizes + relaxed word and POS hierarchy in rough copy 
+d+rw+rt+wt Distance + window sizes + word & tag pairs + relaxed word and POS in rough copy 
+d+rw+rh+wt Distance + window sizes + word & tag pairs + relaxed word and POS hierarchy in 

rough copy 
+d+rw+rh+wt+ps Distance + window sizes + word & tag pairs + relaxed word and POS hierarchy in 

rough copy + pattern substitution 
 

Table 3. Description of method codes used in the result table. 
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distributional analysis for the edited regions, a 
number of feature spaces have been explored and 
tested to show their effectiveness. We observed a 
43.98% relative error reduction on F-scores for the 
baseline with punctuation in both training and 
testing [Charniak and Johnson 2001]. Compared 
with the reported best result, the same approach 
produced a 20.44% of relative error reduction on 
F-scores when punctuation is ignored in training 
and testing data [Johnson and Charniak 2004]. The 
inclusion of both hierarchical POS tags and the 
relaxation for rough copy definition gives large 
additive improvements, and their combination has 
contributed to nearly half of the gain for the test 
set with punctuation and about 60% of the gain for 
the data without punctuation.  

 
Future research would include the use of other 
features, such as prosody, and the integration of 
the edited region identification with parsing.   
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1 Introduction and Related Work

Natural language understanding is an essential mod-
ule in any dialogue system. To obtain satisfac-
tory performance levels, a dialogue system needs
a semantic parser/natural language understanding
system (NLU) that produces accurate and detailed
dialogue oriented semantic output. Recently, a
number of semantic parsers trained using either
the FrameNet (Baker et al., 1998) or the Prop-
Bank (Kingsbury et al., 2002) have been reported.
Despite their reasonable performances on general
tasks, these parsers do not work so well in spe-
cific domains. Also, where these general purpose
parsers tend to provide case-frame structures, that
include the standard core case roles (Agent, Patient,
Instrument, etc.), dialogue oriented domains tend
to require additional information about addressees,
modality, speech acts, etc. Where general-purpose
resources such as PropBank and Framenet provide
invaluable training data for general case, it tends to
be a problem to obtain enough training data in a spe-
cific dialogue oriented domain.

We in this paper propose and compare a num-
ber of approaches for building a statistically trained
domain specific parser/NLU for a dialogue system.
Our NLU is a part of Mission Rehearsal Exercise
(MRE) project (Swartout et al., 2001). MRE is a
large system that is being built to train experts, in
which a trainee interacts with a Virtual Human using
voice input. The purpose of our NLU is to convert
the sentence strings produced by the speech recog-
nizer into internal shallow semantic frames com-
posed of slot-value pairs, for the dialogue module.

2 Parsing Methods

2.1 Voting Model

We use a simple conditional probability model
P (f | W ) for parsing. The model represents the
probability of producing slot-value pairf as an out-
put given that we have seen a particular word or
n-gramW as input. Our two-stage procedure for
generating a frame for a given input sentence is: (1)
Find a set of all slot-value that correspond with each
word/ngram (2) Select the top portion of these can-
didates to form the final frame (Bhagat et al., 2005;
Feng and Hovy, 2003).

2.2 Maximum Entropy

Our next approach is the Maximum Entropy (Berger
et al., 1996) classification approach. Here, we cast
our problem as a problem of ranking using a classi-
fier where each slot-value pair in the training data is
considered a class and feature set consists of the un-
igrams, bigrams and trigrams in the sentences (Bha-
gat et al., 2005).

2.3 Support Vector Machines

We use another commonly used classifier, Support
Vector Machine (Burges, 1998), to perform the
same task (Bhagat et al., 2005). Approach is sim-
ilar to Section 2.2.

2.4 Language Model

As a fourth approach to the problem, we use the Sta-
tistical Language Model (Ponte and Croft, 1997).
We estimate the language model for the slot-value
pairs, then we construct our target interpretation as
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Method Precison Recall F-score
V oting 0.82 0.78 0.80
ME 0.77 0.80 0.78

SV M 0.79 0.72 0.75
LM1 0.80 0.84 0.82
LM2 0.82 0.84 0.83

Table 1: Performance of different systems on test
data.

a set of the most likely slot-value pairs. We use
unigram-based and trigram-based language mod-
els (Bhagat et al., 2005).

3 Experiments and Results

We train all our systems on a training set of477
sentence-frame pairs. The systems are then tested on
an unseen test set of50 sentences. For the test sen-
tences, the system generated frames are compared
against the manually built gold standard frames, and
Precision, Recall and F-scores are calculated for
each frame.

Table1 shows the average Precision, Recall and
F-scores of the different systems for the50 test sen-
tences: Voting based (Voting), Maximum Entropy
based (ME), Support Vector Machine based (SVM),
Language Model based with unigrams (LM1) and
Language Model based with trigrams (LM2). The
F-scores show that the LM2 system performs the
best though the system scores in general for all the
systems are very close. To test the statistical signifi-
cance of these scores, we conduct a two-tailed paired
Student’s t test (Manning and Schtze, 1999) on the
F-scores of these systems for the50 test cases. The
test shows that there is no statistically significant dif-
ference in their performances.

4 Conclusions

This work illustrates that one can achieve fair suc-
cess in building a statistical NLU engine for a re-
stricted domain using relatively little training data
and surprisingly using a rather simple voting model.
The consistently good results obtained from all the
systems on the task clearly indicate the feasibility of
using using only word/ngram level features for pars-
ing.

5 Future Work

Having successfully met the initial challenge of
building a statistical NLU with limited training data,
we have identified multiple avenues for further ex-
ploration. Firstly, we wish to build an hybrid system
that will combine the strengths of all the systems to
produce a much more accurate system. Secondly,
we wish to see the effect that ASR output has on
each of the systems. We want to test the robustness
of systems against an increase in the ASR word er-
ror rate. Thirdly, we want to build a multi-clause
utterance chunker to integrate with our systems. We
have identified that complex multi-clause utterances
have consistently hurt the system performances. To
handle this, we are making efforts along with our
colleagues in the speech community to build a real-
time speech utterance-chunker. We are eager to dis-
cover any performance benefits. Finally, since we
already have a corpus containing sentence and their
corresponding semantic-frames, we want to explore
the possibility of building a Statistical Generator us-
ing the same corpus that would take a frame as input
and produce a sentence as output. This would take
us a step closer to the idea of building a Reversible
System that can act as a parser when used in one
direction and as a generator when used in the other.
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The so called quick check (henceforth QC) pre-
unification filter for feature structure (FS) unifica-
tion was introduced by (Kiefer et al., 1999). QC is
considered the most important speed-up technique
in the framework of non-compiled FS unification.
We present two potential ways in which the design
of the quick check can be further extended: con-
sistency sort check on coreferenced paths, and pre-
unification type-checking. We analyse the effect of
these extensions on LinGO, the large-scale HPSG
grammar for English (Flickinger et al., 2000) using
the compiler system LIGHT (Ciortuz, 2002).

1 Coreferenced Based Quick Check

Suppose that the FS ϕ is going to be unified with
ψ, and that ϕ contains the coreference ϕ.π .

= ϕ.π′.
In this setup, if for a certain path η it happens that
sort(ϕ.(πη)) ∧ sort(ψ.(πη)) ∧ sort(ψ.(π ′η)) = ⊥,
then certainly ϕ and ψ are not unifiable. There is
no a priori reason why, on certain typed grammars,
coreference-based sort inconsistency would not be
more effective in ruling out FS unification than sort
inconsistency on mutual paths. Moreover, the in-
tegration of the two forms of QC is not compli-
cated. However, up to our knowledge no system
parsing LinGO-like grammars included the above
newly presented form of (coreference-based) pre-
unification QC test.

On the GR-reduced form LinGO (Ciortuz, 2004)
we identified 12 pairs of non-cross argument coref-
erences inside rule arguments (at LinGO’s source
level). Interestingly enough, all these coreferences
occur inside key arguments, belonging to only 8 (out
of the total of 61) rules in LinGO.

To perform coreference-based QC, we computed
the closure of this set Λ of coreference paths. The
closure of Λ will be denoted Λ̄. If the pair π1 and π2

is in Λ, then together with it will be included in Λ̄ all
pairs of QC-paths such that π1η and π2η, where η
is a feature path (a common suffix to the two newly
selected paths). For the GR-reduced form of LinGO,
the closure of Λ defined as above amounted to 38
pairs. It is on these pairs of paths that we performed
the coreference-based QC test.

Using all these coreference paths pairs, 70,581
unification failures (out of a total of 2,912,623 at-
tempted unifications) were detected on the CSLI test
suite. Only 364 of these failures were not detectable
through classical QC. When measuring the “sensi-
tivity” of coreferenced-based QC to individual rule
arguments, we found that out of a total of 91 rule
arguments in LinGO only for 4 rule arguments the
coreference-based QC detects inconsistencies, and
the number of these inconsistencies is far lower than
those detected by the classical QC on the same ar-
guments. None of the pairs of coreference paths ex-
hibited a higher failure detection rate than the first
ranked 32 QC-paths. If one would work with 42 QC-
paths, then only 4 of the pairs of coreference paths
would score failure detection frequencies that would
qualify them to be taken into consideration for the
(extended form of) QC-test.

As a conclusion, it is clear that for LinGO, run-
ning the coreference-based QC test is virtually of
no use. For other grammars (or other applications
involving FS unification), one may come to a dif-
ferent conclusion, if the use of non-cross argument
coreferences balances (or outnumbers) that of cross-
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argument coreferences.

2 Type Checking Based Quick Check

Failure of run-time type checking — the third po-
tential source of inconsistency when unifying two
typed FSs — is in general not so easily/efficiently
detectable at pre-unification time, because this check
requires calling a type consistency check routine
which is much more expensive than the simple sort
consistency operation.

While exploring the possibility to filter unifica-
tion failures due to type-checking, the measurements
we did using LinGO (the GR-reduced form) on the
CSLI test suite resulted in the following facts:

1. Only 137 types out of all 5235 (non-rule and non-
lexical) types in LinGO were involved in (either suc-
cessful or failed) type-checks.1 Of these types, only
29 types were leading to type checking failure.2

2. Without using QC, 449,779 unification fail-
ures were due to type-checking on abstract instruc-
tions, namely on intersects sort; type-checking on
test feature acts in fact as type unfolding. When
the first 32 QC-paths (from the GR-set of paths)
were used (as standard), that number of failures went
down to 92,447. And when using all 132 QC-paths
(which have been detected on the non GR-reduced
form of LinGO), it remained close to the preceding
figure: 86,841.

3. For QC on 32 paths, we counted that failed type-
checking at intersect sort occurs only on 14 GR-
paths. Of these paths, only 9 produced more than
1000 failures, only 4 produced more than 10,000
failures and finally, for only one GR-path the num-
ber of failed type-checks exceeded 20,000.

The numbers given at the above second point sug-
gest that when trying to extend the ‘classical’ form
of QC towards finding all/most of failures, a consid-
erably high number of type inconsistencies will re-
main in the FSs produced during parsing, even when
we use all (GR-paths as) QC-paths. Most of these in-
consistencies are due to failed type-checking. And
as shown, neither the classical QC nor its exten-
sion to (non-cross argument) coreference-based QC
is able to detect these inconsistencies.

1For 32 QC-paths: 122 types, for 132 QC-paths: also 122.
2For 32 QC-paths and 132 QC-paths: 24 and 22 respectively.

s = GRϕ[ i ] ∧ GRψ[ i ];
if s 6= GRϕ[ i ] and s 6= GRψ[ i ] and

ϕ.πj or ψ.πj is defined for
a certain non-empty path πj = πiπ,
an extension of πi,

such that πj is a QC-path,
then

if Ψ(s).π∧ GRψ[i] = ⊥, where
a Ψ(s) is the type corresponding to s,

or type-checking ψ.πi with Ψ(s) fails
then ϕ and ψ do not unify.

Figure 1: The core of a type-checking specialised
compiled QC sub-procedure.

The first and third points from above say that in
parsing the CSLI test suite with LinGO, the failures
due to type checking tend to agglomerate on cer-
tain paths. But due to the fact that type-checking
is usually time-costly, our conclusion, like in the
case of non-cross argument coreference-based QC,
is that extending the classical QC by doing a cer-
tain amount of type-checking at pre-unification time
is not likely to improve significantly the unification
(and parsing) performances on LinGO.

For another type-unification grammar one can ex-
tend (or replace) the classical QC test with a type-
check QC filter procedure. Basically, after identify-
ing the set of paths (and types) which most probably
cause failure during type-checking, that procedure
works as shown in Figure 1.
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Abstract

This document shows how the factorized
syntactic descriptions provided by Meta-
Grammars coupled with factorization op-
erators may be used to derive compact
large coverage tree adjoining grammars.

1 Introduction

Large coverage Tree Adjoining Grammars (TAGs)
tend to be very large, with several thousands of
tree schemata, i.e., trees with at least one anchor
node. Such large grammars are difficult to develop
and maintain. Of course, their sizes have also a
strong impact on parsing efficiency. The size of such
TAGs mostly arises from redundancies, due to the
extended domain of locality provided by trees.

Recently, Meta-Grammars (Candito, 1999) have
been introduced to factorize linguistic information
through a multiple inheritance hierarchy of small
classes, each of them grouping elementary con-
straints on nodes. A MG compiler exploits these bits
of information to generate a set of trees. While MGs
help reducing redundancies at a descriptive level, the
resulting grammars remain very large.

We propose to exploit the fact that MGs are al-
ready factorized to get compact grammars through
the use of factorized trees, as provided by system
DYALOG (Thomasset and Villemonte de la Clerg-
erie, 2005).

This proposal has been validated by quickly de-
veloping and testing a large coverage French MG.

2 Generic factorization operators

The first factorization operators provided by DYA-
LOG are the disjunction, Kleene star, and optional-
ity operators. A finer control of optionality is pro-
vided through the notion of guards, used to state
conditions on the presence or absence of a node (or
of a node sequence). An expression (G+, x;G

−
)

means that the guard G+ (resp. G
−

) should be sat-
isfied for x to be present (resp. absent). A guard
G is a boolean expression on equations between FS
paths and is equivalent to a finite set of substitu-
tions ΣG. Used to handle local free-word order-
ings, the interleaving (or shuffling) of two sequences
(ai)i=1···n##(bj)j=1···m returns all sequences con-
taining all ai and bj in any order that preserves the
original orderings (i.e., ai < ai+1 and bj < bj+1).

These operators do not increase the expressive
power or the worst-case complexity of TAGs. They
are implemented without expansion, ensuring good
performances and more natural parsing output (with
no added non-terminals).

3 Meta-Grammars

MGs allow modular descriptions of syntactic phe-
nomena, using elementary constraints grouped into
classes. A class may inherit constraints from sev-
eral parent classes and can also provide a resource
or require a resource. Constraints on nodes include
equality, precedence, immediate and indirect dom-
inances. The constraints may also be on node and
class decorations, expressed with Feature Structures.

The objective of our MG compiler, also devel-
oped with DYALOG, is to cross the terminal classes
(i.e. any class without descendants) in order to ob-
tain neutral classes where each provided resource
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has been consumed and conversely. Constraints are
accumulated during crossing and are only kept the
neutral classes whose accumulated constraints are
satisfiable, taking into account their logical conse-
quence. Minimal trees satisfying the constraints of
the neutral classes are then produced.

Getting factorized trees results from several
mechanisms. A node may group alternatives, and
may be made optional or repeatable (for Kleene
stars). When generating trees, underspecified prece-
dences between sibling nodes are handled by the in-
terleaving operator.

Positive and negative guards may be attached to
nodes and are accumulated in a conjunctive way dur-
ing the crossing phase, i.e. N ⇒ G1 and N ⇒ G2 is
equivalent to N ⇒ (G1, G2). The compiler checks
the satisfiability of the guards, removing the alter-
natives leading to failures and equations in guards
which become trivially true. The remaining guards
are emitted as DYALOG guards in the trees.

4 Grammar anatomy

In just a few months, we have developed, for French,
a MG with 191 classes, used to generate a very
compact TAG of only 126 trees. Only 27 trees are
anchored by verbs and they are sufficient to cover
canonical, passive and extracted verbal construc-
tions with at most 2 arguments (including objects,
attributes, completives, infinitives, prepositional ar-
guments, wh-completives). These trees would cor-
respond to several thousand trees, if the factoriza-
tion operators were expanded. This strong com-
paction rate stems from the presence of 820 guards,
92 disjunctions (to handle choices in realizations),
26 interleavings (to handle verb argument positions)
and 13 Kleene stars (to handle coordinations). The
grammar is mostly formed of simple trees (with less
than 17 nodes), and a few complex trees (26 trees
between 30 and 46 nodes), essentially anchored by
verbs.

For instance, tree #1111, used for canonical verb
constructions, results from the crossing of 25 ter-
minal classes, and has 43 nodes, plus 3 disjunction
nodes (for the different realizations of the subject
and other verb arguments) and 1 interleaving node

1browsable online at http://atoll.inria.fr/
perl/frmg/tree.pl.

(between the verb arguments and a possible post-
verbal subject). The tree is controlled by 35 guards,
governing, for instance, the presence and position of
a subject and of clitics.

Such a tree covers much more verb sub-
categorization frames than the number of frames
usually attached to a given verb. The anchoring of a
tree α by a word w is done by unifying two feature
structures Hα and Hw, called hypertags (Kinyon,
2000), that list the syntactic properties covered by
α and allowed by w. The link between Hτ and the
allowed syntactic constructions is done through the
variables occurring inHτ and in the guards and node
decorations.

5 Evaluation

The resulting French grammar has been compiled,
with DYALOG, into an hybrid TAG/TIG parser,
by identifying the left and right auxiliary insertion
trees. Following a left-to-right top-down tabular
parsing strategy, the parser may be used to get ei-
ther full or partial parses.2 Coverage rate for full
parsing is around 95% for two test suites (EURO-
TRA and TSNLP) and around 42% on various cor-
pora (including more than 300K sentences of a raw
journalistic corpus).

Our MG is still very young and needs to be im-
proved to ensure a better coverage. However, we can
already conclude that coupling MGs with factorized
trees is a generic and powerful approach to control
the size of grammars and to get efficient parsers.

The various tools and linguistic resources men-
tioned in this abstract are freely available at http:
//atoll.inria.fr/.
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1 Introduction

The Generalized ID/LP (GIDLP) grammar formal-
ism (Daniels and Meurers 2004a,b; Daniels 2005)
was developed to serve as a processing backbone for
linearization-HPSG grammars, separating the dec-
laration of the recursive constituent structure from
the declaration of word order domains. This pa-
per shows that the key aspects of this formalism –
the ability for grammar writers to explicitly declare
word order domains and to arrange the right-hand
side of each grammar rule to minimize the parser’s
search space – lead directly to improvements in pars-
ing efficiency.

2 Defining GIDLP Grammars

A brief overview of GIDLP syntax is given in 1, and
an example GIDLP grammar is given in 2 that recog-
nizes a very small fragment of German, focusing on
the free word order of arguments and adjuncts in the
Mittelfeld.1 The basic idea of this grammar is that
no word order constraints apply below the level of
the clause. This allows the verb’s arguments and ad-
juncts to freely intermingle, before being compacted
at the clause level, at which point the constraints on
the location of the finite verb apply. It is important to
note that this grammar cannot be straightforwardly
expressed in the ID/LP formalism, where LP con-
straints only apply within local trees.

3 The GIDLP Parsing Algorithm

The GIDLP parser Daniels and Meurers (2004a);
Daniels (2005) is based on Earley’s algorithm for

1For compactness, categories are described in this example
with prolog-style terms; the actual GIDLP syntax assumes fea-
ture structure categories.

Terminal: t
Non-terminal: C
Lexical entry: C → t
Grammar rule: C → C+;LP

∗; DD
∗

Start declaration: start (S) : LP
∗

LP [Constraint]: C1{<,�}C2

D[omain] D[eclaration]: 〈{C+}, C, LP
∗〉

Figure 1: GIDLP syntax

a) start(s): []

b) s → s(cmp)

c) s → s(que)

d) s(cmp) → cmp, clause;
〈{[0]}, s(cmp), cmp < , < v( )〉

e) s(que) → clause;〈{[0]}, s(que), v( ) < 〉

f) clause → np(n), vp

g) vp → v(ditr), np(a), np(d)

h) vp → adv, vp

i) vp → v(cmp), s(cmp)

j) [np(Case)] → det(Case), n(Case);1 � 2

Figure 2: Example GIDLP Grammar

context-free parsing, suitably modified to handle
discontinuous constituents.

A central insight of the GIDLP parsing algorithm
is that the same data structure used to describe the
coverage of an edge can also encode restrictions on
the parser’s search space. This is done by adding two
bitvectors to each edge: a negative mask (n-mask),
which marks positions that must not be part of the
edge, and a positive mask (p-mask), which marks
positions that must be part of the edge. These masks
are generated during the prediction phase and then
tested during the completion phase using efficient
bitvector operations. Compiling LP constraints into
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bitmasks in this way allows the LP constraints to be
integrated directly into the parser at a fundamental
level. Instead of weeding out inappropriate parses
in a cleanup phase, LP constraints in this parser can
immediately block an edge from being added to the
chart.

4 Evaluation

To evaluate the effectiveness of the GIDLP formal-
ism, a moderate-scale grammar of German was ob-
tained from Professor Martin Volk (Stockholm Uni-
versity). This grammar combines ID/LP rules with
PS rules, as argued for in (Volk 1996), and uses a
flat structure to encode the flexibility of the German
Mittelfeld. As an example, the rule for ditransitive
verbs is given in (1).

(1) S -> N2 V N2 N2 ADV* (ERG) (PRAEF)

This grammar can be mechanically translated into
the GIDLP format, as each of Volk’s PS rules cor-
responds to a GIDLP rule. This translation estab-
lishes an ‘initial’ GIDLP grammar.2 The grammar
was then optimized in two successive steps to take
advantage of the GIDLP formalism. First, a ‘medial’
grammar was created in which word order domains
were introduced only when necessary. (In the ID/LP
formalism, every local tree is an order domain.) Sec-
ond, a ‘final’ grammar was created by reordering the
RHS order of each rule so as to put the most discrim-
inatory RHS element first – generally the finite verb.

To compare these three grammars, a testsuite of
150 sentences was constructed. The sentences were
generally chosen to equally cover the sentence types
recognized by the grammar. The results from pars-
ing this testsuite with each grammar are summa-
rized in Figure 3, which shows the average number
of chart insertion attempts at each sentence length.
(Chart insertion attempts have traditionally been
used as an overall metric for parsing efficiency, as
parse time tends to be dominated by the time taken
searching the chart for blocking edges.) Overall, the
final grammar shows a clear improvement over the
medial and initial grammars.

2As Volk’s parser is not available, the relative performance
of the GIDLP parser on the initial grammar and of Volk’s parser
on his grammar cannot be determined. Thus Volk’s grammar is
only used as a basis for the three GIDLP grammars described
here.
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Figure 3: Average Chart Size per Sentence Length

Averaging over all 150 sentences, the final gram-
mar sees a decrease of 69.2% in the number of chart
insertion attempts compared to the initial grammar.
Thus the expressive capabilities provided by the
GIDLP formalism lead directly to improvements in
parsing efficiency.

5 Summary

This paper has shown that two key aspects of the
GIDLP grammar formalism – the ability for gram-
mar writers to explicitly declare word order domains
in the spirit of the linearization-HPSG tradition and
the ability to completely order the RHS of a gram-
mar rule to minimize the parser’s overall search
space – lead directly to improvements in parse ef-
ficiency.
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1 Introduction

This paper presents a method for speeding up a
deep parser through backbone extraction and prun-
ing based on CFG ambiguity packing.1 The TRIPS
grammar is a wide-coverage grammar for deep nat-
ural language understanding in dialogue, utilized in
6 different application domains, and with high cov-
erage and sentence-level accuracy on human-human
task-oriented dialogue corpora (Dzikovska, 2004).
The TRIPS parser uses a best-first beam search al-
gorithm and a chart size limit, both of which are a
form of pruning focused on finding an n-best list of
interpretations. However, for longer sentences lim-
iting the chart size results in failed parses, while in-
creasing the chart size limits significantly impacts
the parsing speed.

It is possible to speed up parsing by implement-
ing faster unification algorithms, but this requires
considerable implementation effort. Instead, we de-
veloped a new parser, TFLEX, which uses a sim-
pler technique to address efficiency issues. TFLEX
combines the TRIPS grammar with the fast parsing
technologies implemented in the LCFLEX parser
(Rosé and Lavie, 2001). LCFLEX is an all-paths
parser which uses left-corner prediction and ambi-
guity packing, and which was shown to be efficient
on other unification augmented context-free gram-
mars. We describe a way to transfer the TRIPS
grammar to LCFLEX, and a pruning method which
achieves significant improvements in both speed and
coverage compared to the original TRIPS parser.

1This material is based on work supported by grants from
the Office of Naval Research under numbers N000140510048
and N000140510043.

2 TFLEX

To use the TRIPS grammar in LCFLEX we first ex-
tracted a CFG backbone from the TRIPS grammar,
with CFG non-terminals corresponding directly to
TRIPS constituent categories. To each CFG rule
we attach a corresponding TRIPS rule. Whenever
a CFG rule completes, a TRIPS unification function
is called to do all the unification operations associ-
ated with the TRIPS rule. If the unification fails, the
constituent built by the CFG is cancelled.

The TFLEX pruning algorithm uses ambiguity
packing to provide good pruning points. For exam-
ple, in the sentence “we have a heart attack victim
at marketplace mall” the phrase “a heart attack vic-
tim” has two interpretations depending on whether
“heart” modifies “attack” or “attack victim”. These
interpretations will be ambiguity packed in the CFG
structure, which offers an opportunity to make prun-
ing more strategic by focusing specifically on com-
peting interpretations for the same utterance span.
For any constituent where ambiguity-packed non-
head daughters differ only in local features, we
prune the interpretations coming from them to a
specified prune beam width based on their TRIPS
scores. In the example above, pruning will happen
at the point of making a VP “have a heart attack vic-
tim”. The NP will be ambiguity packed, and we will
prune alternative VP interpretations resulting from
combining the same sense of the verb “have” and
different interpretations of the NP.

This approach works better than the original
TRIPS best-first algorithm, because for long sen-
tence the TRIPS chart contains a large number

194



of similar constituents, and the parser frequently
reaches the chart size limit before finding the correct
constituent to use. Ambiguity packing in TFLEX
helps chose the best constituents to prune by prun-
ing competing interpretations which cover the same
span and have the same non-local features, thus
making it less likely that a constituent essential for
building a parse will be pruned.

3 Evaluation

Our evaluation data is an excerpt from the Monroe
corpus that has been used in previous TRIPS re-
search on parsing speed and accuracy (Swift et al.,
2004). The test contained 1042 utterances, from 1
to 45 words in length (mean 5.38 words/utt, st. dev.
5.7 words/utt). Using a hold-out set, we determined
that a beam width of 3 was an optimal setting for
TFLEX. We then compared TFLEX at beam width
3 to the TRIPS parser with chart size limits of 1500,
5000, and 10000. As our evaluation metrics we re-
port are average parse time per sentence and proba-
bility of finding at least one parse, the latter being a
measure approximating parsing accuracy.

The results are presented in Figure 1. We grouped
sentences into equivalence classes based on length
with a 5-word increment. On sentences greater
than 10 words long, TFLEX is significantly more
likely to produce a parse than any of the TRIPS
parsers (evaluated using a binary logistic regression,
p < .001). Moreover, for sentences greater than
20 words long, no form of TRIPS parser returned
a complete parse. TFLEX is significantly faster
than TRIPS-10000, statistically indistinguishable in
terms of parse time from TRIPS-5000, and signifi-
cantly slower than TRIPS-1500 (p < .001).

Thus, TFLEX presents a superior balance of cov-
erage and efficiency especially for long sentences
(10 words or more) since for these sentences it is
significantly more likely to find a parse than any ver-
sion of TRIPS, even a version where the chart size is
expanded to an extent that it becomes significantly
slower (i.e., TRIPS-10000).

4 Conclusions

In this paper, we described a combination of effi-
cient parsing techniques to improve parsing speed
and coverage with the TRIPS deep parsing grammar.

Figure 1: Parse times and probability of getting a
parse depending on (aggregated) sentence lengths.
5 denotes sentences with 5 or fewer words, 25 sen-
tences with more than 20 words.

The TFLEX system uses an all-paths left-corner
parsing from the LCFLEX parser, made tractable
by a pruning algorithm based on ambiguity packing
and local features, generalizable to other unification
grammars. Our pruning algorithm provides a bet-
ter efficiency-coverage balance than best-first pars-
ing with chart limits as utilised by the TRIPS parser.
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1 Introduction

Producing detailed syntactic and semantic represen-
tations of natural language is essential for prac-
tical dialog systems such as plan-based assistants
and tutorial systems. Development of such systems
is time-consuming and costly as they are typically
hand-crafted for each application, and dialog corpus
data is more difficult to obtain than text. The TRIPS
parser and grammar addresses these issues by pro-
viding broad coverage of common constructions in
practical dialog and producing semantic representa-
tions suitable for dialog processing across domains.
Our system bootstraps dialog system development
in new domains and helps build parsed corpora.1

Evaluating deep parsers is a challenge (e.g., (Ka-
plan et al., 2004)). Although common bracketing
accuracy metrics may provide a baseline, they are
insufficient for applications such as ours that require
complete and correct semantic representations pro-
duced by the parser. We evaluate our parser on
bracketing accuracy against a statistical parser as a
baseline, then on a word sense disambiguation task,
and finally on full sentence syntactic and semantic
accuracy in multiple domains as a realistic measure
of system performance and portability.

2 The TRIPS Parser and Logical Form

The TRIPS grammar is a linguistically motivated
unification formalism using attribute-value struc-

1We thank 4 anonymous reviewers for comments.
This material is based on work supported by grants from
ONR #N000149910165, NSF #IIS-0328811, DARPA
#NBCHD030010 via subcontract to SRI #03-000223 and
NSF #E1A-0080124.

(SPEECHACT sa1 SA REQUEST :content e123)
(F e123 (:* LF::Fill-Container Load)

:Agent pro1 :Theme v1 :Goal v2)
(IMPRO pro1 LF::Person :context-rel *YOU*)
(THE v1 (SET-OF (:* LF::Fruit Orange)))
(THE v2 (:* LF::Vehicle Truck))

Figure 1: LF for Load the oranges into the truck.

tures. An unscoped neo-Davidsonian semantic rep-
resentation is built in parallel with the syntactic
representation. A sample logical form (LF) rep-
resentation for Load the oranges into the truck is
shown above. The TRIPS LF provides the neces-
sary information for reference resolution, surface
speech act analysis, and interpretations for a wide
variety of fragmentary utterances and conventional
phrases typical in dialog. The LF content comes
from a domain-independent ontology adapted from
FrameNet (Johnson and Fillmore, 2000; Dzikovska
et al., 2004) and linked to a domain-independent lex-
icon (Dzikovska, 2004).

The parser uses a bottom-up chart algorithm with
beam search. Alternative parses are scored with fac-
tors assigned to grammar rules and lexical entries by
hand, because due to the limited amount of corpus
data we have not yet been able to train a statistical
model that outperforms our hand-tuned factors.

3 Evaluation

As a rough baseline, we compared the bracketing
accuracy of our parser to that of a statistical parser
(Bikel, 2002), Bikel-M, trained on 4294 TRIPS
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parse trees from the Monroe corpus (Stent, 2001),
task-oriented human dialogs in an emergency res-
cue domain. 100 randomly selected utterances were
held out for testing. The gold standard for evalu-
ation is created with the help of the parser (Swift
et al., 2004). Corpus utterances are parsed, and the
parsed output is checked by trained annotators for
full-sentence syntactic and semantic accuracy, reli-
able with a kappa score 0.79. For test utterances
for which TRIPS failed to produce a correct parse,
gold standard trees were manually constructed inde-
pendently by two linguists and reconciled. Table 1
shows results for the 100 test utterances and for the
subset for which TRIPS finds a spanning parse (74).
Bikel-M performs somewhat better on the bracket-
ing task for the entire test set, which includes utter-
ances for which TRIPS failed to find a parse, but it
is lower on complete matches, which are crucial for
semantic interpretation.

All test utts (100) Spanning parse utts (74)
R P CM R P CM

BIKEL-M 79 79 42 89 88 54
TRIPS 77 79 65 95 95 86

Table 1: Bracketing results for Monroe test sets (R:
recall, P: precision, CM: complete match).

Word senses are an important part of the LF rep-
resentation, so we also evaluated TRIPS on word
sense tagging against a baseline of the most common
word senses in Monroe. There were 546 instances of
ambiguous words in the 100 test utterances. TRIPS
tagged 90.3% (493) of these correctly, compared to
the baseline model of 75.3% (411) correct.

To evaluate portability to new domains, we com-
pared TRIPS full sentence accuracy on a subset
of Monroe that underwent a fair amount of devel-
opment (Tetreault et al., 2004) to corpora of key-
board tutorial session transcripts from new domains
in basic electronics (BEETLE) and differentiation
(LAM) (Table 2). The only development for these
domains was addition of missing lexical items and
two grammar rules. TRIPS full accuracy requires
correct speech act, word sense and thematic role as-
signment as well as complete constituent match.

Error analysis shows that certain senses and sub-
categorization frames for existing words are still

Domain Utts Acc. Cov. Prec.
Monroe 1576 70% 1301 84.1%
BEETLE 192 50% 129 75%
LAM 934 42% 579 68%

Table 2: TRIPS full sentence syntactic and semantic
accuracy in 3 domains (Acc: full accuracy; Cov.: #
spanning parses; Prec: full acc. on spanning parses).

needed in the new domains, which can be rectified
fairly quickly. Finding and addressing such gaps is
part of bootstrapping a system in a new domain.

4 Conclusion

Our wide-coverage grammar, together with a
domain-independent ontology and lexicon, produces
semantic representations applicable across domains
that are detailed enough for practical dialog applica-
tions. Our generic components reduce development
effort when porting to new dialog domains where
corpus data is difficult to obtain.
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Abstract

We describe a method for augmenting
unification-based deep parsing with statis-
tical methods. We extend and adapt the
Bikel parser, which uses head-driven lex-
ical statistics, to dialogue. We show that
our augmented parser produces signifi-
cantly fewer constituents than the baseline
system and achieves comparable brack-
eting accuracy, even yielding slight im-
provements for longer sentences.

1 Introduction

Unification parsers have problems with efficiency
and selecting the best parse. Lexically-conditioned
statistics as used by Collins (1999) may provide a
solution. They have been used in three ways: as
a postprocess for parse selection (Toutanova et al.,
2005; Riezler et al., 2000; Riezler et al., 2002), a
preprocess to find more probable bracketing struc-
tures (Swift et al., 2004), and online to rank each
constituent produced, as in Tsuruoka et al. (2004)
and this experiment.

The TRIPS parser (Allen et al., 1996) is a unifi-
cation parser using an HPSG-inspired grammar and
hand-tuned weights for each rule. In our augmented
system (Aug-TRIPS), we replaced these weights
with a lexically-conditioned model based on the
adaptation of Collins used by Bikel (2002), allowing
more efficiency and (in some cases) better selection.
Aug-TRIPS retains the same grammar and lexicon
as TRIPS, but uses its statistical model to determine
the order in which unifications are attempted.

2 Experiments

We tested bracketing accuracy on the Monroe cor-
pus (Stent, 2001), which contains collaborative
emergency-management dialogues. Aug-TRIPS is
comparable to TRIPS in accuracy, but produces
fewer constituents (Table 1). The Bikel parser has
slightly higher precision/recall than either TRIPS
or Aug-TRIPS, since it can choose any bracketing
structure regardless of semantic coherence, while
the TRIPS systems must find a legal pattern of fea-
ture unifications. Aug-TRIPS also has better preci-
sion/recall when parsing the longer sentences (Ta-
ble 2).

(training=9282) Bikel Aug-TRIPS TRIPS
Recall 79.40 76.09 76.77
Precision 79.40 77.08 78.20
Complete Match 42.00 46.00 65.00
% Constit. Reduction - 36.96 0.00

Table 1: Bracketing accuracy for 100 random sen-
tences≥ 2 words.

> 7 Aug-TRIPS > 7 TRIPS
Recall 73.25 71.00
Precision 74.78 73.44
Complete Match 22.50 37.50

Table 2: Bracketing accuracy for the 40 sentences>

7 words.

Since our motivation for unification parsing is to
reveal semantics as well as syntax, we next evalu-
ated Aug-TRIPS’s production of correct interpreta-
tions at the sentence level, which require complete
correctness not only of the bracketing structure but
of the sense chosen for each word and the thematic
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roles of each argument (Tetreault et al., 2004).
For this task, we modified the probability model

to condition on the senses in our lexicon rather than
words. For instance, the words “two thousand dol-
lars” are replaced with the senses “number number-
unit money-unit”. This allows us to model lexi-
cal disambiguation explicitly. The model generates
one or more senses from each word with probability
P (sense|word, tag), and then uses sense statistics
rather than word statistics in all other calculations.
Similar but more complex models were used in the
PCFG-sem model of Toutanova et al. (2005) and us-
ing WordNet senses in Bikel (2000).

We used the Projector dialogues (835 sentences),
which concern purchasing video projectors. In this
domain, Aug-TRIPS makes about 10% more inter-
pretation errors than TRIPS (Table 3), but when
parsing sentences on which TRIPS itself makes er-
rors, it can correct about 10% (Table 4).

(training=310) TRIPS Aug-TRIPS
Correct 26 21

Incorrect 49 54
% Reduction in Constituents 0% 45%

Table 3: Sentence-level accuracy on 75 random sen-
tences.

(training=396) TRIPS Aug-TRIPS
Correct 0 8

Incorrect 54 46
% Reduction in Constituents 0% 46%

Table 4: Sentence-level accuracy on 54 TRIPS error
sentences

Our parser makes substantially fewer constituents
than baseline TRIPS at only slightly lower accu-
racy. Tsuruoka et al. (2004) achieved a much higher
speedup (30 times) than we did; this is partly due to
their use of the Penn Treebank, which contains much
more data than our corpora. In addition, however,
their baseline system is a classic HPSG parser with
no efficiency features, while our baseline, TRIPS, is
designed as a real-time dialogue parser which uses
hand-tuned weights to guide its search and imposes
a maximum chart size.
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Abstract

We describe SUPPLE, a freely-available,
open source natural language parsing sys-
tem, implemented in Prolog, and designed
for practical use in language engineering
(LE) applications. SUPPLE can be run as
a stand-alone application, or as a compo-
nent within the GATE General Architec-
ture for Text Engineering. SUPPLE is dis-
tributed with an example grammar that has
been developed over a number of years
across several LE projects. This paper de-
scribes the key characteristics of the parser
and the distributed grammar.

1 Introduction

In this paper we describe SUPPLE1 — the Sheffield
University Prolog Parser for Language Engineering
— a general purpose parser that produces both syn-
tactic and semantic representations for input sen-
tences, which is well-suited for a range of LE ap-
plications. SUPPLE is freely available, and is dis-
tributed with an example grammar for English that
was developed across a number of LE projects. We
will describe key characteristics of the parser and the
grammar in turn.

2 The SUPPLE Parser

SUPPLE is a general purpose bottom-up chart parser
for feature-based context free phrase structure gram-

∗At Microsoft Corporation since 2000 (Speech and Natural
Language Group). Email: kevinhum@microsoft.com.

1In previous published materials and in the current GATE
release the parser is referred to as buChart. This is name is now
deprecated.

mars (CF-PSGs), written in Prolog, that has a num-
ber of characteristics making it well-suited for use
in LE applications. It is available both as a language
processing resource within the GATE General Ar-
chitecture for Text Engineering (Cunningham et al.,
2002) and as a standalone program requiring vari-
ous preprocessing steps to be applied to the input.
We will here list some of its key characteristics.

Firstly, the parser allows multiword units identi-
fied by earlier processing components, e.g. named
entity recognisers (NERs), gazetteers, etc, to be
treated as non-decomposable units for syntactic pro-
cessing. This is important as the identification of
such items is an essential part of analyzing real text
in many domains.

The parser allows a layered parsing process, with
a number of separate grammars being applied in se-
ries, one on top of the other, with a “best parse” se-
lection process between stages so that only a sub-
set of the constituents constructed at each stage is
passed forward to the next. While this may make
the parsing process incomplete with respect to the
total set of analyses licensed by the grammar rules,
it makes the parsing process much more efficient and
allows a modular development of sub-grammars.

Facilities are provided to simplify handling
feature-based grammars. The grammar representa-
tion uses flat, i.e. non-embedded, feature represen-
tations which are combined used Prolog term uni-
fication for efficiency. Features are predefined and
source grammars compiled into a full form repre-
sentation, allowing grammar writers to include only
relevant features in any rule, and to ignore feature or-
dering. The formalism also permits disjunctive and
optional right-hand-side constituents.

The chart parsing algorithm is simple but very
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efficient, exploiting the characteristics of Prolog to
avoid the need for active edges or an agenda. In in-
formal testing, this approach was roughly ten times
faster than a related Prolog implementation of stan-
dard bottom-up active chart parsing.

The parser does not fail if full sentential parses
cannot be found, but instead outputs partial anal-
yses as syntactic and semantic fragments for user-
selectable syntactic categories. This makes the
parser robust in applications which deal with large
volumes of real text.

3 The Sample Grammar

The sample grammar distributed with SUPPLE has
been developed over several years, across a number
LE projects. We here list some key characteristics.

The morpho-syntactic and semantic information
required for individual lexical items is minimal —
inflectional root and word class only, where the word
class inventory is basically the PTB tagset.

A conservative philosophy is adopted regarding
identification of verbal arguments and attachment of
nominal and verbal post-modifiers, such as preposi-
tional phrases and relative clauses. Rather than pro-
ducing all possible analyses or using probabilities to
generate the most likely analysis, the preference is to
offer a single analysis that spans the input sentence
only if it can be relied on to be correct, so that in
many cases only partial analyses are produced. The
philosophy is that it is more useful to produce par-
tial analyses that are correct than full analyses which
may well be wrong or highly disjunctive. Output
from the parser can be passed to further processing
components which may bring additional information
to bear in resolving attachments.

An analysis of verb phrases is adopted in which
a core verb cluster consisting of verbal head plus
auxiliaries and adverbials is identified before any at-
tempt to attach any post-verbal arguments. This con-
trasts with analyses where complements are attached
to the verbal head at a lower level than auxiliaries
and adverbials, e.g. as in the Penn TreeBank. This
decision is again motivated by practical concerns: it
is relatively easy to recognise verbal clusters, much
harder to correctly attach complements.

A semantic analysis, or simplified quasi-logical
form (SQLF), is produced for each phrasal con-

stituent, in which tensed verbs are interpreted as re-
ferring to unique events, and noun phrases as refer-
ring to unique objects. Where relations between syn-
tactic constituents are identified in parsing, semantic
relations between associated objects and events are
asserted in the SQLF.

While linguistically richer grammatical theories
could be implemented in the grammar formalism
of SUPPLE, the emphasis in our work has been on
building robust wide-coverage tools — hence the re-
quirement for only minimal lexical morphosyntac-
tic and semantic information. As a consequence the
combination of parser and grammars developed to
date results in a tool that, although capable of return-
ing full sentence analyses, more commonly returns
results that include chunks of analysis with some,
but not all, attachment relations determined.

4 Downloading SUPPLE Resources

SUPPLE resources, including source code and the
sample grammar, and also a longer paper providing
a more detailed account of both the parser and gram-
mar, are available from the supple homepage at:

http://nlp.shef.ac.uk/research/supple

5 Conclusion

The SUPPLE parser has served as a component in
numerous LE research projects, and is currently in
use in a Question Answering system which partic-
ipated in recent TREC/QA evaluations. We hope
its availability as a GATE component will facilitate
its broader use by NLP researchers, and by others
building applications exploiting NL technology.
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Abstract 

We describe a history-based generative 
parsing model which uses a k-nearest 
neighbour (k-NN) technique to estimate 
the model’s parameters.  Taking the 
output of a base n-best parser we use our 
model to re-estimate the log probability of 
each parse tree in the n-best list for 
sentences from the Penn Wall Street 
Journal treebank.  By further 
decomposing the local probability 
distributions of the base model, enriching 
the set of conditioning features used to 
estimate the model’s parameters, and 
using k-NN as opposed to the Witten-Bell 
estimation of the base model, we achieve 
an f-score of 89.2%, representing a 4% 
relative decrease in f-score error over the 
1-best output of the base parser. 

1 Introduction 

This paper describes a generative probabilistic 
model for parsing, based on Collins (1999), which 
re-estimates the probability of each parse generated 
by an initial base parser (Bikel, 2004) using 
memory-based techniques to estimate local 
probabilities.   

We used Bikel’s re-implementation of the 
Collins parser (Bikel, 2004) to produce the n-best 
parses of sentences from the Penn treebank.  We 
then recalculated the probability of each parse tree 
using a probabilistic model very similar to Collins 
(1999) Model 1.  In addition to the local estimation 
technique used, our model differs from Collins 
(1999) Model 1 in that we extend the feature sets 

used to predict parse structure to include more 
features from the parse history, and we further 
decompose some of the model’s parameter classes. 

2 Constraint Features for Training Set 
Restriction 

We use the same k-NN estimation technique as 
Toutonava et al (2003) however we also found that 
restricting the number of examples in the training 
set used in a particular parameter estimation helped 
both in terms of accuracy and speed.  We restricted 
the training sets by making use of constraint 
features whereby the training set is restricted to 
only those examples which have the same value for 
the constraint feature as the query instance.   

We carried out experiments using different 
sets of constraint features, some more restrictive 
than others.  The mechanism we used is as follows:  
if the number of examples in the training set, 
retrieved using a particular set of constraint 
features, exceeds a certain threshold value then use 
a higher level of restriction i.e. one which uses 
more constraint features.   If, using the higher level 
of restriction, the number of samples in the training 
set falls below a minimum threshold value then 
“back-off”  to the less restricted set of training 
samples. 

3 Experiments 

Our model is trained on sections 2 to 21 inclusive 
of the Penn WSJ treebank and tested on section 23.  
We used sections 0, 1, 22 and 24 for validation. 
           We re-estimated the probability of each 
parse using our own baseline model, which is a 
replication of Collins Model 1.  We tested k-NN 
estimation on the head generation parameter class 
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and the parameter classes for generating modifying 
nonterminals.  We further decomposed the two 
modifying nonterminal parameter classes.  Table 1 
outlines the parameter classes estimated using k-
NN in the final model settings and shows the 
feature sets used for each parameter class as well 
as the constraint feature settings.   
 

Parameter 
Class 

History Contraint 
Features 

P(CH |…) Cp, CH, wp, 
tp, tgp 

{ Cp}  

P(ti |…) dir, Cp, CH,  
wp, tp, dist, ti-
1, t i-2, Cgp 

{ dir, Cp} , { dir, Cp, 
CH }  

P(Ci |…) dir, ti, Cp CH, 
wp, tp, dist, ti-
1,ti-2, Cgp 

{ dir,ti} ,{ dir, ti, Cp}  

P(coord,punc|…) dir, Ci, ti, Cp, 
CH, wp, ,tp 

{ dir, Ci, ti}  

P(Ci ti | Cp 
=NPB…) 

dir, CH, wp, 
Ci-2, wi-2, Ci-

3, wi-3, Cgp, 
Cggp, Cgggp 

{ dir, CH }  

P(punc| Cp 
=NPB…) 

dir, ti, Ci, CH, 
wp,tp, t i-2, t i-3 

{ dir, ti}  

 

Table 1:  The parameter classes estimated using k-NN in 
the final model. CH is the head child label, Cp the parent 
constituent label, wp the head word, tp the head part-of-
speech (POS) tag.  Ci, wi and ti are the modifier’s label, 
head word and head POS tag.  tgp  is the grand-parent 
POS tag, Cgp, Cggp, Cgggp are the labels of the grand-
parent, great-grandparent and great-great-grandparent 
nodes.   dir is a flag which indicates whether the 
modifier being generated is to the left or the right of the 
head child.  dist is the distance metric used in the 
Collins parser. coord, punc are the coordination and 
punctuation flags.  NPB stands for base noun phrase.    
 
We extend the original feature sets by increasing 
the order of both horizontal and vertical 
markovization.  From each constituent node in the 
vertical or horizontal history we chose features 
from among the constituent’s nonterminal label, its 
head word and the head word’s part-of-speech tag.   
We found for all parameter classes 000,10�k  or 

000,20�k  worked best.  Distance weighting 
function that worked best were the inverse distance 
weighting functions either (1/(d+1))6 or (1/(d+1))7.   
 

Model LR LP 

WB Baseline 88.2% 88.5% 

CO99 M1 87.9% 88.2% 

CO99 M2 88.5% 88.7% 

Bikel 1-best 88.7% 88.7% 

k-NN 89.1% 89.4% 

 

Table 2:  Results for sentences of less than or equal to 
40 words, from section 23 of the Penn treebank.  LP/LR 
=Labelled Precision/Recall.  CO99 M1 and M2 are 
(Collins 1999) Models 1 and 2 respectively.  Bikel 1-
best is (Bikel, 2004). k-NN is our final k-NN model.  
 
With our k-NN model we achieve LR/LR of 
89.1%/89.4% on sentences � 40 words.  These 
results show an 8% relative reduction in f-score 
error over our Model 1 baseline and a 4% relative 
reduction in f-score error over the Bikel parser.   
We compared the results of our k-NN model 
against the Bikel 1-best parser results using the 
paired T test where the data points being compared 
were the scores of each parse in the two different 
sets of parses.  The 95% confidence interval for the 
mean difference between the scores of the paired 
sets of parses is [0.029, 0.159] with P< .005.     
Following (Collins 2000) the score of a parse takes 
into account the number of constituents in the gold 
standard parse for this sentence.   These results 
show that using the methods presented in this 
paper can produce significant improvements in 
parser accuracy over the baseline parser. 
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1 Introduction 

Subcategorization data has been crucial for various 
NLP tasks. Current method for automatic SCF ac-
quisition usually proceeds in two steps: first, gen-
erate all SCF cues from a corpus using a parser, 
and then filter out spurious SCF cues with statisti-
cal tests. Previous studies on SCF acquisition have 
worked mainly with written texts; spoken corpora 
have received little attention. Transcripts of spoken 
language pose two challenges absent in written 
texts: uncertainty about utterance segmentation and 
disfluency. 
     Roland & Jurafsky (1998) suggest that there are 
substantial subcategorization differences between 
spoken and written corpora. For example, spoken 
corpora tend to have fewer passive sentences but 
many more zero-anaphora structures than written 
corpora. In light of such subcategorization differ-
ences, we believe that an SCF set built from spo-
ken language may, if of acceptable quality, be of 
particular value to NLP tasks involving syntactic 
analysis of spoken language.  

2 SCF Acquisition System  

Following the design proposed by Briscoe and 
Carroll (1997), we built an SCF acquisition system 
consisting of the following four components: 
Charniak’s parser (Charniak, 2000); an SCF ex-
tractor; a lemmatizer; and an SCF evaluator. The 
first three components are responsible for generat-
ing SCF cues from the training corpora and the last 
component, consisting of the Binomial Hypothesis 
Test (Brent, 1993) and a back-off algorithm 
(Sarkar & Zeman, 2000), is used to filter SCF cues 
on the basis of their reliability and likelihood.  

We evaluated our system on a million word 
written corpus and a comparable spoken corpus 

from BNC.  For type precision and recall, we used 
14 verbs selected by Briscoe & Carroll (1997) and 
evaluated our results against SCF entries in 
COMLEX (Grishman et al., 1994). We also calcu-
lated token recall and the results are summarized in 
the following table. 

Corpus Written Spoken 
type precision 93.1% 91.2% 
type recall 48.2% 46.4% 
token recall 82.3% 80% 

Table 1: Type precision, recall and token recall 

3 Detecting Incorrect SCF Cues 

We examined the way segmentation errors and 
disfluency affects our acquisition system – the sta-
tistical parser and the extractor in particular – in 
proposing SCF cues and explored ways to detect 
incorrect SCF cues. We extracted 500 SCF cues 
from the ViC corpus (Pitt, et al, 2005) and identi-
fied four major reasons that seem to have caused 
the extractor to propose incorrect SCF cues: multi-
ple utterances; missing punctuation; disfluency; 
parsing errors.  

Error analysis reveals that segmentation errors 
and disfluencies cause the parser and the extractor 
to tend to make systematic errors in proposing SCF 
cues – incorrect SCF cues are likely to have an 
extra complement. We therefore proposed the fol-
lowing two sets of linguistic heuristics for auto-
matically detecting incorrect SCF cues: 

Linguistic Heuristic Set 1: The following SCF 
cues are extremely unlikely whatever the verb. Re-
ject an SCF cue as incorrect if it contains the fol-
lowing patterns: 
¾ [(NP) PP NP]: We reach out [to your friends] [your 

neighbor]. 
¾ [NP PP-to S]: Would I want them to say [that][to 

me] [would I want them to do that to me]. 
¾ [NP NP S]: They just beat [Indiana in basketball] 

[the- Saturday] [I think it was um-hum]. 
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¾ [PP-p PP-p]: He starts living [with the] [with the 
guys]. 

Linguistic Heuristic Set 2: The following SCF 
cues are all possibly valid SCFs: for SCF cues of 
the following type, check if the given verb takes it 
in COMLEX. If not, reject it: 
¾ [(NP) S]: When he was dying [what did he say]. 
¾ [PP-to S]: The same thing happened [to him] [uh 

he had a scholarship]. 
¾ [(NP) NP]: OU had a heck of time beating [them] 

[uh-hum]. 
¾ [(NP) INF]: You take [the plate] from the table 

[rinse them off] and put them by the sink. 
Given the utilization of a gold standard in the 

heuristics, it would be improper to build an end-to-
end system and evaluate against COMLEX. In-
stead, we evaluate by seeing how often our heuris-
tics succeed producing results agreeable to a 
human judge. 

To evaluate the robustness of our linguistic heu-
ristics, we conducted a cross-corpora and cross-
parser comparison. We used 1,169 verb tokens 
from the ViC corpus and another 1,169 from the 
Switchboard corpus. 

Cross-corpus Comparison: The purpose of the 
cross-corpus comparison is to show that our lin-
guistic heuristics based on the data from one spo-
ken corpus can be applied to other spoken corpora. 
Therefore, we applied our heuristics to the ViC and 
the Switchboard corpus parsed by Charniak’s 
parser. We calculated the percentage of incorrect 
SCF cues before and after applying our linguistic 
heuristics. The results are shown in Table 2.  

Charniak’s parser ViC Switchboard 
before heuristics 18.8% 9.5% 
after heuristics 6.4% 4.6% 

Table 2: Incorrect SCF cue rate before and after heuristics 
 

Table 2 shows that the incorrect SCF cue rate 
has been reduced to roughly the same level for the 
two spoken corpora after applying our linguistic 
heuristics. 

Cross-parser Comparison: The purpose of the 
cross-parser comparison is to show that our lin-
guistic heuristics based on the data parsed by one 
parser can be applied to other parsers as well. To 
this end, we applied our heuristics to the 
Switchboard corpus parsed by both Charniak’s 
parser and Bikel’s parsing engine (Bikel, 2004). 
Again, we calculated the percentage of incorrect 
SCF cues before and after applying our heuristics. 
The results are displayed in Table 3. 

Although our linguistic heuristics works slightly 
better for data parsed by Charniak’ parser, the in-
correct SCF cue rate after applying heuristics re-
mains at about the same level for the two different 
parsers we used. 

Switchboard Charniak Bikel 
before heuristics 9.5% 9.2% 
after heuristics 4.6% 5.4% 

Table 3: Incorrect SCF cue rate before and after heuristics 

4 Conclusion 

We showed that it should not be assumed that stan-
dard statistical parsers will fail on language that is 
very different from what they are trained on. Spe-
cifically, the results of Experiment 1 showed that it 
is feasible to apply current SCF extraction 
technology to spoken language. Experiment 2 
showed that incorrect SCF cues due to segmenta-
tion errors and disfluency can be recognized by our 
linguistic heuristics. We have shown that our SCF 
acquisition system as a whole will work for the 
different demands of spoken language. 
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