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Abstract

Distributional similarity requires large
volumes of data to accurately represent
infrequent words. However, the nearest-
neighbour approach to finding synonyms
suffers from poor scalability. The Spa-
tial Approximation Sample Hierarchy
(SASH), proposed by Houle (2003b), is
a data structure for approximate nearest-
neighbour queries that balances the effi-
ciency/approximation trade-off. We have
intergrated this into an existing distribu-
tional similarity system, tripling efficiency
with a minor accuracy penalty.

1 Introduction

With the development of WordNet (Fellbaum, 1998)
and large electronic thesauri, information from lex-
ical semantic resources is regularly used to solve
NLP problems. These problems include collocation
discovery (Pearce, 2001), smoothing and estimation
(Brown et al., 1992; Clark and Weir, 2001) and ques-
tion answering (Pasca and Harabagiu, 2001).

Unfortunately, these resources are expensive and
time-consuming to create manually, and tend to suf-
fer from problems of bias, inconsistency, and limited
coverage. In addition, lexicographers cannot keep
up with constantly evolving language use and can-
not afford to build new resources for the many sub-
domains thatNLP techniques are being applied to.
There is a clear need for methods to extract lexical
semantic resources automatically or tools that assist
in their manual creation and maintenance.

Much of the existing work on automatically ex-
tracting resources is based on thedistributional hy-
pothesisthat similar words appear in similar con-
texts. Existing approaches differ primarily in their
definition of “context”, e.g. the surrounding words
or the entire document, and their choice of distance
metric for calculating similarity between the vector
of contexts representing each term. Finding syn-
onyms using distributional similarity involves per-
forming a nearest-neighbour search over the context
vectors for each term. This is very computation-
ally intensive and scales according to the vocabulary
size and the number of contexts for each term. Cur-
ran and Moens (2002b) have demonstrated that dra-
matically increasing the quantity of text used to ex-
tract contexts significantly improves synonym qual-
ity. Unfortunately, this also increases the vocabulary
size and the number of contexts for each term, mak-
ing the use of huge datasets infeasible.

There have been many data structures and ap-
proximation algorithms proposed to reduce the com-
putational complexity of nearest-neighbour search
(Chávez et al., 2001). Many of these approaches re-
duce the search space by using clustering techniques
to generate an index of near-neighbours. We use the
Spacial Approximation Sample Hierarchy (SASH)
data structure developed by Houle (2003b) as it al-
lows more control over the efficiency-approximation
trade-off than other approximation methods.

This paper describes integrating theSASH into
an existing distributional similarity system (Cur-
ran, 2004). We show that replacing the nearest-
neighbour search improves efficiency by a factor of
three with only a minor accuracy penalty.
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2 Distributional Similarity

Distributional similarity systems can be separated
into two components. The first component extracts
the contexts from raw text and compiles them into a
statistical description of the contexts each term ap-
pears in. The second component performs nearest-
neighbour search or clustering to determine which
terms are similar, based on distance calculations be-
tween their context vectors. The approach used in
this paper follows Curran (2004).

2.1 Extraction Method

A context relationis defined as a tuple (w, r,w′)
wherew is a term, which occurs in some grammati-
cal relationr with another wordw′ in some sentence.
We refer to the tuple (r,w′) as anattributeof w. For
example,(dog, diect-obj, walk) indicates thatdog
was the direct object ofwalk in a sentence.

Context extraction begins with a Maximum En-
tropy POS tagger and chunker (Ratnaparkhi, 1996).
The Grefenstette (1994) relation extractor produces
context relations that are then lemmatised using the
Minnen et al. (2000) morphological analyser. The
relations for each term are collected together and
counted, producing a context vector of attributes and
their frequencies in the corpus.

2.2 Measures and Weights

Both nearest-neighbour and cluster analysis meth-
ods require a distance measure that calculates the
similarity between context vectors. Curran (2004)
decomposes this measure intomeasureand weight
functions. Themeasurefunction calculates the sim-
ilarity between two weighted context vectors and the
weightfunction calculates a weight from the raw fre-
quency information for each context relation.

The SASH requires a distance measure that pre-
serves metric space (see Section 4.1). For these ex-
periments we use the JACCARD (1) measure and the
TTEST (2) weight, as Curran and Moens (2002a)
found them to have the best performance in their
comparison of many distance measures.
∑

(r,w′) min(wgt(wm, ∗r , ∗w′),wgt(wn, ∗r , ∗w′))
∑

(r,w′) max(wgt(wm, ∗r , ∗w′),wgt(wn, ∗r , ∗w′))
(1)

p(w, r,w′) − p(∗, r,w′)p(w, ∗, ∗)
√

p(∗, r,w′)p(w, ∗, ∗)
(2)

3 Nearest-neighbour search

The simplest algorithm for finding synonyms is
nearest-neighbour search, which involves pairwise
vector comparison of the target term with every term
in the vocabulary. Given ann term vocabulary and
up tomattributes for each term, the asymptotic time
complexity of nearest-neighbour search isO(n2m).
This is very expensive with even a moderate vocab-
ulary and small attribute vectors making the use of
huge datasets infeasible.

3.1 Heuristic

Using cutoff to remove low frequency terms can sig-
nificantly reduce the value ofn. In these experi-
ments, we used a cutoff of 5. However, a solution
is still needed to reduce the factorm. Unfortunately,
reducingm by eliminating low frequency contexts
has a significant impact on the quality of the results.

Curran and Moens (2002a) propose an initial
heuristic comparison to reduce the number of
full O(m) vector comparisons. They introduce a
bounded vector (lengthk) of canonical attributes,
selected from the full vector, to represent the
term. The selected attributes are the most strongly
weighted verb attributes: Curran and Moens chose
these relations as they generally constrain the se-
mantics of the term more and partake in fewer id-
iomatic collocations.

If a pair of terms share at least one canonical
attribute then a full similarity comparison is per-
formed, otherwise the terms are not considered sim-
ilar. If a maximum ofp positive results are returned,
our complexity becomesO(n2k+npm), which, since
k is constant, isO(n2

+ npm).

4 The SASH

The SASH approximates a nearest-neighbour search
by pre-computing some of the near-neighbours of
each node (terms in our case). It is arranged as a
multi-leveled pyramid, where each node is linked
to its (approximate) near-neighbours on the levels
above and below. This produces multiple paths be-
tween nodes, allowing theSASH to shape itself to
the data set (Houle, 2003a). This graph is searched
by finding the near-neighbours of the target node
at each level. The following description is adapted
from Houle (2003b).
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Figure 1: ASASH, wherep = 2, c = 3 andk = 2

4.1 Metric Spaces

The SASH organises nodes that can be measured in
metric space. Although it is not necessary for the
SASH to work, only in this space can performance
be guaranteed. Our meaures produce ametric-like
space for the terms derived from large datasets.

A domain D is a metric spaceif there exists a
functiondist : D × D→ R≥0 such that:

1. dist(p, q) ≥ 0 ∀ p, q ∈ D (non-negativity)

2. dist(p, q) = 0 iff p = q ∀ p, q ∈ D (equality)

3. dist(p, q) = dist(q, p) ∀ p, q ∈ D (symmetry)

4. dist(p, q) + dist(q, r) ≥ dist(p, r)
∀ p, q, r ∈ D (triangle inequality)

We invert the similarity measure to produce a dis-
tance, resulting in condition 2 not being satisfied
sincedist(p, p) = x, x > 0. For most measuresx
is constant, sodist(p, q) > dist(p, p) if p , q andp
andq do not occur in exactly the same contexts. For
some measures, e.g. DICE, dist(p, p) > dist(p, q),
that is, p is closer toq than it is to itself. These do
not preserve metric space in any way, so cannot be
used with theSASH.

Chávez et al. (2001) divides condition 2 into:

5. dist(p, p) = 0 ∀ p ∈ D (reflexivity)

6. dist(p, q) > 0 iff p , q ∀ p, q ∈ D
(strict positiveness)

If strict positiveness is not satisfied the space is
calledpseudometric. In theory, our measures do not
satisfy this condition, however in practice most large
datasets will satisfy this condition.

4.2 Structure

The SASH is a directed, edge-weighted graph with
the following properties:

• Each term corresponds to a unique node.

• The nodes are arranged into a hierarchy of lev-
els, with the bottom level containingn2 nodes
and the top containing a single root node. Each
level, except the top, will contain half as many
nodes as the level below. These are numbered
from 1 (top) toh.

• Edges between nodes are linked from consecu-
tive levels. Each node will have at mostp par-
entnodes in the level above, andc child nodes
in the level below.

• Every node must have at least one parent so that
all nodes are reachable from the root.

Figure 1 shows aSASH which will be used below.

4.3 Construction

The SASH is constructed iteratively by finding the
nearest parents in the level above. The nodes are
first randomly distributed to reduce any clustering
effects. They are then split into the levels described
above, with levelh having n

2 nodes, level 2 at mostc
nodes and level 1 having a single root node.

The root node has all nodes at level 2 as children
and each node at level 2 has the root as its sole par-
ent. Then for each node in each leveli from 3 to
h, we find the set ofp nearest parent nodes in level
(i − 1). The node then asks that parent if it can be
a child. As only the closestc nodes can be children
of a node, it may be the case that a requested parent
rejects a child.
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DIST c LOAD TIME

RANDOM 16 21.0hr
RANDOM 64 15.6hr
RANDOM 128 21.1hr
FOLD1500 16 50.2hr
FOLD1500 64 33.4hr
FOLD1500 128 25.7hr
SORT 16 75.5hr
SORT 64 23.8hr
SORT 128 33.8hr

Table 1: Load time distributions and values ofc

If a child is left without any parents it is said to be
orphaned. Any orphaned nodes must now find the
closest node in the above level that has fewer than
c children. Once all nodes have at least one parent,
we move to the next level. This proceeds iteratively
through the levels.

4.4 Search

Searching theSASH is also performed iteratively. To
find thek nearest neighbours of a nodeq, we first
find thek nearest neighbours at each level. At level 1
we take the single root node to be nearest. Then, for
each level after, we find thek nearest unique children
of the nodes found in the level above. When the
last level has been searched, we return the closestk
nodes from all the sets of near neighbours returned.

In Figure 1, the filled nodes demonstrate a search
for the near-neighbours of some nodeq, usingk = 2.
Our search begins with the root nodeA. As we are
usingk = 2, we must find the two nearest children of
A using our similarity measure. In this case,C and
D are closer thanB. We now find the closest two
children ofC andD. E is not checked as it is only
a child ofB. All other nodes are checked, including
F andG, which are shared as children byB andC.
From this level we choseG andH. We then consider
the fourth and fifth levels similarly.

At this point we now have the list of near nodes
A, C, D, G, H, I , J, K andL. From this we chose
the two nodes closest toq: H andI marked in black.
These are returned as the near-neighbours ofq.

k can also be varied at each level to force a larger
number of elements to be tested at the base of the

SASH using, for instance, the equation:

ki = max{ k1− h−i
log2 n ,

1
2

pc} (3)

We use this geometric function in our experiments.

4.5 Complexity

When measuring the time complexity, we consider
the number of distance measurements as these dom-
inate the computation. If we do not consider the
problem of assigning parents to orphans, forn
nodes,p parents per child, at mostc children per
parent and a search returningk elements, the loose
upper bounds are:
SASH construction

pcnlog2 n (4)

Approx. k-NN query (uniform)

ck log2 n (5)

Approx. k-NN query (geometric)

k1+ 1
log2 n

k
1

log2 n−1
+

pc2

2
log2 n (6)

Since the average number of children per node is
approximately 2p, practical complexities can be de-
rived usingc = 2p.

In Houle’s experiments, typically less than 5% of
computation time was spent assigning parents to or-
phans, even for relatively smallc. In some of our
experiments we found that low values ofc produced
significantly worse load times that for higher values,
but this was highly dependant on the distribution of
nodes. Table 1 shows this with respect to several
distributions and values ofc.

5 Evaluation

The simplest method of evaluation is direct com-
parison of the extracted synonyms with a manually-
created gold standard (Grefenstette, 1994). How-
ever, on small corpora, rare direct matches provide
limited information for evaluation, and thesaurus
coverage is a problem. Our evaluation uses a com-
bination of three electronic thesauri: the Macquarie
(Bernard, 1990), Roget’s (Roget, 1911) and Moby
(Ward, 1996) thesauri.
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With this gold standard in place, it is possible
to use precision and recall measures to evaluate the
quality of the extracted thesaurus. To help overcome
the problems of direct comparisons we use several
measures of system performance: direct matches
(DIRECT), inverse rank (INVR), and precision of the
top n synonyms (P(n)), for n = 1, 5 and 10.

INVR is the sum of the inverse rank of each
matching synonym, e.g. matching synonyms at
ranks 3, 5 and 28 give an inverse rank score of
1
3+

1
5+

1
28, and with at most 100 synonyms, the max-

imum INVR score is 5.187. Precision of the topn is
the percentage of matching synonyms in the topn
extracted synonyms.

The same 70 single-word nouns were used for the
evaluation as in Curran and Moens (2002a). These
were chosen randomly from WordNet such that they
covered a range over the following properties:

frequency Penn Treebank andBNC frequencies;

number of sensesWordNet and Macquarie senses;

specificity depth in the WordNet hierarchy;

concretenessdistribution across WordNet subtrees.

For each of these terms, the closest 100 terms and
their similarity score were extracted.

6 Experiments

The contexts were extracted from the non-speech
portion of the British National Corpus (Burnard,
1995). All experiments used the JACCARD measure
function, the TTEST weight function and a cutoff
frequency of 5. TheSASH was constructed using the
geometric equation forki described in Section 4.4.
When the heuristic was applied, the TTESTLOG

weight function was used with a canonical set size
of 100 and a maximum frequency cutoff of 10,000.

The values 4–16, 8–32, 16–64, and 32–128 were
chosen forp andc. This gives a range of branch-
ing factors to test the balance betweensparseness,
where there is potential for erroneous fragmentation
of large clusters, andbushiness, where more tests
must be made to find near children. Thec = 4p re-
lationship is derived from the simple hashing rule
of thumb that says that a hash table should have
roughly twice the size required to store all its ele-
ments (Houle, 2003b).

DIST FREQUENCY # RELATIONS

Mean Median Mean Median

RANDOM 342 18 126 13
FOLD500 915 865.5 500 500
FOLD1000 2155 1970.5 1001 1001.5
FOLD1500 3656 3444 1506 1510.5
SORT 44753 37937.5 8290 7583.5

Table 2: Top 3SASH level averages withc = 128
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Figure 2: INVR against average search time

Our initial experiments showed that the random
distribution of nodes (RANDOM) in SASH construc-
tion caused the nearest-neighbour approximation to
be very inaccurate for distributional similarity. Al-
though the speed was improved by two orders of
magnitude whenc = 16, it achieved only 13% of the
INVR of the naı̈ve implementation. The bestRAN-
DOM result was less than three times faster then the
naı̈ve solution and only 60% INVR.

In accordance with Zipf’s law the majority of
terms have very low frequencies. Similarity mea-
surements made against these low frequency terms
are less reliable, as accuracy increases with the num-
ber of relations and their frequencies (Curran and
Moens, 2002b). This led to the idea that ordering
the nodes by frequency before generating theSASH

would improve accuracy.
The SASH was then generated with the highest

frequency terms were near the root so that the initial
search paths would be more accurate. This has the
unfortunate side-effect of slowing search by up to
four times because comparisons with high frequency
terms take longer than with low frequency terms as
they have a larger number of relations.
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DIST c DIRECT P(1) P(5) P(10) INVR SEARCH TIME

NAIVE 2.83 49% 41% 32% 1.43 12217ms
RANDOM 16 0.17 9% 6% 3% 0.18 13% 120ms
RANDOM 64 1.09 30% 21% 15% 0.72 50% 1388ms
RANDOM 128 1.53 31% 24% 20% 0.86 60% 4488ms
SORT 16 1.51 33% 25% 20% 0.90 63% 490ms
SORT 64 2.55 47% 38% 31% 1.34 94% 2197ms
SORT 128 2.81 49% 41% 33% 1.43 100% 6960ms

Table 3: Evaluation of different random and fully sorted distributions

This led to updating our original frequency order-
ing idea by recognising that we did not need themost
accurately comparable terms at the top of theSASH,
only more accurately comparable terms than those
randomly selected.

As a first attempt, we constructedSASHs with fre-
quency orderings that werefolded about a chosen
number of relationsM. For each term, if its num-
ber of relationsmi was greater thanM, it was given
a new ranking based on the scoreM

2

mi
. In this way,

very high and very low frequency terms were pushed
away from the root. The folding points this was
tested for were 500, 1000 and 1500. There are many
other node organising schemes we are yet to explore.

The frequency distributions over the top three lev-
els for each ordering scheme are shown in Table 2.
Zipf’s law results in a large difference between the
mean and median frequency values in theRANDOM

results: most of the nodes have low frequency, but
some high frequency results push the mean up. The
four-fold reduction in efficiency forSORT (see Ta-
ble 3) is a result of the mean number of relations
being over 65 times that ofRANDOM.

Experiments covering the full set of permutations
of these parameters were run, with and without the
heuristic applied. In the cases where the heuristic
rejected pairs of terms, theSASH treated the rejected
pairs as being as infinitely far apart. In addition, the
brute force solutions were generated with (NAIVE

HEURISTIC) and without (NAIVE ) the heuristic.
We have assumed that all weights and measures

introduce similar distribution properties into the
SASH, so that the best weight and measure when per-
forming a brute-force search will also produce the
best results when combined with theSASH. Future
experiments will exploreSASH behaviour with other
similarity measures.

7 Results

Table 3 presents the results for the initial experi-
ments. SORT was consistently more accurate than
RANDOM, and whenc = 128, performed as well as
NAIVE for all evaluation measures except for direct
matches. BothSASH solutions outperformedNAIVE

in efficiency.
The trade-off between efficiency and approxima-

tion accuracy is evident in these results. The most
efficient result is 100 times faster thanNAIVE , but
only 13% accurate on INVR, with 6% of direct
matches. The most accurate result is 100% accu-
rate on INVR, with 99% of direct matches, but is
less than twice as fast.

Table 4 shows the trade-off for folded distribu-
tions. The least accurateFOLD500 result is 30%
accurate but 50 times faster thanNAIVE , while the
most accurate is 87% but less than two times faster.
The least accurateFOLD1500 result is 43% accurate
but 71 times faster thanNAIVE , while the most ac-
curate is 101% and two and half times faster. These
results show the impact of moving high frequency
terms away from the root.

Figure 2 plots the trade-off using search time and
INVR atc = 16, 32, 64 and 128. Forc = 16 every
SASH has very poor accuracy. Byc = 64 their ac-
curacy has improved dramatically, but their search
time also increased somewhat. Atc = 128, there
is only a small improvement in accuracy, coinciding
with a large increase in search time. The best trade-
off between efficiency and approximation accuracy
occurs at the knee of the curve wherec = 64.

Whenc = 128 bothSORTandFOLD1500 perform
as well as, or slightly outperformNAIVE on some
evaluation measures. These evaluation measures in-
volve the rank of correct synonyms, so if theSASH
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DIST c DIRECT P(1) P(5) P(10) INVR SEARCH TIME

FOLD500 16 0.53 23% 11% 8% 0.43 30% 243ms
FOLD500 64 1.69 49% 29% 23% 1.09 76% 2880ms
FOLD500 128 2.29 50% 35% 27% 1.25 87% 6848ms
FOLD1000 16 0.61 29% 14% 9% 0.51 35% 228ms
FOLD1000 64 2.07 49% 36% 26% 1.21 84% 3192ms
FOLD1000 128 2.57 50% 39% 31% 1.40 98% 4330ms
FOLD1500 16 0.90 30% 17% 13% 0.62 43% 171ms
FOLD1500 64 2.36 57% 39% 30% 1.36 95% 3193ms
FOLD 1500 128 2.67 53% 42% 32% 1.44 101% 4739ms

Table 4: Evaluation of folded distributions

approximation was to fail to find some incorrectly
proposed synonyms ranked above some other cor-
rect synonyms, those correct synonyms would have
their ranking pushed up. In this way, the approxima-
tion can potentially outperform the original nearest-
neighbour algorithm.

From Tables 3 and 4 we also see that as the value
of c increases, so does the accuracy across all of
the experiments. This is because asc increases the
number of paths between nodes increases and we
have a solution closer to a true nearest-neighbour
search, that is, there are more ways of finding the
true nearest-neighbour nodes.

Table 5 presents the results of combining the
canonical attributes heuristic (see Section 3.1) with
theSASH approximation. ThisNAIVE HEURISTIC is
14 times faster thanNAIVE and 97% accurate, with
96% of direct matches. The combination has com-
parable accuracy and is much more efficient than the
best of theSASH solutions. The best heuristicSASH

results used theSORT ordering withc = 16, which
was 37 times faster thanNAIVE and 2.5 times faster
thanNAIVE HEURISTIC. Its performance was statis-
tically indistinguishable fromNAIVE HEURISTIC.

Using the heuristic changes the impact of the
number of childrenc on theSASHperformance char-
acteristics. It seems that beyondc = 16 the only
significant effect is toreducethe efficiency (often to
slower thanNAIVE HEURISTIC).

The heuristic interacts in an interesting way with
the ordering of the nodes in theSASH. This is most
obvious with theRANDOM results. TheRANDOM

heuristic INVR results are eight times better than the
full RANDOM results. Similar, though less dramatic,

results are seen with other orderings. It appears that
using the heuristic changes the clustering of nearest-
neighbours within theSASH so that better matching
paths are chosen and more noisy matches are elimi-
nated entirely by the heuristic.

It may seem that there are no major advantages
to using theSASH with the already efficient heuris-
tic matching method. However, our experiments
have used small canonical attribute vectors (maxi-
mum length 100). Increasing the canonical vector
size allows us to increase the accuracy of heuristic
solutions at the cost of efficiency. Using aSASH so-
lution would offset some of this efficiency penalty.
This has the potential for a solution that is more than
an order of magnitude faster thanNAIVE and is al-
most as accurate.

8 Conclusion

We have integrated a nearest-neighbour approxima-
tion data structure, the Spacial Approximation Sam-
ple Hierarchy (SASH), with a state-of-the-art distri-
butional similarity system. In the process we have
extended the originalSASH construction algorithms
(Houle, 2003b) to deal with the non-uniform distri-
bution of words within semantic space.

We intend to test other similarity measures and
node ordering strategies, including a more linguistic
analysis using WordNet, and further explore the in-
teraction between the canonical vector heuristic and
the SASH. The larger 300 word evaluation set used
by Curran (2004) will be used, and combined with a
more detailed analyis. Finally, we plan to optimise
our SASH implementation so that it is comparable
with the highly optimised nearest-neighbour code.

103



DIST c DIRECT P(1) P(5) P(10) INVR SEARCH TIME

NAIVE HEURISTIC 2.72 49% 40% 32% 1.40 827ms
RANDOM 16 2.61 50% 40% 31% 1.39 99% 388ms
RANDOM 64 2.72 49% 40% 32% 1.40 100% 1254ms
RANDOM 128 2.71 49% 40% 32% 1.40 100% 1231ms
FOLD1500 16 2.53 49% 40% 31% 1.36 97% 363ms
FOLD1500 64 2.72 49% 40% 32% 1.40 100% 900ms
FOLD1500 128 2.72 49% 40% 32% 1.40 100% 974ms
SORT 16 2.78 49% 40% 32% 1.41 100% 323ms
SORT 64 2.73 49% 40% 32% 1.40 100% 1238ms
SORT 128 2.73 49% 40% 32% 1.40 100% 1049ms

Table 5: Evaluation of different distributions using the approximation

The result is distributional similarity calculated
three times faster than existing systems with only a
minor accuracy penalty.
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