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Introduction

The ACL 2005 Workshop on Building and Using Parallel Texts: Data-Driven Machine Translation and
Beyond, took place on Wednesday, June 29 and Thursday, June 30 in Ann Arbor Michigan, immediately
following the 43rd Annual Meeting of the Association for Computational Linguistics.

This workshop represented a merger of two workshops that were originally proposed as independent
events. Joel Martin, Rada Mihalcea, and Ted Pedersen had proposed a workshop onBuilding and Using
Parallel Texts for Languages with Scarce Resources, which was intended as a follow-up event to the
NAACL 2003 Workshop on Parallel Text that had been organized by Mihalcea and Pedersen. At the
same time, Philipp Koehn and Christof Monz had proposed a workshop onExploiting Parallel Texts for
Statistical Machine Translation, featuring a shared task on Phrase Based Machine Translation.

Given the close relationship between the two proposed topics, the idea of a merger was quickly
embraced by all concerned. It was agreed that the workshop would have two tracks, one regarding
Parallel Texts for Languages with Scarce Resources (Track 1), and the other focused on Statistical
Machine Translation (Track 2).

Prior to the workshop, in addition to soliciting relevant papers for review and possible presentation,
the organizers of both tracks conducted shared tasks that brought together systems for an evaluation on
previously unseen data. Track 1 featured a Word Alignment shared task, where the object was to align
parallel text in one or more of the following langauge pairs: Inuktitut–English, Romanian–English,
and Hindi–English. Track 2 carried out a shared task on Phrase Based Statistical Machine Translation,
where eleven participating teams competed to build machine translation systems for French–English,
Spanish–English, German–English, and Finnish–English.

The results of the shared tasks were announced at the workshop, and these proceedings also include an
overview paper for each shared task that summarizes the results, as well as provides information about
the data used and any procedures that were followed in conducting or scoring the task. In addition,
there are short papers from each participating team for each shared task that describe their underlying
system in some detail.

Wednesday, June 29 was dedicated to Track 1. It featured an invited talk by Mike Maxwell of the
Linguistic Data Consortium, eight long paper presentations relevant to the topic of building and using
parallel texts for languages with scarce resources, six short paper presentations describing systems
that participated in the Word Alignment shared task (four additional short papers are included in the
proceedings), a shared task overview, and a panel discussion about lessons learned from the shared task.

Track 2 was featured on Thursday, June 30. It included an invited talk by Franz Josef Och of Google,
six long paper presentations, a shared task overview, and nine shared task system descriptions.

We would like to thank the members of the Program Committee for their timely reviews.

Philipp Koehn, Joel Martin, Rada Mihalcea, Christof Monz, and Ted Pedersen
Co–Organizers
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Association-Based Bilingual Word Alignment

Robert C. Moore
Microsoft Research
One Microsoft Way
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Abstract

Bilingual word alignment forms the foun-
dation of current work on statistical
machine translation. Standard word-
alignment methods involve the use of
probabilistic generative models that are
complex to implement and slow to train.
In this paper we show that it is possible
to approach the alignment accuracy of the
standard models using algorithms that are
much faster, and in some ways simpler,
based on basic word-association statistics.

1 Motivation

Bilingual word alignment is the first step of most
current approaches to statistical machine translation.
Although the best performing systems are “phrase-
based” (see, for instance, Och and Ney (2004) or
Koehn et al. (2003)), possible phrase translations
must first be extracted from word-aligned bilingual
text segments. The standard approach to word align-
ment makes use of five translation models defined
by Brown et al. (1993), sometimes augmented by
an HMM-based model or Och and Ney’s “Model
6” (Och and Ney, 2003). The best of these mod-
els can produce high accuracy alignments, at least
when trained on a large parallel corpus of fairly di-
rect translations in closely related languages.

There are a number of ways in which these stan-
dard models are less than ideal, however. The
higher-accuracy models are mathematically com-
plex, and also difficult to train, as they do not factor

in a way that permits a dynamic programming solu-
tion. It can thus take many hours of processing time
on current standard computers to train the models
and produce an alignment of a large parallel corpus.

In this paper, we take a different approach to
word alignment, based on the use of bilingual word-
association statistics rather than the generative prob-
abilistic framework that the IBM and HMM models
use. In the end we obtain alignment algorithms that
are much faster, and in some ways simpler, whose
accuracy comes surprisingly close to the established
probabilistic generative approach.

2 Data and Methodology for these
Experiments

The experiments reported here were carried out us-
ing data from the workshop on building and using
parallel texts held at HLT-NAACL 2003 (Mihalcea
and Pedersen, 2003). For the majority of our experi-
ments, we used a subset of the Canadian Hansards
bilingual corpus supplied for the workshop, com-
prising 500,000 English-French sentences pairs, in-
cluding 37 sentence pairs designated as “trial” data,
and 447 sentence pairs designated as test data. The
trial and test data have been manually aligned at
the word level, noting particular pairs of words ei-
ther as “sure” or “possible” alignments. As an
additional test, we evaluated our best alignment
method using the workshop corpus of approximately
49,000 English-Romanian sentences pairs from di-
verse sources, including 248 manually aligned sen-
tence pairs designated as test data.1

1For the English-French corpus, automatic sentence align-
ment of the training data was provided by Ulrich Germann,

1



We needed annotated development data to opti-
mize certain parameters of our algorithms, and we
were concerned that the small number of sentence
pairs designated as trial data would not be enough
for this purpose. We therefore randomly split each of
the English-French and English-Romanian test data
sets into two virtually equal subsets, by randomly
ordering the test data pairs, and assigning alternate
pairs from the random order to the two subsets. We
used one of these subsets as a development set for
parameter optimization, and held out the other for a
final test set.

We report the performance of various alignment
algorithms in terms of precision, recall, and align-
ment error rate (AER) as defined by Och and Ney
(2003):

recall =
|A ∩ S|
|S|

precision =
|A ∩ P |
|A|

AER = 1− |A ∩ P |+ |A ∩ S|
|A|+ |S|

In these definitions, S denotes the set of alignments
annotated as sure, P denotes the set of alignments
annotated possible or sure, and A denotes the set of
alignments produced by the method under test. Fol-
lowing standard practice in the field, we take AER,
which is derived from F-measure, as the primary
evaluation metric that we are attempting to optimize.

Our initial experiments involve algorithms that do
not consider the positions of words in the sentences.
Thus, they are incapable of distinguishing among
multiple instances of the same word type in a sen-
tence. We will say that these methods produce word
type alignments. We compare these algorithms on
the basis of the best possible alignment of word to-
kens given an alignment of word types. We go on
to consider various ways of choosing a word token
alignment for a given word type alignment, and all
our final evaluations are conducted on the basis of
the alignment of individual word tokens.

and the hand alignments of the words in the trial and test data
were created by Franz Och and Hermann Ney (Och and Ney,
2003). The manual word alignments for the English-Romanian
test data were created by Rada Mihalcea and Ted Pedersen.

3 The Log-Likelihood-Ratio Association
Measure

We base all our association-based word-alignment
methods on the log-likelihood-ratio (LLR) statis-
tic introduced to the NLP community by Dunning
(1993). We chose this statistic because it has previ-
ously been found to be effective for automatically
constructing translation lexicons (e.g., Melamed,
2000). We compute LLR scores using the follow-
ing formula presented by Moore (2004):

LLR(f, e) =
∑

f?∈{f,¬f}

∑

e?∈{e,¬e}
C(f?, e?) log

p(f?|e?)
p(f?)

In this formula f and e mean that the words whose
degree of association is being measured occur in the
respective target and source sentences of an aligned
sentence pair, ¬f and ¬e mean that the correspond-
ing words do not occur in the respective sentences,
f? and e? are variables ranging over these values,
and C(f?, e?) is the observed joint count for the val-
ues of f? and e?. The probabilities in the formula
refer to maximum likelihood estimates.

Since the LLR score for a pair of words is high
if the words have either a strong positive associ-
ation or a strong negative association, we discard
any negatively associated word pairs by requiring
that p(f, e) > p(f) · p(e). Initially, we computed
the LLR scores for all positively associated En-
glish/French word pairs in our 500K sentence pair
corpus. To reduce the memory requirements of our
algorithms we discarded any word pairs whose LLR
score was less than 1.0. This left us with 12,797,697
word pairs out of a total of 21,451,083 pairs that had
at least one co-occurrence.

4 One-to-One, Word Type Alignment
Methods

4.1 Method 1

The first set of association-based word-aligment
methods we consider permit only one-to-one align-
ments and do not take word position into account.
The simplest method we consider uses the LLR
scores to link words according to Melamed’s (2000)
“competitive linking algorithm” for aligning words
in a pair of sentences. Since competitive linking has

2



no way to distinguish one instance of a particular
word type from another, we operate with counts of
linked and unlinked instances of word types, with-
out trying to designate the particular instances the
counts refer to. This version of competitive linking
can be described as follows:

• Find the pair consisting of an English word type
and a French word type that have the highest
association score of any pair of words types that
both have remaining unlinked instances.

• Increase by 1 the count of linked occurrences
of this pair of word types, and decrease by 1
the count of unlinked instances of each of these
word types.

• Repeat until no more words can be linked.

We will refer to this version of the competitive link-
ing algorithm using LLR scores as Method 1. This
is the method that Melamed uses to generate an ini-
tial alignment that he refines by re-estimation in his
“Method A” (Melamed, 2000).

Method 1 can terminate either because one or
both sentences of the pair have no more unlinked
words, or because no association scores exist for the
remaining unlinked words. We can use this fact to
trade off recall for precision by discarding associa-
tion scores below a given threshold. Table 1 shows
the precision/recall trade-off for Method 1 on our de-
velopment set. Since Method 1 produces only word
type alignments, these recall and precision scores
are computed with respect to an oracle that makes
the best possible choice among multiple occurrences
of the same word type.2 The best (oracular) AER is
0.216, with recall of 0.840 and precision of 0.747,
occurring at an LLR threshold of 11.7.

4.2 Method 2

A disadvantage of Method 1 is that it makes align-
ment decisions for each sentence pair independently
of the decisions for the same words in other sentence
pairs. It turns out that we can improve alignment

2The oracle goes through the word type pairs in the same
order as the competitive linking algorithm, linking particular
instances of the word types. It prefers a pair that has a sure
alignment in the annotated test data to a pair that has a possible
alignment; and prefers a pair with a possible alignment to one
with no alignment.

Recall Precision Threshold
0.111 0.991 168368
0.239 0.923 71074
0.304 0.902 53286
0.400 0.838 26001
0.501 0.822 11306
0.600 0.788 4224
0.700 0.778 1141
0.800 0.765 124
0.848 0.732 1

Table 1: Recall/Precision Trade-Off for Method 1.

accuracy by biasing the alignment method towards
linking words in a given sentence that are also linked
in many other sentences. A simple way to do this
is to perform a second alignment based on the con-
ditional probability of a pair of words being linked
according to Method 1, given that they both occur in
a given sentence pair. We estimate this link proba-
bility LP as

LP (f, e) =
links1(f, e)
cooc(f, e)

where links1(f, e) is the number of times f and e
are linked according to Method 1, and cooc(f, e) is
the number of times f and e co-occur in aligned sen-
tences.3

We now define alignment Method 2 as follows:

• Count the number of links in the training cor-
pus for each pair of words linked in any sen-
tence pair by Method 1.

• Count the number of co-occurrences in the
training corpus for each pair of words linked
in any sentence pair by Method 1.

• Compute LP scores for each pair of words
linked in any sentence pair by Method 1.

• Align sentence pairs by competitive linking us-
ing LP scores.

3Melamed (1998) points out there are at least three ways to
count the number of co-ccurrences of f and e in a given sen-
tence pair if one or both of f and e have more than one occur-
rence. Based on preliminary explorations, we chose to count
the co-occurrences of f and e as the maximum of the number
of occurrences of f and the number of occurrences of e, if both
f and e occur; otherwise cooc(f, e) = 0.
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Recall Precision Threshold
0.100 0.887 0.989
0.230 0.941 0.982
0.301 0.952 0.967
0.400 0.964 0.938
0.501 0.967 0.875
0.600 0.967 0.811
0.705 0.948 0.649
0.816 0.921 0.441
0.880 0.775 0.000

Table 2: Recall/Precision Trade-Off for Method 2.

Table 2 shows the precision/recall trade-off for
Method 2 on our development set. Again, an ora-
cle is used to choose among multiple occurrences
of the same word type. The best (oracular) AER is
0.126, with recall of 0.830 and precision of 0.913,
occurring at an LP threshold of 0.215.

4.3 Method 3

It is apparent that Method 2 performs much better
than Method 1 at any but the lowest recall levels.
However, it fails to display a monotonic relation-
ship between recall and precision as the score cut-
off threshold is tightened or loosened. This seems
to be due to the fact that the LP measure, unlike
LLR, does not discount estimates made on the basis
of little data. Thus a pair of words that has one co-
occurrence in the corpus, which is linked by Method
1, gets the same LP score of 1.0 as a pair of words
that have 100 co-occurrences in the corpus and are
linked by Method 1 every time they co-occur.

A simple method of compensating for this over-
confidence in rare events is to apply absolute dis-
counting. We will define the discounted link proba-
bility LPd similarly to LP , except that a fixed dis-
count d is subtracted from each link count:

LPd(f, e) =
links1(f, e)− d

cooc(f, e)

Method 3 is then identical to Method 2, except that
LPd is used in place of LP . We determined the op-
timal value of d for our development set to be ap-
proximately 0.9, using the optimal, oracular AER as
our objective function.

Table 3 shows the precision/recall trade-off for
Method 3 on our development set, with d = 0.9

Recall Precision Threshold
0.178 1.000 0.982
0.200 0.998 0.977
0.300 0.999 0.958
0.405 0.998 0.923
0.502 0.994 0.871
0.602 0.987 0.758
0.737 0.947 0.647
0.804 0.938 0.441
0.883 0.776 0.000

Table 3: Recall/Precision Trade-Off for Method 3.

and use of an oracle to choose among multiple oc-
currences of the same word type. The best (orac-
ular) AER is 0.119, with recall of 0.827 and pre-
cision of 0.929, occurring at an LPd threshold of
0.184. This is an improvement of 0.7% absolute
in AER, but perhaps as importantly, the monotonic
trade-off between precision and recall is essentially
restored. We can see in Table 3 that we can achieve
recall of 60% on this development set with precision
of 98.7%, and we can obtain even higher precision
by sacrificing recall slightly more. With Method 2,
96.7% was the highest precision that could be ob-
tained at any recall level measured.

5 Allowing Many-to-One Alignments

It appears from the results for Methods 2 and 3 on
the development set that reasonable alignment ac-
curacy may be achievable using association-based
techniques (pending a way of selecting the best word
token alignments for a given word type alignment).
However, we can never learn any many-to-one align-
ments with methods based on competitive linking, as
either we or Melamed have used it so far.

To address this issue, we introduce the notion of
bilingual word clusters and show how iterated appli-
cations of variations of Method 3 can learn many-to-
one mappings by building up clusters incrementally.
Consider the abstract data structure to which com-
petitive linking is applied as a tuple of bags (multi-
sets). In Methods 1–3, for each sentence pair, com-
petitive linking is applied to a tuple of a bag of
French words and a bag of English words. Sup-
pose we apply Method 3 with a high LPd cut-off
threshold so that we can be confident that almost all
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the links we produce are correct, but many French
and English words remain unlinked. We can regard
this as producing for each sentence pair a tuple of
three bags: bags of the remaining unlinked English
and French words, plus a third bag of word clusters
consisting of the linked English and French words.
To produce more complex alignments, we can then
carry out an iteration of a generalized version of
Method 3, in which competitive linking connects re-
maining unlinked English and French words to each
other or to previously derived bilingual clusters.4

As just described, the approach does not work
very well, because it tends to build clusters too of-
ten when it should produce one-to-one alignments.
The problem seems to be that translation tends to
be nearly one-to-one, especially with closely re-
lated languages, and this bias is not reflected in the
method so far. To remedy this, we introduce two bi-
ases in favor of one-to-one alignments. First, we dis-
count the LLR scores between words and clusters,
so the competitive linking pass using these scores
must find a substantially stronger association for a
given word to a cluster than to any other unlinked
word before it will link the word to the cluster. Sec-
ond, we apply the same high LPd cut-off on word-
to-cluster links that we used in the first iteration
of Method 3 to generate word-to-word links. This
leaves many unlinked words, so we apply one more
iteration of yet another modified version of Method
3 in which competitive linking is allowed to link the
remaining unlinked words to other unlinked words,
but not to clusters. We refer to this sequence of three
iterations of variations of Method 3 as Method 4.

To evaluate alignments involving clusters accord-
ing Och and Ney’s method, we translate clusters
back into all possible word-to-word alignments con-
sistent with the cluster. We found the optimal value
on the development set for the LLR discount for
clusters to be about 2000, and the optimal value for
the LPd cut-off for the first two iterations of Method
3 to be about 0.7. With these parameter values, the
best (oracular) AER for Method 4 is 0.110, with re-
call of 0.845 and precision of 0.929, occurring at a
final LPd threshold of 0.188. This is an improve-

4In principle, the process can be further iterated to build up
clusters of arbitrary size, but at this stage we have not yet found
an effective way of deciding when a cluster should be expanded
beyond two-to-one or one-to-two.

ment of 0.9% absolute in AER over Method 3, re-
sulting from an improvement of 1.7% absolute in
recall, with virtually no change in precision.

6 Token Alignment Selection Methods

Finally, we turn to the problem of selecting the best
word token alignment for a given word type align-
ment, and more generally to the incorporation of
positional information into association-based word-
alignment. We consider three token alignment se-
lection methods, each of which can be combined
with any of the word type alignment methods we
have previously described. We will therefore refer
to these methods by letter rather than number, with
a complete word token alignment method being des-
ignated by a number/letter combination.

6.1 Method A

The simplest method for choosing a word token
alignment for a given word type alignment is to
make a random choice (without replacement) for
each word type in the alignment from among the to-
kens of that type. We refer to this as Method A.

6.2 Method B

In Method B, we find the word token alignment con-
sistent with a given word type alignment that is the
most nearly mononotonic. We decide this by defin-
ing the degree of nonmonotonicity of an alignment,
and minimizing that. If more than one word token
alignment has the lowest degree of nonmonotonic-
ity, we pick one of them arbitrarily.

To compute the nonmonotonicity of a word to-
ken alignment, we arbitrarily designate one of the
languages as the source and the other as the target.
We sort the word pairs in the alignment, primarily
by source word position, and secondarily by target
word position. We then iterate through the sorted
alignment, looking only at the target word positions.
The nonmonotonicity of the alignment is defined
as the sum of the absolute values of the backward
jumps in this sequence of target word positions.

For example, suppose we have the sorted align-
ment ((1,1)(2,4)(2,5)(3,2)). The sequence of target
word positions in this sorted alignment is (1,4,5,2).
This has only one backwards jump, which is of
size 3, so that is the nonmonotonicity value for this
alignment. For a complete or partial alignment, the
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nonmonotonicity is clearly easy to compute, and
nonmonotonicity can never be decreased by adding
links to a partial alignment. The least nonmono-
tonic alignment is found by an incremental best-
first search over partial alignments kept in a priority
queue sorted by nonmonotonicity.

6.3 Method C

Method C is similiar to Method B, but it also uses
nonmonotonicity in deciding which word types to
align. In Method C, we modify the last pass of com-
petitive linking of the word type alignment method
to stop at a relatively high score threshold, and we
compute all minimally nonmonotonic word token
alignments for the resulting word type alignment.

We then continue the final competitive linking
pass applied to word tokens rather than types, but we
select only word token links that can be added to one
of the remaining word token alignments without in-
creasing its nonmonotonicity. Specifically, for each
remaining word type pair (in order of decreasing
score) we make repeated passes through all of the
word token alignments under consideration, adding
one link between previously unlinked instances of
the two word types to each alignment where it is
possible to do so without increasing nonmonotonic-
ity, until there are no longer unlinked instances of
both word types or no more links between the two
word types can be added to any alignment without
increasing its nonmonotonicity. At the end of each
pass, if some, but not all of the alignments have had a
link added, we discard the alignments that have not
had a link added; if no alignments have had a link
added, we go on to the next word type pair. This fi-
nal competitive linking pass continues until another,
lower score threshold is reached.

6.4 Comparison of Token Alignment Selection
Methods

Of these three methods, only C has additional free
parameters, which we jointly optimized on the de-
velopment set for each of the word type alignment
methods. All other parameters were left at their op-
timal values for the oracular choice of word token
alignment.

Table 4 shows the optimal AER on the develop-
ment set, for each combination of word type align-
ment method and token alignment selection method

Oracle A B C
1 0.216 0.307 0.255 0.243
2 0.126 0.210 0.147 0.109
3 0.119 0.208 0.138 0.103
4 0.110 0.196 0.130 0.098

Table 4: Development Set AER for all Methods.

that we have described. For comparison, the ora-
cle for each of the pure word type alignment meth-
ods is added to the table as a token alignment selec-
tion method. As we see from the table, Method 4
is the best word type alignment method for every
token alignment selection method, and Method C
is the best actual token alignment selection method
for every word type alignment method. Method C
even beats the token alignment selection oracle for
every word alignment type method except Method
1. This is possible because Method C incorporates
nonmonotonicity information into the selection of
linked word types, whereas the oracle is applied af-
ter all word type alignments have been chosen.

The best combined overall method is 4C. For this
combination, the optimal value on the development
set for the first score threshold of Method C was
about 0.65 and the optimal value of the second score
threshold of Method C was about 0.075.

7 Evaluation

We computed the recall, precision, and AER on the
held-out subset of the English-French data both for
our Method 4C (using parameter values optimized
on the development subset) and for IBM Model
4, computed using Och’s Giza++ software package
(Och and Ney, 2003) trained on the same data as
Method 4C. We used the default configuration file
included with the version of Giza++ that we used,
which resulted in five iterations of Model 1, fol-
lowed by five iterations of the HMM model, fol-
lowed by five iterations of Model 4. We trained and
evaluated the models in both directions, English-to-
French and French-to-English, as well as the union,
intersection, and what Och and Ney (2003) call the
“refined” combination of the two alignments. The
results are shown in Table 5. We applied the same
evaluation methodology to the English-Romanian
data, with the results shown in Table 6.
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Alignment Recall Precision AER

Method 4C 0.879 0.929 0.094
E → F 0.870 0.890 0.118
F → E 0.876 0.907 0.106
Union 0.929 0.845 0.124
Intersection 0.817 0.981 0.097
Refined 0.908 0.929 0.079

Table 5: English-French Results.

Comparison of the AER for Method 4C and IBM
Model 4 shows that, in these experiments, only the
refined combination of both directions of the Model
4 alignments outperforms our method, and only on
the English-French data (and by a relatively small
amount: 16% relative reduction in error rate). Our
existing Perl implementation of Method 4C takes
about 3.5 hours for the 500K sentence pair data
set on a standard desk top computer. It took over
8 hours to train each direction of Model 4 using
Giza++ (which is written in C++). We believe that if
our method was ported to C++, our speed advantage
over Giza++ would be substantially greater. Previ-
ous experience porting algorithms of the same gen-
eral type as Method 4C from Perl to C++ has given
us speed ups of a factor of 10 or more.

Note that we were unable to optimize the many
options and free parameters of Giza++ on the de-
velopment data, as we did with the parameters of
Method 4C, which perhaps inhibits us from drawing
stronger conclusions from these experiments. How-
ever, it was simply impractical to do so, due the time
required to re-train the Giza++ models with new set-
tings. With Method 4C, on the other hand, most of
the time is spent either in computing initial corpus
statistics that are independent of the parameters set-
tings, or in performing the final corpus alignment
once the parameters settings have been optimized.
Of the five parameters Method 4C requires, changes
to three of them took less than one hour of retrain-
ing (on the English-French data – much less on the
English-Romanian data), and settings of the last two
need to be tested only on the small amount of anno-
tated development data, which took only a few sec-
onds. This made it possible to optimize the parame-
ters of Method 4C in a small fraction of the time that
would have been required for Giza++.

Alignment Recall Precision AER

Method 4C 0.580 0.881 0.301
E → R 0.545 0.759 0.365
R → E 0.549 0.741 0.370
Union 0.570 0.423 0.515
Intersection 0.180 0.901 0.820
Refined 0.584 0.759 0.328

Table 6: English-Romanian Results.

8 Related Work

The literature on measures of bilingual word asso-
ciation is too large to review thoroughly, but mostly
it concerns extracting bilingual lexicons rather than
word alignment. We discuss three previous research
efforts that seem particularly relevant here.

Gale and Church (1991) made what may be the
first application of word association to word align-
ment. Their method seems somewhat like our
Method 1B. They use a word association score di-
rectly, although they use the φ2 statistic instead of
LLR, and they consider forward jumps as well as
backward jumps in a probability model in place of
our nonmonotonicity measure. They report 61% re-
call at 95% precision on Canadian Hansards data.

Obviously, we are building directly on the work of
Melamed (2000), sharing his use of the LLR statis-
tic and adopting his competitive linking algorithm.
We diverge in other details, however. Moreover,
Melamed makes no provision for other than one-to-
one alignments, and he does not deal with the prob-
lem of turning a word type alignment into a word
token alignment. As Table 4 shows, this is crucial to
obtaining high accuracy alignments.

Finally, our work is similar to that of Cherry and
Lin (2003) in our use of the conditional probabil-
ity of a link given the co-occurrence of the linked
words. Cherry and Lin generalize this idea to in-
corporate additional features of the aligned sentence
pair into the conditioning information. The chief
difference between their work and ours, however, is
their dependence on having parses for the sentences
in one of the languages being aligned. They use this
to enforce a phrasal coherence constraint, which ba-
sically says that word alignments cannot cross con-
stituent boundaries. They report excellent alignment
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accuracy using this approach, and one way of com-
paring our results to theirs is to say that we show it is
also possible to get good results (at least for English
and French) by using nonmonotonicity information
in place of constituency information.

9 Conclusions

The conventional wisdom in the statistical MT com-
munity has been that “heuristic” alignment meth-
ods based on word association statistics could not be
competitive with methods that have a “well-founded
mathematical theory that underlies their parame-
ter estimation” (Och and Ney, 2003, p. 37). Our
results seem to suggest that this is not the case.
While we would not claim to have demonstated that
association-based methods are superior to the es-
tablished approach, they certainly now appear to be
worth investigating further.

Moreover, our alignment method is faster than
standard models to train; potentially much faster if
it were re-implemented in a language like C++. Ef-
ficiency issues, especially in training, are often dis-
missed as unimportant, but one should consider sim-
ply the number of experiments that it is possible to
do in the course of system development. In our case,
for example, it was impractical to try to try to opti-
mize all the options and parameters of the Giza++
models in a reasonable amount of time, given the
computational resources at our disposal.

While the wealth of details regarding various
passes through the data in our best methods might
seem to undercut our claim of simplicity, it is impor-
tant to realize that each of our methods makes a fixed
number of passes, and each of those passes involves
a simple procedure of computing LLR scores, col-
lecting co-occurrence counts to estimate link proba-
bilities, or performing competitive linking; plus one
best first search for minimally nonmonotonic align-
ments. All these procedures are simple to under-
stand and straightforward to implement, in contrast
to some of the difficult mathematical and computa-
tional issues with the standard models.
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Abstract

In a multilingual scenario, the classical
monolingual text categorization problem
can be reformulated as a cross language
TC task, in which we have to cope with
two or more languages (e.g. English and
Italian). In this setting, the system is
trained using labeled examples in a source
language (e.g. English), and it classifies
documents in a different target language
(e.g. Italian).

In this paper we propose a novel ap-
proach to solve the cross language text
categorization problem based on acquir-
ing Multilingual Domain Models from
comparable corpora in a totally unsuper-
vised way and without using any external
knowledge source (e.g. bilingual dictio-
naries). These Multilingual Domain Mod-
els are exploited to define a generalized
similarity function (i.e. a kernel function)
among documents in different languages,
which is used inside a Support Vector Ma-
chines classification framework. The re-
sults show that our approach is a feasi-
ble and cheap solution that largely outper-
forms a baseline.

1 Introduction

Text categorization (TC) is the task of assigning cat-
egory labels to documents. Categories are usually
defined according to a variety of topics (e.g. SPORT,

POLITICS, etc.) and, even if a large amount of
hand tagged texts is required, the state-of-the-art su-
pervised learning techniques represent a viable and
well-performing solution for monolingual catego-
rization problems.

On the other hand in the worldwide scenario of
the web age, multilinguality is a crucial issue to deal
with and to investigate, leading us to reformulate
most of the classical NLP problems. In particular,
monolingual Text Categorization can be reformu-
lated as a cross language TC task, in which we have
to cope with two or more languages (e.g. English
and Italian). In this setting, the system is trained
using labeled examples in a source language (e.g.
English), and it classifies documents in a different
target language (e.g. Italian).

In this paper we propose a novel approach to solve
the cross language text categorization problem based
on acquiring Multilingual Domain Models (MDM)
from comparable corpora in an unsupervised way.
A MDM is a set of clusters formed by terms in dif-
ferent languages. While in the monolingual settings
semantic domains are clusters of related terms that
co-occur in texts regarding similar topics (Gliozzo et
al., 2004), in the multilingual settings such clusters
are composed by terms in different languages ex-
pressing concepts in the same semantic field. Thus,
the basic relation modeled by a MDM is the domain
similarity among terms in different languages. Our
claim is that such a relation is sufficient to capture
relevant aspects of topic similarity that can be prof-
itably used for TC purposes.

The paper is organized as follows. After a brief
discussion about comparable corpora, we introduce
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a multilingual Vector Space Model, in which docu-
ments in different languages can be represented and
then compared. In Section 4 we define the MDMs
and we present a totally unsupervised technique
to acquire them from comparable corpora. This
methodology does not require any external knowl-
edge source (e.g. bilingual dictionaries) and it is
based on Latent Semantic Analysis (LSA) (Deer-
wester et al., 1990). MDMs are then exploited to
define a Multilingual Domain Kernel, a generalized
similarity function among documents in different
languages that exploits a MDM (see Section 5). The
Multilingual Domain Kernel is used inside a Sup-
port Vector Machines (SVM) classification frame-
work for TC (Joachims, 2002). In Section 6 we will
evaluate our technique in a Cross Language catego-
rization task. The results show that our approach is
a feasible and cheap solution, largely outperforming
a baseline. Conclusions and future works are finally
reported in Section 7.

2 Comparable Corpora

Comparable corpora are collections of texts in dif-
ferent languages regarding similar topics (e.g. a col-
lection of news published by agencies in the same
period). More restrictive requirements are expected
for parallel corpora (i.e. corpora composed by texts
which are mutual translations), while the class of
the multilingual corpora (i.e. collection of texts ex-
pressed in different languages without any addi-
tional requirement) is the more general. Obviously
parallel corpora are also comparable, while compa-
rable corpora are also multilingual.

In a more precise way, let L = {L1, L2, . . . , Ll}
be a set of languages, let T i = {ti

1
, ti

2
, . . . , tin} be a

collection of texts expressed in the language Li ∈ L,
and let ψ(tjh, t

i
z) be a function that returns 1 if tiz is

the translation of tjh and 0 otherwise. A multilingual
corpus is the collection of texts defined by T ∗ =
⋃

i T
i. If the function ψ exists for every text tiz ∈ T ∗

and for every language Lj , and is known, then the
corpus is parallel and aligned at document level.

For the purpose of this paper it is enough to as-
sume that two corpora are comparable, i.e. they are
composed by documents about the same topics and
produced in the same period (e.g. possibly from dif-
ferent news agencies), and it is not known if a func-

tion ψ exists, even if in principle it could exist and
return 1 for a strict subset of document pairs.

There exist many interesting works about us-
ing parallel corpora for multilingual applications
(Melamed, 2001), such as Machine Translation,
Cross language Information Retrieval (Littman et
al., 1998), lexical acquisition, and so on.

However it is not always easy to find or build par-
allel corpora. This is the main reason because the
weaker notion of comparable corpora is a matter re-
cent interest in the field of Computational Linguis-
tics (Gaussier et al., 2004).

The texts inside comparable corpora, being about
the same topics (i.e. about the same semantic do-
mains), should refer to the same concepts by using
various expressions in different languages. On the
other hand, most of the proper nouns, relevant enti-
ties and words that are not yet lexicalized in the lan-
guage, are expressed by using their original terms.
As a consequence the same entities will be denoted
with the same words in different languages, allow-
ing to automatically detect couples of translation
pairs just by looking at the word shape (Koehn and
Knight, 2002). Our hypothesis is that comparable
corpora contain a large amount of such words, just
because texts, referring to the same topics in differ-
ent languages, will often adopt the same terms to
denote the same entities1 .

However, the simple presence of these shared
words is not enough to get significant results in TC
tasks. As we will see, we need to exploit these com-
mon words to induce a second-order similarity for
the other words in the lexicons.

3 The Multilingual Vector Space Model

Let T = {t1, t2, . . . , tn} be a corpus, and V =
{w1, w2, . . . , wk} be its vocabulary. In the mono-
lingual settings, the Vector Space Model (VSM) is a
k-dimensional space R

k, in which the text tj ∈ T

is represented by means of the vector ~tj such that
the zth component of ~tj is the frequency of wz in tj .
The similarity among two texts in the VSM is then
estimated by computing the cosine of their vectors
in the VSM.

1According to our assumption, a possible additional crite-
rion to decide whether two corpora are comparable is to esti-
mate the percentage of terms in the intersection of their vocab-
ularies.
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Unfortunately, such a model cannot be adopted in
the multilingual settings, because the VSMs of dif-
ferent languages are mainly disjoint, and the similar-
ity between two texts in different languages would
always turn out zero. This situation is represented
in Figure 1, in which both the left-bottom and the
rigth-upper regions of the matrix are totally filled by
zeros.

A first attempt to solve this problem is to ex-
ploit the information provided by external knowl-
edge sources, such as bilingual dictionaries, to col-
lapse all the rows representing translation pairs. In
this setting, the similarity among texts in different
languages could be estimated by exploiting the clas-
sical VSM just described. However, the main dis-
advantage of this approach to estimate inter-lingual
text similarity is that it strongly relies on the avail-
ability of a multilingual lexical resource containing
a list of translation pairs. For languages with scarce
resources a bilingual dictionary could be not eas-
ily available. Secondly, an important requirement
of such a resource is its coverage (i.e. the amount
of possible translation pairs that are actually con-
tained in it). Finally, another problem is that am-
biguos terms could be translated in different ways,
leading to collapse together rows describing terms
with very different meanings.

On the other hand, the assumption of corpora
comparability seen in Section 2, implies the pres-
ence of a number of common words, represented by
the central rows of the matrix in Figure 1.

As we will show in Section 6, this model is rather
poor because of its sparseness. In the next section,
we will show how to use such words as seeds to in-
duce a Multilingual Domain VSM, in which second
order relations among terms and documents in dif-
ferent languages are considered to improve the sim-
ilarity estimation.

4 Multilingual Domain Models

A MDM is a multilingual extension of the concept
of Domain Model. In the literature, Domain Mod-
els have been introduced to represent ambiguity and
variability (Gliozzo et al., 2004) and successfully
exploited in many NLP applications, such us Word
Sense Disambiguation (Strapparava et al., 2004),
Text Categorization and Term Categorization.

A Domain Model is composed by soft clusters of
terms. Each cluster represents a semantic domain,
i.e. a set of terms that often co-occur in texts hav-
ing similar topics. Such clusters identifies groups of
words belonging to the same semantic field, and thus
highly paradigmatically related. MDMs are Domain
Models containing terms in more than one language.

A MDM is represented by a matrix D, contain-
ing the degree of association among terms in all the
languages and domains, as illustrated in Table 1.

MEDICINE COMPUTER SCIENCE

HIV e/i 1 0
AIDSe/i 1 0
viruse/i 0.5 0.5
hospitale 1 0
laptope 0 1
Microsofte/i 0 1
clinicai 1 0

Table 1: Example of Domain Matrix. we denotes
English terms, wi Italian terms and we/i the com-
mon terms to both languages.

MDMs can be used to describe lexical ambiguity,
variability and inter-lingual domain relations. Lexi-
cal ambiguity is represented by associating one term
to more than one domain, while variability is rep-
resented by associating different terms to the same
domain. For example the term virus is associated
to both the domain COMPUTER SCIENCE and the
domain MEDICINE while the domain MEDICINE is
associated to both the terms AIDS and HIV. Inter-
lingual domain relations are captured by placing dif-
ferent terms of different languages in the same se-
mantic field (as for example HIV e/i, AIDSe/i,
hospitale, and clinicai). Most of the named enti-
ties, such as Microsoft and HIV are expressed using
the same string in both languages.

When similarity among texts in different lan-
guages has to be estimated, the information con-
tained in the MDM is crucial. For example the two
sentences “I went to the hospital to make an HIV
check” and “Ieri ho fatto il test dell’AIDS in clin-
ica” (lit. yesterday I did the AIDS test in a clinic)
are very highly related, even if they share no to-
kens. Having an “a priori” knowledge about the
inter-lingual domain similarity among AIDS, HIV,
hospital and clinica is then a useful information to
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Figure 1: Multilingual term-by-document matrix

recognize inter-lingual topic similarity. Obviously
this relation is less restrictive than a stronger associ-
ation among translation pair. In this paper we will
show that such a representation is sufficient for TC
puposes, and easier to acquire.

In the rest of this section we will provide a formal
definition of the concept of MDM, and we define
some similarity metrics that exploit it.

Formally, let V i = {wi
1
, wi

2
, . . . , wi

ki
} be the vo-

cabulary of the corpus T i composed by document
expressed in the language Li, let V ∗ =

⋃

i V
i be

the set of all the terms in all the languages, and
let k∗ = |V ∗| be the cardinality of this set. Let
D = {D1, D2, ..., Dd} be a set of domains. A DM
is fully defined by a k∗ × d domain matrix D rep-
resenting in each cell di,z the domain relevance of
the ith term of V ∗ with respect to the domain Dz .
The domain matrix D is used to define a function
D : R

k∗ → R
d, that maps the document vectors ~tj

expressed into the multilingual classical VSM, into
the vectors ~t′j in the multilingual domain VSM. The
function D is defined by2

2In (Wong et al., 1985) the formula 1 is used to define a
Generalized Vector Space Model, of which the Domain VSM is
a particular instance.

D(~tj) = ~tj(I
IDF

D) = ~t′j (1)

where I
IDF is a diagonal matrix such that iIDF

i,i =

IDF (wl
i), ~tj is represented as a row vector, and

IDF (wl
i) is the Inverse Document Frequency of wl

i

evaluated in the corpus T l.
The matrix D can be determined for example us-

ing hand-made lexical resources, such as WORD-
NET DOMAINS (Magnini and Cavaglià, 2000). In
the present work we followed the way to acquire
D automatically from corpora, exploiting the tech-
nique described below.

4.1 Automatic Acquisition of Multilingual
Domain Models

In this work we propose the use of Latent Seman-
tic Analysis (LSA) (Deerwester et al., 1990) to in-
duce a MDM from comparable corpora. LSA is an
unsupervised technique for estimating the similar-
ity among texts and terms in a large corpus. In the
monolingual settings LSA is performed by means
of a Singular Value Decomposition (SVD) of the
term-by-document matrix T describing the corpus.
SVD decomposes the term-by-document matrix T

into three matrixes T ' VΣk′U
T where Σk′ is the

diagonal k×k matrix containing the highest k ′ � k
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eigenvalues of T, and all the remaining elements are
set to 0. The parameter k′ is the dimensionality of
the Domain VSM and can be fixed in advance (i.e.
k′ = d).

In the literature (Littman et al., 1998) LSA has
been used in multilingual settings to define a mul-
tilingual space in which texts in different languages
can be represented and compared. In that work LSA
strongly relied on the availability of aligned parallel
corpora: documents in all the languages are repre-
sented in a term-by-document matrix (see Figure 1)
and then the columns corresponding to sets of trans-
lated documents are collapsed (i.e. they are substi-
tuted by their sum) before starting the LSA process.
The effect of this step is to merge the subspaces (i.e.
the right and the left sectors of the matrix in Figure
1) in which the documents have been originally rep-
resented.

In this paper we propose a variation of this strat-
egy, performing a multilingual LSA in the case in
which an aligned parallel corpus is not available.

It exploits the presence of common words among
different languages in the term-by-document matrix.
The SVD process has the effect of creating a LSA
space in which documents in both languages are rep-
resented. Of course, the higher the number of com-
mon words, the more information will be provided
to the SVD algorithm to find common LSA dimen-
sion for the two languages. The resulting LSA di-
mensions can be perceived as multilingual clusters
of terms and document. LSA can then be used to
define a Multilingual Domain Matrix DLSA.

DLSA = I
N
V

√

Σk′ (2)

where I
N is a diagonal matrix such that i

N

i,i =
1

√

〈 ~w′

i,
~w′

i〉

, ~w′
i is the ith row of the matrix V

√
Σk′ .

Thus DLSA
3 can be exploited to estimate simi-

larity among texts expressed in different languages
(see Section 5).

3When DLSA is substituted in Equation 1 the Domain VSM
is equivalent to a Latent Semantic Space (Deerwester et al.,
1990). The only difference in our formulation is that the vectors
representing the terms in the Domain VSM are normalized by
the matrix I

N, and then rescaled, according to their IDF value,
by matrix I

IDF. Note the analogy with the tf idf term weighting
schema, widely adopted in Information Retrieval.

4.2 Similarity in the multilingual domain space

As an example of the second-order similarity pro-
vided by this approach, we can see in Table 2 the five
most similar terms to the lemma bank. The similar-
ity among terms is calculated by cosine among the
rows in the matrix DLSA, acquired from the data
set used in our experiments (see Section 6.2). It is
worth noting that the Italian lemma banca (i.e. bank
in English) has a high similarity score to the English
lemma bank. While this is not enough to have a pre-
cise term translation, it is sufficient to capture rele-
vant aspects of topic similarity in a cross-language
text categorization task.

Lemma#Pos Similarity Score Language
banking#n 0.96 Eng
credit#n 0.90 Eng
amro#n 0.89 Eng
unicredito#n 0.85 Ita
banca#n 0.83 Ita

Table 2: Terms with high similarity to the English
lemma bank#n, in the Multilingual Domain Model

5 The Multilingual Domain Kernel

Kernel Methods are the state-of-the-art supervised
framework for learning, and they have been success-
fully adopted to approach the TC task (Joachims,
2002).

The basic idea behind kernel methods is to em-
bed the data into a suitable feature space F via a
mapping function φ : X → F , and then to use a
linear algorithm for discovering nonlinear patterns.
Kernel methods allow us to build a modular system,
as the kernel function acts as an interface between
the data and the learning algorithm. Thus the ker-
nel function becomes the only domain specific mod-
ule of the system, while the learning algorithm is a
general purpose component. Potentially any kernel
function can work with any kernel-based algorithm,
as for example Support Vector Machines (SVMs).

During the learning phase SVMs assign a weight
λi ≥ 0 to any example xi ∈ X . All the labeled
instances xi such that λi > 0 are called Support
Vectors. Support Vectors lie close to the best sepa-
rating hyper-plane between positive and negative ex-
amples. New examples are then assigned to the class
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of the closest support vectors, according to equation
3.

f(x) =
n

∑

i=1

λiK(xi, x) + λ0 (3)

The kernel function K(xi, x) returns the simi-
larity between two instances in the input space X ,
and can be designed just by taking care that some
formal requirements are satisfied, as described in
(Schölkopf and Smola, 2001).

In this section we define the Multilingual Domain
Kernel, and we apply it to a cross language TC task.
This kernel can be exploited to estimate the topic
similarity among two texts expressed in different
languages by taking into account the external knowl-
edge provided by a MDM. It defines an explicit map-
ping D : R

k → R
k′ from the Multilingual VSM

into the Multilingual Domain VSM. The Multilin-
gual Domain Kernel is specified by

KD(ti, tj) =
〈D(ti),D(tj)〉

√

〈D(tj),D(tj)〉〈D(ti),D(ti)〉
(4)

where D is the Domain Mapping defined in equa-
tion 1. Thus the Multilingual Domain Kernel re-
quires Multilingual Domain Matrix D, in particular
DLSA that can be acquired from comparable cor-
pora, as explained in Section 4.1.

To evaluate the Multilingual Domain Kernel we
compared it to a baseline kernel function, namely the
bag of words kernel, that simply estimates the topic
similarity in the Multilingual VSM, as described in
Section 3. The BoW kernel is a particular case of
the Domain Kernel, in which D = I, and I is the
identity matrix.

6 Evaluation

In this section we present the data set (two compara-
ble English and Italian corpora) used in the evalua-
tion, and we show the results of the Cross Language
TC tasks. In particular we tried both to train the
system on the English data set and classify Italian
documents and to train using Italian and classify the
English test set. We compare the learning curves of
the Multilingual Domain Kernel with the standard
BoW kernel, which is considered as a baseline for
this task.

6.1 Implementation details

As a supervised learning device, we used the SVM
implementation described in (Joachims, 1999). The
Multilingual Domain Kernel is implemented by
defining an explicit feature mapping as explained
above, and by normalizing each vector. All the ex-
periments have been performed with the standard
SVM parameter settings.

We acquired a Multilingual Domain Model by
performing the Singular Value Decomposition pro-
cess on the term-by-document matrices representing
the merged training partitions (i.e. English and Ital-
ian), and we considered only the first 400 dimen-
sions4.

6.2 Data set description

We used a news corpus kindly put at our dis-
posal by ADNKRONOS, an important Italian news
provider. The corpus consists of 32,354 Ital-
ian and 27,821 English news partitioned by
ADNKRONOS in a number of four fixed cate-
gories: Quality of Life, Made in Italy,
Tourism, Culture and School. The corpus
is comparable, in the sense stated in Section 2, i.e.
they covered the same topics and the same period of
time. Some news are translated in the other language
(but no alignment indication is given), some others
are present only in the English set, and some others
only in the Italian. The average length of the news
is about 300 words. We randomly split both the En-
glish and Italian part into 75% training and 25% test
(see Table 3). In both the data sets we postagged the
texts and we considered only the noun, verb, adjec-
tive, and adverb parts of speech, representing them
by vectors containing the frequencies of each lemma
with its part of speech.

6.3 Monolingual Results

Before going to a cross-language TC task, we con-
ducted two tests of classical monolingual TC by
training and testing the system on Italian and En-
glish documents separately. For these tests we used
the SVM with the BoW kernel. Figures 2 and 3 re-
port the results.

4To perform the SVD operation we used LIBSVDC
http://tedlab.mit.edu/∼dr/SVDLIBC/.
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English Italian
Categories Training Test Total Training Test Total
Quality of Life 5759 1989 7748 5781 1901 7682
Made in Italy 5711 1864 7575 6111 2068 8179
Tourism 5731 1857 7588 6090 2015 8105
Culture and School 3665 1245 4910 6284 2104 8388
Total 20866 6955 27821 24266 8088 32354

Table 3: Number of documents in the data set partitions
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Figure 2: Learning curves for the English part of the
corpus
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Figure 3: Learning curves for the Italian part of the
corpus

6.4 A Cross Language Text Categorization task

As far as the cross language TC task is concerned,
we tried the two possible options: we trained on the
English part and we classified the Italian part, and
we trained on the Italian and classified on the En-
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Figure 4: Cross-language (training on Italian, test on
English) learning curves
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Figure 5: Cross-language (training on English, test
on Italian) learning curves

glish part. The Multilingual Domain Model was ac-
quired running the SVD only on the joint (English
and Italian) training parts.

Table 4 reports the vocabulary dimensions of the
English and Italian training partitions, the vocabu-
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# lemmata
English training 22,704
Italian training 26,404
English + Italian 43,384
common lemmata 5,724

Table 4: Number of lemmata in the training parts of
the corpus

lary of the merged training, and how many com-
mon lemmata are present (about 14% of the total).
Among the common lemmata, 97% are nouns and
most of them are proper nouns. Thus the initial term-
by-document matrix is a 43,384 × 45,132 matrix,
while the DLSA matrix is 43,384 × 400. For this
task we consider as a baseline the BoW kernel.

The results are reported in Figures 4 and 5. An-
alyzing the learning curves, it is worth noting that
when the quantity of training increases, the per-
formance becomes better and better for the Multi-
lingual Domain Kernel, suggesting that with more
available training it could be possible to go closer to
typical monolingual TC results.

7 Conclusion

In this paper we proposed a solution to cross lan-
guage Text Categorization based on acquiring Mul-
tilingual Domain Models from comparable corpora
in a totally unsupervised way and without using any
external knowledge source (e.g. bilingual dictionar-
ies). These Multilingual Domain Models are ex-
ploited to define a generalized similarity function
(i.e. a kernel function) among documents in differ-
ent languages, which is used inside a Support Vec-
tor Machines classification framework. The basis of
the similarity function exploits the presence of com-
mon words to induce a second-order similarity for
the other words in the lexicons. The results have
shown that this technique is sufficient to capture rel-
evant aspects of topic similarity in cross-language
TC tasks, obtaining substantial improvements over
a simple baseline. As future work we will investi-
gate the performance of this approach to more than
two languages TC task, and a possible generaliza-
tion of the assumption about equality of the common
words.

Acknowledgments

This work has been partially supported by the
ONTOTEXT project, funded by the Autonomous
Province of Trento under the FUP-2004 program.

References
S. Deerwester, S. T. Dumais, G. W. Furnas, T.K. Lan-

dauer, and R. Harshman. 1990. Indexing by latent se-
mantic analysis. Journal of the American Society for
Information Science, 41(6):391–407.

E. Gaussier, J. M. Renders, I. Matveeva, C. Goutte, and
H. Dejean. 2004. A geometric view on bilingual lexi-
con extraction from comparable corpora. In Proceed-
ings of ACL-04, Barcelona, Spain, July.

A. Gliozzo, C. Strapparava, and I. Dagan. 2004. Unsu-
pervised and supervised exploitation of semantic do-
mains in lexical disambiguation. Computer Speech
and Language, 18:275–299.

T. Joachims. 1999. Making large-scale SVM learning
practical. In B. Schölkopf, C. Burges, and A. Smola,
editors, Advances in kernel methods: support vector
learning, chapter 11, pages 169 – 184. The MIT Press.

T. Joachims. 2002. Learning to Classify Text using Sup-
port Vector Machines. Kluwer Academic Publishers.

P. Koehn and K. Knight. 2002. Learning a translation
lexicon from monolingual corpora. In Proceedings of
ACL Workshop on Unsupervised Lexical Acquisition,
Philadelphia, July.

M. Littman, S. Dumais, and T. Landauer. 1998. Auto-
matic cross-language information retrieval using latent
semantic indexing. In G. Grefenstette, editor, Cross
Language Information Retrieval, pages 51–62. Kluwer
Academic Publishers.
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Abstract

We present an Earley-style dynamic pro-
gramming algorithm for parsing sentence
pairs from a parallel corpus simultane-
ously, building up two phrase structure
trees and a correspondence mapping be-
tween the nodes. The intended use of
the algorithm is in bootstrapping gram-
mars for less studied languages by using
implicit grammatical information in par-
allel corpora. Therefore, we presuppose a
given (statistical) word alignment under-
lying in the synchronous parsing task; this
leads to a significant reduction of the pars-
ing complexity. The theoretical complex-
ity results are corroborated by a quantita-
tive evaluation in which we ran an imple-
mentation of the algorithm on a suite of
test sentences from the Europarl parallel
corpus.

1 Introduction

The technical results presented in this paper1 are
motivated by the following considerations: It is con-
ceivable to use sentence pairs from a parallel corpus
(along with the tentative word correspondences from
a statistical word alignment) as training data for a
grammar induction approach. The goal is to induce
monolingual grammars for the languages under con-
sideration; but the implicit information about syn-
tactic structure gathered from typical patterns in the
alignment goes beyond what can be obtained from
unlabeled monolingual data. Consider for instance
the sentence pair from the Europarl corpus (Koehn,
2002) in fig. 1 (shown with a hand-labeled word
alignment): distributional patterns over this and sim-
ilar sentences may show that in English, the subject

1This work was in part supported by the German Research
Foundation DFG in the context of the author’s Emmy Noether
research group at Saarland University.

(the word block “the situation”) is in a fixed struc-
tural position, whereas in German, it can appear in
various positions; similarly, the finite verb in Ger-
man (here: stellt) systematically appears in second
position in main clauses. In a way, the translation
of sentences into other natural languages serves as
an approximation of a (much more costly) manual
structural or semantic annotation – one might speak
of automatic indirect supervision in learning. The
technique will be most useful for low-resource lan-
guages and languages for which there is no funding
for treebanking activities. The only requirement will
be that a parallel corpus exist for the language under
consideration and one or more other languages.2

Induction of grammars from parallel corpora is
rarely viewed as a promising task in its own right;
in work that has addressed the issue directly (Wu,
1997; Melamed, 2003; Melamed, 2004), the syn-
chronous grammar is mainly viewed as instrumental
in the process of improving the translation model in
a noisy channel approach to statistical MT.3 In the
present paper, we provide an important prerequisite
for parallel corpus-based grammar induction work:
an efficient algorithm for synchronous parsing of
sentence pairs, given a word alignment. This work
represents a second pilot study (after (Kuhn, 2004))
for the longer-term PTOLEMAIOS project at Saar-
land University4 with the goal of learning linguis-
tic grammars from parallel corpora (compare (Kuhn,
2005)). The grammars should be robust and assign a

2In the present paper we use examples from English/German
for illustration, but the approach is of course independent of the
language pair under consideration.

3Of course, there is related work (e.g., (Hwa et al., 2002; Lü
et al., 2002)) using aligned parallel corpora in order to “project”
bracketings or dependency structures from English to another
language and exploit them for training a parser for the other
language. But note the conceptual difference: the “parse projec-
tion” approach departs from a given monolingual parser, with a
particular style of analysis, whereas our project will explore to
what extent it may help to design the grammar topology specifi-
cally for the parallel corpus case. This means that the emerging
English parser may be different from all existing ones.

4http://www.coli.uni-saarland.de/˜jonask/PTOLEMAIOS/
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Heute stellt sich die Lage jedoch völlig anders dar

The situation now however is radically different

Figure 1: Word-aligned German/English sentence pair from the Europarl corpus

predicate-argument-modifier (or dependency) struc-
ture to sentences, such that they can be applied in
the context of multilingual information extraction or
question answering.

2 Synchronous grammars

For the purpose of grammar induction from parallel
corpora, we assume a fairly straightforward exten-
sion of context-free grammars to the synchronous
grammar case (compare the transduction grammars
of (Lewis II and Stearns, 1968)): Firstly, the termi-
nal and non-terminal categories are pairs of sym-
bols, one for each language; as a special case, one
of the two symbols can be NIL for material realized
in only one of the languages. Secondly, the linear
sequence of daughter categories that is specified in
the rules can differ for the two languages; therefore,
an explicit numerical ranking is used for the linear
precedence in each language. We use a compact
rule notation with a numerical ranking for the lin-
ear precedence in each language. The general form
of a grammar rule for the case of two parallel lan-
guages is N0/M0 → N1:i1/M1:j1 . . . Nk:ik/Mk:jk,
where Nl,Ml are NIL or a terminal or nonterminal
symbol for language L1 and L2, respectively, and
il, jl are natural numbers for the rank of the phrase
in the sequence for L1 and L2 respectively (for NIL

categories a special rank 0 is assumed).5 Since linear
ordering of daughters in both languages is explic-
itly encoded by the rank indices, the specification
sequence in the rule is irrelevant from a declarative
point of view. To facilitate parsing we assume a nor-
mal form in which the right-hand side is ordered by
the rank in L1, with the exception that the categories
that are NIL in L1 come last. If there are several such

5Note that in the probabilistic variants of these grammars,
we will typically expect that any ordering of the right-hand side
symbols is possible (but that the probability will of course vary
– in a maximum entropy or log-linear model, the probability
will be estimated based on a variety of learning features). This
means that in parsing, the right-hand side categories will be ac-
cepted as they come in, and the relevant probability parameters
are looked up accordingly.

NIL categories in the same rule, they are viewed as
unordered with respect to each other.6

Fig. 2 illustrates our simple synchronous gram-
mar formalism with some rules of a sample grammar
and their application on a German/English sentence
pair. Derivation with a synchronous grammar gives
rise to a multitree, which combines classical phrase
structure trees for the languages involved and also
encodes the phrase level correspondence across the
languages. Note that the two monolingual trees in
fig. 2 for German and English are just two ways of
unfolding the common underlying multitree.

Note that the simple formalism goes along with
the continuity assumption that every complete con-
stituent is continuous in both languages. Various re-
cent studies in the field of syntax-based Statistical
MT have shown that such an assumption is problem-
atic when based on typical treebank-style analyses.
As (Melamed, 2003) discusses for instance, in the
context of binary branching structures even simple
examples like the English/French pair a gift for you
from France ↔ un cadeau de France pour vouz [a
gift from France for you] lead to discontinuity of a
“synchronous phrase” in one of the two languages.
(Gildea, 2003) and (Galley et al., 2004) discuss dif-
ferent ways of generalizing the tree-level crosslin-
guistic correspondence relation, so it is not confined
to single tree nodes, thereby avoiding a continuity
assumption. We believe that in order to obtain full
coverage on real parallel corpora, some mechanism
along these lines will be required.

However, if the typical rich phrase structure anal-
yses (with fairly detailed fine structure) are replaced
by flat, multiply branching analyses, most of the
highly frequent problematic cases are resolved.7 In

6This detail will be relevant for the parsing inference rule
(5) below.

7Compare the systematic study for English-French align-
ments by (Fox, 2002), who compared (i) treebank-parser style
analyses, (ii) a variant with flattened VPs, and (iii) dependency
structures. The degree of cross-linguistic phrasal cohesion in-
creases from (i) to (iii). With flat clausal trees, we will come
close to dependency structures with respect to cohesion.
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Synchronous grammar rules:
S/S → NP:1/NP:2 Vfin:2/Vfin:3 Adv:3/Adv:1

NP:4/PP:5 Vinf:5/Vinf:4
NP/NP → Pron:1/Pron:1
NP/PP → Det:1/Det:2 N:2/N:4 NIL:0/P:1 NIL:0/Adj:3
Pron/Pron → wir:1/we:1
Vfin/Vfin → müssen:1/must:1
Adv/Adv → deshalb:1/so:1
NIL/P → NIL:0/at:1
Det/Det → die:1/the:1
NIL/Adj → NIL:0/agricultural:1
N/N → Agrarpolitik:1/policy:1
Vinf/Vinf → prüfen:1/look:1

German tree:
S

NP Vfin Adv NP Vinf

Pron Det N

Wir müssen deshalb die Agrarpolitik prüfen
we must therefore the agr. policy examine

English tree:
S

Adv NP Vfin Vinf PP

Pron P Det Adj N

So we must look at the agricultural policy
Multitree:

S/S

NP:1/NP:2 Vfin:2/Vfin:3 Adv:3/Adv:1 NP:4/PP:5 Vinf:5/Vinf:4

Pron:1/Pron:1 NIL:0/P:1 Det:1/Det:2 NIL:0/Adj:3 N:2/N:4

Wir/we müssen/must deshalb/so NIL/at die/the NIL/agricultural Agrarpolitik/policy prüfen/look

Figure 2: Sample rules and analysis for a synchronous grammar

the flat representation that we assume, a clause is
represented in a single subtree of depth 1, with all
verbal elements and the argument/adjunct phrases
(NPs or PPs) as immediate daughters of the clause
node. Similarly, argument/adjunct phrases are flat
internally. Such a flat representation is justified
both from the point of view of linguistic learning
and from the point of view of grammar application:
(i) Language-specific principles of syntactic struc-
ture (e.g., the strong configurationality of English),
which are normally captured linguistically by the
richer phrase structure, are available to be induced
in learning as systematic patterns in the relative or-
dering of the elements of a clause. (ii) The predicate-
argument-modifier structure relevant for application
of the grammars, e.g., in information extraction can
be directly read off the flat clausal representation.

It is a hypothesis of our longer-term project that
a word alignment-based consensus structure which
works with flat representations and under the con-
tinuity assumption is a very effective starting point
for learning the basic language-specific constraints
required for a syntactic grammar. Linguistic phe-
nomena that fall outside what can be captured in this
confined framework (in particular unbounded de-
pendencies spanning more than one clause and dis-
continuous argument phrases) will then be learned
in a later bootstrapping step that provides a richer
set of operations. We are aware of a number of open

practical questions, e.g.: Will the fact that real paral-
lel corpora often contain rather free translations un-
dermine our idea of using the consensus structure
for learning basic syntactic constraints? Statistical
alignments are imperfect – can the constraints im-
posed by the word alignment be relaxed accordingly
without sacrificing tractability and the effect of indi-
rect supervision?8

3 Alignment-guided synchronous parsing

Our dynamic programming algorithm can be de-
scribed as a variant of standard Earley-style chart
parsing (Earley, 1970) and generation (Shieber,
1988; Kay, 1996). The chart is a data structure
which stores all sub-analyses that cover part of the
input string (in parsing) or meaning representation
(in generation). Memoizing such partial results has
the standard advantage of dynamic programming
techniques – it helps one to avoid unnecessary re-
computation of partial results. The chart structure
for context-free parsing is also exploited directly in
dynamic programming algorithms for probabilistic
context-free grammars (PCFGs): (i) the inside (or
outside) algorithm for summing over the probabil-
ities for every possible analysis of a given string,
(ii) the Viterbi algorithm for determining the most
likely analysis of a given string, and (iii) the in-

8Ultimately, bootstrapping of not only the grammars, but
also of the word alignment should be applied.
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side/outside algorithm for re-estimating the param-
eters of the PCFG in an Expectation-Maximization
approach (i.e., for iterative training of a PCFG on
unlabeled data). This aspect is important for the in-
tended later application of our parsing algorithm in
a grammar induction context.

A convenient way of describing Earley-style pars-
ing is by inference rules. For instance, the central
completion step in Earley parsing can be described
by the rule9

(1) 〈X → α • Y β, [i, j]〉, 〈Y → γ •, [j, k]〉
〈X → α Y • β, [i, k]〉

Synchronous parsing. The input in synchronous
parsing is not a one-dimensional string, but a pair of
sentences, i.e., a two-dimensional array of possible
word pairs (or a multidimensional array if we are
looking at a multilingual corpus), as illustrated in
fig. 3.

policy •
agricultural
the •
at
look •
must •
we •
So •

0 1 2 3 4 5 6

L
2
:

L1: Wir müssen deshalb die Agrar- prüfen
politik

Figure 3: Synchronous parsing: two-dimensional in-
put (with word alignment marked)

The natural way of generalizing context-free pars-
ing to synchronous grammars is thus to control the
inference rules by string indices in both dimensions.
Graphically speaking, parsing amounts to identify-
ing rectangular crosslinguistic constituents – by as-
sembling smaller rectangles that will together cover
the full string spans in both dimensions (compare
(Wu, 1997; Melamed, 2003)). For instance in fig. 4,
the NP/NP rectangle [i1, j1, j2, k2] can be combined
with the Vinf/Vinf rectangle [j1, k1, i2, j2] (assum-
ing there is an appropriate rule in the grammar).

9A chart item is specified through a position (•) in a pro-
duction and a string span ([l1, l2]). 〈X → α • Y β, [i, j]〉
means that between string position i and j, the beginning of
an X phrase has been found, covering α, but still missing Y β.
Chart items for which the dot is at the end of a production (like
〈Y → γ•, [j, k]〉) are called passive items, the others active.

Vinf/Vinf

NP/NP

i1 j1 k1

k2

j2

i2

her

interview

sie interviewen

Figure 4: Completion in two-dimensional chart:
parsing part of Can I interview her?/Kann ich sie
interviewen?

More generally, we get the inference rules (2) and
(3) (one for the case of parallel sequencing, one for
crossed order across languages).

(2) 〈X1/X2 → α • Y1:r1/Y2:r2 β, [i1, j1, i2, j2]〉,
〈Y1/Y2 → γ •, [j1, k1, j2, k2]〉

〈X1/X2 → α Y1:r1/Y2:r2 • β, [i1, k1, i2, k2]〉

(3) 〈X1/X2 → α • Y1:r1/Y2:r2 β, [i1, j1, j2, k2]〉,
〈Y1/Y2 → γ •, [j1, k1, i2, j2]〉

〈X1/X2 → α Y1:r1/Y2:r2 • β, [i1, k1, i2, k2]〉

Since each inference rule contains six free vari-
ables over string positions (i1, j1, k1, i2, j2, k2), we
get a parsing complexity of order O(n6) for unlexi-
calized grammars (where n is the number of words
in the longer of the two strings from language L1 and
L2) (Wu, 1997; Melamed, 2003). For large-scale
learning experiments this may be problematic, es-
pecially when one moves to lexicalized grammars,
which involve an additional factor of n4.10

As a further issue, we observe that the inference
rules are insufficient for multiply branching rules,
in which partial constituents may be discontinuous
in one dimension (only complete constituents need
to be continuous in both dimensions). For instance,
by parsing the first two words of the German string
in fig. 1 (Heute stellt), we should get a partial chart
item for a sentence, but the English correspondents
for the two words (now and is) are discontinuous, so
we couldn’t apply rule (2) or (3).

Correspondence-guided parsing. As an alterna-
tive to the standard “rectangular indexing” approach

10The assumption here (following (Melamed, 2003)) is that
lexicalization is not considered as just affecting the grammar
constant, but that in parsing, every terminal symbol has to be
considered as the potential head of every phrase of which it is
a part. Melamed demonstrates: If the number of different cat-
egory symbols is taken into consideration as l, we get O(l2n6)
for unlexicalized grammars, and O(l6n10) for lexicalized gram-
mars; however there are some possible optimizations.
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to synchronous parsing we propose a conceptually
very simple asymmetric approach. As we will show
in sec. 4 and 5, this algorithm is both theoretically
and practically efficient when applied to sentence
pairs for which a word alignment has previously
been determined. The approach is asymmetric in
that one of the languages is viewed as the “master
language”, i.e., indexing in parsing is mainly based
on this language (the “primary index” is the string
span in L1 as in monolingual parsing). The other
language contributes a secondary index, which is
mainly used to guide parsing in the master language
– i.e., certain options are eliminated. The choice of
the master language is in principle arbitrary, but for
efficiency considerations it is better to pick the one
that has more words without a correspondent.

A way of visualizing correspondence-guided
parsing is that standard Earley parsing is applied to
L1, with primary indexing by string position; as the
chart items are assembled, the synchronous gram-
mar and the information from the word alignment
is used to check whether the string in L2 could be
generated (essentially using chart-based generation
techniques; cf. (Shieber, 1988; Neumann, 1998)).
The index for chart items consists of two compo-
nents: the string span in L1 and a bit vector for the
words in L2 which are covered. For instance, based
on fig. 3, the noun compound Agrarpolitik corre-
sponding to agricultural policy in English will have
the index 〈[4, 5], [0, 0, 0, 0, 0, 0, 1, 1]〉 (assuming for
illustrative purposes that German is the master lan-
guage in this case).

The completion step in correspondence-guided
parsing can be formulated as the following single in-
ference rule:11

(4) 〈X1/X2 → α • Y1:r1/Y2:r2 β, 〈[i, j], v〉〉,
〈Y1/Y2 → γ •, 〈[j, k],w〉〉

〈X1/X2 → α Y1:r1/Y2:r2 • β, 〈[i, k], u〉〉
where

(i) j 6= k;
(ii) OR(v,w) = u;
(iii) w is continuous (i.e., it contains maximally

one subsequence of 1’s).

Condition (iii) excludes discontinuity in passive
chart items, i.e., complete constituents; active items

11We use the bold-faced variables v,w,u for bit vectors; the
function OR performs bitwise disjunction on the vectors (e.g.,
OR([0, 1, 1, 0, 0], [0, 0, 1, 0, 1]) = [0, 1, 1, 0, 1]).

(i.e., partial constituents) may well contain discon-
tinuities. The success condition for parsing a string
with N words in L1 is that a chart item with index
〈[0, N ],1〉 has been found for the start category pair
of the grammar.

Words in L2 with no correspondent in L1 (let’s
call them “L1-NIL”s for short), for example the
words at and agricultural in fig. 3,12 can in princi-
ple appear between any two words of L1. Therefore
they are represented with a “variable” empty L1-
string span like for instance in 〈[i, i], [0, 0, 1, 0, 0]〉.
At first blush, such L1-NILs seem to introduce an
extreme amount of non-determinism into the algo-
rithm. Note however that due to the continuity as-
sumption for complete constituents, the distribution
of the L1-NILs is constrained by the other words in
L2. This is exploited by the following inference rule,
which is the only way of integrating L1-NILs into the
chart:

(5) 〈X1/X2 → α • NIL:0/Y2:r2 β, 〈[i, j], v〉〉,
〈NIL/Y2 → γ •, 〈[j, j], w〉〉

〈X1/X2 → α NIL:0/Y2:r2 • β, 〈[i, j], u〉〉
where

(i) w is adjacent to v (i.e., unioning vectors w
and v does not lead to more 0-separated 1-
sequences than v contains already);

(ii) OR(v,w) = u.

The rule has the effect of finalizing a cross-
linguistic constituent (i.e., rectangle in the two-
dimensional array) after all the parts that have corre-
spondents in both languages have been found. 13

4 Complexity

We assume that the two-dimensional chart is ini-
tialized with the correspondences following from a
word alignment. Hence, for each terminal that is
non-empty in L1, both components of the index are
known. When two items with known secondary in-
dices are combined with rule (4), the new secondary

12It is conceivable that a word alignment would list agricul-
tural as an additional correspondent for Agrarpolitik; but we
use the given alignment for illustrative purposes.

13For instance, the L1-NILs in fig. 3 – NIL/at and
NIL/agricultural – have to be added to incomplete NP/PP
constituent in the L1-string span from 3 to 5, consist-
ing of the Det/Det die/the and the N/N Agrarpolitik/policy.
With two applications of rule (5), the two L1-NILs can be
added. Note that the conditions are met, and that as a re-
sult, we will have a continuous NP/PP constituent with index
〈[3, 5], [0, 0, 0, 0, 1, 1, 1, 1]〉, which can be used as a passive
item Y1/Y2 in rule (4).
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index can be determined by bitwise disjunction of
the bit vectors. This operation is linear in the length
of the L2-string (which is of the same order as the
length of the L1-string) and has a very small con-
stant factor.14 Since parsing with a simple, non-
lexicalized context-free grammar has a time com-
plexity of O(n3) (due to the three free variables
for string positions in the completion rule), we get
O(n4) for synchronous parsing of sentence pairs
without any L1-NILs. Note that words from L1 with-
out a correspondent in L2 (which we would have to
call L2-NILs) do not add to the complexity, so the
language with more correspondent-less words can
be selected as L1.

For the average complexity of correspondence-
guided parsing of sentence pairs without L1-NILs we
note an advantage over monolingual parsing: cer-
tain hypotheses for complete constituents that would
have to be considered when parsing only L1, are ex-
cluded because the secondary index reveals a dis-
continuity. An example from fig. 3 would be the se-
quence müssen deshalb, which is adjacent in L1, but
doesn’t go through as a continuous rectangle when
L2 is taken into consideration (hence it cannot be
used as a passive item in rule (4)).

The complexity of correspondence-guided pars-
ing is certainly increased by the presence of L1-
NILs, since with them the secondary index can no
longer be uniquely determined. However, with the
adjacency condition ((i) in rule (5)), the number of
possible variants in the secondary index is a func-
tion of the number of L1-NILs. Let us say there are
m L1-NILs, i.e., the bit vectors contain m elements
that we have to flip from 0 to 1 to obtain the final bit
vector. In each application of rule (5) we pick a vec-
tor v, with a variable for the leftmost and rightmost
L1-NIL element (since this is not fully determined
by the primary index). By the adjacency condition,

14Note that the operation does not have to be repeated when
the completion rule is applied on additional pairs of items with
identical indices. This means that the extra time complexity fac-
tor of n doesn’t go along with an additional factor of the gram-
mar constant (which we are otherwise ignoring in the present
considerations). In practical terms this means that changes in
the size of the grammar are much more noticable than moving
from monolingual parsing to alignment-guided parsing.

An additional advantage is that in an Expectation Maximiza-
tion approach to grammar induction (with a fixed word align-
ment), the bit vectors have to be computed only in the first iter-
ation of parsing the training corpus, later iterations are cubic.

either the leftmost or rightmost marks the boundary
for adding the additional L1-NIL element NIL/Y2 –
hence we need only one new variable for the newly
shifted boundary among the L1-NILs. So, in addition
to the n4 expense of parsing non-nil words, we get
an expense of m3 for parsing the L1-NILs, and we
conclude that for unlexicalized synchronous pars-
ing, guided by an initial word alignment the com-
plexity class is O(n4m3) (where n is the total num-
ber of words appearing in L1, and m is the number
of words appearing in L2, without a correspondent
in L1). Recall that the complexity for standard syn-
chronous parsing is O(n6).

Since typically the number of correspondent-less
words is significantly lower than the total number of
words (at least for one of the two languages), these
results are encouraging for medium-to-large-scale
grammar learning experiments using a synchronous
parsing algorithm.

5 Empirical Evaluation

In order to validate the theoretical complexity results
empirically, we implemented the algorithm and ran
it on sentence pairs from the Europarl parallel cor-
pus. At the present stage, we are interested in quan-
titative results on parsing time, rather than qualita-
tive results of parsing accuracy (for which a more
extensive training of the rule parameters would be
required).
Implementation. We did a prototype implementa-
tion of the correspondence-guided parsing algorithm
in SWI Prolog.15 Chart items are asserted to the
knowledge base and efficiently retrieved using in-
dexing by a hash function. Besides chart construc-
tion, the Viterbi algorithm for selecting the most
probable analysis has been implemented, but for the
current quantitative results only chart construction
was relevant.
Sample grammar extraction. The initial prob-
ablistic grammar for our experiments was ex-
tracted from a small “multitree bank” of 140 Ger-
man/English sentence pairs (short examples from
the Europarl corpus). The multitree bank was an-
notated using the MMAX2 tool16 and a specially

15http://www.swi-prolog.org – The advantage of using Pro-
log is that it is very easy to experiment with various conditions
on the inference rules in parsing.

16http://mmax.eml-research.de
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tailored annotation scheme for flat correspondence
structures as described in sec. 2. A German and En-
glish part-of-speech tagger was used to determine
word categories; they were mapped to a reduced cat-
egory set and projected to the syntactic constituents.

To obtain parameters for a probabilistic grammar,
we used maximum likelihood estimation from the
small corpus, based on a rather simplistic genera-
tive model,17 which for each local subtree decides
(i) what categories will be the two heads, (ii) how
many daughters there will be, and for each non-
head sister (iii) whether it will be a nonterminal or
a terminal (and in that case, what category pair),
and (iv) in which position relative to the head to
place it in both languages. In order to obtain a
realistically-sized grammar, we applied smoothing
to all parameters; so effectively, every sequence of
terminals/nonterminals of arbitrary length was pos-
sible in parsing.

Parsing sentences without NIL words
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Figure 5: Comparison of synchronous parsing with
and without exploiting constraints from L2

Results. To validate empirically that the pro-
posed correspondence-guided synchronous parsing
approach (CGSP) can effectively exploit L2 as a
guide, thereby reducing the search space of L1

parses that have to be considered, we first ran a
comparison on sentences without L1-NILs. The re-
sults (average parsing time for Viterbi parsing with
the sample grammar) are shown in fig. 5.18 The
parser we call “monolingual” cannot exploit any

17For our learning experiments we intend to use a Maximum
Entropy/log-linear model with more features.

18The experiments were run on a 1.4GHz Pentium M proces-
sor.

alignment-induced restrictions from L2.19 Note that
CGSP takes clearly less time.

Comparison wrt. # NIL words

0

0.2

0.4

0.6

0.8

1

1.2

1.4

5 6 7 8 9 10

number of words (in L1)

p
ar

si
n

g
 t

im
e 

[s
ec

]

3 L1-NILs,
CGSP

2 L1-NILs,
CGSP

1 L1-NIL,
CGSP

no L1-NILs,
CGSP

monolingual
parsing (L1)

Figure 6: Synchronous parsing with a growing num-
ber of L1-NILs

Fig. 6 shows our comparative results for parsing
performance on sentences that do contain L1-NILs.
Here too, the theoretical results are corroborated that
with a limited number of L1-NILs, the CGSP is still
efficient.

The average chart size (in terms of the number of
entries) for sentences of length 8 (in L1) was 212
for CGSP (and 80 for “monolingual” parsing). The
following comparison shows the effect of L1-NILs
(note that the values for 4 and more L1-NILs are
based on only one or two cases):

(6) Chart size for sentences of length 8 (in L1)

Number of
L1-NILs

0 1 2 3 4 5 6

Avg. num-
ber of chart
items

77 121 175 256 (330) (435) (849)

We also simulated a synchronous parser which
does not take advantage of a given word alignment
(by providing an alignment link between any pair
of words, plus the option that any word could be a
NULL word). For sentences of length 5, this parser
took an average time of 22.3 seconds (largely inde-
pendent of the presence/absence of L1-NILs).20

19The “monolingual” parser used in this comparison parses
two identical copies of the same string synchronously, with a
strictly linear alignment.

20While our simulation may be significantly slower than a di-
rect implementation of the algorithm (especially when some of
the optimizations discussed in (Melamed, 2003) are taken into
account), the fact that it is orders of magnitude slower does in-
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Finally, we also ran an experiment in which the
continuity condition (condition (iii) in rule (4)) was
deactivated, i.e., complete constituents were allowed
to be discontinuous in one of the languages. The re-
sults in (7) underscore the importance of this condi-
tion – leaving it out leads to a tremendous increase
in parsing time.

(7) Average parsing time in seconds with and with-
out continuity condition

Sentence length (with no L1-
NILs)

4 5 6

Avg. parsing time with CGSP
(incl. continuity condition)

0.005 0.012 0.026

Avg. parsing time without the
continuity condition

0.035 0.178 1.025

6 Conclusion

We proposed a conceptually simple, yet efficient al-
gorithm for synchronous parsing in a context where
a word alignment can be assumed as given – for in-
stance in a bootstrapping learning scenario. One of
the two languages in synchronous parsing acts as the
master language, providing the primary string span
index, which is used as in classical Earley parsing.
The second language contributes a bit vector as a
secondary index, inspired by work on chart gener-
ation. Continuity assumptions make it possible to
constrain the search space significantly, to the point
that synchronous parsing for sentence pairs with few
“NULL words” (which lack correspondents) may be
faster than standard monolingual parsing. We dis-
cussed the complexity both theoretically and pro-
vided a quantitative evaluation based on a prototype
implementation.

The study we presented is part of the longer-term
PTOLEMAIOS project. The next step is to apply
the synchronous parsing algorithm with probabilis-
tic synchronous grammars in grammar induction ex-
periments on parallel corpora.
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Abstract

In this paper, a variant of a spectral clus-
tering algorithm is proposed for bilingual
word clustering. The proposed algorithm
generates the two sets of clusters for both
languages efficiently with high seman-
tic correlation within monolingual clus-
ters, and high translation quality across
the clusters between two languages. Each
cluster level translation is considered as
a bilingual concept, which generalizes
words in bilingual clusters. This scheme
improves the robustness for statistical ma-
chine translation models. Two HMM-
based translation models are tested to use
these bilingual clusters. Improved per-
plexity, word alignment accuracy, and
translation quality are observed in our ex-
periments.

1 Introduction

Statistical natural language processing usually suf-
fers from the sparse data problem. Comparing to
the available monolingual data, we have much less
training data especially for statistical machine trans-
lation (SMT). For example, in language modelling,
there are more than 1.7 billion words corpora avail-
able: English Gigaword by (Graff, 2003). However,
for machine translation tasks, there are typically less
than 10 million words of training data.

Bilingual word clustering is a process of form-
ing corresponding word clusters suitable for ma-
chine translation. Previous work from (Wang et al.,
1996) showed improvements in perplexity-oriented
measures using mixture-based translation lexicon
(Brown et al., 1993). A later study by (Och,

1999) showed improvements on perplexity of bilin-
gual corpus, and word translation accuracy using a
template-based translation model. Both approaches
are optimizing the maximum likelihood of parallel
corpus, in which a data point is a sentence pair: an
English sentence and its translation in another lan-
guage such as French. These algorithms are es-
sentially the same as monolingual word clusterings
(Kneser and Ney, 1993)—an iterative local search.
In each iteration, a two-level loop over every possi-
ble word-cluster assignment is tested for better like-
lihood change. This kind of approach has two draw-
backs: first it is easily to get stuck in local op-
tima; second, the clustering of English and the other
language are basically two separated optimization
processes, and cluster-level translation is modelled
loosely. These drawbacks make their approaches
generally not very effective in improving translation
models.

In this paper, we propose a variant of the spec-
tral clustering algorithm (Ng et al., 2001) for bilin-
gual word clustering. Given parallel corpus, first, the
word’s bilingual context is used directly as features
- for instance, each English word is represented by
its bilingual word translation candidates. Second,
latent eigenstructure analysis is carried out in this
bilingual feature space, which leads to clusters of
words with similar translations. Essentially an affin-
ity matrix is computed using these cross-lingual fea-
tures. It is then decomposed into two sub-spaces,
which are meaningful for translation tasks: the left
subspace corresponds to the representation of words
in English vocabulary, and the right sub-space cor-
responds to words in French. Each eigenvector is
considered as one bilingual concept, and the bilin-
gual clusters are considered to be its realizations in
two languages. Finally, a general K-means cluster-
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ing algorithm is used to find out word clusters in the
two sub-spaces.

The remainder of the paper is structured as fol-
lows: in section 2, concepts of translation models
are introduced together with two extended HMMs;
in section 3, our proposed bilingual word cluster-
ing algorithm is explained in detail, and the related
works are analyzed; in section 4, evaluation metrics
are defined and the experimental results are given;
in section 5, the discussions and conclusions.

2 Statistical Machine Translation

The task of translation is to translate one sentence
in some source languageF into a target languageE.
For example, given a French sentence withJ words
denoted asfJ

1 = f1f2...fJ , an SMT system auto-
matically translates it into an English sentence with
I words denoted byeI

1 = e1e2...eI . The SMT sys-
tem first proposes multiple English hypotheses in its
model space. Among all the hypotheses, the system
selects the one with the highest conditional proba-
bility according to Bayes’s decision rule:

êI
1 = arg max

{eI
1}

P (eI
1|fJ

1 ) = arg max
{eI

1}
P (fJ

1 |eI
1)P (eI

1),

(1)
where P (fJ

1 |eI
1) is called translation model, and

P (eI
1) is called language model. The translation

model is the key component, which is the focus in
this paper.

2.1 HMM-based Translation Model

HMM is one of the effective translation models (Vo-
gel et al., 1996), which is easily scalable to very
large training corpus.

To model word-to-word translation, we introduce
the mappingj → aj , which assigns a French word
fj in position j to a English wordei in position
i = aj denoted aseaj . Each French wordfj is
an observation, and it is generated by a HMM state
defined as [eaj , aj ], where the alignmentaj for po-
sition j is considered to have a dependency on the
previous alignmentaj−1. Thus the first-order HMM
is defined as follows:

P (fJ
1 |eI

1) =
∑

aJ
1

J∏

j=1

P (fj |eaj )P (aj |aj−1), (2)

whereP (aj |aj−1) is the transition probability. This
model captures the assumption that words close in
the source sentence are aligned to words close in
the target sentence. An additional pseudo word of
“NULL” is used as the beginning of English sen-
tence for HMM to start with. The (Och and Ney,
2003) model includes other refinements such as spe-
cial treatment of a jump to a Null word, and a uni-
form smoothing prior. The HMM with these refine-
ments is used as our baseline. Motivated by the work
in both (Och and Ney, 2000) and (Toutanova et al.,
2002), we propose the two following simplest ver-
sions of extended HMMs to utilize bilingual word
clusters.

2.2 Extensions to HMM with word clusters

LetF denote the cluster mappingfj → F(fj), which
assigns French wordfj to its cluster IDFj = F(fj).
Similarly E maps English wordei to its cluster ID
of Ei = E(ei). In this paper, we assume each word
belongs to one cluster only.

With bilingual word clusters, we can extend the
HMM model in Eqn. 1 in the following two ways:

P (fJ
1 |eI

1) =
∑

aJ
1

∏J
j=1 P (fj |eaj )·

P (aj |aj−1, E(eaj−1), F(fj−1)),
(3)

where E(eaj−1) and F(fj−1) are non overlapping
word clusters(Eaj−1 , Fj−1)for English and French
respectively.

Another explicit way of utilizing bilingual word
clusters can be considered as a two-stream HMM as
follows:

P (fJ
1 , F J

1 |eI
1, E

I
1) =∑

aJ
1

∏J
j=1 P (fj |eaj )P (Fj |Eaj )P (aj |aj−1).

(4)
This model introduces the translation of bilingual
word clusters directly as an extra factor to Eqn. 2.
Intuitively, the role of this factor is to boost the trans-
lation probabilities for words sharing the same con-
cept. This is a more expressive model because it
models both word and the cluster level translation
equivalence. Also, compared with the model in Eqn.
3, this model is easier to train, as it uses a two-
dimension table instead of a four-dimension table.

However, we do not want thisP (Fj |Eaj ) to dom-
inate the HMM transition structure, and the obser-
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vation probability ofP (fj |eaj ) during the EM itera-
tions. Thus a uniform priorP (Fj) = 1/|F | is intro-
duced as a smoothing factor forP (Fj |Eaj ):

P (Fj |Eaj ) = λP (Fj |Eaj ) + (1− λ)P (Fj), (5)

where |F | is the total number of word clusters in
French (we use the same number of clusters for both
languages).λ can be chosen to get optimal perfor-
mance on a development set. In our case, we fix it to
be 0.5 in all our experiments.

3 Bilingual Word Clustering

In bilingual word clustering, the task is to build word
clustersF andE to form partitions of the vocabular-
ies of the two languages respectively. The two par-
titions for the vocabularies ofF andE are aimed to
be suitable for machine translation in the sense that
the cluster/partition level translation equivalence is
reliable and focused to handle data sparseness; the
translation model using these clusters explains the
parallel corpus{(fJ

1 , eI
1)} better in terms of perplex-

ity or joint likelihood.

3.1 From Monolingual to Bilingual

To infer bilingual word clusters of(F, E), one can
optimize the joint probability of the parallel corpus
{(fJ

1 , eI
1)} using the clusters as follows:

(F̂, Ê) = arg max
(F,E)

P (fJ
1 , eI

1|F,E)

= arg max
(F,E)

P (eI
1|E)P (fJ

1 |eI
1, F, E).(6)

Eqn. 6 separates the optimization process into two
parts: the monolingual part forE, and the bilingual
part for F given fixedE. The monolingual part is
considered as a prior probability:P (eI

1|E), andE can
be inferred using corpus bigram statistics in the fol-
lowing equation:

Ê = arg max
{E}

P (eI
1|E)

= arg max
{E}

I∏

i=1

P (Ei|Ei−1)P (ei|Ei). (7)

We need to fix the number of clusters beforehand,
otherwise the optimum is reached when each word

is a class of its own. There exists efficient leave-one-
out style algorithm (Kneser and Ney, 1993), which
can automatically determine the number of clusters.

For the bilingual partP (fJ
1 |eI

1, F, E), we can
slightly modify the same algorithm as in (Kneser
and Ney, 1993). Given the word alignment{aJ

1}
betweenfJ

1 andeI
1 collected from the Viterbi path

in HMM-based translation model, we can inferF̂ as
follows:

F̂ = arg max
{F}

P (fJ
1 |eI

1, F,E)

= arg max
{F}

J∏

j=1

P (Fj |Eaj )P (fj |Fj). (8)

Overall, this bilingual word clustering algorithm is
essentially a two-step approach. In the first step,E
is inferred by optimizing the monolingual likelihood
of English data, and secondlyF is inferred by op-
timizing the bilingual part without changingE. In
this way, the algorithm is easy to implement without
much change from the monolingual correspondent.

This approach was shown to give the best results
in (Och, 1999). We use it as our baseline to compare
with.

3.2 Bilingual Word Spectral Clustering

Instead of using word alignment to bridge the par-
allel sentence pair, and optimize the likelihood in
two separate steps, we develop an alignment-free al-
gorithm using a variant of spectral clustering algo-
rithm. The goal is to build high cluster-level trans-
lation quality suitable for translation modelling, and
at the same time maintain high intra-cluster similar-
ity , and low inter-cluster similarity for monolingual
clusters.

3.2.1 Notations

We define the vocabularyVF as the French vo-
cabulary with a size of|VF |; VE as the English vo-
cabulary with size of|VE |. A co-occurrence matrix
C{F,E} is built with |VF | rows and|VE | columns;
each element represents the co-occurrence counts of
the corresponding French wordfj and English word
ei. In this way, each French word forms a row vec-
tor with a dimension of|VE |, and each dimensional-
ity is a co-occurring English word. The elements in
the vector are the co-occurrence counts. We can also
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view each column as a vector for English word, and
we’ll have similar interpretations as above.

3.2.2 Algorithm

With C{F,E}, we can infer two affinity matrixes
as follows:

AE = CT
{F,E}C{F,E}

AF = C{F,E}CT
{F,E},

whereAE is an|VE | × |VE | affinity matrix for En-
glish words, with rows and columns representing
English words and each element the inner product
between two English words column vectors. Corre-
spondingly,AF is an affinity matrix of size|VF | ×
|VF | for French words with similar definitions. Both
AE andAF aresymmetricandnon-negative. Now
we can compute the eigenstructure for bothAE and
AF . In fact, the eigen vectors of the two are corre-
spondingly the right and left sub-spaces of the orig-
inal co-occurrence matrix ofC{F,E} respectively.
This can be computed using singular value decom-
position (SVD):C{F,E} = USV T , AE = V S2V T ,
andAF = US2UT , whereU is the left sub-space,
andV the right sub-space of the co-occurrence ma-
trix C{F,E}. S is a diagonal matrix, with the singular
values ranked from large to small along the diagonal.
Obviously, the left sub-spaceU is the eigenstructure
for AF ; the right sub-spaceV is the eigenstructure
for AE .

By choosing the topK singular values (the square
root of the eigen values for bothAE andAF ), the
sub-spaces will be reduced to:U|VF |×K andV|VE |×K

respectively. Based on these subspaces, we can carry
out K-means or other clustering algorithms to in-
fer word clusters for both languages. Our algorithm
goes as follows:

• Initialize bilingual co-occurrence matrix
C{F,E} with rows representing French words,
and columns English words.Cji is the co-
occurrence raw counts of French wordfj and
English wordei;

• Form the affinity matrixAE = CT
{F,E}C{F,E}

andAF = CT
{F,E}C{F,E}. Kernels can also be

applied here such asAE = exp(
C{F,E}CT

{F,E}
σ2 )

for English words. SetAEii = 0 andAF ii = 0,
and normalize each row to be unit length;

• Compute the eigen structure of the normalized
matrixAE , and find thek largest eigen vectors:
v1, v2, ..., vk; Similarly, find thek largest eigen
vectors ofAF : u1, u2, ..., uk;

• Stack thek eigenvectors ofv1, v2, ..., vk in
the columns ofYE , and stack the eigenvectors
u1, u2, ..., uk in the columns forYF ; Normalize
rows of bothYE andYF to have unit length.YE

is size of|VE | × k andYF is size of|VF | × k;

• Treat each row ofYE as a point inR|VE |×k, and
cluster them intoK English word clusters us-
ing K-means. Treat each row ofYF as a point in
R|VF |×k, and cluster them intoK French word
clusters.

• Finally, assign original wordei to clusterEk

if row i of the matrix YE is clustered asEk;
similar assignments are for French words.

HereAE andAF are affinity matrixes of pair-wise
inner products between the monolingual words. The
more similar the two words, the larger the value.
In our implementations, we did not apply a kernel
function like the algorithm in (Ng et al., 2001). But
the kernel function such as the exponential func-
tion mentioned above can be applied here to control
how rapidly the similarity falls, using some carefully
chosen scaling parameter.

3.2.3 Related Clustering Algorithms

The above algorithm is very close to the variants
of a big family of the spectral clustering algorithms
introduced in (Meila and Shi, 2000) and studied in
(Ng et al., 2001). Spectral clustering refers to a class
of techniques which rely on the eigenstructure of
a similarity matrix to partition points into disjoint
clusters with high intra-cluster similarity and low
inter-cluster similarity. It’s shown to be computing
thek-way normalized cut:K − trY T D− 1

2 AD− 1
2 Y

for any matrixY ∈ RM×N . A is the affinity matrix,
andY in our algorithm corresponds to the subspaces
of U andV .

Experimentally, it has been observed that using
more eigenvectors and directly computing ak-way
partitioning usually gives better performance. In our
implementations, we used the top 500 eigen vectors
to construct the subspaces ofU andV for K-means
clustering.
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3.2.4 K-means

The K-means here can be considered as a post-
processing step in our proposed bilingual word clus-
tering. For initial centroids, we first compute the
centerof the whole data set. The farthest centroid
from the center is then chosen to be the first initial
centroid; and after that, the other K-1 centroids are
chosen one by one to well separate all the previous
chosen centroids.

The stopping criterion is: if the maximal change
of the clusters’ centroids is less than the threshold of
1e-3 between two iterations, the clustering algorithm
then stops.

4 Experiments

To test our algorithm, we applied it to the TIDES
Chinese-English small data track evaluation test set.
After preprocessing, such as English tokenization,
Chinese word segmentation, and parallel sentence
splitting, there are in total 4172 parallel sentence
pairs for training. We manually labeled word align-
ments for 627 test sentence pairs randomly sampled
from the dry-run test data in 2001, which has four
human translations for each Chinese sentence. The
preprocessing for the test data is different from the
above, as it is designed for humans to label word
alignments correctly by removing ambiguities from
tokenization and word segmentation as much as pos-
sible. The data statistics are shown in Table 1.

English Chinese

Train
Sent. Pairs 4172
Words 133598 105331
Voc Size 8359 7984

Test

Sent. Pairs 627
Words 25500 19726
Voc Size 4084 4827
Unseen Voc Size 1278 1888
Alignment Links 14769

Table 1: Training and Test data statistics

4.1 Building Co-occurrence Matrix

Bilingual word co-occurrence counts are collected
from the training data for constructing the matrix
of C{F,E}. Raw counts are collected without word

alignment between the parallel sentences. Practi-
cally, we can use word alignment as used in (Och,
1999). Given an initial word alignment inferred by
HMM, the counts are collected from the aligned
word pair. If the counts are L-1 normalized, then
the co-occurrence matrix is essentially the bilingual
word-to-word translation lexicon such asP (fj |eaj ).
We can remove very small entries (P (f |e) ≤ 1e−7),
so that the matrix ofC{F,E} is more sparse for eigen-
structure computation. The proposed algorithm is
then carried out to generate the bilingual word clus-
ters for both English and Chinese.

Figure 1 shows the ranked Eigen values for the
co-occurrence matrix ofC{F,E}.
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Figure 1: Top-1000 Eigen Values of Co-occurrence
Matrix

It is clear, that using the initial HMM word align-
ment for co-occurrence matrix makes a difference.
The top Eigen value using word alignment in plota.
(the deep blue curve) is 3.1946. The two plateaus
indicate how many topK eigen vectors to choose to
reduce the feature space. The first one indicates that
K is in the range of 50 to 120, and the second plateau
indicates K is in the range of 500 to 800. Plotb. is
inferred from the raw co-occurrence counts with the
top eigen value of 2.7148. There is no clear plateau,
which indicates that the feature space is less struc-
tured than the one built with initial word alignment.

We find 500 top eigen vectors are good enough
for bilingual clustering in terms of efficiency and ef-
fectiveness.
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4.2 Clustering Results

Clusters built via the two described methods are
compared. The first methodbil1 is the two-step op-
timization approach: first optimizing the monolin-
gual clusters for target language (English), and af-
terwards optimizing clusters for the source language
(Chinese). The second methodbil2 is our proposed
algorithm to compute the eigenstructure of the co-
occurrence matrix, which builds the left and right
subspaces, and finds clusters in such spaces. Top
500 eigen vectors are used to construct these sub-
spaces. For both methods, 1000 clusters are inferred
for English and Chinese respectively. The number
of clusters is chosen in a way that the final word
alignment accuracy was optimal. Table 2 provides
the clustering examples using the two algorithms.

settings cluster examples
mono-E1 entirely,mainly,merely

mono-E2
10th,13th,14th,16th,17th,18th,19th

20th,21st,23rd,24th,26th
mono-E3 drink,anglophobia,carota,giant,gymnasium
bil1-C3 à,d,�,�,�Ë,yQ,y

bil2-E1
alcoholic cognac distilled drink

scotch spirits whiskey

bil2-C1
¸Ë,Ë,�,ô�,2,��y,
®h,7, Â},6,�,�,k�

bil2-E2
evrec harmony luxury people sedan sedans

tour tourism tourist toward travel

bil2-C2
��²�,s�,�´,û(,�¸,u°,

@q,@�,|,|Ì,-|

Table 2: Bilingual Cluster Examples

The monolingual word clusters often contain
words with similar syntax functions. This hap-
pens with esp. frequent words (eg. mono-E1 and
mono-E2). The algorithm tends to put rare words
such as “carota, anglophobia” into a very big cluster
(eg. mono-E3). In addition, the words within these
monolingual clusters rarely share similar transla-
tions such as the typical cluster of “week, month,
year”. This indicates that the corresponding Chi-
nese clusters inferred by optimizing Eqn. 7 are not
close in terms of translational similarity. Overall, the
method of bil1 does not give us a good translational
correspondence between clusters of two languages.
The English cluster of mono-E3 and its best aligned
candidate of bil1-C3 are not well correlated either.

Our proposed bilingual cluster algorithm bil2
generates the clusters with stronger semantic mean-

ing within a cluster. The cluster of bil2-E1 relates
to the concept of “wine” in English. The mono-
lingual word clustering tends to scatter those words
into several big noisy clusters. This cluster also has a
good translational correspondent in bil2-C1 in Chi-
nese. The clusters of bil2-E2 and bil2-C2 are also
correlated very well. We noticed that the Chinese
clusters are slightly more noisy than their English
corresponding ones. This comes from the noise in
the parallel corpus, and sometimes from ambiguities
of the word segmentation in the preprocessing steps.

To measure the quality of the bilingual clusters,
we can use the following two kind of metrics:

• Averageε-mirror (Wang et al., 1996): Theε-
mirror of a classEi is the set of clusters in
Chinese which have a translation probability
greater thanε. In our case,ε is 0.05, the same
value used in (Och, 1999).

• Perplexity: The perplexity is defined as pro-
portional to the negative log likelihood of the
HMM model Viterbi alignment path for each
sentence pair. We use the bilingual word clus-
ters in two extended HMM models, and mea-
sure the perplexities of the unseen test data af-
ter seven forward-backward training iterations.
The two perplexities are defined asPP1 =
exp(−∑J

j=1 log(P (fj |eaj )P (aj |aj−1, Eaj−1 ,

Fj−1))/J) andPP2 = exp(−J−1
∑J

j=1 log(
P (fj |eaj )P (aj |aj−1)P (Fj−1|Eaj−1))) for the
two extended HMM models in Eqn 3 and 4.

Both metrics measure the extent to which the trans-
lation probability is spread out. The smaller the bet-
ter. The following table summarizes the results on
ε-mirror and perplexity using different methods on
the unseen test data.

algorithms ε-mirror HMM-1 Perp HMM-2 Perp
baseline - 1717.82

bil1 3.97 1810.55 352.28
bil2 2.54 1610.86 343.64

The baseline uses no word clusters. bil1 and bil2
are defined as above. It is clear that our proposed
method gives overall lower perplexity: 1611 from
the baseline of 1717 using the extended HMM-1.
If we use HMM-2, the perplexity goes down even
more using bilingual clusters: 352.28 using bil1, and
343.64 using bil2. As stated, the four-dimensional
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table of P (aj |aj−1, E(eaj−1), F (fj−1)) is easily
subject to overfitting, and usually gives worse per-
plexities.

Averageε-mirror for the two-step bilingual clus-
tering algorithm is 3.97, and for spectral cluster-
ing algorithm is 2.54. This means our proposed al-
gorithm generates more focused clusters of transla-
tional equivalence. Figure 2 shows the histogram for
the cluster pairs(Fj , Ei), of which the cluster level
translation probabilitiesP (Fj |Ei) ∈ [0.05, 1]. The
interval[0.05, 1] is divided into 10 bins, with first bin
[0.05, 0.1], and 9 bins divides[0.1, 1] equally. The
percentage for clusters pairs withP (Fj |Ei) falling
in each bin is drawn.

Histogram of (F,E) pairs with P(F|E) > 0.05 
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Figure 2: Histogram of cluster pairs(Fj , Ei)

Our algorithm generates much better aligned clus-
ter pairs than the two-step optimization algorithm.
There are 120 cluster pairs aligned withP (Fj |Ei) ≥
0.9 using clusters from our algorithm, while there
are only 8 such cluster pairs using the two-step ap-
proach. Figure 3 compares theε-mirror at different
numbers of clusters using the two approaches. Our
algorithm has a much betterε-mirror than the two-
step approach over different number of clusters.

Overall, the extended HMM-2 is better than
HMM-1 in terms of perplexity, and is easier to train.

4.3 Applications in Word Alignment

We also applied our bilingual word clustering in a
word alignment setting. The training data is the
TIDES small data track. The word alignments are
manually labeled for 627 sentences sampled from
the dryrun test data in 2001. In this manually
aligned data, we include one-to-one, one-to-many,
and many-to-many word alignments. Figure 4 sum-
marizes the word alignment accuracy for different

e-mirror over different settings

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00
20

00

number of clusters

e-
m

ir
ro

r

BIL2: Co-occur raw counts
BIL2: Co-occur counts from init word-align
BIL1: Two-step optimization
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methods. The baseline is the standard HMM trans-
lation model defined in Eqn. 2; the HMM1 is de-
fined in Eqn 3, and HMM2 is defined in Eqn 4. The
algorithm is applying our proposed bilingual word
clustering algorithm to infer 1000 clusters for both
languages. As expected, Figure 4 shows that using

F-measure of word alignment
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Figure 4: Word Alignment Over Iterations

word clusters is helpful for word alignment. HMM2
gives the best performance in terms of F-measure of
word alignment. One quarter of the words in the test
vocabulary are unseen as shown in Table 1. These
unseen words related alignment links (4778 out of
14769) will be left unaligned by translation models.
Thus the oracle (best possible) recall we could get
is 67.65%. Our standard t-test showed that signifi-
cant interval is 0.82% at the 95% confidence level.
The improvement at the last iteration of HMM is
marginally significant.

4.4 Applications in Phrase-based Translations

Our pilot word alignment on unseen data showed
improvements. However, we find it more effective
in our phrase extraction, in which three key scores
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are computed: phrase level fertilities, distortions,
and lexicon scores. These scores are used in a lo-
cal greedy search to extract phrase pairs (Zhao and
Vogel, 2005). This phrase extraction is more sen-
sitive to the differences inP (fj |ei) than the HMM
Viterbi word aligner.

The evaluation conditions are defined in NIST
2003 Small track. Around 247K test set (919 Chi-
nese sentences) specific phrase pairs are extracted
with up to 7-gram in source phrase. A trigram
language model is trained using Gigaword XinHua
news part. With a monotone phrase-based decoder,
the translation results are reported in Table 3. The

Eval. Baseline Bil1 Bil2
NIST 6.417 6.507 6.582
BLEU 0.1558 0.1575 0.1644

Table 3: NIST’03 C-E Small Data Track Evaluation

baseline is using the lexiconP (fj |ei) trained from
standard HMM in Eqn. 2, which gives a BLEU
score of 0.1558 +/- 0.0113. Bil1 and Bil2 are using
P (fj |ei) from HMM in Eqn. 4 with 1000 bilingual
word clusters inferred from the two-step algorithm
and the proposed one respectively. Using the clus-
ters from the two-step algorithm gives a BLEU score
of 0.1575, which is close to the baseline. Using clus-
ters from our algorithm, we observe more improve-
ments with BLEU score of 0.1644 and a NIST score
of 6.582.

5 Discussions and Conclusions

In this paper, a new approach for bilingual word
clustering using eigenstructure in bilingual feature
space is proposed. Eigenvectors from this feature
space are considered as bilingual concepts. Bilin-
gual clusters from the subspaces expanded by these
concepts are inferred with high semantic correla-
tions within each cluster, and high translation quali-
ties across clusters from the two languages.

Our empirical study also showed effectiveness of
using bilingual word clusters in extended HMMs for
statistical machine translation. The K-means based
clustering algorithm can be easily extended to do hi-
erarchical clustering. However, extensions of trans-
lation models are needed to leverage the hierarchical
clusters appropriately.
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Abstract

In this paper, we present an approach
to automatically revealing phonological
correspondences within historically re-
lated languages. We create two bilingual
pronunciation dictionaries for the lan-
guage pairs German-Dutch and German-
English. The data is used for automat-
ically learning phonological similarities
between the two language pairs via EM-
based clustering. We apply our models
to predict from a phonological German
word the phonemes of a Dutch and an
English cognate. The similarity scores
show that German and Dutch phonemes
are more similar than German and En-
glish phonemes, which supplies statistical
evidence of the common knowledge that
German is more closely related to Dutch
than to English. We assess our approach
qualitatively, finding meaningful classes
caused by historical sound changes. The
classes can be used for language learning.

1 Introduction

German and Dutch are languages that exhibit a wide
range of similarities. Beside similar syntactic fea-
tures like word order and verb subcategorization
frames, the languages share phonological features
which are due to historical sound changes. These
similarities are one reason why it is easier to learn a
closely historically related language than languages

from other language families: the learner’s native
language provides a valuable resource which can be
used in learning the new language. Although En-
glish also belongs to the West Germanic languages,
German and Dutch share more lexical entries with a
common root than German and English.

The knowledge about language similarities on the
lexical level is exploited in various fields. In ma-
chine translation, some approaches search for sim-
ilar words (cognates) which are used to align par-
allel texts (e.g., Simard et al. (1992)). The word
triple Text-tekst-text([tEkst] in German, Dutch
and English) can be easily recognized as a cog-
nate; recognizingPfeffer-peper-pepper([pfE][f@r]-
[pe:][p@r])-[pE][p@r*]), however, requires more
knowledge about sound changes within the lan-
guages. The algorithms developed for machine
translation search for similarities on the ortho-
graphic level, whereas some approaches to com-
parative and synchronic linguistics put their fo-
cus on similarities of phonological sequences.
Covington (1996), for instance, suggests different
algorithms to align the phonetic representation of
words of historical languages. Kondrak (2000)
presents an algorithm to align phonetic sequences
by computing the similarities of these words.
Nerbonne and Heeringa (1997) use phonetic tran-
scriptions to measure the phonetic distance between
different dialects. The above mentioned approaches
presuppose either parallel texts of different lan-
guages for machine translation or manually com-
piled lists of transcribed cognates/words for analyz-
ing synchronic or diachronic word pairs. Unfortu-
nately, transcribed bilingual data are scarce and it
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is labor-intensive to collect these kind of corpora.
Thus, we aim at exploiting electronic pronunciation
dictionaries to overcome the lack of data.

In our approach, we automatically generate data
as input to an unsupervised training regime and
with the aim of automatically learning similar struc-
tures from these data using Expectation Maximiza-
tion (EM) based clustering. Although the generation
of our data introduces some noise, we expect that
our method is able to automatically learn meaningful
sound correspondences from a large amount of data.
Our main assumption is that certain German/Dutch
and German/English phoneme pairs from related
stems occur more often and hence will appear in the
same class with a higher probability than pairs not in
related stems. We assume that the historical sound
changes are hidden information in the classes.

The paper is organized as follows: Section 2
presents related research. In Section 3, we describe
the creation of our bilingual pronunciation dictionar-
ies. The outcome is used as input to the algorithm
for automatically deriving phonological classes de-
scribed in Section 4. In Section 5, we apply our
classes to a transcribed cognate list and measure the
similarity between the two language pairs. A quali-
tative evaluation is presented in Section 6, where we
interpret our best models. In Sections 7 and 8, we
discuss our results and draw some final conclusions.

2 Previous Research

Some approaches to revealing sound correspon-
dences require clean data whereas other methods can
deal with noisy input. Cahill and Tiberius (2002)
use a manually compiled cognate list of Dutch,
English and German cognates and extract cross-
linguistic phoneme correspondences. The results1

contain the counts of a certain German phoneme
and their possible English and Dutch counterparts.
The method presented in Kondrak (2003), however,
can deal with noisy bilingual word lists. He gener-
ates sound correspondences of various Algonquian
languages. His algorithm considers them as possi-
ble candidates if their likelihood scores lie above a
certain minimum-strength threshold. The candidates
are evaluated against manually compiled sound cor-
respondences. The algorithm is able to judge

1http://www.itri.brighton.ac.uk/projects/metaphon/

whether a bilingual phoneme pair is a possible sound
correspondence. Another interesting generative
model can be found in Knight and Graehl (1998).
They train weighted finite-state transducers with the
EM algorithm which are applied to automatically
transliterating Japanese words - originated from En-
glish - back to English. In our approach, we aim at
discovering similar correspondences between bilin-
gual data represented in the classes. The classes can
be used to assess how likely a bilingual sound corre-
spondence is.

3 Generation of two parallel Corpora

In this section, we describe the resources used for
our clustering algorithm. We take advantage of two
on-line bilingual orthographic dictionaries2 and the
monolingual pronunciation dictionaries (Baayen et
al., 1993) inCELEX to automatically build two bilin-
gual pronunciation dictionaries.

In a first step, we extract from the German-Dutch
orthographic dictionary 72,037 word pairs and from
the German-English dictionary 155,317. Figures 1
and 2 (1st table) display a fragment of the extracted
orthographic word pairs. Note that we only allow
one possible translation, namely the first one.

In a next step, we automatically look up the pro-
nunciation of the German, Dutch and English words
in the monolingual part ofCELEX. A word pair is
considered for further analysis if the pronunciation
of both words is found inCELEX. For instance, the
first half of the word pairHausflur-huisgang(cor-
ridor) does occur in the German part ofCELEX but
the second half is not contained within the Dutch
part. Thus, this word pair is discarded. However, the
wordsHaus-huis-houseare found in all three mono-
lingual pronunciation dictionaries and are used for
further analysis. Note that the transcription and syl-
labification of the words are defined inCELEX.

The result is a list of 44,415 transcribed German-
Dutch word pairs and a list of 63,297 transcribed
German-English word pairs. Figures 1 and 2 (2nd
table) show the result of the look-up procedure.
For instance,[”haus]3-[”hUIs] is the transcription of
Haus-huisin the German-Dutch dictionary, while

2http://deatch.de/niederlande/buch.htm
http://branchenportal-deutschland.aus-stade.de/englisch-
deutsch.html

3A syllable is transcribed within brackets ([syllable]).
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Orthographic lexicon Transcribed lexicon Bilingual pronunciation dictionary Onsets Nuclei Codas
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Häuser huizen [”hOy][z@r] [hUI][z@] [”hOy][z@r] [hUI][z@] h h Oy UI NOP NOP
Haus huis [”haus] [”hUIs] [”haus] [”hUIs] z z @ @ r NOP

Hausflur huisgang ⇒ [”haus][flu:r] huisgang ⇒ - - ⇒ h h au UI s s
Haut huid [”haut] [”hUIt ] [”haut] [”hUIt ] h h au UI t t

Hautarzt huidarts [haut][”a:rtst] [hUId][Arts] [haut][”a:rtst] [hUId][Arts] h h au UI t d
NOP NOP a: A rtst rts

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Figure 1: Creation of theGerman-Dutch input: from the orthographic lexicon - the automatically tran-
scribed lexicon - the bilingual dictionary - to the final bilingual onset, nucleus and coda lists ( left to right)

Orthographic lexicon Transcribed lexicon Bilingual pronunciation dictionary Onsets Nuclei Codas
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Häuser houses [”hOy][z@r] [”haU][zIz] [”hOy][z@r] [”haU][zIz] h h Oy aU NOP NOP
Haus house [”haus] [haUs] [”haus] [haUs] z z @ I r z

Hausflur corridor ⇒ [”haus][flu:r] [”kO][rI][dO:r?] ⇒ - - ⇒ h h au aU s s
Haut skin [”haut] [skIn] [”haut] [skIn] h sk au I t n

Hautarzt dermatologist [haut][”a:rtst] [d3:][m@][”tO]-
-[l@][dZIst] - -
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Figure 2: Creation of theGerman-English input: from the orthographic lexicon - the automatically tran-
scribed lexicon - the bilingual dictionary - to the final bilingual onset, nucleus and coda lists ( left to right)

[”haus]-[haUs] is the transcription ofHaus-housein
the German-English part.

We aim at revealing phonological relationships
between German-Dutch and German-English word
pairs on the phonemic level, hence, we need some-
thing similar to an alignment procedure on the syl-
lable level. Thus, we first extract only those word
pairs which contain the same number of syllables.
The underlying assumption is that words with a his-
torically related stem often preserve their syllable
structure. The only exception is that we do not use
all inflectional paradigms of verbs to gain more data
because they are often a reason for uneven syllable
numbers (e.g., the past tense German suffix /tete/
is in Dutch /te/ or /de/).Hautarzt-huidartswould
be chosen both made up of two syllables; how-
ever, Hautarzt-dermatologistwill be dismissed as
the German word consists of two syllables whereas
the English word comprises five syllables. Figures 1
and 2 (3rd table) show the remaining items after this
filtering process. We split each syllable within the
bilingual word lists into onset, nucleus and coda.
All consonants to the left of the vowel are consid-
ered the onset. The consonants to the right of the
vowel represent the coda. Empty onsets and codas
are replaced by the word[NOP]. After this process-

ing step, each word pair consists of the same number
of onsets, nuclei and codas.

The final step is to extract a list of German-Dutch
and German-English phoneme pairs. It is easy to ex-
tract the bilingual onset, nucleus and coda pairs from
the transcribed word pairs (fourth table of Figures 1
and 2). For instance, we extract the onset pair[h]-
[h], the nucleus pair[au]-[UI] and the coda pair[s]-[s]
from the German-Dutch word pair[”haus]-[”hUIs].
With the described method, we obtain from the re-
maining 21,212 German-Dutch and 13,067 German-
English words, 59,819 German-Dutch and 35,847
German-English onset, nucleus and coda pairs.

4 Phonological Clustering

In this section, we describe the unsupervised clus-
tering method used for clustering of phonological
units. Three- and five-dimensional EM-based clus-
tering has been applied to monolingual phonologi-
cal data (M̈uller et al., 2000) and two-dimensional
clustering to syntax (Rooth et al., 1999). In our
approach, we apply two-dimensional clustering to
reveal classes of bilingual sound correspondences.
The method is well-known but the application of
probabilistic clustering to bilingual phonological
data allows a new view on bilingual phonological

35



processes. We choose EM-based clustering as we
need a technique which provides probabilities to
deal with noise in the training data. The two main
parts of EM-based clustering are (i) the induction
of a smooth probability model over the data, and (ii)
the automatic discovery of class structure in the data.
We aim to derive a probability distributionp(y) on
bilingual phonological unitsy from a large sample
(p(c) denotes the class probability,p(ysource|c) is
the probability of a phoneme of the source language
given classc, andp(ytarget|c) is the probability of a
phoneme of the target language given classc).

p(y) =
∑
c∈C

p(c) · p(ysource|c) · p(ytarget|c)

The re-estimation formulas are given in (Rooth et
al., 1999) and our training regime dealing with the
free parameters (e.g. the number of|c| of classes)
is described in Sections 4.1 and 4.2. The output of
our clustering algorithm are classes with their class
number, class probability and a list of class members
with their probabilities.

class 2 0.069

t 0.633
ts 0.144
s 0.055

t 0.764
d 0.128

The above table comes from our German-Dutch ex-
periments and shows Class # 2 with its probability of
6.9%, the German onsets in the left column (e.g.,[t]
appears in this class with the probability of 63.3%,
[ts] with 14.4% and[s] with 5.5%) and the Dutch
onsets in the right column ([t] appears in this class
with the probability of 76.4% and[d] with 12.8%).
The examples presented in this paper are fragments
of the full classes showing only those units with the
highest probabilities.

4.1 Experiments with German-Dutch data

We use the 59,819 onset, nucleus and coda pairs
as training material for our unsupervised training.
Unsupervised methods require the variation of all
free parameters to search for the optimal model.
There are three different parameters which have to
be varied: the initial start parameters, the number
of classes and the number of re-estimation steps.
Thus, we experiment with 10 different start param-
eters, 6 different numbers of classes (5, 10, 15, 20,

25 and 304) and 20 steps of re-estimation. Our train-
ing regime yields 1,200 onset, 1,200 coda and 1,000
nucleus models.

4.2 Experiments with German-English data

Our training material is slightly smaller for German-
English than for German-Dutch. We derive 35,847
onset, nucleus and coda pairs for training. The re-
duced training set is due to the structure of words
which is less similar for German-English words than
for German-Dutch words leading to words with un-
equal syllable numbers. We used the same training
regime as in Section 4.1, yielding the same number
of models.

5 Similarity scores of the syllable parts

We apply our models to a translation task. The main
idea is to take a German phoneme and to predict the
most probable Dutch and English counterpart.

Hence, we extract 808 German-Dutch and 738
German-English cognate pairs from a cognate
database5, consisting of 836 entries. As for the train-
ing data, we extract those pairs that consist of the
same number of syllables because our current mod-
els are restricted to sound correspondences and do
not allow the deletion of syllables. We split our cor-
pus into two parts by putting the words with an even
line number in the development database and the
words with an uneven line number in the gold stan-
dard database. The development set and the gold
standard corpus consist of 404 transcribed words for
the German to Dutch translation task and of 369
transcribed words for the German to English trans-
lation task.

The task is then to predict the translation of Ger-
man onsets to Dutch onsets taken from German-
Dutch cognate pairs, e.g. the models should predict
from the German worddurch([dUrx]) (through), the
Dutch worddoor ([do:r]). If the phoneme correspon-
dence,[d]:[d], is predicted, the similarity score of the
onset model increases. The nucleus score increases
if the nucleus model predicts[U]:[o:] and the coda
score increases if the coda model predicts[rx]:[r].
We assess all our onset, nucleus and coda models

4We did not experiment with 30 classes for nucleus pairs as
there are fewer nucleus types than onset or coda types

5http://www.itri.brighton.ac.uk/projects/metaphon/
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German to Dutch German to English
Onset Nucleus Coda Onset Nucleus Coda
80.7% 50.7 % 52.2 % 69.6% 17.1% 28.7%

Table 1: Similarity scores for syllable parts of cog-
nates indicating that German is closer related to
Dutch than to English.

by measuring the most probable phoneme transla-
tions of the cognates from our development set. We
choose the models with the highest onset, nucleus
and coda scores. Only the models with the highest
scores (for onset, nucleus and coda prediction) are
applied to the gold standard to avoid tuning to the
development set. Using this procedure shows how
our models perform on new data. We apply our scor-
ing procedure to both language pairs.

Table 1 shows the results of our best models by
measuring the onset, nucleus and coda translation
scores on our gold standard. The results point out
that the prediction of the onset is easier than predict-
ing the nucleus or the coda. We achieve an onset
similarity score of 80.7% for the German to Dutch
task and 69.6% for the German to English task. Al-
though the set of possible nuclei is smaller than the
set of onsets and codas, the prediction of the nuclei
is much harder. The nucleus similarity score de-
creases to 50.7% and to 17.1% for German-English
respectively. Codas seem to be slightly easier to pre-
dict than nuclei leading to a coda similarity score of
52.2% for German-Dutch and to 28.7% for German-
English.

The comparison of the similarity scores from the
translation tasks of the two language pairs indicates
that predicting the phonological correspondences
from German to Dutch is much easier than from
German to English. These results supply statistical
evidence that German is historically more closely re-
lated to Dutch than to English. We do not believe
that the difference in the similarity scores are due to
the different size of the training corpora but rather
to their closer relatedness. Revealing phonological
relationships between languages is possible simply
because the noisy training data comprise enough re-
lated words to learn from them the similar structure
of the languages on the syllable-part level.

Proto Germanic

.

.

.

West Germanic

���
����

HHH
HHHH

Old Dutch
before∼ 1150

Middle Dutch
1150∼ 1500

Modern Dutch
1500 - present

Old English
450∼ 1100

Middle English
1066∼ 1500

Early/Modern English
1500∼ 1700
1700 - present

Old High German
before 1050

Middle High German
1050∼ 1350

Early/Modern German
1350∼ 1650
1650 - present

Figure 3: Family tree of West Germanic languages

6 Evaluation: Interpretation of the Classes

In this section, we interpret our classes by manu-
ally identifying classes that show typical similari-
ties between the two language pairs. Sometimes, the
classes reflect sound changes in historically related
stems. Our data is synchronic, and thus it is not pos-
sible to directly identify in our classes which sound
changes took place (Modern German (G), Modern
English (E) and Modern Dutch (NL) did not de-
velop from each other but from a common ances-
tor). However, we will try to connect the data to an-
cient languages such as Old High German (OHG),
Middle High German (MHG), Old English (OE),
Middle Dutch (MNL), Old Dutch (ONL), Proto or
West Germanic (PG, WG). Naturally, we can only
go back in history as far as it is possible according
to the information provided by the following litera-
ture: For Dutch, we use de Vries (1997) and the on-
line version of Philippa et al. (2004), for English, an
etymological dictionary (Harper, 2001) and for Ger-
man, Burch et al. (1998). We find that certain his-
toric sound changes took place regularly, and thus,
the results of these changes can be rediscovered in
our synchronic classes. Figure 3 shows the historic
relationship between the three languages. A poten-
tial learner of a related language does not have to
be aware of the historic links between languages but
he/she can implicitly exploit the similarities such as
the ones discovered in the classes.

The relationship of words from different lan-
guages can be caused by different processes: some
words are simply borrowed from another language
and adapted to a new language.Papagei-papegaai

37



(parrot) is borrowed from Arabic and adapted to
German and Dutch phonetics, where the /g/ is pro-
nounced in German as a voiced velar plosive and in
Dutch as an unvoiced velar fricative.

Other language changes are due to phonology;
e.g., the Old English word[mus] (PG: muHs) was
subject to diphthongization and changed tomouse
([maUs]) in Modern English. A similar process
took place in German and Dutch, where the same
word changed to the German wordMaus (MHG:
mûs) and to the Dutch wordmuis (MNL: muus).
On the synchronic level, we find[au] and [aU] in
the same class of a German-English model and[au]
and[UI] in a German-Dutch model. There are also
other phonological processes which apply to the nu-
clei, such as monophthongization, raising, lower-
ing, backing and fronting. Other phonological pro-
cesses can be observed in conjunction with conso-
nants, such as assimilation, dissimilation, deletion
and insertion. Some of the above mentioned phono-
logical processes are the underlying processes of the
subsequent described classes.

6.1 German-Dutch classes

According to our similarity scores presented in Sec-
tion 5, the best onset model comprises 30 classes,
the nucleus model 25 classes and the coda model 30
classes. We manually search for classes, which show
interesting sound correspondences.

6.1.1 Onset classes
class 20 0.016

p 0.747
pf 0.094
r 0.027
x 0.025
f 0.021

p 0.902
x 0.022

The German part of class # 20 reflects Grimm’s first
law which states that a West Germanic[p] is often
realized as a[pf] in German. The underlying phono-
logical process is that sounds are inserted in a cer-
tain context. The onsets of the Middle High Ger-
man wordsphat (E: path) andphert (E: horse, L:
paraver̄eredus) became the affricate[pf] in Modern
German. In contrast to German, Dutch preserved
the simple onsets from the original word form, as
in paard (E: horse, MNL: peert) andpad (E: path,
MNL: pat).

class 25 0.012

S 0.339
Sr 0.172
ts 0.130
tr 0.122
z 0.090

sx 0.189
sxr 0.162
s 0.135
tr 0.087
st 0.058

Class # 25 represents a class where the Dutch onsets
are more complex than the onsets in German. From
the Old High German wordsĉaf (E: sheep) the onset
/sc/ is assimilated in Modern German to[S] whereas
the Dutch onset[sx] preserves the complex conso-
nant cluster from the West Germanic wordskæpan
(E: sheep, MNL: scaep).

6.1.2 Nucleus classes
class 4 0.054

U 0.449
O 0.260
Y 0.079
au 0.072

O 0.721
U 0.112
o: 0.101857

We find in Class # 4 a lowering process. The Ger-
man short high back vowel /U/ can be often trans-
formed to the Dutch low back vowel /O/. The un-
derlying processes are that the Dutch vowel is some-
times lowered from /i/ to /O/; e.g., the Dutch word
gezond(E: healthy, MNL: ghesont, WG: gezwind)
comes from the West Germanic wordgezwind. In
Modern German, the same word changed togesund
(OHG: gisunt).

6.1.3 Coda classes
class 14 0.027

m 0.534
n 0.187
NOP 0.054
mt 0.042
mst 0.042

m 0.555
NOP 0.136
x 0.064
k 0.06
mt 0.055

Class # 14 represents codas where plural and infini-
tive suffixes /en/, as inMenschen-mensen(E: hu-
mans) orlaufen-lopen(E: to run), are reduced to a
Schwa[@] in Dutch and thus appear in this class
with an empty coda[NOP]. It also shows that cer-
tain German codas are assimilated by the alveolar
sounds /d/ and /s/ from the original bilabial[m] to an
apico-alveolar[n], as inBoden(E: ground, MHG:
bodem) or inBesen(E: broom, MHG: b̈esem, OHG:
pësamo). In Dutch, the wordsbodem(E: ground,
MNL: bōdem, Greek: puthm̄en), andbezem(E:
broom, MNL: b̄esem, WG: besman) kept the /m/.

class 23 0.010

rt 0.476
tst 0.0782
rts 0.068
rst 0.067
Nst 0.047
t 0.023
rtst 0.022
kt 0.021

rt 0.521
t 0.159
Nt 0.049
lt 0.029
tst 0.022
rd 0.022
st 0.022
rts 0.021
xt 0.021
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Class # 23 comprises complex German codas which
are less complex in Dutch. In the German word
Arzt (E: doctor, MHG: arẑat), the complex coda[tst]
emerges. However in Modern Dutch,arts came
from MNL arst or arsate(Latin: archīater). We can
also find the rule that German codas[Nst] of a 2nd
person singular form of a verb are reduced to[Nt] in
Dutch as inbringst-brengt(E: bring).

6.2 German-English classes

The best German-English models contain 30 onset
classes, 20 nucleus classes, and 10 coda classes.
Our German-English models are noisier than the
German-Dutch ones, which again points at the
closer relation between the German and Dutch lex-
icon. However, when we analyze the 30 on-
set classes, we find meaningful processes as for
German-Dutch.

6.2.1 Onset classes
class 23 0.016

f 0.720
Sp 0.105
z 0.044
S 0.012
v 0.011
...
Spr 0.005
sp 0.003

f 0.648
sp 0.131
v 0.059

Class # 23 shows that a complex German onset[Spr]
preserves the consonant cluster, as insprechen(E:
to speak, OHG: sprehhan, PG: sprekanan). Modern
English, however, deleted the /r/ to[sp], as inspeak
(OE: sprecan). Another regularity can be found: the
palato-alveolar[S] in the German onset[Sp] is re-
alized in English as the alveolar[s] in [sp]. Both
the German wordspinnenand the English wordspin
come fromspinnan(OHG, OE).

class 3 0.051

z 0.489
ts 0.170
s 0.087

s 0.617
z 0.143

Class # 3 displays the rule that in many loan words,
the onset /c/ is realized in German as[ts] and in En-
glish as[s] in Akzent-accent(Latin: accentus).

6.2.2 Nucleus classes
class 8 0.044

o: 0.449
y: 0.123
ai 0.055

@U 0.425
@ 0.201
O 0.115
u: 0.048

In some loan words, we find that an original /u/ or /o/
becomes in German the long vowel[o:] and in En-
glish the diphthong[@U], as inSofa-sofa(Arabic:
suffah) or inFoto-photo(Latin: Phosphorus). The

diphthongization in English usually applies to open
syllables with the nucleus /o/, as shown in class # 8.

6.2.3 Coda classes

Class # 6 displays the present participle suffix /end/,
which is realized in English as /ing/ (OE: -ende), as
in backend-baking.

class 6 0.056

nt 0.707
N 0.075
lnt 0.058
NOP 0.049
rnt 0.047

N 0.846
NOP 0.072
nt 0.041
v 0.009
s 0.008

7 Discussion

We automatically generated two bilingual phono-
logical corpora. The data is classified by using
an EM-based clustering algorithm which is new in
that respect that this method is applied to bilin-
gual onset, nucleus and coda corpora. The method
provides a probability model over bilingual sylla-
ble parts which is exploited to measure the similar-
ity between the language pairs German-Dutch and
German-English. The method is able to generalize
from the data and reduces the noise introduced by
the automatic generation process. Highly probable
sound correspondences appear in very likely classes
with a high probability whereas unlikely sound cor-
respondences receive lower probabilities.

Our approach differs from other approaches either
in the method used or in the different linguistic task.
Cahill and Tiberius (2002) is based on mere counts
of phoneme correspondences; Kondrak (2003) gen-
erates Algonquian phoneme correspondences which
are possible according to his translation models;
Kondrak (2004) measures if two words are possi-
ble cognates; and Knight and Graehl (1998) focus
on the back-transliteration of Japanese words to En-
glish. Thus, we regard our approach as a thematic
complement and not as an overlap to former ap-
proaches.

The presented approach depends on the available
resources. That means that we can only learn those
phoneme correspondences which are represented in
the bilingual data. Thus, metathesis which applies to
onsets and codas can not be directly observed as the
syllable parts are modeled separately. In the Dutch
word borst (ONL: bructe), the /r/ shifted from the
onset to the coda whereas in English and German
(breast-Brust), it remained in the onset. We are also
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dependent on theCELEX builders, who followed dif-
ferent transcription strategies for the German and
Dutch parts. For instance, elisions occur in the
Dutch lexicon but not in the German part. The coda
consonant /t/ inlucht (air) disappears in the Dutch
word luchtdruk (E: air pressure),[”lUG ][drUk], but
not in the German wordLuftdruck, [lUft ][drUk].

We assume that the similarity scores of the sylla-
ble parts might be sharpened by increasing the size
of the databases. A first possibility is to take the
first transcribed translation and not the first transla-
tion in general. As often the first translation is not
contained in the pronunciation dictionary.

Our current data generation process also in-
troduces unrelated word pairs such asHaut-skin
([haut]-[skIn]). However, it is very unlikely that re-
lated words do not include similar phonemes. Thus,
this word pair should be excluded. Exploiting this
knowledge could lead to cleaner input data.

8 Conclusions and Future Work

We presented a method to automatically build bilin-
gual pronunciation dictionaries that can be used to
reveal phonological similarities between related lan-
guages. In general, our similarity scores show that
the lexicons of German and Dutch are closer related
than German and English. Beside the findings about
the relatedness between the two language pairs, we
think that the classes might be useful for language
learning. An interesting point for future work is to
apply the methods developed for the identification
of cognates to our bilingual word-lists. Beyond the
increase in data, a great challenge is to develop mod-
els that can express sound changes on the diachronic
level adumbrated in Section 6. We also believe that
a slightly modified version of our method can be ap-
plied to other related language pairs by using the
transcription of morphemes.
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Maja Popović, David Vilar, Hermann Ney
Lehrstuhl f̈ur Informatik VI

Computer Science Department
RWTH Aachen University
D-52056 Aachen, Germany

{popovic,vilar,ney }@informatik.rwth-aachen.de

Slobodan Jovǐcić, Zoran Šarić
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Abstract

In this work, we examine the quality of
several statistical machine translation sys-
tems constructed on a small amount of
parallel Serbian-English text. The main
bilingual parallel corpus consists of about
3k sentences and 20k running words from
an unrestricted domain. The translation
systems are built on the full corpus as well
as on a reduced corpus containing only
200 parallel sentences. A small set of
about 350 short phrases from the web is
used as additional bilingual knowledge. In
addition, we investigate the use of mono-
lingual morpho-syntactic knowledge i.e.
base forms and POS tags.

1 Introduction and Related Work

The goal of statistical machine translation (SMT) is
to translate a source language sequencef1, . . . , fJ
into a target language sequencee1, . . . , eI by max-
imising the conditional probabilityPr(eI1|fJ1 ). This
probability can be factorised into the translation
model probabilityP (fJ1 |eI1) which describes the
correspondence between the words in the source and
the target sequence, and the language model proba-
bility P (eJ1 ) which describes well-formedness of the
produced target sequence. These two probabilities
can be modelled independently of each other. For
detailed descriptions of SMT models see for exam-
ple (Brown et al., 1993; Och and Ney, 2003).

Translation probabilities are learnt from a bilin-
gual parallel text corpus and language model proba-
bilities are learnt from a monolingual text in the tar-

get language. Usually, the performance of a trans-
lation system strongly depends on the size of the
available training corpus. However, acquisition of
a large high-quality bilingual parallel text for the de-
sired domain and language pair requires lot of time
and effort, and, for many language pairs, is even not
possible. Besides, small corpora have certain advan-
tages - the acquisition does not require too much
effort and also manual creation and correction are
possible. Therefore there is an increasing number of
publications dealing with limited amounts of bilin-
gual data (Al-Onaizan et al., 2000; Nießen and Ney,
2004).

For the Serbian language, as a rather minor and
not widely studied language, there are not many
language resources available, especially not parallel
texts. On the other side, investigations on this lan-
guage may be quite useful since the majority of prin-
ciples can be extended to the wider group of Slavic
languages (e.g. Czech, Polish, Russian, etc.).

In this work, we exploit small Serbian-English
parallel texts as a bilingual knowledge source for
statistical machine translation. In addition, we in-
vestigate the possibilities for improving the trans-
lation quality using morpho-syntactic information
in the source language. Some preliminary transla-
tion results on this language pair have been reported
in (Popovíc et al., 2004; Popović and Ney, 2004),
but no systematic investigation has been done so far.
This work presents several translation systems cre-
ated with different amounts and types of training
data and gives a detailed description of the language
resources used.
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2 Language Resources

2.1 Language Characteristics

Serbian, as a Slavic language, has a very rich inflec-
tional morphology for all open word classes. There
are six distinct cases affecting not only common
nouns but also proper nouns as well as pronouns,
adjectives and some numbers. Some nouns and ad-
jectives have two distinct plural forms depending on
the number (if it is larger than four or not). There
are also three genders for the nouns, pronouns, ad-
jectives and some numbers leading to differences be-
tween the cases and also between the verb participles
for past tense and passive voice.

As for verbs, person and many tenses are ex-
pressed by the suffix, and the subject pronoun (e.g.
I, we, it) is often omitted (similarly as in Spanish and
Italian). In addition, negation of three quite impor-
tant verbs, “biti” (to be, auxiliary verb for past tense,
conditional and passive voice), “imati” (to have) and
“hteti” (to want, auxiliary verb for the future tense),
is done by adding the negative particle to the verb as
a prefix.

As for syntax, Serbian has a quite free word or-
der, and there are no articles, neither indefinite nor
definite.

All these characteristics indicate that morpho-
syntactic knowledge might be very useful for sta-
tistical machine translation involving Serbian lan-
guage, especially when only scarce amounts of par-
allel text are available.

2.2 Parallel Corpora

Finding high-quality bilingual or multilingual paral-
lel corpora involving Serbian language is a difficult
task. For example, there are several web-sites with
the news in both Serbian and English (some of them
in other languages as well), but these texts are only
comparable and not parallel at all. To our knowl-
edge, the only currently available Serbian-English
parallel text suitable for statistical machine trans-
lation is a manually created electronic version of
the Assimil language course which has been used
for some preliminary experiments in (Popović et al.,
2004; Popovíc and Ney, 2004). We have used this
corpus for systematical investigations described in
this work.

2.2.1 Assimil Language Course

The electronic form of Assimil language course
contains about 3k sentences and 25k running words
of various types of conversations and descriptions as
well as a few short newspaper articles. Detailed cor-
pus statistics can be seen in Table 1. Since the do-
main of the corpus is basically not restricted, the vo-
cabulary size is relatively large. Due to the rich mor-
phology, the vocabulary for Serbian is almost two
times larger than for English. The average sentence
length for Serbian is about 8.5 words per sentence,
and for English about 9.5. This difference is mainly
caused by the lack of articles and omission of some
subject pronouns in Serbian .

The development and test set (500 sentences) are
randomly extracted from the original corpus and the
rest is used for training (referred to as 2.6k).

In order to investigate the scenario with extremely
scarce training material, a reduced training corpus
(referred to as 200) has been created by random ex-
traction of 200 sentences from the original training
corpus.

The morpho-syntactic annotation of the En-
glish part of the corpus has been done by the con-
straint grammar parser ENGCG for morphological
and syntactic analysis of English language. For each
word, this tool provides its base form and sequence
of morpho-syntactic tags.

For the Serbian corpus, to our knowlegde there
is no available tool for automatic annotation of this
language. Therefore, the base forms have been in-
troduced manually and the POS tags have been pro-
vided partly manually and partly automatically us-
ing a statistical maximum-entropy based POS tagger
similar to the one described in (Ratnaparkhi, 1996).
First, the 200 sentences of the reduced training cor-
pus have been annotated completely manually. Then
the first 500 sentences of the rest of the training cor-
pus have been tagged automatically and the errors
have been manually corrected. Afterwards, the POS
tagger has been trained on the extended corpus (700
sentences), the next 500 sentences of the rest are an-
notated, and the procedure has been repeated until
the annotation has been finished for the complete
corpus.
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Table 1: Statistics of the Serbian-English Assimil corpus
Serbian English

Training: original base forms original no article
full corpus Sentences 2632 2632

(2.6k) Running Words + Punct. 22227 24808 23308
Average Sentence Length 8.4 9.5 8.8
Vocabulary Size 4546 2605 2645 2642
Singletons 2728 1253 1211

reduced corpus Sentences 200 200
(200) Running Words + Punct. 1666 1878 1761

Average Sentence Length 8.3 10.4 8.8
Vocabulary Size 778 596 603 600
Singletons 618 417 395

Dev+Test Sentences 500 500
Running Words + Punct. 4161 4657 4362
Average Sentence Length 8.3 9.3 8.7
Vocabulary Size 1457 1030 1055 1052
Running OOVs - 2.6k 12.1% 5.2% 4.8%
Running OOVs - 200 34.5% 27.6% 21.4%
OOVs - 2.6k 32.7% 19.5% 19.7%
OOVs - 200 76.2% 66.0% 66.8%

External Test Sentences 22 22
Running Words + Punct. 395 446 412
Average Sentence Length 18.0 20.3 18.7
Vocabulary Size 213 176 202 199
Running OOVs - 2.6k 44.3% 35.4% 32.1% 34.7%
Running OOVs - 200 53.7% 44.6% 43.7% 47.3 %
OOVs - 2.6k 61.5% 45.4% 44.0% 44.7%
OOVs - 200 74.6% 63.1% 63.9% 64.8%

Table 2: Statistics of the Serbian-English short phrases
Serbian English

Phrases original base forms original no article
Entries 351 351 351 351
Running Words + Punct. 617 617 730 700
Average Entry Length 1.8 1.8 2.1 2.0
Vocabulary Size 335 303 315 312
Singletons 239 209 209 208

New Running 2.6k 20.6% 14.4% 11.8% 11.8%
Words 200 50.6% 41.3% 36.7% 37.8%

New Vocabulary 2.6k 30.1% 22.1% 21.6% 21.2%
Words 200 70.7% 63.0% 63.2% 63.1%
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2.2.2 Short Phrases

The short phrases used as an additional bilingual
knowledge source in our experiments have been col-
lected from the web and contain about 350 standard
words and short expressions with an average entry
length of 1.8 words for Serbian and 2 words for En-
glish. Table 2 shows that about 30% of words from
the phrase vocabulary are not present in the origi-
nal Serbian corpus and about 70% of those words
are not contained in the reduced corpus. For the
English language those numbers are smaller, about
20% for the original corpus and 60% for the reduced
one. These percentages are indicating that this par-
allel text, although very scarce, might be an useful
additional training material.

The phrases have also been morpho-syntactically
annotated in the same way as the main corpus.

2.2.3 External Test

In addition to the standard development and test
set described in Section 2.2.1, we also tested our
translation systems on a short external parallel text
collected from the BBC News web-site contain-
ing 22 sentences about relations between USA and
Ukraine after the revolution. As can be seen in Ta-
ble 1, this text contains very large portion of out-
of-vocabulary words (almost two thirds of Serbian
words and almost half of English words are not seen
in the training corpus), and has an average sentence
length about two times larger than the training cor-
pus.

3 Transformations in the Source Language

Standard SMT systems usually regard only full
forms of the words, so that translation of full forms
which have not been seen in the training corpus is
not possible even if the base form has been seen.
Since the inflectional morphology of the Serbian
language is very rich, as described in Section 2.1, we
investigate the use of the base forms instead of the
full forms to overcome this problem for the transla-
tion into English. We propose two types of trans-
formations of the Serbian corpus: conversion of the
full forms into the base forms and additional treat-
ment of the verbs.

For the other translation direction, we propose re-
moving the articles in the English part of the corpus
as the Serbian language does not have any.

3.1 Transformations of the Serbian Text

3.1.1 Base Forms

Serbian full forms of the words usually contain
information which is not relevant for translation into
English. Therefore, we propose conversion of all
Serbian words in their base forms. Although for
some other inflected languages like German and
Spanish this method did not yield any translation
improvement, we still considered it as promising be-
cause the number of Serbian inflections is consider-
ably higher than in the other two languages. Table 1
shows that this transformation significantly reduces
the Serbian vocabulary size so that it becomes com-
parable to the English one.

3.1.2 Treatment of Verbs

Inflections of Serbian verbs might contain rel-
evant information about the person, which is es-
pecially important when the pronoun is omitted.
Therefore, we apply an additional treatment of the
verbs. Whereas all other word classes are still re-
placed only by their base forms, for each verb a part
of the POS tag referring to the person is taken and
the verb is converted into a sequence of this tag and
its base form. For the three verbs described in Sec-
tion 2.1, the separation of the negative particle is also
applied: each negative full form is transformed into
the sequence of the POS tag, negative particle and
base form. The detailed statistics of this corpus is
not reported since there are no significant changes,
only the number of running words and average sen-
tence length increase thus becoming closer to the
values of the English corpus.

3.2 Transformations of the English Text

3.2.1 Removing Articles

Since the articles are one of the most frequent
word classes in English, but on the other side there
are no arcticles at all in Serbian, we propose remov-
ing the articles from the English corpus for trans-
lation into Serbian. Each English word which has
been detected as an article by means of its POS tag
has been removed from the corpus. In Table 1, it
can be seen that this method significantly reduces
the number of running words and the average sen-
tence length of the English corpus thus becoming
comparable to the values of the Serbian corpus.
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4 Translation Experiments and Results

4.1 Experimental Settings

In order to systematically investigate the impact of
the bilingual training corpus size and the effects
of the morpho-syntactic information on the trans-
lation quality, the translation systems were trained
on the full training corpus (2.6k) and on the re-
duced training corpus (200), both with and with-
out short phrases. The translation is performed in
both directions, i.e. from Serbian to English and
other way round. For the Serbian to English trans-
lation systems, three versions of the Serbian corpus
have been used: original (baseline), base forms only
(sr base) and base forms with additional treatment
of the verbs (srbase+v-pos). For the translation into
Serbian, the systems were trained on two versions of
the English corpus: original (baseline) and without
articles (enno-article).

The baseline translation system is the Alignment
Templates system with scaling factors (Och and
Ney, 2002). Word alignments are produced using
GIZA++ toolkit without symmetrisation (Och and
Ney, 2003). Preprocessing of the source data has
been done before the training of the system, there-
fore modifications of the training and search pro-
cedure were not necessary for the translation of the
transformed source language corpora.

Although the development set has been used to
optimise the scaling factors, results obtained for this
set do not differ from those for the test set. There-
fore only the joint error rates (Development+Test)
are reported.

As for the external test set, results for this text are
reported only for the full corpus systems, since for
the reduced corpus the error rates are higher but the
effects of using phrases and morpho-syntactic infor-
mation are basically the same.

4.2 Translation Results

The evaluation metrics used in our experiments
are WER (Word Error Rate), PER (Position-
independent word Error Rate) and BLEU (BiLin-
gual Evaluation Understudy) (Papineni et al., 2002).
Since BLEU is an accuracy measure, we use 1-
BLEU as an error measure.

4.2.1 Translation from Serbian into English

Error rates for the translation from Serbian into
English are shown in Table 3 and some examples
are shown in Table 6. It can be seen that there is a
significant decrease in all error rates when the full
forms are replaced with their base forms. Since the
redundant information contained in the inflection is
removed, the system can better capture the relevant
information and is capable of producing correct or
approximatively correct translations even for unseen
full forms of the words (marked by “UNKNOWN”
in the baseline result example). The treatment of the
verbs yields some additional improvements.

From the first translation example in Table 6 it can
be seen how the problem of some out-of-vocabulary
words can be overcomed with the use of the base
forms. The second and third example are showing
the advantages of the verb treatment, the third one
illustrates the effect of separating the negative parti-
cle.

Reduction of the training corpus to only 200 sen-
tences (about 8% of the original corpus) leads to a
loss of error rates of about 45% relative. However,
the degradation is not higher than 35% if phrases and
morpho-syntactic information are available in addi-
tion to the reduced corpus.

The use of the phrases can improve the transla-
tion quality to some extent, especially for the sys-
tems with the reduced training corpus, but these im-
provements are less remarkable than those obtained
by replacing words with the base forms.

The best system with the complete corpus as well
as the best one with the reduced corpus use the
phrases and the transformed Serbian corpus where
the verb treatment has been applied.

4.2.2 Translation from English into Serbian

Table 4 shows results for the translation from En-
glish into Serbian. As expected, all error rates are
higher than for the other translation direction. Trans-
lation into the morphologically richer language al-
ways has poorer quality because it is difficult to find
the correct inflection.

The performance of the reduced corpus is de-
graded for about 40% relative for the baseline sys-
tem and for about 30% when the phrases are used
and the transformation of the English corpus has
been applied.
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Table 3: Translation error rates [%] for Serbian→English
Serbian→ English Development+Test

Training Corpus Method WER PER 1-BLEU

2.6k baseline 45.6 39.6 70.0
2.6k sr base 43.5 38.2 68.9
2.6k sr base+v-pos 42.5 35.3 66.2
2.6k+phrases baseline 46.0 39.6 69.5
2.6k+phrases sr base 44.6 39.1 70.2
2.6k+phrases sr base+v-pos 42.1 35.3 66.0

200 baseline 66.5 61.1 91.6
200 sr base 63.2 58.2 90.3
200 sr base+v-pos 63.3 56.2 88.5
200+phrases baseline 65.2 59.5 90.2
200+phrases sr base 62.3 56.9 87.7
200+phrases sr base+v-pos 61.3 53.2 86.2

Table 4: Translation error rates [%] for English→Serbian
English→ Serbian Development+Test

Training Corpus Method WER PER 1-BLEU

2.6k baseline 53.1 46.9 78.6
2.6k en no-article 52.6 47.2 79.4
2.6k+phrases baseline 52.5 46.5 76.6
2.6k+phrases en no-article 52.3 47.0 79.6

200 baseline 73.6 68.0 93.0
200 en no-article 71.5 66.5 93.4
200+phrases baseline 71.7 66.7 92.3
200+phrases en no-article 67.9 62.9 92.1

Table 5: Translation error rates [%] for the external test
Serbian→ English External Test

Training Corpus Method WER PER 1-BLEU

2.6k baseline 72.2 64.8 92.2
2.6k sr base 66.8 61.4 86.9
2.6k sr base+v-pos 67.5 61.4 88.3
2.6k+phrases baseline 71.3 63.9 91.9
2.6k+phrases sr base 67.0 61.2 88.4
2.6k+phrases sr base+v-pos 69.7 61.2 89.8

English→ Serbian
2.6k baseline 85.3 77.0 96.4
2.6k en no-article 77.5 69.9 95.8
2.6k+phrases baseline 84.1 74.9 95.2
2.6k+phrases en no-article 77.7 70.1 94.8
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The importance of the phrases seems to be larger
for this translation direction. Removing the English
articles does not have the significant role for the
translation systems with full corpus, but for the re-
duced corpus it has basically the same effect as the
use of phrases. The best system with the reduced
corpus has been built with the use of phrases and
removal of the articles.

Table 7 shows some examples of the translation
into Serbian with and without English articles. Al-
though these effects are not directly obvious, it can
be seen that removing of the redundant information
enables better learning of the relevant information
so that system is better capable of producing seman-
tically correct output. The first example illustrates
an syntactically incorrect output with the wrong in-
flection of the verb (“̌citam” means “I read”). The
output of the system without articles is still not com-
pletely correct, but the semantic is completely pre-
served. The second example illustrates an output
produced by the baseline system which is neither
syntactically nor semantically correct (“you have I
drink”). The output of the new system still has an
error in the verb, informal form of “you” instead of
the formal one, but nevertheless both the syntax and
semantics are correct.

4.2.3 Translation of the External Text

Translation results for theexternal testcan be
seen in Table 5. As expected, the high number of
out-of-vocabulary words results in very high error
rates. Certain improvement is achieved with the
phrases, but the most significant improvements are
yielded by the use of Serbian base forms and re-
moval of English articles. Verb treatment in this case
does not outperform the base forms system, prob-
ably because there are not so many different verb
forms as in the other corpus, and only a small num-
ber of pronouns is missing.

5 Conclusions

In this work, we have examined the possibilities
for building a statistical machine translation system
with a small bilingual Serbian-English parallel text.
Our experiments showed that the translation results
for this language pair are comparable with results for
other language pairs, especially if the small size of
the corpus, unrestricted domain and rich inflectional

morphology of Serbian language are taken into ac-
count. With the baseline system, we obtained about
45% WER for translation into English and about
53% for translation into Serbian.

We have systematically investigated the impact of
the corpus size on translation quality, as well as the
importance of additional bilingual knowledge in the
form of short phrases. In addition, we have shown
that morpho-syntactic information is a valuable lan-
guage resource for translation of this language pair.

Depending on the availability of resources and
tools, we plan to examine parallel texts with other
languages, and also to do further investigations on
this language pair. We believe that more refined use
of the morpho-syntactic information can yield better
results (for example the hierarchical lexicon model
proposed in (Nießen and Ney, 2001)). We also be-
lieve that the use of the conventional dictionaries
could improve the Serbian-English translation.
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Abstract

This paper presents an original approach
to part-of-speech tagging of fine-grained
features (such as case, aspect, and adjec-
tive person/number) in languages such as
English where these properties are gener-
ally not morphologically marked.

The goals of such rich lexical tagging
in English are to provide additional fea-
tures for word alignment models in bilin-
gual corpora (for statistical machine trans-
lation), and to provide an information
source for part-of-speech tagger induction
in new languages via tag projection across
bilingual corpora.

First, we present a classifier-combination
approach to tagging English bitext with
very fine-grained part-of-speech tags nec-
essary for annotating morphologically
richer languages such as Czech and
French, combining the extracted fea-
tures of three major English parsers,
and achieve fine-grained-tag-level syntac-
tic analysis accuracy higher than any indi-
vidual parser.

Second, we present experimental results
for the cross-language projection of part-
of-speech taggers in Czech and French via
word-aligned bitext, achieving success-
ful fine-grained part-of-speech tagging of
these languages without any Czech or
French training data of any kind.

1 Introduction

Most prior research in part-of-speech (POS) tag-
ging has focused on supervised learning over a
tagset such as the Penn Treebank tagset for En-
glish, which is restricted to features that are mor-
phologically distinguished in the focus language.
Thus the only verb person/number distinction made
in the Brown Corpus/Penn Treebank tagset is VBZ
(3rd-person-singular-present), with no correspond-
ing person/number distinction in other tenses. Sim-
ilarly, adjectives in English POS tagsets typically
have no distinctions for person, number or case be-
cause such properties have no morphological surface
distinction, although they do for many other lan-
guages.

This essential limitation of the Brown/Penn POS
subtag inventory to morphologically realized dis-
tinctions in English dramatically simplifies the prob-
lem by reducing the tag entropy per surface form
(the adjective tall has only one POS tag (JJ) rather
than numerous singular, plural, nominative, ac-
cusative, etc. variants), increasing both the stand-
alone effectiveness of lexical prior models and word-
suffix models for part-of-speech tagging.

However, for many multilingual applications, in-
cluding feature-based word alignment in bilingual
corpora and machine translation into morphologi-
cally richer languages, it is helpful to extract finer-
grained lexical analyses on the English side that
more closely parallel the morphologically realized
tagset of the second (source or target) language.

In particular, prior work on translingual part-of-
speech tagger projection via parallel bilingual cor-
pora (e.g. Yarowsky et al., 2001) has been limited
to inducing part-of-speech taggers in second lan-
guages (such as French or Czech) that only assign
tags at the granularity of their source language (i.e.
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the Penn Treebank-granularity distinctions from En-
glish). The much richer English tagsets achieved
here can allow these tagger projection techniques to
transfer richer tag distinctions (such as case and verb
person/number) that are important to the full analy-
sis of these languages, using only bilingual corpora
with the morphologically impoverished English.

For quickly retargetable machine translation, the
primary focus of effort is overcoming the extreme
scarcity of resources for the low density source lan-
guage. Sparsity of conditioning events for a transla-
tion model can be greatly reduced by the availabil-
ity of automatic source-language analysis. In this
research we attempt to induce models for the au-
tomatic analysis of morphological features such as
case, tense, number, and polarity in both the source
and target languages with this end in mind.

2 Prior Work

2.1 Fine-grained part-of-speech tagging

Most prior work in fine-grained part-of-speech tag-
ging has been limited to languages such as Czech
(e.g. Hajič and Hladká, 1998) or French (e.g. Fos-
ter etc.) where finer-grained tagset distinctions are
morphologically marked and hence natural for the
language. In support of supervised tagger learn-
ing of these languages, fine-trained tagset inven-
tories have been developed by the teams above
at Charles University (Czech) and Université de
Montréal (French). The tagset developed by Hajič
forms the basis of the distinctions used in this paper.

The other major approach to fine-grained tagging
involves using tree-based tags that capture grammat-
ical structure. Bangalore and Joshi (1999) have uti-
lized “supertags” based on tree-structures of various
complexity in the tree-adjoining grammar model.
Using such tags, Brants (2000) has achieved the au-
tomated tagging of a syntactic-structure-based set of
grammatical function tags including phrase-chunk
and syntactic-role modifiers trained in supervised
mode from a treebank of German.

2.2 Classifier combination for part-of-speech
tagging

There has been broad work in classifier combination
at the tag-level for supervised POS tagging mod-
els. For example, Màrquez and Rodrı́guez (1998)
have performed voting over an ensemble of decision
tree and HMM-based taggers for supervised En-

glish tagging. Murata et al. (2001) have combined
neural networks, support vector machines, decision
lists and transformation-based-learning approaches
for Thai part-of-speech tagging. In each of these
cases, annotated corpora containing the full tagset
granularity are required for supervision.

Henderson and Brill (1999) have approached
parsing through classifier combination, using bag-
ging and boosting for the performance-weighted
voting over the parse-trees from three anonymous
statistical phrase-structure-based parsers. However,
as their switching and voting models assumed equiv-
alent phrase-structure conventions for merger com-
patibility, it is not clear how a dependency parsing
model or other divergent syntactic models could be
integrated into this framework. In contrast, the ap-
proach presented below can readily combine syntac-
tic analyses from highly diverse parse structure mod-
els by first projecting out all syntactic analyses onto
a common fine-grained lexical tag inventory.

2.3 Projection-based Bootstrapping

Yarowsky et al. (2001) performed early work in the
cross-lingual projection of part-of-speech tag anno-
tations from English to French and Czech, by way of
word-aligned parallel bilingual corpora. They also
used noise-robust supervised training techniques to
train stand-alone French and Czech POS taggers
based on these projected tags. Their projected
tagsets, however, were limited to those distinctions
captured in the English Penn treebank inventory,
and hence failed to make many of the finer grained
distinctions traditionally assumed for French and
Czech POS tagging, such as verb person, number,
and polarity and noun/adjective case.

Probst (2003) pursued a similar methodology for
the purposes of tag projection, using a somewhat
expanded tagset inventory (e.g. including adjec-
tive number but not case), and focusing on target-
language monolingual modeling using morpheme
analysis. Cucerzan and Yarowsky (2003) addressed
the problem of grammatical gender projection via
the use of small seed sets based on natural gender.
Another distinct body of work addresses the prob-
lem of parser bootstrapping based on syntactic de-
pendency projection (e.g. Hwa et al. 2002), often
using approaches based in synchronous parsing (e.g.
Smith and Smith, 2004).
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Word Core Prsn Num. Case Tns/ Pol. Voi.
POS Asp.

The DT 3 PL. NOM.
books NN 3 PL. NOM.
were VB 3 PL. PAST + ACT.

provoking VB 3 PL. PAST- + ACT.
PROG.

laughter NN 3 S. ACC.
with IN
their DT 3 PL. ‘WITH’

curious JJ 3 PL. ‘WITH’
titles NN 3 PL. ‘WITH’

Figure 1: Example of fine-grained English POS tags

Word Core Prsn Num. Case Tns/ Pol. Voice
POS Asp.

Les DT 3 PL. NOM.
livres NN 3 PL. NOM.

provoquaient VB 3 PL. PAST- + ACT.
PROGR.

des DT 3 PL. ACC.
rires NN 3 PL. ACC.
avec IN
ses DT 3 PL. ‘WITH’

titres NN 3 PL. ‘WITH’
curieux JJ 3 PL. ‘WITH’

Figure 2: Example of fined-grained POS tags pro-
jected onto a French translation

3 Tagsets

We use Penn treebank-style part-of-speech tags as
a substrate for further enrichment (for all of the ex-
periments described here, text was first tagged us-
ing the fnTBL part-of-speech tagger (Ngai and Flo-
rian, 2001)). Each Penn tag is mapped to a core
part-of-speech tag, which determines the set of fine-
grained tags further applicable to each word. The
fine-grained tags applicable to nouns, verbs, and ad-
jective are shown in Table 1. This paper concentrates
on these most important core parts-of-speech.

The example English sentence in Figure 1 illus-
trates several key points about our tagset. Some of
the information we are interested in is already ex-
pressed by the Penn-style tags – the NN titles is plu-
ral; the VBD were is in the past tense. For these, our
goal is simply to make these facts explicit.

On the other hand, curious could also be meaning-
fully said to be semantically plural, and most impor-
tantly for us, the corresponding word in a translation
of this sentence into many other languages would
be morphologically plural. Similarly, the head verb
provoking is also semantically in the past tense, and
is likely to be translated to a past-tense form in many
languages, even though in this example the actual
tense marking is on were. We expect the ‘past-
ness’ of the action to be much more stable cross-
linguistically, than the particular division of labor
between the head word and the auxiliary. By prop-

VB JJ NN Range
Person � � � 1 / 2 / 3

Number � � � SINGULAR
PLURAL

Case � � NOMINATIVE
ACCUSATIVE

GENITIVE
PREPOSITION-‘IN’
PREPOSITION-‘OF’

. . .
Degree � POSITIVE

COMPARATIVE
SUPERLATIVE

Tense � PAST
PRESENT
FUTURE

Perfectivity � + / –
Progressivity � + / –

Polarity � + / –
Voice � ACTIVE / PASSIVE

Table 1: The fine-grained POS inventory used for
English

agating these features from where they are explicit
to where they are not, we hope to make information
more directly available for projection. Another im-
portant class of information we would like to make
available concerns syntactic relations, which many
languages mark with morphological case. This is an
issue that involves deep, complex, and ambiguous
mappings, which we are not yet prepared to treat in
their fullness. For now, we observe that curious and
titles are both dominated by with.

Because of intent to mark whatever information
is recoverable, some of our tags require some in-
terpretation. For example, English has little or no
morphological realization of syntactic case, but the
essential information of case, relationship of a noun
with its governor, is recoverable from contextual
information, so we defined it in these terms. To
avoid loss of information, we chose to remain ag-
nostic about deeper analyses, such as the identifi-
cation of theta roles or predicate-argument relation-
ships, and restricted ourselves to a direct represen-
tation of surface relationships. We identified sub-
jects, direct and indirect objects, non-heads of noun
compounds, possessives, and temporal adjuncts, and
created a distinct tag for the objects of each distinct
preposition.

Our ideal would be to have as expansive and de-
tailed a tagset as possible, a ‘quasi-universal’ tagset
which could cover whatever set of distinctions might
be relevant for any language onto which we might
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Feature Antecedent � CONSEQUENT

Noun Number NN � SINGULAR
NNS � PLURAL

Verb Tense VBD � PAST
(will

�
shall) RB* VB � FUTURE

Figure 3: Examples of locally recoverable features

project our analysis. A completely universal tagset
would require that the morphological distinctions
made by the world’s languages come from a limited
pool of possibilities, based on non-arbitrary seman-
tic distinctions, and further would require that the
relevant semantic information be recoverable from
English text. The tagset we are using now is shaped
in part by exceptions to these conditions. For ex-
ample, we have put off implementing tagging of
gender given the notoriously arbitrary and inconsis-
tent assignment of grammatical gender across lan-
guages (although Cucerzan and Yarowsky (2003)
were able to show success on projection-based anal-
ysis of grammatical gender as well).

In the end, we have settled on a set of distinc-
tions very similar to those realized by the morpho-
logically richer of the European languages, with the
noticeable absence of gender. Table 1 describes the
features we chose on this basis (definiteness and
mood features were developed for English but not
projected to French or Czech, and are not treated in
this paper).

4 Methods – English Tagging

The features we tagged vary widely in their degree
of morphological versus syntactic marking, and the
difficulty of their monolingual English detection.
For some, tagging is simply a matter of explicitly
separating information contained in the Penn part-
of-speech tags, while others can be tagged to a high
degree of accuracy with simple heuristics based on
local word and part-of-speech tag patterns. These
include number for nouns and adjectives, person
(trivially) for nouns, degree for adjectives, polarity,
voice, and aspect (perfectivity and progressivity) for
verbs, as well as tense for some verbs. Figure 3
shows example rules for some of these easier cases.

The more difficult features are those whose de-
tection requires some degree of syntactic analysis.
These include case, which summarizes the relation
of each noun with its governor, and the agreement-
based features: we define person, number, and case

for attributive adjectives by agreement with their
head nouns, number and person for verbs and predi-
cate adjectives by agreement with their subjects, and
tense for some verbs by agreement with their in-
flected auxiliaries.

We investigated four individual approaches for
the syntax-features – a regular-expression-based
quasi-parser, a system based on Dekang Lin’s Mini-
Par (Lin, 1993), a system based on the Collins parser
(Collins, 1999), and one based on the CMU Link
Grammar Parser (Sleator and Temperley, 1993),
as well as a family of voting-based combination
schemes.

4.1 Regular-expression Quasi-parser

The regular-expression ‘quasi-parser’ takes a direct
approach, using several dozen heuristics based on
regular-expression-like patterns over words, Penn
part-of-speech tags, and the output of the fnTBL
noun chunker. Use of the noun chunker fa-
cilitates identification of noun/dependent relation-
ships within chunks, and extends the range of pat-
terns identifying noun/governor relationships across
chunks.

The output of the quasi-parser consists of two
parts: a case tag for each noun in a sentence, and
a set of agreement links across which other features
are then spread. We call this a direct approach be-
cause the links are defined operationally, directly in-
dicating the spreading action, rather than represent-
ing any deeper syntactic analysis.

In the diagram of the example sentence below, an
arrow from one word to another indicates that the
former takes features from the latter. The example
also shows the context patterns by which the nouns
in the sentence receive case.

+<<<<<+ +>>>>>>>>>>>>>+
| | | |

+>>>>+ +<<<<<<<+ | +>>>>>>+
| | | | | | |

<The books> were provoking laughter with <their curious titles>

Word Context Pattern � CASE TAG

laughter VB (genitive-NP)* � � ACCUSATIVE
titles with (genitive-NP)* � � PREP-WITH
books default � NOMINATIVE

4.2 MiniPar and the CMU Link Grammar
Parser

For MiniPar, the Collins parser, and the CMU
link grammar parser, we developed for each a set
of minimal-complexity heuristics to transform the
parser output into the specific conceptions of depen-
dency and case we had developed for the first pass.
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MiniPar produces a labeled dependency graph,
which yields a straightforward extraction of the in-
formation needed for this task. Case tagging is a
simple matter of mapping the set of dependency la-
bels to our case inventory. Our agreement links
are almost a subset of MiniPar’s dependencies (with
some special treatment of subject/auxiliary/main-
verb triads, as shown in the example sentence).

The figure below presents MiniPar’s raw output
for the example sentence, along with some exam-
ple dependency-label/case-tag rules. The agreement
links extracted from the dependency graph are iden-
tical (in this case) to those produced by the regular-
expression quasi-parser.

mod pcomp-n
+<<<<<<+<<<<<<<<<<<<<<<<<<<+
| | |

s | | gen |
+>>>>>>>>>>>>>+ | | +>>>>>>>>>>>>>+
| | | | | |

det| be | obj | | | mod |
+>>>+ +>>>>>>>+<<<<<<<<+ | | +>>>>>>+
| | | | | | | | |
| | | | | | | | |

The books were provoking laughter with their curious titles

Word Dependency Label � CASE TAG

books s � NOMINATIVE
laughter obj � ACCUSATIVE
titles pcomp-n:with � PREP-WITH

The output of the CMU link grammar parser has
properties similar to MiniPar, and thus tag extraction
was handled in a similar fashion.

4.3 Collins Parser

The Collins Parser produces a Penn-Treebank-style
constituency tree, with head labels. Although we
could have used the head-labels to operate on the
dependency graph as with MiniPar, we chose to con-
centrate on addressing the weakest point of our pre-
vious systems, the identification of case. Our algo-
rithm traces the path from each noun to the root of
the tree, stopping at the first node which we judged
to reliably indicate case.

We did not directly extract any further informa-
tion from the Collins parser output. Instead, the
remainder of the system is identical to the regular-
expression quasi-parser. However, because the sys-
tem uses nominative case to identify verb sub-
jects, we did expect to see some improvements in
agreement-based features as well.

S

NPB

The books

VP

were VP

provoking NPB

laughter

PP

with NPB

their curious titles

Word Path to Root � CASE TAG

books NPB:S � NOMINATIVE
laughter NPB:VP:VP:VP:S � ACCUSATIVE
titles NPB:PP(with):VP:VP:S � PREP-WITH

4.4 Parser Combination

The fine-grained taggers based on the four partic-
ipating parsers exhibited significant differences in
their strengths and weaknesses, suggesting poten-
tial benefit from combining them. Lacking tag-level
numerical scores and development data for weight-
training, we restricted ourselves to simple voting
mechanisms. We chose to do all of the combinations
at the end of the process, voting separately on tags
for specific features of specific words. Without tag-
level probabilities from the one-best parser outputs,
we were still able to use the combination protocols
to achieve a coarse-grained confidence measure.

We compared a series of seven combination pro-
tocols of increasing leniency to investigate preci-
sion/recall tradeoffs. The strictest, ‘4:0’, produces
an output only when there are four votes for the fa-
vored tag, and no votes for any other. Analogously,
protocols ‘3:0’, ‘2:0’ and ‘1:0’ also allow no dissent,
but allow progressively more abstentions. Continu-
ing the sequence, protocol ‘2:1’ proposes a tag as
long as there is a clear majority, ‘2:2’ as long as sup-
porters are not outnumbered by dissenters, and ‘1:3’
whenever possible. To break ties in the latter two
protocols, we favored first the CMU Link Parser,
then Collins, then MiniPar, then Regexp. (Lacking
sufficient labeled data for fine-tuning, we ordered
them arbitrarily.)

5 Evaluation of English POS Tagging

Before we began the development of our taggers, we
created standard tagging guidelines, and hand anno-
tated a 3013-word segment of the English side of the
Canadian Hansards, to be used for evaluation.
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Core Feature MiniPar Regexp Collins CMU Link 1:3
POS

num 86.8 87.7 87.7 87.9 88.4
case 65.1 74.5 76.4 79.2 80.6

JJ deg 100 100 100 100 100
‘French’ 86.8 87.7 87.7 87.9 88.4
‘Czech’ 57.9 64.3 67.1 68.1 70.5

num 99.7 99.7 99.7 99.7 99.7
NN case 65.9 74.8 77.8 77.3 80.0

‘French’ 99.7 99.7 99.7 99.7 99.7
‘Czech’ 65.0 74.8 77.8 77.2 79.9

num 77.2 64.8 65.5 66.8 78.1
tns 77.2 66.8 67.1 67.1 76.3

prsn 88.0 75.0 74.3 73.4 86.5
VB pol 96.3 96.6 96.6 96.6 96.6

voice 88.0 88.0 88.0 88.0 88.0
‘French’ 61.8 61.3 61.0 61.3 67.5
‘Czech’ 61.3 61.1 60.8 61.1 67.1

overall ‘French’ 82.6 82.5 82.4 83.2 85.2
‘Czech’ 62.5 67.8 69.4 70.5 73.3

Table 2: English tagging forced-choice accuracy

Core Feature Mini Regexp Collins CMU 2:0 1:0 1:2
POS Par Link

num 79.1 81.3 81.3 82.2 81.2 83.8 83.9
JJ case 72.1 79.2 83.0 78.9 78.1 79.1 84.2

deg 100 100 100 100 100 100 100
‘Czech’ 67.6 72.2 76.0 74.3 70.4 73.4 77.9

num 99.7 99.7 99.7 99.7 99.7 99.7 99.7
NN case 68.5 75.5 78.6 77.9 72.6 72.5 78.1

‘Czech’ 68.1 75.2 78.3 77.7 72.2 72.1 77.8
tns 78.0 68.5 68.7 68.0 68.7 78.3 78.3

num 72.7 61.3 61.2 61.3 61.1 76.1 77.1
prsn 77.2 66.5 65.4 63.9 64.0 78.3 79.0

VB pol 96.3 96.6 96.6 96.5 96.5 96.5 96.6
voice 88.0 88.0 88.0 88.0 88.0 88.0 88.0

‘French’ 61.7 50.7 50.2 50.1 50.6 64.8 65.6
‘Czech’ 61.1 50.5 49.9 49.8 50.4 64.5 65.2

all ‘French’ 81.9 78.7 78.5 78.5 83.6 78.9 83.9
‘Czech’ 65.4 66.0 67.8 69.3 68.9 63.5 72.9

Table 3: English tagging F-measure
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Table 2 shows system accuracy on test data in
a forced-choice evaluation, where abstentions were
replaced by the most common tag for the each situa-
tion (the combination system is that one biased most
heavily towards recall.)

In addition to the individual features, we also list
‘pseudo-French’ and ‘pseudo-Czech’. These rep-
resent exact-match accuracies for composite fea-
tures comprising those features typically realized in
French or Czech POS taggers. For example, pseudo-
Czech verb accuracy of 67.1% indicates that for
67.1% of verb instances, the Czech-realized features
of number, tense, perfectivity, progressivity, polar-
ity, and voice were all correct. These give an indica-
tion of the quality of the starting point for crosslin-
gual bootstrapping to the respective languages.

Besides the forced-choice scenario, we were also
interested in the effect of allowing abstentions for
low-confidence cases. Table 3 shows the F-measure
of precision and recall for the individual systems, as
well as a range of combination systems. Figures 4
and 5 show (for two example features) the clear pre-
cision/recall tradeoff. Performance of the consensus
systems is higher than the individual parser-based
taggers at all levels of tag precision or recall.

Unfortunately, because MiniPar does its own inte-
grated tokenization and part-of-speech tagging, we
found that a significant portion of the errors seemed
to stem from discrepancies where MiniPar disagreed
on the segmentation or the core part-of-speech of the
words in question.

6 Cross-lingual POS Tag Projection and
Bootstrapping

Our cross-lingual POS tag projection process is sim-
ilar to Yarowsky et al. (2001). It begins by perform-
ing a statistical sentence and word alignment of the
bilingual corpora (described below), and then trans-
fers both the coarse- and fine-grained tags achieved
from classifier combination on the English side via
the higher confidence word alignments (based on the
intersection of the 1-best word alignments induced
from French to English and English to French. The
projected tags then serve as noisy monolingual train-
ing data in the source language.

There are several notable differences and exten-
sions: The first major difference is that the projected
fine-grained tag set is much more detailed, including
such additional properties as noun case, adjective
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case and number, and verb person, number, voice,
and polarity. Because these span the subtag features
normally assumed for Czech and French part-of-
speech taggers, the projection work presented here
for the first time shows the translingual projection
and induction of full-granularity Czech and French
taggers, rather than the much less complete and
coarser-grained prior projection work.

The other major differences are in the method
of target-language monolingual tagger generaliza-
tion from the projected tags. We pursue a combi-
nation of trie-based lexical prior models and local-
agreement-based context models. The lexical prior
trie model, as illustrated in Figure 6 for noun num-
ber, shows how the hierarchically-smoothed lexical
prior conditioned on variable length suffixes can as-
sign noun number probabilities to both previously
seen words (with full-word-length suffixes stored)
and to new words in test data, based on backoff to
partially matching suffixes.

The context models are based on exploiting agree-
ment phenomena of the fine-grained tag features in
local context. ���������
	����� ������	�����	�� for each word
token is a distance-weighted linear interpolation of
the posterior tag distributions assigned to its neigh-
bors by the trie-based lexical-prior model. Finally
��� subtag �word � is an equally-weighted linear inter-
polation of the ��� subtag � affix � trie model probabil-
ity and ��� subtag � context � context-agreement prob-
ability. Table 4 contrasts the performance of these
two models in isolation and combination.

All of these models condition their probabilities
first on the core part-of-speech of a word. We used
the methods of Yarowsky et al. (2001) to develop
a core part-of-speech tagger for French, based only
on the projected core tags, and used this as a basis
for fine-grained tags. We also ran experiments iso-
lating the question of fine-grained tagging, assuming
as input externally supplied core tags from the gold-
standard data. Table 4 shows results under both of
these assumptions.

For French, the training data was 15 million
words from the Canadian Hansards. Word align-
ments were produced using GIZA++ (Och and Ney,
2000) set to produce a maximum of one English
word link for each French word (i.e., a French-to-
English model). The test data was 111,000 words of
text from the Laboratoire de Recherche Appliquée
en Linguistique Informatique at the Université de
Montréal, annotated with person, number, and tense.

Suffix Pr(PLURAL
�
suffix) Pr(SINGULAR

�
suffix)

none 32.5 67.5
-s 66.5 33.5

-is 35.3 64.7
-ais 16.2 83.8

Figure 6: Example smoothed suffix trie probabilities
for French noun number

Several factors contributed to a fairly successful
set of results. The quality of the alignments is sub-
jectively very good; the morphological system of
French is relatively simple, and is a good match for
our suffix tries; Perhaps most importantly, the map-
pings between the English and the French tagsets
were for the most part simple and consistent. The
most prominent exception is verb tense.

For Czech, the training and testing data were from
the Reader’s Digest corpus. We used the first 63,000
words for testing, and the remaining 551,000 for
training, ignoring the translations of the test data and
the gold-standard tags on the training data.

It should be noted that the baseline (most likely
tag) performance is actually a supervised model us-
ing the target language monolingual goldstandard
data frequencies. The other results based on translin-
gual projection have no knowledge of the true most
likely tag, and hence occasionally underperform this
supervised “baseline”. Finally, one of the major rea-
sons for lower Czech performance is the currently
very poor quality of the bilingual word alignments.
However, using these diverse POS subtags as fea-
tures offers the potential for substantially improved
word alignment for morphologically rich languages,
one of the central downstream benefits of this re-
search.

7 Conclusion

We have demonstrated the feasibility of automati-
cally annotating English text with morphosyntactic
information at a much finer POS tag granularity than
in the standard Brown/Penn tagset, but at a POS de-
tail appropriate for tagging morphologically richer
language such as Czech or French. This is accom-
plished by using a classifier combination strategy to
integrate the analyses of four independent parsers,
achieving a consensus tagging with higher accuracy
than the best component parser.

Furthermore, we have demonstrated that the re-
sulting fine-grained POS tags can be successfully
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Feature Engl. Baseline Trie Vic. Comb.
Comb.

French (using correct core POS)
JJ-num 1:0 67.0 97.6 98.0 98.2

2:0 67.0 97.6 98.0 98.2
NN-num 1:0 71.2 94.3 94.7 94.6

2:0 71.2 94.3 94.7 94.6
VB-num 1:0 53.4 91.9 73.2 90.2

2:0 53.4 73.1 72.7 73.2
VB-prsn 1:0 88.0 76.9 78.7 77.7

2:0 88.0 92.9 93.0 93.4
VB-tns 1:0 47.6 86.2 71.7 73.9

2:0 47.6 54.7 51.9 53.8
VB- 1:0 26.8 48.1 43.4 47.1
exact 2:0 26.8 50.0 46.9 49.2

overall- 1:0 56.2 79.7 78.5 79.6
exact 2:0 56.2 80.3 79.6 80.3

French (induced core POS)
JJ-num 1:0 65.1 87.1 89.0 88.3

2:0 65.1 87.1 89.1 88.5
NN-num 1:0 66.6 87.5 87.8 87.9

2:0 66.6 87.5 87.8 87.9
VB-num 1:0 53.0 86.4 79.5 84.9

2:0 53.0 71.2 70.6 71.4
VB-prsn 1:0 75.1 67.4 69.7 68.4

2:0 75.1 80.4 80.8 81.1
VB-tns 1:0 43.3 65.1 62.0 64.2

2:0 43.3 49.0 46.3 48.2
VB-exact 1:0 24.1 43.9 40.2 43.0

2:0 24.1 45.3 42.2 44.6
overall- 1:0 52.6 73.3 72.5 73.4
exact 2:0 52.6 73.7 73.1 73.9

Czech (using correct core POS)
JJ-num 1:0 28.0 46.4 44.5 45.1

2:0 28.0 47.0 44.6 46.0
JJ-case 1:0 7.1 40.2 42.0 40.9

2:0 7.1 37.9 41.4 40.2
JJ-deg 1:0 89.2 85.6 86.8 86.6

2:0 89.2 85.6 86.8 86.6
JJ-exact 1:0 6.9 20.6 19.1 19.4

2:0 6.9 20.9 20.0 20.5
NN-num 1:0 52.2 71.1 69.6 70.7

2:0 52.2 71.1 69.4 70.8
NN-case 1:0 53.5 39.5 39.2 39.6

2:0 53.5 39.2 38.6 39.1
NN-exact 1:0 23.7 29.5 28.7 29.4

2:0 23.7 29.7 28.6 29.4
VB-num 1:0 57.0 71.6 69.1 70.7

2:0 57.0 71.2 69.7 71.4
VB-prsn 1:0 55.1 65.9 64.9 65.4

2:0 55.1 65.3 64.3 64.9
VB-voice 1:0 97.3 93.2 93.9 93.4

2:0 97.3 93.2 93.9 93.4
VB-pol 1:0 91.1 93.8 89.9 92.1

2:0 91.1 93.8 89.9 92.1
VB-exact 1:0 9.9 15.2 14.6 14.8

2:0 9.9 14.5 14.3 14.7
overall- 1:0 15.7 22.6 21.8 22.2
exact 2:0 15.7 22.5 21.7 22.3

Table 4: Accuracy of induced fine-grained tag-
gers, by core part-of-speech, feature, underlying en-
glish tagger combination (eng-comb.), and french
tagging method (most likely tag – baseline, suf-
fix trie (prefix trie for Czech verb polarity) – trie,
vicinity voting – vic., or trie/vicinity combination –
comb.)

projected to additional languages such as French and
Czech, generating stand-alone taggers capturing the
salient fine-grained POS subtag distinctions appro-
priate for these languages, including features such
as adjective number and case that are not morpho-
logically marked in the original English.
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Abstract 

 

In this paper we describe an alignment 

system that aligns English-Hindi texts 

at the sentence and word level in 

parallel corpora. We describe a simple 

sentence length approach to sentence 

alignment and a hybrid, multi-feature 

approach to perform word alignment. 

We use regression techniques in order 

to learn parameters which characterise 

the relationship between the lengths of 

two sentences in parallel text.  We use 

a multi-feature approach with 

dictionary lookup as a primary 

technique and other methods such as 

local word grouping, transliteration 

similarity (edit-distance) and a nearest 

aligned neighbours approach to deal 

with many-to-many word alignment.  

Our experiments are based on the 

EMILLE (Enabling Minority Language 

Engineering) corpus.  We obtained 

99.09% accuracy for many-to-many 

sentence alignment and 77% precision 

and 67.79% recall for many-to-many 

word alignment. 

 

1 Introduction 
 

Text alignment is not only used for the tasks such 

as bilingual lexicography or machine translation 

but also in other language processing applications 

such as multilingual information retrieval and word 

sense disambiguation.  Whilst resources like 

bilingual dictionaries and parallel grammars help 

to improve Machine Translation (MT) quality, text 

alignment, by aligning two texts at various levels 

(i.e. documents, sections, paragraphs, sentences 

and words), helps in the creation of such lexical 

resources (Manning & Schütze, 2003).   

 

In this paper, we describe a system that aligns 

English-Hindi texts at the sentence and word level.  

Our system is motivated by the desire to develop 

for the research community an alignment system 

for the English and Hindi languages.  Building on 

this, alignment results can be used in the creation 

of other Hindi language processing resources (e.g. 

part-of-speech taggers).  We present a simple 

sentence length approach to align English-Hindi 

sentences and a hybrid approach with local word 

grouping and dictionary lookup as the primary 

techniques to align words.   

 

2 Sentence Alignment 
 
Sentence alignment techniques vary from simple 

character-length or word-length techniques to more 

sophisticated techniques which involve lexical 

constraints and correlations or even cognates (Wu 

2000). Examples of such alignment techniques are 

Brown et al. (1991), Kay and Roscheisen (1993), 

Warwick et al. (1989), and the “align” programme 

by Gale and Church (1993).   

 

2.1 Length-based methods 

 
Length-based approaches are computationally 

better, while lexical methods are more resource 
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hungry. Brown et al. (1991) and Gale and Church 

(1993) are amongst the most cited works in text 

alignment work.  Purely length-based techniques 

have no concern with word identity or meaning 

and as such are considered knowledge-poor 

approaches.  The method used by Brown et al. 

(1991) measures sentence length in number of 

words.  Their approach is based on matching 

sentences with the nearest length. Gale and Church 

(1993) used a similar algorithm, but measured 

sentence length in number of characters.  Their 

method performed well on the Union Bank of 

Switzerland (UBS) corpus giving a 2% error rate 

for 1:1 alignment.   

 

2.2 Lexical methods 

 
Moving towards knowledge-rich methods, lexical 

information can be vital in cases where a string 

with the same length appears in two languages. 

Kay and Roscheisen (1993) tried lexical methods 

for sentence alignment.  In their algorithm, they 

consider the most reliable pair of source and target 

sentences, i.e. those that contain many possible 

lexical correspondences. They achieved 96% 

coverage on Scientific American articles after four 

passes of the algorithm. Other examples of lexical 

methods are Warwick et al. (1989), Mayers et al. 

(1998), Chen (1993) and Haruno and Yamazaki 

(1996).   

 

Warwick et al. (1989) calculate the probability of 

word pairings on the basis of frequency of source 

word and the number of possible translations 

appearing in target segments.  They suggest using 

a bilingual dictionary to build word-pairs. Mayers 

et al. (1998) propose a method that is based on a 

machine readable dictionary.  Since bilingual 

dictionaries contain base forms, they pre-process 

the text to find the base form for each word. They 

tried this method in an English-Japanese alignment 

system and got accuracy of about 89.5% for 1-to-1 

and 42.9% for 2-to-1 sentence alignments. Chen 

(1993) constructs a simple word-to-word 

translation model and then takes the alignment that 

maximizes the likelihood of generating the corpus 

given the translation model. Haruno and Yamazaki 

(1996) use a POS tagger for source and target 

languages and use an online dictionary to find 

matching word pairs.  Haruno and Yamazaki 

(1996) pointed out that though dictionaries cannot 

capture context dependent keywords in the corpus, 

they can be very useful to obtain information about 

words that appear only once in the corpus.  Lexical 

methods for sentence alignment may also result in 

partial word alignment.  Given that lexical methods 

can be computationally expensive, our idea was to 

try a simple length-based approach similar to that 

of Brown et al. (1991) for sentence alignment and 

then use lexical methods to align words within 

aligned sentences. 

 

2.3 Algorithm 

 
We use English-Hindi parallel data from the 

EMILLE corpus for our experiments.  EMILLE is 

a 63 Million word electronic corpus of South Asian 

languages, especially those spoken as minority 

languages in UK.  It has around 120,000 words of 

parallel data in each of English, Hindi, Urdu, 

Punjabi, Bengali, Gujarati, Sinhala and Tamil 

(Baker et al., 2004).   

 

 

Figure 2.1 Sentence Alignment Parameter  

Learning algorithm 
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Table 2.1 Rules for the Sentence Alignment Algorithm 

Rule If Hindi:English Alignment 

H1 |hi| - (|ej| + |ej+1|) < 0.17 * |hi| 1-To-2 

H2 |hi| - ( |ej| + |ej+1| + |ej+2| ) < 0.17 * |hi| 1-To-3 

E1 |ej| - ( |hi| + |hi+1| ) < 0.17 * |ej | 2-To-1 

E2 |ej| - ( |hi| + |hi+1| + |hi+2| ) < 0.14 * |ej| 3-To-1 

Default ( |ej| = |hi| )  ||  (Rule H1 and E1 Fails) 1-To-1 

Examining the data, we observe that it is possible 

to align one English sentence with one or more 

Hindi sentences or vice-versa.  In the method 

described below, sentence length is calculated in 

number of words. We define our task as that of 

learning rules that characterise the relationship 

between the lengths of two sentences in parallel 

texts.  We used 60 manually aligned paragraphs 

from the EMILLE corpus, each with an average of 

3 sentences, as a dataset for our learning task.  

Initially we derived minimum and maximum 

length differences in percentages for each of the 

one-to-one, one-to-two and one-to-three parallel 

sentence pairs. Later we used these values as input 

to our algorithm to learn new rules that maximize 

the probability of aligning sentences.   

 

Learning: Let T = [1:1, 1:2, 1:3, 2:1, 3:1], a set of 

possible alignment types between the English and 

Hindi sentences.  For each alignment type t ∈ T, 

minimum and maximum length differences in 

number of words, normalized to percentages, can 

be described as mint and maxt.   For each alignment 

type t ∈ T, a constant parameter δt, where δt ∈ 

[mint , mint + 0.01, mint + 0.02, …, maxt ] was 

learned using an algorithm described in figure 2.1.    

δt is a value that describes the length relationship 

between the sentences of a pair of type t. For 

example, given a pair of one Hindi and two 

English sentences and a value δt, where t = 1:2, it 

is possible to check if these sentences can be 

aligned with each other.  Suppose for a given pair 

of parallel sentences that consist of hi (Hindi 

sentence at i
th
 position) and ej and ej+1 (English 

sentences at j
th
 and j+1

th
 positions), let |hi|, |ej| and 

|ej+1| be the lengths of Hindi and English sentences. 

hi, ej and ej+1 are said to have 1:2 alignment if |hi| - 

(|ej| + |ej+1|) < 0.17 * |hi|, i.e. the difference 

between the length of the Hindi sentence and the 

length of the two consecutive English sentences is 

less than (δt=1:2 = 0.17) times the length of the 

Hindi sentence.  Table 2.1 lists rules for different 

possible alignments. Before we decide on the final 

alignment, we check each possibility of one Hindi 

sentence being aligned with one, two or three 

consecutive English sentences and vice-versa.  We 

use rules H1 and H2 to check the possibility of one 

Hindi sentence being aligned with two or three 

consecutive English sentences.  Similarly, rules E1 

and E2 are used to check the possibility of one 

English sentence being aligned with two or three 

consecutive Hindi sentences. If none of the rules 

from H1, H2, E1 and E2 return true, we consider 

the default alignment (1-To-1) between the English 

and Hindi sentences.  We give preference to the 

higher alignment over the possible lower 

alignments, i.e. given 1-To-2 and 1-To-3 possible 

alignment mappings, we consider 1-To-3 mapping.  

We tested our algorithm on parallel texts with total 

of 3441 English-Hindi sentence pairs and obtained 

an accuracy of 99.09%; i.e., the correctly aligned 

pairs were 3410. 

 

3 Word Alignment 
 
Extending sentence alignment to word alignment is 

a process of locating corresponding word pairs in 

two languages.  In some cases, a word is not 

translated, or is translated by several words.  A 

word can also be a part of an expression that is 

translated as a whole, and therefore the entire 

expression must be translated as a whole (Manning 

& Schütze, 2003).  We present a hybrid method for 

many-to-many word alignment.  Hindi is a partial 

free order language where the order of word 

groups in a Hindi sentence is not fixed, but the 

order of words within groups is fixed (Ray et al., 

2003).  According to Ray et al. (2003), fixed order 

word group extraction is essential for decreasing 

the load on the free word order parser.  The word 

alignment algorithm takes as input a pair of aligned 

sentences and groups words in sentences of both 

languages.  We have observed a few facts about 

the Hindi language. For example, there are no 
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articles in Hindi (Bal Anand, 2001).  Since there 

are no articles in Hindi, articles are aligned to null.   

 

3.1 Local word grouping 

 
A separate group is created for each token in the 

English text.  Every English word has one property 

associated with it: the lemma of the word. This is 

necessary because a dictionary lookup approach is 

at the heart of our word alignment algorithm.  

Verbs are used in different inflected forms in 

different sentences.  For a verb, it is common not 

to find all inflected forms listed in a dictionary, i.e. 

most dictionaries contain verbs only in their base 

forms. Therefore we use a morphological analyzer 

to find the lemma of each English word.   

 

Word groups in Hindi are created using two 

resources: a Hindi gazetteer list that contains a 

large set of named entities (NE) and a rule file that 

contains more than 250 rules. The gazetteer list is 

available as a part of Hindi Gazetteer Processing 

Resource in GATE (Maynard et al., 2003).  For 

each rule in the rule file, it contains the following 

information:  

1. Hindi Regular Expression (RE) for a word 

or phrase.  This must match one or more 

words in the Hindi sentence. 

2. Group name or a part-of-speech category. 

3. Expected English word(s) (EEW) that this 

Hindi word group may align to. 

4. Expected Number of English words (NW) 

that the Hindi group may align to. 

5. In case a group of one or more English 

words aligns with a group of one or more 

Hindi words, information about the key 

words (KW) in both groups.  Key words 

must match each other in order to align 

English-Hindi groups. 

6. A rule to convert the Hindi word into its 

base form (BF). 

Rules in the rule file identify verbs, postpositions, 

noun phrases and also a set of words, whose 

translation is expected to occur in the same order 

as the English words in the English sentence.  The 

local word grouping algorithm considers one rule 

at a time and tries to match the regular expression 

in the Hindi sentence.  If the expression is 

matched, a separate group for each found pattern is 

created.  When a Hindi group is created, based on 

its pattern type, one of the following categories is 

assigned to that group: 
 

proper-noun city job-title location 

country number day-unit date-unit 

month-unit verb auxiliary pronoun 

post-position other   
 

These rules have been obtained mainly through 

consulting Hindi grammar material (Bal Anand, 

2001 and Ta, 2002) and by observing the EMILLE 

corpus. For example, consider the following rules:  
 

NNNNoooo    RERERERE    CatCatCatCat    EEWEEWEEWEEW    NNNNWWWW    KWKWKWKW    BFBFBFBF    

1 बावन num fifty two 2   

2 (.)+ रहा verb   1  

3 (.)+ त ेथे verb   1 1,ते = ना 

4 (.)+ के िलये prep for (.)+ 2 1-2  

5 अलग अलग other different 1   
i) “रहा “, “रहे”, “रही” are used to indicate the progressive tense.  They 

can be seen as analogous to the English (-ing) ending. 

ii) “ते”, “ता”, and “ती” are used as verb endings to indicate the habitual 

tense.  They must agree with subject number and gender. 

iii) “थे” is a past tense conjunction of the verb “होना”. 
 

In the first rule, if we find a word “बावन” (bavan) 
in Hindi, we mark it as a “Number” and search for 

the English string with two words that is equal to 

the expected string “fifty two”.  In the second rule, 

we locate a string where the second word is “रहा” 

(raha). “1” in the fifth column specifies that the first 

word is the keyword. We use the dictionary to 

locate the word in the English sentence that 

matches with the key word. If the English word is 

located, we align “(.)+ रहा” with the English word 

found. In the third rule, if we find a Hindi string 

with two words where the first word ends with “ते” 
(te) and the second word is “थे” (the), we group them 

as a verb.  As specified in the sixth column, we 

replace the characters “ते” with “ना” (na) to convert 

the first word into its base form (e.g. “गाते” (gaate) 

into “गाना” (gaana)). In the fourth rule, we align “X 

के िलय”े with “For X”, where “For” = “के िलय”े. As 

specified in the fifth column, we align the first 

word in Hindi with the second word in English. In 

the final example, we group two words that are 

identical to each other.  For example: "अलग अलग" 

(alag alag) which means “different” in English.  

Such bigrams are used to stress the importance of a 

word/activity in a sentence. 
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Figure 3.1 Dictionary Lookup Approach 

 

example, in rule 3 and 4 if the word ends with 

either of ता, त ेor ती followed by (PH), it is assumed 

that the word is a verb.  The formula for finding 

the lemma of any Hindi verb is: infinitive = root 

verb + “नानानाना”.  Sometimes it is possible to predict 

the corresponding English translation. For 

example, for the postposition “के सामन”े, one is 

likely to find the preposition “in front of” in the 

English sentence.  We store this information as an 

expected English word(s) in Hindi Word Groups 

(HWGs) and search for it in the English sentence.  

In the case of rules 4 and 5, though the HWG 

contains more than one word, only one is the actual 

verb (key word) that is expected to be available in 

a dictionary.  We specify the index of this key 

word in the HWG, so as to consider only the word 

at the specified index to compare with key word in 

English word group.  If they match, the full HWG 

is aligned to the word in English sentence.   

 

3.2 Alignment Algorithm 

 
After applying the local word grouping rules to the 

Hindi sentence(s), based on their categories of 

HWGs, we use four methods to process and align 

HWGs with their respective English Word Groups. 

   

1. Dictionary lookup approach (DL) 

2. Transliteration similarity approach (TS) 

3. Expected English words approach (EEW) 

4. Nearest aligned neighbour approach 

 

Whilst the verbs and other groups are processed 

with DL approach, HWGs with categories such as 

proper nouns, city, job-title, location, and country 

are processed with TS approach. HWGs such as 

number, day-unit, date-unit, month-unit, auxiliary, 

pronoun and postpositions, where the expected 

English words are specified, are processed with 

EEW approach.  Sometimes the combination of 

DL and TS is also used to identify the proper 

alignment.  At the end, nearest aligned neighbour 

approach is used to align the unaligned HWGs. 

 

Dictionary Lookup 

 
The corpus we used in our experiments is encoded 

in Unicode and therefore the word matching 

process requires dictionary entries to be in Unicode 

encoding. The only English-Hindi dictionary we 

found is called, “shabdakoSha” and is freely 

available from (WWW2).  In this dictionary, the 

ITRANS transliteration system is followed, i.e. 

Hindi entries are not written in the Devanagari 

script, but in the Roman script. This dictionary has 

around 15,000 English words, each with an 

average of 4 relevant Hindi words. Following  
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Figure 3.2 Nearest Aligned Neighbours Approach 

 

ITRANS conventions, a parser was developed to 

convert all these entries into Unicode.  Given a set 

of English and Hindi words, the algorithm 

presented in figure 3.1 is executed to search for the 

best translation among the English words.  

 

Transliteration Similarity 

 

A transliteration system maintains a consistent 

correspondence between the alphabets of two 

languages, irrespective of sound (Manning & 

Schütze, 2003).  Given two words, each from a 

different language, we define “transliteration 

similarity” as the measure of likeness between 

them.  This could exist due to the word in one 

language being inherited or adopted by the other 

language, or because the word is a proper noun. 

Named entities such as city, job-title, location, 

country and proper nouns, all recognized by the 

local word grouping algorithm are compared using 

a transliteration similarity approach. This likeness 

is counted using a table that lists letter 

correspondences between the alphabets of two 

languages.  For the English and Hindi languages, it 

is possible to come up with a table that defines 

letter correspondence between the alphabets of two 

languages.  For example,  

 

A � अ, B � ब, Bh � भ, Ch � च,  

D � द,  Dh � ध and so on… 

 

A bidirectional mapping is established between 

each character in the English and Hindi alphabets.  

When DL is not able to find any specific English 

word in dictionary, this approach is used to find the 

transliteration similarity between the unaligned 

words. Sometimes because the words in a Hindi 

sentence are not spelled correctly, when DL issues 

a query to dictionary, none of the Hindi words 

appearing in a Hindi sentence match with the 

words returned from dictionary.  We use a 

dynamic programming algorithm “edit-distance” to 

calculate similarity between these words 

(WWW3).  According to WWW3, “The edit 

distance of two strings, s1 and s2, is defined as the 

minimum number of point mutations required to 

change s1 into s2, where a point mutation is one 

of:  change a letter, insert a letter or delete a 

letter.” The lower the distance, the greater the 

similarity. From our experiments of 100 proper 

noun pairs, we found that if the similarity is greater 

than 75%, the words can be reliably aligned with 

each other.  We consider a pair with the highest 

similarity.  E.g.: Aswani ���� अ।सवानीअ।सवानीअ।सवानीअ।सवानी.  Here we 

remove vowels in both strings, except those that 

appear at the start of words.  After the removal of 

vowels from the English and Hindi texts, the 

resulting text would be: Aswn ���� असवनअसवनअसवनअसवन.  The 

Hindi text is then converted into English text using 

the transliteration table:  Aswn ���� Aswn. The two 

texts are then compared using an “edit-distance” 

algorithm.  

 

Expected English word(s) 

 
For HWGs which are categorised as numbers, job-

titles or postpositions, it is possible to specify the 

expected English word or words that can be found 

in the parallel English text. The algorithm retrieves 

expected English word(s) from the HWGs and tries 

to locate them in the English sentence. This 

approach can be useful to locate one or more 

English words that align with one or more Hindi 

words.  For example, the number “बयािलस” whose 

equivalent translation in English is “forty two” has 

two words in English, and the postposition “के 

सामन”े, whose equivalent translation in English is 

“in front of”, has three words in English.  These 

are examples of many-to-many word alignment. 
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Nearest Aligned Neighbours 

 

At the end of the first three stages of the word 

alignment process, many words remain unaligned.  

Here we introduce a new approach, called the 

“Nearest Aligned Neighbours approach”.  In 

certain cases, words in English-Hindi phrases 

follow a similar order.  The Nearest Aligned 

Neighbours approach works on this principle and 

aligns one or more words with one of the English 

words. A local word grouping algorithm, explained 

in section 3.1, groups such phrases and tags them 

as “group”. Considering one HWG at a time, we 

find the nearest Hindi word that is already aligned 

with one or more English word(s).  We assume that 

the words in English-Hindi phrases follow a 

similar order and align the rest words in that group 

accordingly.  An example of alignment using the 

Nearest Aligned Neighbours approach is given in 

Figure 3.2. Word H4 is already aligned with E5, 

and H3, H5, H6 and H7 are yet to be aligned.  The 

local word grouping algorithm has tagged a 

sequence of H4, H5, H6 and H7 as a single group.  

At the same time, H6 and H7 are also grouped as a 

single group.  The algorithm searches for the 

aligned Hindi word, which, in this case, is H4 and 

aligns H5 with E6 and the group of H6 and H7 

with E7.   

 

4 Results 

 

 
Figure 4.1 Word Alignment Results 

 

We performed manual evaluation of our word 

alignment algorithm on a set of parallel data 

aligned at the sentence level.  The parallel texts 

consist of 3954 English and 5361 Hindi words 

taken from the EMILLE Corpus.  We calculate our 

results in terms of the number of aligned English 

word groups. The precision is calculated as the 

ratio of the number of correctly aligned English 

word groups to the total number of English word 

groups aligned by the system, and recall is 

calculated as the ratio of the number of correctly 

aligned English word groups to the total number of 

English word groups created by the system. We 

obtained 77% precision and 67.79% recall for 

many-to-many word alignment.  Figure 4.1 shows 

an example of the word alignment results.  

 

5 Future works 

 
It would be useful to evaluate separate stages (i.e. 

DL, TS, EEW and Nearest Aligned Neighbours 

approach) in the word alignment algorithm 

separately.  We aim to do this as part of a failure 

analysis of the algorithm in future. We also aim to 

improve our alignment results by using Part-of-

Speech information for the English texts. We aim 

to implement or use local word grouping rules for 

the English text and improve our existing word 

grouping rules for the Hindi texts.  The Nearest 

Aligned Neighbours approach suggests possible 

alignments, but we are trying to integrate some 

statistical ranking algorithms in order to suggest 

more reliable pairs of alignment. Yarowsky et al. 

(2001) introduced a new method for developing a 

Part-of-Speech tagger by projecting tags across 

aligned corpora.  They used this technique to 

supply data for a supervised learning technique to 

acquire a French part-of-speech tagger. We aim to 

use our English-Hindi word alignment results to 

bootstrap a Part-of-Speech tagger for the Hindi 

language.   
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Abstract

This paper presents the task definition,
resources, participating systems, and
comparative results for the shared task
on word alignment, which was organized
as part of the ACL 2005 Workshop on
Building and Using Parallel Texts. The
shared task included English–Inuktitut,
Romanian–English, and English–Hindi
sub-tasks, and drew the participation of ten
teams from around the world with a total of
50 systems.

1 Defining a Word Alignment Shared Task

The task of word alignment consists of finding cor-
respondences between words and phrases in parallel
texts. Assuming a sentence aligned bilingual corpus
in languages L1 and L2, the task of a word alignment
system is to indicate which word token in the corpus
of language L1 corresponds to which word token in
the corpus of language L2.

This year’s shared task follows on the success of
the previous word alignment evaluation that was or-
ganized during the HLT/NAACL 2003 workshop on
”Building and Using Parallel Texts: Data Driven Ma-
chine Translation and Beyond” (Mihalcea and Ped-
ersen, 2003). However, the current edition is dis-
tinct in that it has a focus on languages with scarce
resources. Participating teams were provided with
training and test data for three language pairs, ac-
counting for different levels of data scarceness: (1)
English–Inuktitut (2 million words training data),
(2) Romanian–English (1 million words), and (3)
English–Hindi (60,000 words).

Similar to the previous word alignment evaluation
and with the Machine Translation evaluation exercises
organized by NIST, two different subtasks were de-
fined: (1) Limited resources, where systems were al-
lowed to use only the resources provided. (2) Un-
limited resources, where systems were allowed to use
any resources in addition to those provided. Such re-
sources had to be explicitly mentioned in the system
description.

Test data were released one week prior to the dead-
line for result submissions. Participating teams were
asked to produce word alignments, following a com-
mon format as specified below, and submit their out-
put by a certain deadline. Results were returned to
each team within three days of submission.

1.1 Word Alignment Output Format

The word alignment result files had to include one line
for each word-to-word alignment. Additionally, they
had to follow the format specified in Figure 1. Note
that the

��� �
and confidence fields overlap in their

meaning. The intent of having both fields available
was to enable participating teams to draw their own
line on what they considered to be a Sure or Probable
alignment. Both these fields were optional, with some
standard values assigned by default.

1.1.1 A Running Word Alignment Example

Consider the following two aligned sentences:
[English] � s snum=18 � They had gone . � /s �
[French] � s snum=18 � Ils étaient allés . � /s �

A correct word alignment for this sentence is:

18 1 1
18 2 2
18 3 3
18 4 4
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sentence no position L1 position L2 [ ��� � ] [confidence]

where:�
sentence no represents the id of the sentence within the

test file. Sentences in the test data already have an id as-
signed. (see the examples below)�

position L1 represents the position of the token that is
aligned from the text in language L1; the first token in each
sentence is token 1. (not 0)�

position L2 represents the position of the token that is
aligned from the text in language L2; again, the first token
is token 1.�

S �P can be either S or P, representing a Sure or Probable
alignment. All alignments that are tagged as S are also con-
sidered to be part of the P alignments set (that is, all align-
ments that are considered ”Sure” alignments are also part of
the ”Probable” alignments set). If the ��� � field is missing, a
value of S will be assumed by default.�

confidence is a real number, in the range (0-1] (1 meaning
highly confident, 0 meaning not confident); this field is op-
tional, and by default confidence number of 1 was assumed.

Figure 1: Word Alignment file format

stating that: all the word alignments pertain to sen-
tence 18, the English token 1 They aligns with the
French token 1 Ils, the English token 2 had aligns with
the French token 2 étaient, and so on. Note that punc-
tuation is also aligned (English token 4 aligned with
French token 4), and counts toward the final evalua-
tion figures.

Alternatively, systems could also provide an
��� �

marker and/or a confidence score, as shown in the fol-
lowing example:

18 1 1 1
18 2 2 P 0.7
18 3 3 S
18 4 4 S 1

with missing
� � �

fields considered by default S, and
missing confidence scores considered by default 1.

1.2 Annotation Guide for Word Alignments

The word alignment annotation guidelines are similar
to those used in the 2003 evaluation.

1. All items separated by a white space are consid-
ered to be a word (or token), and therefore have
to be aligned (punctuation included).

2. Omissions in translation use the NULL token,
i.e. token with id 0.

3. Phrasal correspondences produce multiple word-
to-word alignments.

2 Resources

The shared task included three different language
pairs, accounting for different language and data
characteristics. Specifically, the three subtasks ad-
dressed the alignment of words in English–Inuktitut,
Romanian–English, and English–Hindi parallel texts.
For each language pair, training data were provided to
participants. Systems relying only on these resources
were considered part of the Limited Resources sub-
task. Systems making use of any additional resources
(e.g. bilingual dictionaries, additional parallel cor-
pora, and others) were classified under the Unlimited
Resources category.

2.1 Training Data

Three sets of training data were made available. All
data sets were sentence-aligned, and pre-processed
(i.e. tokenized and lower-cased), with identical pre-
processing procedures used for training, trial, and test
data.

English–Inuktitut. A collection of sentence-
aligned English–Inuktitut parallel texts from the
Legislative Assembly of Nunavut (Martin et al.,
2003). This collection consists of approximately
2 million Inuktitut tokens (1.6 million words) and
4 million English tokens (3.4 million words). The
Inuktitut data was originally encoded in Unicode
representing a syllabics orthography (qaniujaaqpait),
but was transliterated to an ASCII encoding of the
standardized roman orthography (qaliujaaqpait) for
this evaluation.

Romanian–English. A set of Romanian–English
parallel texts, consisting of about 1 million Romanian
words, and about the same number of English words.
This is the same training data set as used in the 2003
word alignment evaluation (Mihalcea and Pedersen,
2003). The data consists of:

� Parallel texts collected from the Web using a
semi-supervised approach. The URLs format
for pages containing potential parallel transla-
tions were manually identified (mainly from the
archives of Romanian newspapers). Next, texts
were automatically downloaded and sentence
aligned. A manual verification of the alignment
was also performed. These data collection pro-
cess resulted in a corpus of about 850,000 Roma-
nian words, and about 900,000 English words.

66



� Orwell’s 1984, aligned within the MULTEXT-
EAST project (Erjavec et al., 1997), with about
130,000 Romanian words, and a similar number
of English words.

� The Romanian Constitution, for about 13,000
Romanian words and 13,000 English words.

English–Hindi. A collection of sentence aligned
English–Hindi parallel texts, from the Emille project
(Baker et al., 2004), consisting of approximately En-
glish 60,000 words and about 70,000 Hindi words.
The Hindi data was encoded in Unicode Devangari
script, and used the UTF–8 encoding. The English–
Hindi data were provided by Niraj Aswani and Robert
Gaizauskas from University of Sheffield (Aswani and
Gaizauskas, 2005b).

2.2 Trial Data

Three sets of trial data were made available at the
same time training data became available. Trial sets
consisted of sentence aligned texts, provided together
with manually determined word alignments. The
main purpose of these data was to enable participants
to better understand the format required for the word
alignment result files. For some systems, the trial data
has also played the role of a validation data set used
for system parameter tuning. Trial sets consisted of
25 English–Inuktitut and English–Hindi aligned sen-
tences, and a larger set of 248 Romanian–English
aligned sentences (the same as the test data used in
the 2003 word alignment evaluation).

2.3 Test Data

A total of 75 English–Inuktitut, 90 English–Hindi,
and 200 Romanian–English aligned sentences were
released one week prior to the deadline. Participants
were required to run their word alignment systems on
one or more of these data sets, and submit word align-
ments. Teams were allowed to submit an unlimited
number of results sets for each language pair.

2.3.1 Gold Standard Word Aligned Data

The gold standard for the three language pair align-
ments were produced using slightly different align-
ment procedures.

For English–Inuktitut, annotators were instructed to
align Inuktitut words or phrases with English phrases.
Their goal was to identify the smallest phrases that
permit one-to-one alignments between English and

Inuktitut. These phrase alignments were converted
into word-to-word alignments in the following man-
ner. If the aligned English and Inuktitut phrases
each consisted of a single word, that word pair was
assigned a Sure alignment. Otherwise, all possi-
ble word-pairs for the aligned English and Inuktitut
phrases were assigned a Probable alignment. Dis-
agreements between the two annotators were decided
by discussion.

For Romanian–English and English–Hindi, anno-
tators were instructed to assign an alignment to all
words, with specific instructions as to when to as-
sign a NULL alignment. Annotators were not asked
to assign a Sure or Probable label. Instead, we had an
arbitration phase, where a third annotator judged the
cases where the first two annotators disagreed. Since
an inter-annotator agreement was reached for all word
alignments, the final resulting alignments were con-
sidered to be Sure alignments.

3 Evaluation Measures

Evaluations were performed with respect to four dif-
ferent measures. Three of them – precision, recall,
and F-measure – represent traditional measures in In-
formation Retrieval, and were also frequently used
in previous word alignment literature. The fourth
measure was originally introduced by (Och and Ney,
2000), and proposes the notion of quality of word
alignment.

Given an alignment � , and a gold standard align-
ment � , each such alignment set eventually consist-
ing of two sets ��� , ��� , and ��� , ��� corresponding
to Sure and Probable alignments, the following mea-
sures are defined (where � is the alignment type, and
can be set to either S or P).

�	��
 � � ������ �
� � � � (1)

� � 
 � � ������ �
� ��� � (2)

� � 
 � �	� � �
� ��� � � (3)

��� � 
���� � ��� �� � � � � ��� �� � �
� ����� � � � � � (4)

Each word alignment submission was evaluated in
terms of the above measures. Given numerous (con-
structive) debates held during the previous word align-
ment evaluation, which questioned the informative-
ness of the NULL alignment evaluations, we decided
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Team System name Description

Carnegie Mellon University SPA (Brown et al., 2005)
Information Sciences Institute / USC ISI (Fraser and Marcu, 2005)
Johns Hopkins University JHU (Schafer and Drabek, 2005)
Microsoft Research MSR (Moore, 2005)
Romanian Academy Institute of Artificial Intelligence TREQ-AL, MEBA, COWAL (Tufis et al., 2005)
University of Maryland / UMIACS UMIACS (Lopez and Resnik, 2005)
University of Sheffield Sheffield (Aswani and Gaizauskas, 2005a)
University of Montreal JAPA, NUKTI (Langlais et al., 2005)
University of Sao Paulo, University of Alicante LIHLA (Caseli et al., 2005)
University Jaume I MAR (Vilar, 2005)

Table 1: Teams participating in the word alignment shared task

to evaluate only no-NULL alignments, and thus the
NULL alignments were removed from both submis-
sions and gold standard data. We conducted there-
fore 7 evaluations for each submission file: AER,
Sure/Probable Precision, Sure/Probable Recall, and
Sure/Probable F-measure, all of them measured on
no-NULL alignments.

4 Participating Systems

Ten teams from around the world participated in the
word alignment shared task. Table 1 lists the names
of the participating systems, the corresponding insti-
tutions, and references to papers in this volume that
provide detailed descriptions of the systems and addi-
tional analysis of their results.

Seven teams participated in the Romanian–English
subtask, four teams participated in the English–
Inuktitut subtask, and two teams participated in the
English–Hindi subtask. There were no restrictions
placed on the number of submissions each team could
make. This resulted in a total of 50 submissions
from the ten teams, where 37 sets of results were
submitted for the Romanian–English subtask, 10 for
the English–Inuktitut subtask, and 3 for the English–
Hindi subtask. Of the 50 total submissions, there were
45 in the Limited resources subtask, and 5 in the Un-
limited resources subtask. Tables 2, 4 and 6 show all
of the submissions for each team in the three subtasks,
and provide a brief description of their approaches.

Results for all participating systems, including pre-
cision, recall, F-measure, and alignment error rate are
listed in Tables 3, 5 and 7. Ranked results for all sys-
tems are plotted in Figures 2, 3 and 4. In the graphs,
systems are ordered based on their AER scores. Sys-
tem names are preceded by a marker to indicate the
system type: L stands for Limited Resources, and U

stands for Unlimited Resources.
While each participating system was unique, there

were a few unifying themes. Several teams had ap-
proaches that relied (to varying degrees) on an IBM
model of statistical machine translation (Brown et al.,
1993), with different improvements brought by dif-
ferent teams, consisting of new submodels, improve-
ments in the HMM model, model combination for
optimal alignment, etc. Se-veral teams used sym-
metrization metrics, as introduced in (Och and Ney,
2003) (union, intersection, refined), most of the times
applied on the alignments produced for the two di-
rections source–target and target–source, but also as
a way to combine different word alignment systems.
Significant improvements with respect to baseline
word alignment systems were observed when the vo-
cabulary was reduced using simple stemming tech-
niques, which seems to be a particularly effective
technique given the data sparseness problems associ-
ated with the relatively small amounts of training data.

In the unlimited resources subtask, systems made
use of bilingual dictionaries, human–contributed word
alignments, or syntactic constraints derived from a de-
pendency parse tree applied on the English side of the
corpus.

When only small amounts of parallel corpora were
available (i.e. the English–Hindi subtask), the use
of additional resources resulted in absolute improve-
ments of up to 20% as compared to the case when
the word alignment systems were based exclusively
on the parallel texts. Interestingly, this was not the
case for the language pairs that had larger training
corpora (i.e. Romanian–English, English–Inuktitut),
where the limited resources systems seemed to lead
to comparable or sometime even better results than
those that relied on unlimited resources. This suggests
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that the use of additional resources does not seem to
contribute to improvements in word alignment quality
when enough parallel corpora are available, but they
can make a big difference when only small amounts
of parallel texts are available.

Finally, in a comparison across language pairs, the
best results are obtained in the English–Inuktitut task,
followed by Romanian–English, and by English–
Hindi, which corresponds to the ordering of the sizes
of the training data sets. This is not surprising since,
like many other NLP tasks, word alignment seems to
highly benefit from large amounts of training data, and
thus better results are obtained when larger training
data sets are available.

5 Conclusion

A shared task on word alignment was organized as
part of the ACL 2005 Workshop on Building and
Using Parallel Texts. The focus of the task was
on languages with scarce resources, with evalua-
tions of alignments for three different language pairs:
English–Inuktitut, English–Hindi, and Romanian–
English. The task drew the participation of ten teams
from around the world, with a total of 50 systems.
In this paper, we presented the task definition, re-
sources involved, and shortly described the partici-
pating systems. Comparative evaluations of results
led to insights regarding the development of word
alignment algorithms for languages with scarce re-
sources, with performance evaluations of (1) various
algorithms, (2) different amounts of training data, and
(3) different additional resources. Data and evalua-
tion software used in this exercise are available online
at http://www.cs.unt.edu/˜rada/wpt05.
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Tufiş and Bob Moore for their helpful comments con-
cerning the Romanian–English data. We would also
like to thank Benoit Farley for his valuable assistance
with the English–Inuktitut data.

We are very thankful to Niraj Aswani and Rob
Gaizauskas from University of Sheffield for making

possible the English–Hindi word alignment evalua-
tion. They provided sentence aligned training data
from the Emille project, as well as word aligned trial
and test data sets.

We are also grateful to all the Program Committee
members for their comments and suggestions, which
helped us improve the definition of this shared task.

References
N. Aswani and R. Gaizauskas. 2005a. Aligning words in english-

hindi parallel corpora. In (this volume).
N. Aswani and R. Gaizauskas. 2005b. A hybrid approach to align

sentences and words in English-Hindi parallel corpora. In Pro-
ceedings of the ACL Workshop on ”Building and Exploiting
Parallel Texts”, Ann Arbor, MI.

P. Baker, K. Bontcheva, H. Cunningham, R. Gaizauskas,
O. Hamza, A. Hardie, B. Jayaram, M. Leisher, A McEnery,
D Maynard, V. Tablan, C. Ursu, and Z. Xiao. 2004. Corpus
linguistics and south asian languages: Corpus creation and tool
development. Literary and Linguistic Computing, 19(4).

P. Brown, S. della Pietra, V. della Pietra, and R. Mercer. 1993.
The mathematics of statistical machine translation: parameter
estimation. Computational Linguistics, 19(2).

R. D. Brown, J.D. Kim, P. J. Jansen, and J. G. Carbonell. 2005.
Symmetric probabilistic alignment. In (this volume).

H. Caseli, M. G. V. Nunes, and M. L. Forcada. 2005. Lihla:
Shared task system description. In (this volume).

T. Erjavec, N. Ide, and D. Tufis. 1997. Encoding and parallel
alignment of linguistic corpora in six central and Eastern Eu-
ropean languages. In Proceedings of the Joint ACH/ALL Con-
ference, Queen’s University, Kingston, Ontario, June.

A. Fraser and D. Marcu. 2005. Isi’s participation in the romanian-
english alignment task. In (this volume).

P. Langlais, F. Gotti, and G. Cao. 2005. Nukti: English-inuktitut
word alignment system description. In (this volume).

A. Lopez and P. Resnik. 2005. Improved hmm alignment models
for languages with scarce resources. In (this volume).

J. Martin, H. Johnson, B. Farley, and A. Maclachlan. 2003.
Aligning and using an english-inuktitut parallel corpus. In
Proceedings of the HLT-NAACL Workshop on Building and
Using Parallel Texts: Data Driven Machine Translation and
Beyond, Edmonton, Canada.

R. Mihalcea and T. Pedersen. 2003. An evaluation exercise for
word alignment. In HLT-NAACL 2003 Workshop: Building
and Using Parallel Texts: Data Driven Machine Translation
and Beyond, Edmonton, Canada, May.

R. Moore. 2005. Association-based bilingual word alignment. In
(this volume).

F. Och and H. Ney. 2000. A comparison of alignment models
for statistical machine translation. In Proceedings of the 18th
International Conference on Computational Linguistics (COL-
ING 2000), Saarbrucken, Germany, August.

F.J. Och and H. Ney. 2003. A systematic comparison of vari-
ous statistical alignment models. Computational Linguistics,
29(1).

C. Schafer and E. Drabek. 2005. Models for inuktitut-english
word alignment. In (this volume).

D. Tufis, R. Ion, A. Ceausu, and D. Stefanescu. 2005. Combined
word alignments. In (this volume).

J.M. Vilar. 2005. Experiments using mar for aligning corpora. In
(this volume).

69



System Resources Description

JHU.AER.Emphasis.I Limited A word alignment system optimized for the characteristics of English–Inuktitut,
exploiting cross-lingual affinities at sublexical level and regular patterns of
transliteration. The system is based on classifier combination, performed under an
AER target evaluation metric.

JHU.AER.Emphasis.II Limited Same as JHU.AER.Emphasis.I, but with a different minimum required votes for
classifier combination.

JHU.F-meas.Emphasis Limited Same as JHU.AER.Emphasis.I, with classifier combination performed under an
F-measure target evaluation metric.

JHU.AER.F-meas.AER Limited Same as JHU.AER.Emphasis.I, with a dual emphasis on AER and F-measure.
DualEmphasis
JHU.Recall.Emphasis Limited Same as JHU.AER.Emphasis.I, with an emphasis on recall.

LIHLA Limited A word alignment tool based on language-independent heuristics. Starts with
two bilingual probabilistic lexicons (source-target and target-source) generated
by NATools (http://natura.di.uminho.pt/natura/natura/), which are combined with
some language-independent heuristics that try to find the best alignment.

UMIACS.limited Limited A system using IBM Model 4 with improvements brought in the HMM model.

UMontreal.NUKTI Limited A system based on computation of log-likelihood ratios between all Inuktitut
substrings and English words. Alignment with a greedy strategy trying to
optimize this association score.

UMontreal.Japa-cart Limited A system based on alignment with a sentence aligner where Inuktitut and English
words are considered to be sentences. In case a n-m alignment is produced, its
cartesian product is output as the final alignment.

UMontreal.Japa-nukti Limited Same as UMontreal.Japa-cart except for the treatment of the n-m pairs
(n,m � 1). Instead of generating the cartesian product, this method uses
the NUKTI approach to figure out which words should be aligned.

Table 2: Short description for English–Inuktitut systems

System ��� ��� ��� ��� �	� �
� AER
Limited Resources

JHU.AER.Emphasis.II 34.19% 76.79% 47.32% 96.66% 32.35% 48.37% 9.46%
JHU.AER.Emphasis.I 28.15% 82.25% 41.95% 90.65% 39.35% 54.88% 11.49%
JHU.F-measure.AER.DualEmphasis 19.71% 92.15% 32.47% 84.38% 58.62% 69.18% 14.25%
UMIACS.limited 49.86% 62.80% 55.59% 89.16% 16.68% 28.11% 22.51%
LIHLA 46.55% 73.72% 57.07% 79.53% 18.71% 30.30% 22.72%
JHU.F-measure.Emphasis 13.06% 91.81% 22.87% 70.67% 73.78% 72.19% 26.70%
UMontreal.nukti 12.24% 86.01% 21.43% 63.09% 65.87% 64.45% 34.06%
JHU.Recall.Emphasis 10.68% 93.86% 19.18% 62.63% 81.74% 70.92% 34.18%
UMontreal.Japa-nukti 9.62% 67.58% 16.84% 51.34% 53.60% 52.44% 46.64%
UMontreal.Japa-cart 0.00% 0.00% 0.00% 26.17% 74.49% 38.73% 71.27%

Table 3: Results for English–Inuktitut
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System Resources Description

CMU.SPA Limited A tool based on Symmetric Probabilistic Alignment (SPA), which maximizes
contiguous bi-directional translation probabilities of words in a selected source-language

n-gram and every possible target-language n-gram. Probabilities are derived
from a pair of probabilistic lexicons (source-to-target and target-to-source).
Only contiguous target-language n-grams are considered as possible alignments.

CMU.SPA Limited Same as CMU.SPA.contiguous, but both contiguous and non-contiguous target-
non-contiguous language n-grams are considered as possible alignments
CMU.SPA Unlimited Same as CMU.SPA.contiguous, but the probabilistic dictionaries were modified
human-augmented with word and phrasal translations extracted from a human alignment of 204

sentences in the training corpus.

ISI.RUN1 Limited A baseline word-based system using IBM Model 4 as implemented in Giza++.
Different subruns include the two separate direction En–Ro, Ro–En, as well as
the “union”, “intersection”, and “refined” symmetrization metrics, as defined in
(Och and Ney, 2003)

ISI.RUN2 Limited Same as ISI.RUN1, but uses stems of size 4 (instead of words) for both English
and Romanian.

ISI.RUN4 Limited A system using IBM Model 4 and a new submodel based on the intersection of
two starting alignments. The submodels are grouped into a log-linear model, with
optimal weights found through a search algorithm.

ISI.RUN5 Limited Same as ISI.RUN4, but with 5 additional submodels, using translation tables for
En–Ro, Ro–En, backoff fertility, zero or non-zero fertility English word penalty

UJaume.MAR Limited A new alignment model based on a recursive approach. Due to its high compu-
tational cost, heuristics have been used to split training and test data in
smaller chunks.

USaoPaulo.LIHLA Limited A word alignment tool based on language-independent heuristics. Starts with
two bilingual probabilistic lexicons (source-target and target-source) generated
by NATools (http://natura.di.uminho.pt/natura/natura/), which are combined with
some language-independent heuristics that try to find the best alignment.

MSR.word-align Limited A system based on competitive linking, first by log-likelihood-ratio association
score, then by probability of link given joint occurrence; constrained by measuring
monontonicity of alignment, and augmented with 1-2 and 2-1 alignments also
derived by competitive linking.

RACAI.MEBA-V1 Limited A system based on GIZA++, with a translation model constructed using seven
major parameters that control the contribution of various heuristics (cognates,
relative distance, fertility, displacement, etc.)

RACAI.MEBA-V2 Limited Same as RACAI.MEBA-V1, but with a different set of parameters.
RACAI.TREQ-AL Unlimited Same as RACAI.MEBA-V1, but with an additional resource consisting of a

translation dictionary extracted from the alignment of the Romanian and
English WordNet.

RACAI.COWAL Unlimited A combination (union) of RACAI.MEBA and RACAI.TREQ-AL.

UMIACS.limited Limited A system using IBM Model 4 with improvements brought in the HMM model.
UMIACS.unlimited Unlimited Same as UMIACS.limited, but also integrating a distortion model based on

a dependency parse built on the English side of the parallel corpus.

Table 4: Short description for Romanian–English systems
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System ��� ��� ��� ��� ��� ��� AER
Limited Resources

ISI.Run5.vocab.grow 87.90% 63.08% 73.45% 87.90% 63.08% 73.45% 26.55%
ISI.Run3.vocab.grow 87.93% 62.98% 73.40% 87.93% 62.98% 73.40% 26.60%
ISI.Run4.vocab.grow 88.31% 62.75% 73.37% 88.31% 62.75% 73.37% 26.63%
ISI.Run2.vocab.grow 81.84% 66.28% 73.25% 81.84% 66.28% 73.25% 26.75%
ISI.Run5.simple.union 81.78% 65.35% 72.64% 81.78% 65.35% 72.64% 27.36%
ISI.Run5.simple.normal 87.09% 61.93% 72.39% 87.09% 61.93% 72.39% 27.61%
ISI.Run4.simple.union 81.85% 64.69% 72.27% 81.85% 64.69% 72.27% 27.73%
ISI.Run5.simple.inverse 86.96% 61.75% 72.22% 86.96% 61.75% 72.22% 27.78%
ISI.Run3.simple.normal 87.11% 61.63% 72.19% 87.11% 61.63% 72.19% 27.81%
ISI.Run3.simple.union 81.00% 65.05% 72.15% 81.00% 65.05% 72.15% 27.85%
ISI.Run4.simple.normal 87.20% 61.34% 72.02% 87.20% 61.34% 72.02% 27.98%
ISI.Run5.simple.intersect 93.77% 58.33% 71.93% 93.77% 58.33% 71.93% 28.07%
ISI.Run3.simple.intersect 93.92% 57.96% 71.68% 93.92% 57.96% 71.68% 28.32%
ISI.Run3.simple.inverse 86.12% 61.37% 71.67% 86.12% 61.37% 71.67% 28.33%
ISI.Run4.simple.inverse 87.33% 60.78% 71.67% 87.33% 60.78% 71.67% 28.33%
ISI.Run4.simple.intersect 94.29% 57.42% 71.38% 94.29% 57.42% 71.38% 28.62%
ISI.Run2.simple.inverse 81.32% 63.32% 71.20% 81.32% 63.32% 71.20% 28.80%
ISI.Run2.simple.union 70.46% 71.31% 70.88% 70.46% 71.31% 70.88% 29.12%
RACAI MEBA-V1 83.21% 60.54% 70.09% 83.21% 60.54% 70.09% 29.91%
ISI.Run2.simple.intersect 94.08% 55.22% 69.59% 94.08% 55.22% 69.59% 30.41%
ISI.Run2.simple.normal 77.04% 63.20% 69.44% 77.04% 63.20% 69.44% 30.56%
RACAI MEBA-V2 77.90% 61.85% 68.96% 77.90% 61.85% 68.96% 31.04%
ISI.Run1.simple.grow 75.82% 62.23% 68.35% 75.82% 62.23% 68.35% 31.65%
UMIACS.limited 73.77% 61.69% 67.19% 73.77% 61.69% 67.19% 32.81%
ISI.Run1.simple.inverse 72.70% 57.34% 64.11% 72.70% 57.34% 64.11% 35.89%
ISI.Run1.simple.union 59.96% 68.85% 64.10% 59.96% 68.85% 64.10% 35.90%
MSR.word-align 79.54% 53.13% 63.70% 79.54% 53.13% 63.70% 36.30%
CMU.SPA.contiguous 64.96% 61.34% 63.10% 64.96% 61.34% 63.10% 36.90%
CMU.SPA.noncontiguous 64.91% 61.34% 63.07% 64.91% 61.34% 63.07% 36.93%
ISI.Run1.simple.normal 67.41% 56.81% 61.66% 67.41% 56.81% 61.66% 38.34%
ISI.Run1.simple.intersect 93.75% 45.30% 61.09% 93.75% 45.30% 61.09% 38.91%
UJaume.MAR 54.04% 64.65% 58.87% 54.04% 64.65% 58.87% 41.13%
USaoPaulo.LIHLA 57.68% 53.51% 55.51% 57.68% 53.51% 55.51% 44.49%

Unlimited Resources
RACAI.COWAL 71.24% 76.77% 73.90% 71.24% 76.77% 73.90% 26.10%
RACAI.TREQ-AL 82.08% 60.62% 69.74% 82.08% 60.62% 69.74% 30.26%
UMIACS.unlimited 72.41% 62.15% 66.89% 72.41% 62.15% 66.89% 33.11%
CMU.SPA.human-augmented 64.60% 60.54% 62.50% 64.60% 60.54% 62.50% 37.50%

Table 5: Results for Romanian–English
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System Resources Description

USheffield Unlimited A multi-feature approach for many-to-many word alignment. Prior to word
alignment, a pattern-based local word grouping is performed for both English and
Hindi. Various methods such as dictionary lookup, transliteration similarity,
expected English word(s) and nearest aligned neighbors are used.

UMIACS.limited Limited A system using IBM Model 4 with improvements brought in the HMM model.
UMIACS.unlimited Unlimited Same as UMIACS.limited, but also integrating a distortion model based on

a dependency parse built on the English side of the parallel corpus.

Table 6: Short description for English–Hindi systems

System � � � � � � � � � � � � AER
Limited Resources

UMIACS.limited 42.90% 56.00% 48.58% 42.90% 56.00% 48.58% 51.42%
Unlimited Resources

USheffield 77.03% 60.68% 67.88% 77.03% 60.68% 67.88% 32.12%
UMIACS.unlimited 43.65% 56.14% 49.12% 43.65% 56.14% 49.12% 50.88%

Table 7: Results for English–Hindi

Figure 2: Ranked results for Romanian–English data
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Figure 3: Ranked results for English–Inuktitut data

Figure 4: Ranked results for English–Hindi data
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Succursale Centre-Ville

H3C 3J7 Montŕeal, Canada
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Abstract

Machine Translation (MT) as well as
other bilingual applications strongly
rely on word alignment. Efficient align-
ment techniques have been proposed
but are mainly evaluated on pairs of
languages where the notion of word
is mostly clear. We concentrated our
effort on the English-Inuktitut word
alignment shared task and report on
two approaches we implemented and a
combination of both.

1 Introduction

Word alignment is an important step in exploiting
parallel corpora. When efficient techniques have
been proposed (Brown et al., 1993; Och and Ney,
2003), they have been mostly evaluated on ”safe”
pairs of languages where the notion of word is
rather clear.

We devoted two weeks to the intriguing task
of aligning at the word level pairs of sentences
of English and Inuktitut. We experimented with
two different approaches. For the first one, we re-
lied on an in-house sentence alignment program
(JAPA) where English and Inuktitut tokens were
considered as sentences. The second approach
we propose takes advantage of associations com-
puted between any English word and roughly any
subsequence of Inuktitut characters seen in the
training corpus. We also investigated the combi-
nation of both approaches.

2 JAPA: Word Alignment as a Sentence
Alignment Task

To adjust our systems, the organizers made avail-
able to the participants a set of 25 pairs of sen-
tences where words had been manually aligned.
A fast inspection of this material reveals that in
most of the cases, the alignment produced are
monotonic and involveceptsof n adjacent En-
glish words aligned to a single Inuktitut word.

Many sentence alignment techniques strongly
rely on the monotonic nature of the inherent align-
ment. Therefore, we conducted a first experi-
ment using an in-house sentence alignment pro-
gram called JAPA that we developed within the
framework of the Arcade evaluation campaign
(Langlais et al., 1998). The implementation de-
tails of this aligner can be found in (Langlais,
1997), but in a few words, JAPA aligns pairs of
sentences by first grossly aligning their words
(making use of either cognate-like tokens, or a
specified bilingual dictionary). A second pass
aligns the sentences in a way similar1 to the algo-
rithm described by Gale and Church (1993), but
where the search space is constrained to be close
to the one delimited by the word alignment. This
technique happened to be among the most accu-
rate of the ones tested during the Arcade exercise.

To adapt JAPA to our needs, we only did two
things. First, we considered single sentences as
documents, and tokens as sentences (we define
a token as a sequence of characters delimited by

1In our case, the score we seek to globally maximize by
dynamic programming is not only taking into account the
length criteria described in (Gale and Church, 1993) but also
a cognate-based one similar to (Simard et al., 1992).
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1-1 0.406 4-1 0.092 4-2 0.015
2-1 0.172 5-1 0.038 5-2 0.011
3-1 0.123 7-1 0.027 3-2 0.011

Table 1: The 9 most frequent English-Inuktitut
patterns observed on the development set. A total
of 24 different patterns have been observed.

white space). Second, since in its default setting,
JAPA only considersn-m sentence-alignment pat-
terns withn,m ∈ [0, 2], we provided it with a new
pattern distribution we computed from the devel-
opment corpus (see Table 1). It is interesting to
note that although English and Inuktitut have very
different word systems, the length ratio (in char-
acters) of the two sides of theTRAIN corpus is
1.05.

Each pair of documents (sentences) were then
aligned separately with JAPA. 1-n and n-1
alignments identified by JAPA where output with-
out further processing. Since the word alignment
format of the shared task do not account directly
for n-m alignments (n,m > 1) we generated the
cartesian product of the two sets of words for all
thesen-m alignments produced by JAPA.

The performance of this approach is reported
in Table 2. Clearly, the precision is poor. This
is partly explained by the cartesian product we re-
sorted to whenn-m alignments were produced by
JAPA. We provide in section 4 a way of improving
upon this scenario.

Prec. Rec. F-meas. AER
22.34 78.17 34.75 74.59

Table 2: Performance of the JAPA alignment tech-
nique on theDEV corpus.

3 NUKTI : Word and Substring
Alignment

Martin et al. (2003) documented a study in build-
ing and using an English-Inuktitut bitext. They
described a sentence alignment technique tuned
for the specificity of the Inuktitut language, and
described as well a technique for acquiring cor-
respondent pairs of English tokens and Inuktitut
substrings. The motivation behind their work was
to populate a glossary with reliable such pairs.

We extended this line of work in order to achieve
word alignment.

3.1 Association Score

As Martin et al. (2003) pointed out, the strong ag-
glutinative nature of Inuktitut makes it necessary
to consider subunits of Inuktitut tokens. This is
reflected by the large proportion of token types
and hapax words observed on the Inuktitut side
of the training corpus, compared to the ratios ob-
served on the English side (see table 3).

Inutktitut % English %

tokens 2 153 034 3 992 298
types 417 407 19.4 27 127 0.68
hapax 337 798 80.9 8 792 32.4

Table 3: Ratios of token types and happax words
in theTRAIN corpus.

The main idea presented in (Martin et al., 2003)
is to compute an association score between any
English word seen in the training corpus and all
the Inuktitut substrings of those tokens that were
seen in the same region. In our case, we com-
puted a likelihood ratio score (Dunning, 1993) for
all pairs of English tokens and Inuktitut substrings
of length ranging from 3 to 10 characters. A max-
imum of 25 000 associations were kept for each
English word (the top ranked ones).

To reduce the computation load, we used a suf-
fix tree structure and computed the association
scores only for the English words belonging to the
test corpus we had to align. We also filtered out
Inuktitut substrings we observed less than three
times in the training corpus. Altogether, it takes
about one hour for a good desktop computer to
produce the association scores for one hundred
English words.

We normalize the association scores such that
for each English worde, we have a distribution of
likely Inuktitut substringss:

∑
s pllr(s|e) = 1.

3.2 Word Alignment Strategy

Our approach for aligning an Inuktitut sentence
of K tokensIK

1 with an English sentence ofN
tokensEN

1 (whereK ≤ N )2 consists of finding
2As a matter of fact, the number of Inuktitut words in

the test corpus is always less than or equal to the number of
English tokens for any sentence pair.
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K − 1 cutting pointsck∈[1,K−1] (ck ∈ [1, N − 1])
on the English side. A frontierck delimits adja-
cent English wordsEck

ck−1+1 that are translation of
the single Inuktitut wordIk. With the convention
thatc0 = 0, cK = N andck−1 < ck, we can for-
mulate our alignment problem as seeking the best
word alignmentA = A(IK

1 |EN
1 ) by maximizing:

A = argmax
cK
1

K∏
k=1

p(Ik|Eck
ck−1+1)

α1 × p(dk)α2

(1)
wheredk = ck−ck−1 is the number of English

words associated toIk; p(dk) is the prior proba-
bility thatdk English words are aligned to a single
Inuktitut word, which we computed directly from
Table 1; andα1 andα2 are two weighting coeffi-
cients.

We tried the following two approximations to
computep(Ik|Eck

ck−1+1). The second one led to
better results.

p(Ik|Eck
ck−1+1) '


maxck

j=ck−1+1 p(Ik|Ej)
or∑ck

j=ck−1+1 p(Ik|Ej)

We considered several ways of computing the
probability that an Inuktitut tokenI is the transla-
tion of an English oneE; the best one we found
being:

p(I|E) '
∑
s∈I

λpllr(s|E) + (1− λ)pibm2(s|E)

where the summation is carried over all sub-
stringss of I of 3 characters or more.pllr(s|E)
is the normalized log-likelihood ratio score de-
scribed above andpibm2(s|E) is the probability
obtained from an IBM model 2 we trained after
the Inuktitut side of the training corpus was seg-
mented using a recursive procedure optimizing a
frequency-based criterion.λ is a weighting coef-
ficient.

We tried to directly embed a model trained
on whole (unsegmented) Inuktitut tokens, but no-
ticed a degradation in performance (line 2 of Ta-
ble 4).

3.3 A Greedy Search Strategy

Due to its combinatorial nature, the maximiza-
tion of equation 1 was barely tractable. There-
fore we adopted a greedy strategy to reduce the

search space. We first computed a split of the En-
glish sentence intoK adjacent regionscK

1 by vir-
tually drawing a diagonal line we would observe
if a character in one language was producing a
constant number of characters in the other one.
An initial word alignment was then found by sim-
ply tracking this diagonal at the word granularity
level.

Having this split in hand (line 1 of Table 4), we
move each cutting point around its initial value
starting from the leftmost cutting point and going
rightward. Once a locally optimal cutting point
has been found (that is, maximizing the score of
equation 1), we proceed to the next one directly
to its right.

3.4 Results

We report in Table 4 the performance of different
variants we tried as measured on the development
set. We used these performances to select the best
configuration we eventually submitted.

variant Prec. Rec. F-m. AER
start (diag) 51.7 53.66 52.66 49.54
greedy (word) 61.6 63.94 62.75 35.93
greedy (best) 63.5 65.92 64.69 34.21

Table 4: Performance of several NUKTI align-
ment techniques measured on theDEV corpus.

It is interesting to note that the starting point
of the greedy search (line 1) does better than our
first approach. However, moving from this ini-
tial split clearly improves the performance (line
3). Among the greedy variants we tested, we no-
ticed that putting much of the weightλ on the
IBM model 2 yielded the best results. We also no-
ticed thatp(dk) in equation 1 did not help (α2 was
close to zero). A character-based model might
have been more appropriate to the case.

4 Combination of JAPA and NUKTI

One important weakness of our first approach lies
in the cartesian product we generate when JAPA

produces an-m (n, m > 1) alignment. Thus,
we tried a third approach: we apply NUKTI on
any n-m alignment JAPA produces as if this ini-
tial alignment were in fact two (small) sentences
to align,n- andm-word long respectively. We can
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therefore avoid the cartesian product and select
word alignments more discerningly. As can be
seen in Table 5, this combination improved over
JAPA alone, while being worse than NUKTI alone.

5 Results

We submitted 3 variants to the organizers. The
performances for each method are gathered in Ta-
ble 5. The order of merit of each approach was
consistent with the performance we measured on
theDEV corpus, the best method being the NUKTI

one. Curiously, we did not try to propose anySure
alignment but did receive a credit for it for two of
the variants we submitted.

variant T. Prec. Rec. F-m. AER

JAPA P 26.17 74.49 38.73 71.27
JAPA + S 9.62 67.58 16.84
NUKTI P 51.34 53.60 52.44 46.64
NUKTI S 12.24 86.01 21.43

p 63.09 65.87 64.45 30.6

Table 5: Performance of the 3 alignments we sub-
mitted for theTEST corpus.T. stands for the type
of alignment (Sure or Possible).

6 Discussion

We proposed two methods for aligning an
English-Inuktitut bitext at the word level and a
combination of both. The best of these meth-
ods involves computing an association score be-
tween English tokens and Inuktitut substrings. It
relies on a greedy algorithm we specifically de-
vised for the task and which seeks a local opti-
mum of a cumulative function of log-likelihood
ratio scores. This method obtained a precision
and a recall above 63% and 65% respectively.

We believe this method could easily be im-
proved. First, it has some intrinsic limitations,
as for instance, the fact that NUKTI only recog-
nizes1-n cepts and do not handle at all unaligned
words. Indeed, our method is not even suited to
aligning English sentences with fewer words than
their respective Inuktitut counterpart. Second, the
greedy search we devised is fairly aggressive and
only explores a tiny bit of the full search. Last,
the computation of the association scores is fairly
time-consuming.

Our idea of redefining word alignment as a sen-
tence alignment task did not work well; but at the
same time, we adapted poorly JAPA to this task.
In particular, JAPA does not benefit here from all
the potential of the underlying cognate system be-
cause of the scarcity of these cognates in very
small sequences (words).

If we had to work on this task again, we would
consider the use of a morphological analyzer. Un-
fortunately, it is only after the submission dead-
line that we learned of the existence of such a tool
for Inuktitut3.
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Abstract
This paper presents a set of techniques for bitext word align-
ment, optimized for a language pair with the characteristics of
Inuktitut-English. The resulting systems exploit cross-lingual
affinities at the sublexical level of syllables and substrings, as
well as regular patterns of transliteration and the tendency to-
wards monotonicity of alignment. Our most successful systems
were based on classifier combination, and we found different
combination methods performed best under the target evalua-
tion metrics of F-measure and alignment error rate.
1 Introduction
Conventional word-alignment methods have been suc-
cessful at treating many language pairs, but may be lim-
ited in their ability to generalize beyond the Western Eu-
ropean language pairs for which they were originally
developed, to pairs which exhibit more complex diver-
gences in word order, morphology and lexical granular-
ity. Our approach to Inuktitut-English alignment was to
carefully consider the data in identifying difficulties par-
ticular to Inuktitut-English as well as possible simplify-
ing assumptions. We used these observations to construct
a novel weighted finite-state transducer alignment model
as well as a specialized transliteration model. We com-
bined these customized systems with 3 systems based
on IBM Model 4 alignments under several methods of
classifier combination. These combination strategies al-
lowed us to produce multiple submissions targeted at the
distinct evaluation measures via a precision/recall trade-
off.
2 Special Characteristics of the

Inuktitut-English Alignment Problem
Guided by the discussion of Inuktitut in Mallon (1999),
we examined the Nunavut Hansards training and hand-
labeled trial data sets in order to identify special chal-
lenges and exploitable characteristics of the Inuktitut-
English word alignment problem. We were able to iden-
tify three: (1) Importance of sublexical Inuktitut units;
(2) 1-to-N Inuktitut-to-English alignment cardinality; (3)
Monotonicity of alignments.
2.1 Types and Tokens
Inuktitut has an extremely productive agglutinative mor-
phology, and an orthographic word may combine very
many individual morphemes. As a result, in Inuktitut-
English bitext we observe Inuktitut sentences with many

fewer word tokens than the corresponding English sen-
tences; the ratio of English to Inuktitut tokens in the
training corpus is 1.85.1 This suggests the importance of
looking below the Inuktitut word level when computing
lexical translation probabilities (or alignment affinities).
To reinforce the point, consider that the ratio of training
corpus types to tokens is 0.007 for English, and 0.194 for
Inuktitut. In developing a customized word alignment
solution for Inuktitut-English, a major goal was to han-
dle the huge number of Inuktitut word types seen only
once in the training corpus (337798 compared to 8792
for English), without demanding the development of a
morphological analyzer.
2.2 Alignment
Considering English words in English sentence order,
4.7% of their alignments to Inuktitut were found to be
retrograde; that is, involving a decrease in Inuktitut word
position with respect to the previous English word’s
aligned Inuktitut position. Since this method of counting
retrograde alignments would assign a low count to mass
movements of large contiguous chunks, we also mea-
sured the number of inverted alignments over all pairs
of English word positions. That is, the sum

ΣeΣ
a=|e|−1
a=1 Σ

b=|e|
b=a+1Σi1∈I(e,a)Σi2∈I(e,b)(1 if i1 > i2)

was computed over all Inuktitut alignment sets I(e, x),
for e the English sentence and x the English word po-
sition. Dividing this sum by the obvious denominator
(replacing (1 if i1 > i2) with (1) in the sum) yielded a
value of 1.6% inverted alignments.

Table 1 shows a histogram of alignment cardinalities
for both English and Inuktitut. Ninety-four percent of
English word tokens, and ninety-nine percent of those
having a non-null alignment, align to exactly one Inuk-
titut word. In development of a specialized word aligner
for this language pair (Section 3), we made use of the
observed reliability of these two properties, monotonic-
ity and 1-to-N cardinality.
3 Alignment by Weighted Finite-State

Transducer Composition
We designed a specialized alignment system to handle
the above-mentioned special characteristics of Inuktitut-

1Though this ratio increases to 2.21 when considering only longer
sentences (20 or more English words), ignoring common short, formu-
laic sentence pairs such as ( Hudson Bay ) ( sanikiluaq ) .
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% Words Having Specified Alignment Cardinality
NULL 1 2 3 4 5 6 7

English 5 94 <1 <1 0 0 0 0
Inuktitut 3 43 20 14 10 5 3 2

Table 1: Alignment cardinalities for English-Inuktitut word
alignment, computed over the trial data.

English alignment. Our weighted finite-state transducer
(WFST) alignment model, illustrated in Figure 1, struc-
turally enforces monotonicity and 1-to-N cardinality, and
exploits sublexical information by incorporating associ-
ation scores between English words and Inuktitut word
substrings, based on co-occurrence in aligned sentences.
For each English word, an association score was com-
puted not only with each Inuktitut word, but also with
each Inuktitut character string of length ranging from
2 to 10 characters. This is similar to the technique de-
scribed in Martin et al. (2003) as part of their construc-
tion of a bilingual glossary from English-Inuktitut bi-
text. However, our goal is different and we keep all the
English-Inuktitut associations, rather than selecting only
the “best” ones using a greedy method, as do they. Addi-
tionally, before extracting all substrings from each Inuk-
titut word, we added a special character to the word’s
beginning and end (e.g., makkuttut → makkuttut ), in
order to exploit any preferences for word-initial or -final
placement.

The heuristic association score chosen was
p(worde |wordi) × p(wordi |worde), computed over all
the aligned sentence pairs. We have in the past observed
this to be a useful indicator of word association, and it
has the nice property of being in the range (0,1].

The WFST aligner is a composition of 4 transduc-
ers.2 The structure of the entire WFST composition en-
forces monotonicity, Inuktitut-to-English 1-N cardinal-
ity, and Inuktitut word fertilities ranging between 1 and
7. This model was implemented using the ATT finite-
state toolkit (Mohri et al., 1997). In Figure 1, [1] is
a linear transducer mapping each English position in a
particular English test sentence to the word at that posi-
tion. It is constructed so as to force each English word
to participate in exactly 1 alignment. [2] is a single-state
transducer mapping English word to Inuktitut substrings
(or full words) with weights derived from the association
scores.3 [3] is a transducer mapping Inuktitut substrings
(and full words) to their position in the Inuktitut test sen-
tence. Its construction allows a single Inuktitut position
to correspond to multiple English positions, while en-
forcing monotonicity. [4] is a transducer regulating the
allowed “fertility” values of Inuktitut words; each Inuk-
titut word is permitted a fertility of between 1 and 7. The
fertility values are assigned the probabilities correspond-
ing to observed relative frequencies in the trial data, and

2Bracketed numbers in the following discussion refer to the compo-
nent transducers as illustrated in Figure 1.

3Transducers [2] and [4] are shared across all sentence decodings.
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Figure 1: WFST alignment system in composition order, in-
stantiated for an example sentence from the development (trial)
data. To save space, only a representative portion of each ma-
chine is drawn. Transition weights are costs in the tropical
(min,+) semiring, derived from negative logs of probabilities
and association scores. Nonzero costs are indicated in paren-
theses.

are not conditioned on the identity of the Inuktitut word.
4 English-Inuktitut Transliteration
Although in this corpus English and Inuktitut are both
written in Roman characters, English names are signifi-
cantly transformed when rendered in Inuktitut text. Con-
sider the following English/Inuktitut pairs from the train-
ing corpus: Chartrand/saaturaan, Chretien/kurittian
and the set of training corpus-attested Inuktitut render-
ings of Williams, Campbell, and McLean shown in Ta-
ble 2(A) (which does not include variations containing
the common -mut lexeme, meaning “to [a person]” (Mal-
lon, 1999)).

Clearly, not only does the English-to-Inuktitut trans-
formation radically change the name string, it does so
in a nondeterministic way which appears to be influ-
enced not only by the phonological preferences of Inuk-
titut but also by differing pronunciations of the name in
question and possibly by differing conventions of trans-
lators (note, for example, maklain versus mikliin for
McLean).

We trained a probabilistic finite-state transducer
(FST) to identify English-Inuktitut transliterated pairs
in aligned sentences. Training string pairs were ac-
quired from the training bitext in the following manner.
Whenever single instances of corresponding honorifics
were found in a sentence pair – these included the cor-
respondences (Ms , mis); (Mrs , missa/missis); (Mr ,
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(A) (B)
Williams McLean k sh
ailiams makalain k -4.2 s -7.2
uialims makkalain q -6.2
uilialums maklaain w
uiliam maklain b ui -5.8
uiliammas maklainn p -4.3 v -6.1
uiliams maklait v -5.0
uilians makli o
uliams maklii z a -4.2
viliams makliik j -5.2 aa -4.6

makliin s -5.8 uu -4.9
Campbell maklin u -5.1
kaampu malain ch
kaampul matliin s -5.6 u
kaamvul miklain k -6.8 uu -5.5
kamvul mikliin u -5.6

miklin a -6.2

Table 2: (A) Training-corpus-attested renderings of Williams,
Campbell, and McLean. (B) Top learned Inuktitut substi-
tutions and their log probabilities for several English (shown
underlined) orthographic characters (and character sequences).
Where top substitutions for English characters are shown, none
equal or better were omitted.

mista/mistu) – the immediately following capitalized En-
glish words (up to 2) were extracted and the same num-
ber of Inuktitut words were extracted to be used as train-
ing pairs. Thus, given the appearance in aligned sen-
tences of “Mr. Quirke” and “mista kuak”, the training
pair (Quirke,kuak) would be extracted. Common dis-
tractions such as “Mr Speaker” were filtered out. In or-
der to focus on the native English name problem (Inuk-
titut name rendering into English is much less noisy) the
English extractions were required to have appeared in a
large, news-corpus-derived English wordlist. This pro-
cedure resulted in a conservative, high-quality list of 434
unique name pairs. The probabilistic FST model we se-
lected was that of a memoryless (single-state) transducer
representing a joint distribution over character substitu-
tions, English insertions, and Inuktitut insertions. This
model is identical to that presented in Ristad and Yianilos
(1997). Prior to training, common English digraphs (e.g.,
“th” and “sh”) were mapped to unique single characters,
as were doubled consonants. Inuktitut “ng” and common
two-vowel sequences were also mapped to unique single
characters to elicit higher-quality results from the memo-
ryless transduction model employed. Some results of the
transducer training are displayed in Table 2(B). Proba-
bilistic FST weight training was accomplished using the
Dyna modeling language and DynaMITE parameter op-
timization toolkit (Eisner et al, 2004). The translitera-
tion modeling described here differs from such previous
transliteration work as Stalls and Knight (1998) in that
there is no explicit modeling of pronunciation, only a di-
rect transduction between written forms.

In applying transliteration on trial/test data, the
following criteria were used to select English words for
transliteration: (1) Word is capitalized (2) Word is not in

the exclusion list.4 For the top-ranked transliteration of
the English word present in the Inuktitut sentence, all
occurrences of that word in that sentence are marked as
aligned to the English word.

We have yet to evaluate English-Inuktitut translitera-
tion in isolation on a large test set. However, accuracy
on the workshop trial data was 4/4 hypotheses correct,
and on test data 2/6 correct. Of the 4 incorrect test
hypotheses, 2 were mistakes in identifying the correct
transliteration, and 2 mistakes resulted from attempting
to transliterate an English word such as “Councillors”
which should not be transliterated. Even with a rela-
tively low accuracy, the transliteration model, which is
used only as an individual voter in combination systems,
is unlikely to vote for the incorrect choice of another sys-
tem. Its purpose under system combination is to push a
good alignment link hypothesis up to the required vote
threshold.5

5 IBM Model 4 Alignments
As a baseline and contributor to our combination sys-
tems, we ran GIZA++ (Och and Ney, 2000), to produce
alignments based on IBM Model 4. The IBM align-
ment models are asymmetric, requiring that one lan-
guage be idenitifed as the “e” language, whose words
are allowed many links each, and the other as the “f” lan-
guage, whose words are allowed at most one link each.
Although the observed alignment cardinalities naturally
suggest identifying Inuktitut as the “e” language and En-
glish as the “f” language, we ran both directions for com-
pleteness.

As a crude first attempt to capture sublexical corre-
spondences in the absence of a method for morpheme
segmentation, we developed a rough syllable segmenter
(spending approximately 2 person-hours), ran GIZA++
to produce alignments treating the syllables as words,
and chose, for each English word, the Inuktitut word or
words the largest number of whose syllables were linked
to it.

In the nomenclature of our results tables, giza++ syl-
labized refers to the latter system, giza++ E(1)-I(N) rep-
resents GIZA++ run with English as the “e” language,
and giza++ E(N)-I(1) sets English as the “f” language.
6 System Performance and Combination

Methods
We observed the 4 main systems (3 GIZA++ variants and
WFST) to have significantly different performance pro-
files in terms of precision and recall. Consistently, WFST

4Exclusion list was compiled as follows: (a) capitalized words in
2000 randomly selected English training sentences were examined,
Words such as Clerk, Federation, and Fisheries, which are frequently
capitalized but should not be transliterated, were put into the exclusion
list; in addition, any word with frequency > 50 in the training corpus
was excluded, on the rationale that common-enough words would have
well-estimated translation probabilities already. 50 may seem like a
high threshold until one considers the high variability of the transliter-
ation process as demonstrated in Table 2(A).

5Refer to Section 6 for detailed descriptions of voting.
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SYSTEM P R F AER |H|/|T |

Individual system performance Trial Data
giza++ E(1)-I(N) 63.4 26.6 37.5 32.9 0.42
giza++ E(N)-I(1) 68.2 59.4 63.5 28.6 0.87
giza++ syllabized 83.6 44.5 58.1 18.3 0.53
WFST 70.3 72.7 71.5 27.8 1.03

Combination system performance Trial Data
F/AER Emphasis 85.4 63.5 72.9 12.3 0.74
AER Emphasis (1) 92.6 44.2 59.9 8.8 0.48
AER Emphasis (2) 95.1 38.0 54.3 9.5 0.40
F Emphasis 74.8 77.6 76.2 21.9 1.04
Recall Emphasis 66.9 82.1 73.8 28.9 1.23

Individual system performance Test Data
giza++ E(1)-I(N) 49.7 18.6 27.0 45.2 0.37
giza++ E(N)-I(1) 64.6 56.2 60.1 32.7 0.87
giza++ syllabized 84.9 44.0 57.9 15.6 0.52
WFST 65.4 68.3 66.8 33.7 1.04

(submitted) Combination system performance Test Data
F/AER Emphasis 84.4 58.6 69.2 14.3 0.69
AER Emphasis (1) 90.7 39.4 54.9 11.5 0.43
AER Emphasis (2) 96.7 32.3 48.4 9.5 0.33
F Emphasis 70.7 73.8 72.2 26.7 1.04
Recall Emphasis 62.6 81.7 70.1 34.2 1.31

Table 3: System performance evaluated on trial and test data.
The precision, recall and F-measure cited are the unlabeled
version (“probable,” in the nomenclature of this shared task).
The gold standard truth for trial data contained 710 alignments.
The test gold standard included 1972 alignments. The column
|H|/|T | lists ratio of hypothesis set size to truth set size for each
system.

won out on F-measure while giza++ syllabized attained
better alignment error rate (AER). Refer to Table 3 for
details of performance on trial and test data.

We investigated a number of system combination
methods, three of which were finally selected for use
in submitted systems. There were two basic methods of
combination: per-link voting and per-English-word vot-
ing.6 In per-link voting, an alignment link is included if
it is proposed by at least a certain number of the partic-
ipating individual systems. In per-English-word voting,
the best outgoing link is chosen for each English word
(the link which is supported by the greatest number of in-
dividual systems). Any ties are broken using the WFST
system choice. A high-recall variant of per-English-word
voting was included in which ties at vote-count 1 (in-
dicating a low-confidence decision) are not broken, but
rather all systems’ choices are submitted as hypotheses.

The transliteration model described in Section 4 was
included as a voter in each combination system, though it
made few hypotheses (6 on the test data). Composition of
the submitted systems was as follows: F/AER Empha-

6Combination methods we elected not to submit included voting
with trained weights and various stacked classifiers. The reasoning was
that with such a small development data set – 25 sentences – it was
unsafe to put faith in any but the simplest of classifier combination
schemes.

sis - per-link voting with decision criterion >= 2 votes,
over all 5 described systems (WFST, 3 GIZA++ vari-
ants, transliteration). AER Emphasis (I) per-link voting,
>= 2 votes, over all systems except giza++ E(N)-I(1).
AER Emphasis (II) per-link voting, >= 3 votes, over
all systems. F Emphasis per-English-word voting, over
all systems, using WFST as tiebreaker. Recall Empha-
sis per-English-word voting, over all systems, high-recall
variant.

We elected to submit these systems because each
tailors to a distinct evaluation criterion (as suggested
by the naming convention). Experiments on trial data
convinced us that minimizing AER and maximizing F-
measure in a single system would be difficult. Mini-
mizing AER required such high-precision results that the
tradeoff in recall greatly lowered F-measure. It is inter-
esting to note that system combination does provide a
convenient means for adjusting alignment precision and
recall to suit the requirements of the problem or evalua-
tion standard at hand.
7 Conclusions
We have presented several individual and combined sys-
tems for word alignment of Inuktitut-English bitext. The
most successful individual systems were those targeted
to the specific characteristics of the language pair. The
combined systems generally outperformed the individual
systems, and different combination methods were able to
optimize for performance under different evaluation met-
rics. In particular, per-English-word voting performed
well on F-measure, while per-link voting performed well
on AER.
Acknowledgements: Many thanks to Eric Goldlust, David
Smith, and Noah Smith for help in using the Dyna language.
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Abstract

We introduce improvements to statistical word
alignment based on the Hidden Markov
Model. One improvement incorporates syntac-
tic knowledge. Results on the workshop data
show that alignment performance exceeds that
of a state-of-the art system based on more com-
plex models, resulting in over a 5.5% absolute
reduction in error on Romanian-English.

1 Introduction

The most widely used alignment model is IBM Model 4
(Brown et al., 1993). In empirical evaluations it has out-
performed the other IBM Models and a Hidden Markov
Model (HMM) (Och and Ney, 2003). It was the basis
for a system that performed very well in a comparison
of several alignment systems (Dejean et al., 2003; Mihal-
cea and Pedersen, 2003). Implementations are also freely
available (Al-Onaizan et al., 1999; Och and Ney, 2003).

The IBM Model 4 search space cannot be efficiently
enumerated; therefore it cannot be trained directly using
Expectation Maximization (EM). In practice, a sequence
of simpler models such as IBM Model 1 and an HMM
Model are used to generate initial parameter estimates
and to enumerate a partial search space which can be ex-
panded using hill-climbing heuristics. IBM Model 4 pa-
rameters are then estimated over this partial search space
as an approximation to EM (Brown et al., 1993; Och and
Ney, 2003). This approach yields good results, but it has
been observed that the IBM Model 4 performance is only
slightly better than that of the underlying HMM Model
used in this bootstrapping process (Och and Ney, 2003).
This is illustrated in Figure 1.

Based on this observation, we hypothesize that imple-
mentations of IBM Model 4 derive most of their per-
formance benefits from the underlying HMM Model.
Furthermore, owing to the simplicity of HMM Models,
we believe that they are more conducive to study and
improvement than more complex models such as IBM

Model 4. We illustrate this point by introducing modifi-
cations to the HMM model which improve performance.
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Figure 1: The improvement in Alignment Error Rate
(AER) is shown for both P(f|e) and P(e|f) alignments on
the Romanian-English development set over several iter-
ations of the IBM Model 1 → HMM → IBM Model 4
training sequence.

2 HMMs and Word Alignment

The objective of word alignment is to discover the word-
to-word translational correspondences in a bilingual cor-
pus of S sentence pairs, which we denote {(f(s),e(s)) : s ∈
[1,S]}. Each sentence pair (f,e) = ( f M

1 ,eN
1 ) consists of

a sentence f in one language and its translation e in the
other, with lengths M and N, respectively. By convention
we refer to e as the English sentence and f as the French
sentence. Correspondences in a sentence are represented
by a set of links between words. A link ( f j ,ei) denotes a
correspondence between the ith word ei of e and the jth
word f j of f.

Many alignment models arise from the conditional dis-
tribution P(f|e). We can decompose this by introducing
the hidden alignment variable a = aM

1 . Each element of
a takes on a value in the range [1,N]. The value of ai

determines a link between the ith French word fi and
the aith English word eai . This representation introduces
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an asymmetry into the model because it constrains each
French word to correspond to exactly one English word,
while each English word is permitted to correspond to an
arbitrary number of French words. Although the result-
ing set of links may still be relatively accurate, we can
symmetrize by combining it with the set produced by ap-
plying the complementary model P(e|f) to the same data
(Och and Ney, 2000b). Making a few independence as-
sumptions we arrive at the decomposition in Equation 1. 1

P(f,a|e) =
M

∏
i=1

d(ai|ai−1) · t( fi|eai) (1)

We refer to d(ai|ai−1) as the distortion model and t( fi|eai)
as the translation model. Conveniently, Equation 1 is in
the form of an HMM, so we can apply standard algo-
rithms for HMM parameter estimation and maximization.
This approach was proposed in Vogel et al. (1996) and
subsequently improved (Och and Ney, 2000a; Toutanova
et al., 2002).

2.1 The Tree Distortion Model

Equation 1 is adequate in practice, but we can improve
it. Numerous parameterizations have been proposed for
the distortion model. In our surface distortion model, it
depends only on the distance ai − ai−1 and an automati-
cally determined word class C(eai−1) as shown in Equa-
tion 2. It is similar to (Och and Ney, 2000a). The word
class C(eai−1) is assigned using an unsupervised approach
(Och, 1999).

d(ai|ai−1) = p(ai|ai −ai−1,C(eai−1)) (2)

The surface distortion model can capture local move-
ment but it cannot capture movement of structures or the
behavior of long-distance dependencies across transla-
tions. The intuitive appeal of capturing richer informa-
tion has inspired numerous alignment models (Wu, 1995;
Yamada and Knight, 2001; Cherry and Lin, 2003). How-
ever, we would like to retain the simplicity and good per-
formance of the HMM Model.

We introduce a distortion model which depends on the
tree distance τ(ei,ek) = (w,x,y) between each pair of En-
glish words ei and ek. Given a dependency parse of eM

1 ,
w and x represent the respective number of dependency
links separating ei and ek from their closest common an-
cestor node in the parse tree. 2 The final element y = {1

1We ignore the sentence length probability p(M|N), which
is not relevant to word alignment. We also omit discussion
of HMM start and stop probabilities, and normalization of
t( fi|eai), although we find in practice that attention to these de-
tails can be beneficial.

2The tree distance could easily be adapted to work with
phrase-structure parses or tree-adjoining parses instead of de-
pendency parses.

I1 very2 much3 doubt4 that5

τ(I1,very2) = (1,2,0)
τ(very2, I1) = (2,1,1)
τ(I1,doubt4) = (1,0,0)
τ(that5, I1) = (1,1,1)

Figure 2: Example of tree distances in a sentence from
the Romanian-English development set.

if i > k; 0 otherwise} is simply a binary indicator of the
linear relationship of the words within the surface string.
Tree distance is illustrated in Figure 2.

In our tree distortion model, we condition on the tree
distance and the part of speech T (ei−1), giving us Equa-
tion 3.

d(ai|ai−1) = p(ai, |τ(eai ,eai−1),T (eai−1)) (3)

Since both the surface distortion and tree distortion
models represent p(ai|ai−1), we can combine them using
linear interpolation as in Equation 4.

d(ai|ai−1) =
λC(eai−1),T (eai−1 )p(ai|τ(eai ,eai−1),T (eai−1)) +

(1−λC(eai−1),T (eai−1 ))p(ai|ai −ai−1,C(eai−1))
(4)

The λC,T parameters can be initialized from a uniform
distribution and trained with the other parameters using
EM. In principle, any number of alternative distortion
models could be combined with this framework.

2.2 Improving Initialization

Our HMM produces reasonable results if we draw our
initial parameter estimates from a uniform distribution.
However, we can do better. We estimate the initial
translation probability t( f j |ei) from the smoothed log-
likelihood ratio LLR(ei, f j)

φ1 computed over sentence
cooccurrences. Since this method works well, we apply
LLR(ei, f j) in a single reestimation step shown in Equa-
tion 5.

t( f |e) =
LLR( f |e)φ2 +n

∑e′ LLR( f |e′)φ2 +n · |V |
(5)

In reestimation LLR( f |e) is computed from the expected
counts of f and e produced by the EM algorithm. This is
similar to Moore (2004); as in that work, |V | = 100,000,
and φ1, φ2, and n are estimated on development data.

We can also use an improved initial estimate for distor-
tion. Consider a simple distortion model p(ai|ai −ai−1).
We expect this distribution to have a maximum near
P(ai|0) because we know that words tend to retain their
locality across translation. Rather than wait for this to
occur, we use an initial estimate for the distortion model
given in Equation 6.
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corpus n φ1 φ2 α symmetrization n−1 φ−1
1 φ−1

2 α−1

English-Inuktitut 1−4 1.0 1.75 -1.5 ∩ 5−4 1.0 1.75 -1.5
Romanian-English 5−4 1.5 1.0 -2.5 refined (Och and Ney, 2000b) 5−4 1.5 1.0 -2.5

English-Hindi 1−4 1.5 3.0 -2.5 ∪ 1−2 1.0 1.0 -1.0

Table 1: Training parameters for the workshop data (see Section 2.2). Parameters n, φ1, φ2, and α were used in the
initialization of P(f|e) model, while n−1, φ−1

1 , φ−1
2 , and α−1 were used in the initialization of the P(e|f) model.

corpus type
HMM limited (Eq. 2) HMM unlimited (Eq. 4) IBM Model 4

P R AER P R AER P R AER

English-Inuktitut
P(f|e) .4962 .6894 .4513 – – – .4211 .6519 .5162
P(e|f) .5789 .8635 .3856 – – – .5971 .8089 .3749
∩ .8916 .6280 .2251 – – – .8682 .5700 .2801

English-Hindi

P(f|e) .5079 .4769 .5081 .5057 .4748 .5102 .5219 .4223 .5332
P(e|f) .5566 .4429 .5067 .5566 .4429 .5067 .5652 .3939 .5358
∪ .4408 .5649 .5084 .4365 .5614 .5088 .4543 .5401 .5065

Romanian-English
P(f|e) .6876 .6233 .3461 .6876 .6233 .3461 .6828 .5414 .3961
P(e|f) .7168 .6217 .3341 .7155 .6205 .3354 .7520 .5496 .3649
refined .7377 .6169 .3281 .7241 .6215 .3311 .7620 .5134 .3865

Table 2: Results on the workshop data. The systems highlighted in bold are the ones that were used in the shared task.
For each corpus, the last row shown represents the results that were actually submitted. Note that for English-Hindi,
our self-reported results in the unlimited task are slightly lower than the original results submitted for the workshop,
which contained an error.

d(ai|ai−1) =

{

|ai −ai−1|
α/Z,α < 0 if ai 6= ai−1.

1/Z if ai = ai−1.
(6)

We choose Z to normalize the distribution. We must
optimize α on a development set. This distribution has
a maximum when |ai − ai−1| ∈ {−1,0,1}. Although we
could reasonably choose any of these three values as the
maximum for the initial estimate, we found in develop-
ment that the maximum of the surface distortion distribu-
tion varied with C(eai−1), although it was always in the
range [−1,2].

2.3 Does NULL Matter in Asymmetric Alignment?

Och and Ney (2000a) introduce a NULL-alignment ca-
pability to the HMM alignment model. This allows any
word f j to link to a special NULL word – by conven-
tion denoted e0 – instead of one of the words eN

1 . A link
( f j ,e0) indicates that f j does not correspond to any word
in e. This improved alignment performance in the ab-
sence of symmetrization, presumably because it allows
the model to be conservative when evidence for an align-
ment is lacking.

We hypothesize that NULL alignment is unnecessary
for asymmetric alignment models when we symmetrize
using intersection-based methods (Och and Ney, 2000b).

The intuition is simple: if we don’t permit NULL align-
ments, then we expect to produce a high-recall, low-
precision alignment; the intersection of two such align-
ments should mainly improve precision, resulting in a
high-recall, high-precision alignment. If we allow NULL
alignments, we may be able produce a high-precision,
low-recall asymmetric alignment, but symmetrization by
intersection will not improve recall.

3 Results with the Workshop Data

In our experiments, the dependency parse and parts of
speech are produced by minipar (Lin, 1998). This parser
has been used in a much different alignment model
(Cherry and Lin, 2003). Since we only had parses for
English, we did not use tree distortion in the application
of P(e|f), needed for symmetrization.

The parameter settings that we used in aligning the
workshop data are presented in Table 1. Although our
prior work with English and French indicated that in-
tersection was the best method for symmetrization, we
found in development that this varied depending on the
characteristics of the corpus and the type of annotation
(in particular, whether the annotation set included proba-
ble alignments). The results are summarized in Table 2.
It shows results with our HMM model using both Equa-
tions 2 and 4 as our distortion model, which represent
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the unlimited and limited resource tracks, respectively.
It also includes a comparison with IBM Model 4, for
which we use a training sequence of IBM Model 1 (5
iterations), HMM (6 iterations), and IBM Model 4 (5 it-
erations). This sequence performed well in an evaluation
of the IBM Models (Och and Ney, 2003).

For comparative purposes, we show results of apply-
ing both P(f|e) and P(e|f) prior to symmetrization, along
with results of symmetrization. Comparison of the asym-
metric and symmetric results largely supports the hypoth-
esis presented in Section 2.3, as our system generally pro-
duces much better recall than IBM Model 4, while of-
fering a competitive precision. Our symmetrized results
usually produced higher recall and precision, and lower
alignment error rate.

We found that the largest gain in performance came
from the improved initialization. The combined distor-
tion model (Equation 4), which provided a small benefit
over the surface distortion model (Equation 2) on the de-
velopment set, performed slightly worse on the test set.

We found that the dependencies on C(eai−1) and
T (eai−1) were harmful to the P(f|e) alignment for Inukti-
tut, and did not submit results for the unlimited resources
configuration. However, we found that alignment was
generally difficult for all models on this particular task,
perhaps due to the agglutinative nature of Inuktitut.

4 Conclusions

We have proposed improvements to the largely over-
looked HMM word alignment model. Our improvements
yield good results on the workshop data. We have addi-
tionally shown that syntactic information can be incorpo-
rated into such a model; although the results are not su-
perior, they are competitive with surface distortion. In fu-
ture work we expect to explore additional parameteriza-
tions of the HMM model, and to perform extrinsic evalu-
ations of the resulting alignments by using them in the pa-
rameter estimation of a phrase-based translation model.
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Abstract

We recently decided to develop a new
alignment algorithm for the purpose
of improving our Example-Based Ma-
chine Translation (EBMT) system’s per-
formance, since subsentential alignment is
critical in locating the correct translation
for a matched fragment of the input. Un-
like most algorithms in the literature, this
new Symmetric Probabilistic Alignment
(SPA) algorithm treats the source and tar-
get languages in a symmetric fashion.

In this short paper, we outline our basic
algorithm and some extensions for using
context and positional information, and
compare its alignment accuracy on the
Romanian-English data for the shared task
with IBM Model 4 and the reported results
from the prior workshop.

1 Symmetric Probabilistic Alignment
(SPA)

In subsentential alignment, mappings are produced
from words or phrases in the source language sen-
tence and those words or phrases in the target lan-
guage sentence that best express their meaning.

An alignment algorithm takes as input a bilingual
corpus consisting of corresponding sentence pairs
and strives to find the best possible alignment in the
second for selected n-grams (sequences of n words)
in the first language. The alignments are based on
a number of factors, including a bilingual dictionary
(preferably a probabilistic one), the position of the
words, invariants such as numbers and punctuation,
and so forth.

For our baseline algorithm, we make the follow-
ing simplifying assumptions, each of which we in-
tend to relax in future work, and the last of which
has already been partially relaxed:

1. A fixed bilingual probabilistic dictionary is
available.

2. Fragments (word sequences) are translated in-
dependently of surrounding context.

3. Contiguous fragments of source language text
are translated into contiguous fragments in the
target language text.

Unlike the work of (Marcu and Wong, 2002),
our alignment algorithm is not generative and does
not use the idea of a bag of concepts from which
the phrases in the sentence pair arise. It is, rather,
intended to find the corresponding target-language
phrase given a specific source-language phrase of in-
terest, as required by our EBMT system after find-
ing a match between the input and the training data
(Brown, 2004).

1.1 Baseline Algorithm

Our baseline algorithm is based on maximizing the
probability of bi-directional translations of individ-
ual words between a selected n-gram in the source
language and every possible n-gram in the corre-
sponding paired target language sentence. No posi-
tional preference assumptions are made, nor are any
length preservation assumptions made. That is, an
n-gram may translate to an m-gram, for any val-
ues of n or m bounded by the source and target
sentence lengths, respectively. Finally a smooth-
ing factor is used to avoid singularities (i.e. avoid-
ing zero-probabilities for unknown words, or words
never translated before in a way consistent with the
dictionary).
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Given a source-language sentence

S1 : s0, s1, ..., si, ..., si+k, ..., sn (1)

in the bilingual corpus, where si, ..., si+k is a phrase
of interest, and the corresponding target language
sentence S2 is

S2 : t0, t1, ..., tj , ..., tj+l, ..., tm (2)

the values of j and l are to be determined.
Then the segment we try to obtain is the target

fragment F̂T with the highest probability of all pos-
sible fragments of S2 to be a mutual translation with
the given source fragment, or

F̂T = argmax{FT } (p(si, ..., si+k ↔ tj, ..., tj+l))
(3)

All possible segments can be checked in O(m2)
time, where m is the target language length, because
we will check m 1-word segments, m− 1 two-word
segments, and so on. If we bound the target language
n-grams to a maximal length k, then the complexity
is linear, i.e. O(km).

The score of the best possible alignment is com-
puted as follows: Let LT be the Target Language
Vocabulary, s a source word, ti be target segment
words, and V = {ti ∈ {LT }|i ≥ 1} the translation
word set of s,

We define the translation relation probability
p(Tr(s) ∈ {t0, t1, ..., tk}) as follows:

1. p(Tr(s) ∈ {t0, t1, ..., tk}) = max(p(ti|s))
for all ti ∈ {t0, t1, ..., tk} when {ti|ti ∈
{t0, t1, ..., tk}} is not empty.

2. p(Tr(s) ∈ {t0, t1, ..., tk}) = 0 otherwise.

Then the score of the best alignment is

S
F̂T

= max
{FT }

SFT
(4)

where the score can be written as two components

SFT
= P1 × P2 (5)

which can be further specified as

P1 =

(

k
∏

m=0

max (p (Tr(si+m) ∈ {tj...j+l}) , ε)

)

1

k+1

(6)

P2 =

(

l
∏

n=0

max (p (Tr(tj+n) ∈ {si...i+k}) , ε)

)

1

l+1

(7)
where ε is a very small probability used as a smooth-
ing value.

1.2 Length Penalty

The ratio between source and target segment (n-
gram) lengths should be comparable to the ratio be-
tween the lengths of the source and target sentences,
though certainly variation is possible. Therefore, we
add a penalty function to the alignment probability
that increases with the discrepancy between the two
ratios.

Let the length of the source language segment be
i and the length of a target language segment under
consideration be j. Given a source language sen-
tence length of n (in the corpus sentence containing
the fragment) and its corresponding target language
length of m. The expected target segment length is
then given by ĵ = i× m

n
. Further defining an allow-

able difference AD, our implementation calculates
the length penalty LP as follows, with the value of
the exponent determined empirically:

LPFT
= min





(

|j − ĵ|

AD

)4

, 1



 (8)

The score for a segment including the penalty func-
tion is then:

SFT
← SFT

× (1− LPFT
) (9)

Note that, as intended, the score is forced to 0 when
the length difference |j − ĵ| > AD.

1.3 Distortion Penalty

For closely-related language pairs which tend to
have similar word orders, we introduce a distortion
penalty to penalize the alignment score of any can-
didate target fragment which is out of the expected
position range. First, we calculate CE , the expected
center of the candidate target fragment using CFS

,
the center of the source fragment and the ratio of
target- to source-sentence length.

CE = CFS
∗

m

n
(10)
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Then we calculate an allowed distance limit of the
center Dallowed using a constant distance limit value
DL and the ratio of actual target sentence length to
average target sentence length.

Dallowed = DL ∗
m

maverage

(11)

Let Dactual be the actual distance difference be-
tween the candidate target fragment’s center and the
expected center, and set

SFT
←







0, ifDactual ≥ Dallowed

SFT

(Dactual−Dallowed+1)2 , otherwise
(12)

Furthermore, we think that we can apply this
penalty to language pairs which have lower word-
order similarities than e.g. French-English. Because
there might exist certain positional relationships be-
tween such language pairs, if we can calculate the
expected position using each language’s sentence
structure, we can apply a distortion penalty to the
candidate alignments.

1.4 Anchor Context

If the adjacent words of the source fragment and the
candidate target fragment are translations of each
other, we expect that this alignment is more likely
to be correct. We boost SFT

with the anchor context
alignment score SACp ,

SACp = P (si−1 ↔ tj−1) ∗ P (si+k ↔ tj+l) (13)

SFT
← (SFT

)λ ∗ (SACp)
1−λ (14)

Empirically, we found this combination gives the
best score for French-English when λ = 0.6 and
for Romanian-English when λ = 0.8, and leads to
better results than the similar formula

SFT
← λ ∗ SFT

+ (1− λ) ∗ SACp (15)

2 Experimental Design

In previous work (Kim et al., 2005), we tested our
alignment method on a set of French-English sen-
tence pairs taken from the Canadian Hansard corpus
and on a set of English-Chinese sentence pairs, and
compared the results to human alignments. For the
present workshop, we chose to use the Romanian-
English data which had been made available.

Due to a lack of time prior to the period of the
shared task, we merely re-used the parameters which
had been tuned for French-English, rather than tun-
ing the alignment parameters specifically for the de-
velopment data.

SPA was run under three experimental conditions.
In the first, labeled “SPA (c)” in Tables 1 and 2, SPA
was instructed to examine only contiguous target
phrases as potential alignments for a given source
phrase. In the second, labeled “SPA (n)”, a noncon-
tiguous target alignment consisting of two contigu-
ous segments with a gap between them was permit-
ted in addition to contiguous target alignments. The
third condition (“SPA (h)”) examined the impact of
a small amount of manual alignment information on
the selection of contiguous alignments. Unlike the
first two conditions, the presence of additional data
beyond the training corpus forces SPA(h) into the
Unlimited Resources track.

We had a native Romanian speaker hand-align
204 sentence pairs from the training corpus, and
extracted 732 distinct translation pairs from those
alignments, of which 450 were already present in
the automatically-generated dictionaries. The new
translation pairs were added to the dictionaries for
the SPA(h) condition and the translation probabili-
ties for the existing pairs were increased to reflect
the increased confidence in their correctness. Had
more time been available, we would have investi-
gated more sophisticated means of integrating the
human knowledge into the translation dictionaries.

3 Results and Conclusions

Table 1 compares the performance of SPA on what
is now the development data against the submissions
with the best AER values reported by (Mihalcea
and Pedersen, 2003) for the participants in the 2003
workshop, including CMU, MITRE, RALI, Univer-
sity of Alberta, and XRCE 1. As SPA generates only
SURE alignments, the values in Table 1 are SURE
alignments under the NO-NULL-Align scoring con-
dition for all systems except Fourday, which did not
generate SURE alignments.

Despite the fact that SPA was designed specifi-
cally for phrase-to-phrase alignments rather than the

1Citations for individual participants’ papers have been
omitted for space reasons; all appear in the same proceedings.
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Method Prec% Rec% F1% AER
SPA (c) 64.47 62.68 63.56 36.44
SPA (n) 64.38 62.70 63.53 36.47
SPA (h) 64.61 62.55 63.56 36.44
Fourday 52.83 42.86 47.33 52.67
UMD.RE.2 58.29 49.99 53.82 46.61
BiBr 70.65 55.75 62.32 41.39
Ralign 92.00 45.06 60.49 35.24
XRCEnolm 82.65 62.44 71.14 28.86

Table 1: Romanian-English alignment results (De-
velopment Set, NO-NULL-Align)

word-to-word alignments needed for the shared task
and was not tuned for this corpus, its performance is
competitive with the best of the systems previously
used for the shared task. We thus decided to submit
runs for the official 2005 evaluation, whose resulting
scores are shown in Table 2.

On the development set, noncontiguous align-
ments resulted in slightly lower precision than con-
tiguous alignments, which was not unexpected, but
recall does not increase enough to improve F1 or
AER. The modified dictionaries improved preci-
sion slightly, as anticipated, but lowered recall suffi-
ciently to have no net effect on F1 or AER.

The evaluation set proved to be very similar in dif-
ficulty to the development data, resulting in scores
that were very close to those achieved on the dev-test
set. Noncontiguous alignments again proved to have
a very small negative effect on AER resulting from
reduced precision, but this time the altered dictionar-
ies for SPA(h) resulted in a substantial reduction in
recall, considerably harming overall performance.

After the shared task was complete, we performed
some tuning of the alignment parameters for the
Romanian-English development test set, and found
that the French-English-tuned parameters were close
to optimal in performance. The AER on the develop-
ment test set for the SPA(c) contiguous alignments
condition decreased from 36.44% to 36.11% after
the re-tuning.

4 Future Work

Enhancements in the extraction of word-to-word
alignments from what is fundamentally a phrase-to-
phrase alignment algorithm could probably further

Method Prec% Recall% F1% AER%
SPA (c) 64.96 61.34 63.10 36.90
SPA (n) 64.91 61.34 63.07 36.93
SPA (h) 64.60 60.54 62.50 37.50

Table 2: Evaluation results (NO-NULL-Align)

improve results on the Romanian-English data. We
also intend to investigate principled, seamless inte-
gration of manual alignments and dictionaries with
probabilistic ones, since the ad hoc method proved
detrimental. Finally, a more detailed performance
analysis is in order, to determine whether the close
balance of precision and recall is inherent in the bidi-
rectionality of the algorithm or merely coincidence.
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Abstract

We discuss results on the shared task of
Romanian-English word alignment. The
baseline technique is that of symmetrizing
two word alignments automatically gener-
ated using IBM Model 4. A simple vo-
cabulary reduction technique results in an
improvement in performance. We also
report on a new alignment model and a
new training algorithm based on alternat-
ing maximization of likelihood with mini-
mization of error rate.

1 Introduction

ISI participated in the WPT05 Romanian-English
word alignment task. The system used for baseline
experiments is two runs of IBM Model 4 (Brown et
al., 1993) in the GIZA++ (Och and Ney, 2003) im-
plementation, which includes smoothing extensions
to Model 4. For symmetrization, we found that Och
and Ney’s “refined” technique described in (Och and
Ney, 2003) produced the best AER for this data set
under all experimental conditions.

We experimented with a statistical model for in-
ducing a stemmer cross-lingually, but found that the
best performance was obtained by simply lower-
casing both the English and Romanian text and re-
moving all but the first four characters of each word.

We also tried a new model and a new training
criterion based on alternating the maximization of
likelihood and minimization of the alignment error
rate. For these experiments, we have implemented

an alignment package for IBM Model 4 using a hill-
climbing search and Viterbi training as described in
(Brown et al., 1993), and extended this to use new
submodels. The starting point is the final alignment
generated using GIZA++’s implementation of IBM
Model 1 and the Aachen HMM model (Vogel et al.,
1996).

Paper organization: Section 2 is on the baseline,
Section 3 discusses vocabulary reduction, Section 4
introduces our new model and training method, Sec-
tion 5 describes experiments, Section 6 concludes.

We use the following notation: e refers to an En-
glish sentence composed of English words labeled
ei. f refers to a Romanian sentence composed of
Romanian words labeled fj . a is an alignment of e

to f . We use the term “Viterbi alignment” to denote
the most probable alignment we can find, rather than
the true Viterbi alignment.

2 Baseline

To train our systems, Model 4 was trained two times,
first using Romanian as the source language and
then using English as the source language. For each
training, we ran 5 iterations of Model 1, 5 iterations
of the HMM model and 3 iterations of Model 4.
For the distortion calculations of Model 4, we re-
moved the dependencies on Romanian and English
word classes. We applied the “union”, “intersection”
and “refined” symmetrization metrics (Och and Ney,
2003) to the final alignments output from training, as
well as evaluating the two final alignments directly.

We tried to have a strong baseline. GIZA++ has
many free parameters which can not be estimated us-
ing Maximum Likelihood training. We did not use
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the defaults, but instead used settings which produce
good AER results on French/English bitext. We
also optimized p0 on the 2003 test set (using AER),
rather than using likelihood training. Turning off the
extensions to GIZA++ and training p0 as in (Brown
et al., 1993) produces a substantial increase in AER.

3 Vocabulary Size Reduction

Romanian is a Romance language which has a sys-
tem of suffixes for inflection which is richer than
English. Given the small amount of training data,
we decided that vocabulary size reduction was de-
sirable. As a baseline for vocabulary reduction, we
tried reducing words to prefixes of varying sizes
for both English and Romanian after lowercasing
the corpora. We also tried Porter stemming (Porter,
1997) for English.

(Rogati et al., 2003) extended Model 1 with an ad-
ditional hidden variable to represent the split points
in Arabic between the prefix, the stem and the suf-
fix to generate a stemming for use in Cross-Lingual
Information Retrieval. As in (Rogati et al., 2003),
we can find the most probable stemming given the
model, apply this stemming, and retrain our word
alignment system. However, we can also use the
modified model directly to find the best word align-
ment without converting the text to its stemmed
form.

We introduce a variable rj for the Romanian stem
and a variable sj for the Romanian suffix (which
when concatenated together give us the Romanian
word fj) into the formula for the probability of gen-
erating a Romanian word fj using an alignment aj

given only an English sentence e. We use the index
z to denote a particular stemming possibility. For a
given Romanian word the stemming possibilities are
simply every possible split point where the stem is at
least one character (this includes the null suffix).

p(fj , aj |e) =
∑

z

p(rj,z, sj,z, aj |e) (1)

If the assumption is made that the stem and the
suffix are generated independently from e, we can
assume conditional independence.

p(fj , aj |e) =
∑

z

p(rj,z, aj |e)p(sj,z, aj |e) (2)

We performed two sets of experiments, one set
where the English was stemmed using the Porter

stemmer and one set where each English word was
stemmed down to its first four characters. We
tried the best performing scoring heuristic for Ara-
bic from (Rogati et al., 2003) where p(sj,z, aj |e) is
modeled using the heuristic p(sj,z|lj) where sj,z is
the Romanian suffix, and lj is the last letter of the
Romanian word fj ; these adjustments are updated
during EM training. We also tried several other ap-
proximations of p(sj,z, aj |e) with and without up-
dates in EM training. We were unable to produce
better results and elected to use the baseline vocab-
ulary reduction technique for the shared task.

4 New Model and Training Algorithm

Our motivation for a new model and a new training
approach which combines likelihood maximization
with error rate minimization is threefold:

• Maximum Likelihood training of Model 4 is
not sufficient to find good alignments

• We would like to model factors not captured by
IBM Model 4

• Using labeled data could help us produce better
alignments, but we have very few labels

We create a new model and train it using an al-
gorithm which has a step which increases likelihood
(like one iteration in the EM algorithm), alternating
with a step which decreases error. We accomplish
this by:

• grouping the parameters of Model 4 into 5 sub-
models

• implementing 6 new submodels
• combining these into a single log-linear model

with 11 weights, λ1 to λ11, which we group
into the vector λ

• defining a search algorithm for finding the
alignment of highest probability given the sub-
models and λ

• devising a method for finding a λ which min-
imizes alignment error given fixed submodels
and a set of gold standard alignments

• inventing a training method for alternating
steps which estimate the submodels by increas-
ing likelihood with steps which set λ to de-
crease alignment error

The submodels in our new alignment model are
listed in table 1, where for ease of exposition we
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Table 1: Submodels used for alignment

1 t(fj |ei) TRANSLATION PROBABILITIES
2 n(φi|ei) FERTILITY PROBABILITIES, φi IS THE NUMBER OF WORDS GENERATED BY THE ENGLISH WORD ei

3 null PARAMETERS USED IN GENERATING ROMANIAN WORDS FROM ENGLISH NULL WORD (INCLUDING p0, p1)
4 d1(4j) MOVEMENT (DISTORTION) PROBABILITIES OF FIRST ROMANIAN WORD GENERATED FROM ENGLISH WORD
5 d>1(4j) MOVEMENT (DISTORTION) PROBABILITIES OF OTHER ROMANIAN WORDS GENERATED FROM ENGLISH WORD
6 TTABLE ESTIMATED FROM INTERSECTION OF TWO STARTING ALIGNMENTS FOR THIS ITERATION
7 TRANSLATION TABLE FROM ENGLISH TO ROMANIAN MODEL 1 ITERATION 5
8 TRANSLATION TABLE FROM ROMANIAN TO ENGLISH MODEL 1 ITERATION 5
9 BACKOFF FERTILITY (FERTILITY ESTIMATED OVER ALL ENGLISH WORDS)
10 ZERO FERTILITY ENGLISH WORD PENALTY
11 NON-ZERO FERTILITY ENGLISH WORD PENALTY

consider English to be the source language and Ro-
manian the target language.

The log-linear alignment model is specified by
equation 3. The model assigns non-zero proba-
bilities only to 1-to-many alignments, like Model
4. (Cettolo and Federico, 2004) used a log-linear
model trained using error minimization for the trans-
lation task, 3 of the submodels were taken from
Model 4 in a similar way to our first 5 submodels.

pλ(a, f |e) =
exp(

∑
m λmhm(f, a, e))

∑
f,e,a exp(

∑
m λmhm(f, a, e))

(3)

Given λ, the alignment search problem is to find
the alignment a of highest probability according to
equation 3. We solve this using the local search de-
fined in (Brown et al., 1993).

We set λ as follows. Given a sequence A of align-
ments we can calculate an error function, E(A). For
these experiments average sentence AER was used.
We wish to minimize this error function, so we se-
lect λ accordingly:

argmin
λ

∑

ã

E(ã)δ(ã, (argmax
a

pλ(a, f |e))) (4)

Maximizing performance for all of the weights
at once is not computationally tractable, but (Och,
2003) has described an efficient one-dimensional
search for a similar problem. We search over each
λm (holding the others constant) using this tech-
nique to find the best λm to update and the best value
to update it to. We repeat the process until no further
gain can be found.

Our new training method is:
REPEAT
• Start with submodels and lambda from previ-

ous iteration

• Find Viterbi alignments on entire training cor-
pus using new model (similar to E-step of
Model 4 training)

• Reestimate submodel parameters from Viterbi
alignments (similar to M-step of Model 4
Viterbi training)

• Find a setting for λ that reduces AER on dis-
criminative training set (new D-step)

We use the first 148 sentences of the 2003 test set
for the discriminative training set. 10 settings for λ

are found, the hypothesis list is augmented using the
results of 10 searches using these settings, and then
another 10 settings for λ are found. We then select
the best λ. The discriminative training regimen is
otherwise similar to (Och, 2003).

5 Experiments

Table 2 provides a comparison of our baseline sys-
tems using the “refined” symmetrization metric with
the best limited resources track system from WPT03
(Dejean et al., 2003) on the 2003 test set. The best
results are obtained by stemming both English and
Romanian words to the first four letters, as described
in section 2.

Table 3 provides details on our shared task sub-
mission. RUN1 is the word-based baseline system.
RUN2 is the stem-based baseline system. RUN4
uses only the first 6 submodels, while RUN5 uses
all 11 submodels. RUN3 had errors in processing,
so we omit it.

Results:
• Our new 1-to-many alignment model and train-

ing method are successful, producing decreases
of 0.03 AER when the source is Romanian, and
0.01 AER when the source is English.
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Table 2: Summary of results for 2003 test set

SYSTEM STEM SIZES AER

XEROX “NOLEM-ER-56K” 0.289
BASELINE NO PROCESSING 0.284
BASELINE ENG PORTER / ROM 4 0.251
BASELINE ENG 4 / ROM 4 0.248

Table 3: Full results on shared task submissions (blind test 2005)

RUN NAMES STEM SIZES SOURCE ROM SOURCE ENG UNION INTERSECTION REFINED

ISI.RUN1 NO PROCESSING 0.3834 0.3589 0.3590 0.3891 0.3165
ISI.RUN2 ENG 4 / ROM 4 0.3056 0.2880 0.2912 0.3041 0.2675
ISI.RUN4 ENG 4 / ROM 4 0.2798 0.2833 0.2773 0.2862 0.2663
ISI.RUN5 ENG 4 / ROM 4 0.2761 0.2778 0.2736 0.2807 0.2655

• These decreases do not translate to a large im-
provement in the end-to-end task of producing
many-to-many alignments with a balanced pre-
cision and recall. We had a very small decrease
of 0.002 AER using the “refined” heuristic.

• The many-to-many alignments produced using
“union” and the 1-to-1 alignments produced us-
ing “intersection” were also improved.

• It may be a problem that we trained p0 using
likelihood (it is in submodel 3) rather than op-
timizing p0 discriminatively as we did for the
baseline.

6 Conclusion
• Considering multiple stemming possibilities

for each word seems important.

• Alternating between increasing likelihood and
decreasing error rate is a useful training ap-
proach which can be used for many problems.

• Our model and training method improve upon a
strong baseline for producing 1-to-many align-
ments.

• Our model and training method can be used
with the “intersection” heuristic to produce
higher quality 1-to-1 alignments

• Models which can directly model many-to-
many alignments and do not require heuristic
symmetrization are needed to produce higher
quality many-to-many alignments. Our train-
ing method can be used to train them.
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Abstract

We present some experiments conducted
within the context of one of the shared
tasks of the ACL 2005 Workshop on
Building and Using Parallel Texts. We
have employed a new model for finding
the alignments. This new model takes
a recursive approach in order to find the
alignments. As its computational costs are
quite high, a method for splitting the train-
ing sentences in smaller parts is used.

1 Introduction

We present the experiments we conducted within the
context of the shared task of the track on building
and using parallel texts for languages with scarce
resources of the ACL 2005 Workshop on Build-
ing and Using Parallel Texts. The aim of the task
was to align the words of sentence pairs in differ-
ent language pairs. We have participated using the
Romanian-English corpora.

We have used a new model, the MAR (from the
Spanish initials of Recursive Alignment Model) that
allowed us to find structured alignments that were
later transformed in a more conventional format.
The basic idea of the model is that the translation of
a sentence can be obtained in three steps: first, the
sentence is divided in two parts; second, each part
is translated separately using the same process; and

∗Work partially supported by Bancaixa through the project
“Sistemas Inductivos, Estadı́sticos y Estructurales, para la Tra-
duccíon Autoḿatica (SIEsTA)”.

third, the two translations are joined. The high com-
putational costs associated with the training of the
model made it necessary to split the training pairs in
smaller parts using a simple heuristic.

Initial work with this model can be seen in (Vi-
lar Torres, 1998). A detailed presentation can be
found in (Vilar and Vidal, 2005). This model shares
some similarities with the stochastic inversion trans-
duction grammars (SITG) presented by Wu in (Wu,
1997). The main point in common is the num-
ber of possible alignments between the two models.
On the other hand, the parametrizations of SITGs
and the MAR are completely different. The gen-
erative process of SITGs produces simultaneously
the input and output sentences and the parameters
of the model refer to the rules of the nontermi-
nals. This gives a clear symmetry to both input
and output sentences. Our model clearly distin-
guishes an input and output sentence and the pa-
rameters are based on observable properties of the
sentences (their lengths and the words composing
them). Also, the idea of splitting the sentences un-
til a simple structure is found in the Divisive Clus-
tering presented in (Deng et al., 2004). Again, the
main difference is in the probabilistic modeling of
the alignments. In Divisive Clustering a uniform dis-
tribution on the alignments is assumed while MAR
uses a explicit parametrization.

The rest of the paper is structured as follows: the
next section gives an overview of the MAR, then we
explain the task and how the corpora were split, after
that, how the alignments were obtained is explained,
finally the results and conclusions are presented.
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2 The MAR

We provide here a brief description of the model,
a more detailed presentation can be found in (Vilar
and Vidal, 2005). The idea is that the translation of
a sentencēx into a sentencēy can be performed in
the following steps1:

(a) If x̄ is small enough, IBM’s model 1 (Brown et
al., 1993) is employed for the translation.

(b) If not, a cut point is selected in̄x yielding two
parts that are independently translated applying
the same procedure recursively.

(c) The two translations are concatenated either in
the same order that they were produced or sec-
ond first.

2.1 Model parameters

Apart from the parameters of model 1 (a stochas-
tic dictionary and a discrete distribution of lenghts),
each of the steps above defines a set of parameters.
We will consider now each set in turn.

Deciding the submodel The first decision is
whether to use IBM’s model 1 or to apply the MAR
recursively. This decision is taken on account of the
length ofx̄. A table is used so that:

Pr(IBM | x̄) ≈MI(|x̄|),
Pr(MAR | x̄) ≈MM (|x̄|).

Clearly, for everyx̄ we have thatPr(IBM | x̄) +
Pr(MAR | x̄) = 1.

Deciding the cut point It is assumed that the
probability of cutting the input sentence at a given
positionb is most influenced by the words around it:
xb andxb+1. We use a tableB such that:

Pr(b | x̄) ≈ B(xb, xb+1)∑|x̄|−1
i=1 B(xi, xi+1)

.

That is, a weight is assigned to each pair of words
and they are normalized in order to obtaing a proper
probability distribution.

1We use the following notational conventions. A string or
sequence of words is indicated by a bar like inx̄, individual
words from the sequence carry a subindex and no bar like inxi,
substrings are indicated with the first and last position like inx̄ji .
Finally, when the final position of the substring is also the last
of the string, a dot is used like in̄x.

i

Deciding the concatenation direction The direc-
tion of the concatenation is also decided as a func-
tion of the two words adjacent to the cut point, that
is:

Pr(D | b, x̄) ≈ DD(xb, xb+1),
Pr(I | b, x̄) ≈ DI(xb, xb+1),

where D stands for direct concatenation (i.e.
the translation of x̄b1 will precede the transla-
tion of x̄.

b+1) and I stands forinverse. Clearly,
DD(xb, xb+1) + DI(xb, xb+1) = 1 for every
pair (xb, xb+1).

2.2 Final form of the model

With these parameters, the final model is:

pT (ȳ | x̄) =
MI(|x̄|)pI(ȳ | x̄)

+MM (|x̄|)
|x̄|−1∑
b=1

B(xb, xb+1)∑|x̄|−1
i=1 B(xi, xi+1)

·

(
DD(xb, xb+1)

|ȳ|−1∑
c=1

pT (ȳc1 | x̄b1)pT (ȳ.
c+1 | x̄.

b+1)

+DI(xb, xb+1)
|ȳ|−1∑
c=1

pT (ȳ.
c+1 | x̄b1)pT (ȳc1 | x̄.

b+1)

)

were pI represents the probability assigned by
model 1 to a pair of sentences.

2.3 Model training

The training of the model parameters is done max-
imizing the likelihood of the training sample. For
each training pair(x̄, ȳ) and each parameterP rele-
vant to it, the value of

C(P ) =
P

pT (ȳ | x̄)
∂ pT (ȳ | x̄)

∂ P
(1)

is computed. This corresponds to thecountsof P
in that pair. As the model is polynomial on all
its parameters except for the cuts (theB’s), Baum-
Eagon’s inequality (Baum and Eagon, 1967) guar-
antees that normalization of the counts increases the
likelihood of the sample. For the cuts, Gopalakr-
ishnan’s inequality (Gopalakrishnan et al., 1991) is
used.
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Table 1: Statistics of the training corpus. Vocabulary
refers to the number of different words.

Language Sentences Words Vocabulary

Romanian 48 481 976 429 48 503
English 48 481 1 029 507 27 053

The initial values for the dictionary are trained
using model 1 training and then a series of itera-
tions are made updating the values of every param-
eter. Some additional considerations are taken into
account for efficiency reasons, see (Vilar and Vidal,
2005) for details.

A potential problem here is the large number of
parameters associated with cuts and directions: two
for each possible pair of words. But, as we are in-
terested only in aligning the corpus, no provision is
made for the data sparseness problem.

3 The task

The aim of the task was to align a set of 200 transla-
tion pairs between Romanian and English. As train-
ing material, the text of 1984, the Romanian Con-
stitution and a collection of texts from the Web were
provided. Some details about this corpus can be seen
in Table 1.

4 Splitting the corpus

To reduce the high computational costs of training of
the parameters of MAR, a heuristic was employed in
order to split long sentences into smaller parts with
a length less thanl words.

Suppose we are to split sentencesx̄ and ȳ. We
begin by aligning each word in̄y to a word in x̄.
Then, a score and a translation is assigned to each
substrinḡxji with a length belowl. The translation is
produced by looking for the substring ofȳ which has
a length belowl and which has the largest number
of words aligned to positions betweeni andj. The
pair so obtained is given a score equal to sum of: (a)
the square of the length of̄xji ; (b) the square of the
number of words in the output aligned to the input;
and (c) minus ten times the sum of the square of the
number of words aligned to a nonempty position out
of x̄ji and the number of words outside the segment
chosen that are aligned tōxji .

These scores are chosen with the aim of reduc-
ing the number of segments and making them as
“complete” as possible, ie, the words they cover are
aligned to as many words as possible.

After the segments of̄x are so scored, the partition
of x̄ that maximizes the sum of scores is computed
by dynamic programming.

The training material was split in parts up to ten
words in length. For this, an alignment was obtained
by training an IBM model 4 using GIZA++ (Och and
Ney, 2003). The test pairs were split in parts up to
twenty words. After the split, there were141 945
training pairs and 337 test pairs. Information was
stored about the partition in order to be able to re-
cover the correct alignments later.

5 Aligning the corpus

The parameters of the MAR were trained as ex-
plained above: first ten IBM model 1 iterations were
used for giving initial values to the dictionary proba-
bilities and then ten more iterations for retraining the
dictionary together with the rest of the parameters.

The alignment of a sentence pair has the form of a
tree similar to those in Figure 1. Each interior node
has two children corresponding to the translation of
the two parts in which the input sentence is divided.
The leaves of the tree correspond to those segments
that were translated by model 1.

As the reference alignments do not have this kind
of structure it is necessary to “flatten” them. The
procedure we have employed is very simple: if we
are in a leaf, every output word is aligned to every
input word; if we are in an interior node, the “flat”
alignments for the children are built and then com-
bined. Note that the way leaves are labeled tends to
favor recall over precision.

The flat alignment corresponding to the trees of
Figure 1 are:

economia si finantele publice

economy and public finance

and
Winston se intoarse brusc .

Winston turned round abruptly .
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economia si finantele publice

economy and public finance

economia si

economy and

finantele publice

public finance

economia

economy

si

and

finantele

finance

publice

public

Winston se intoarse brusc .

Winston turned round abruptly .

Winston se intoarse

Winston turned round

brusc .

abruptly .

Winston

Winston

se intoarse

turned round

brusc

abruptly

.

.

Figure 1: Two trees representing the alignment of two pair of sentences.

Precision Recall F-Measure AER

0.5404 0.6465 0.5887 0.4113

Table 2: Results for the task

6 Results and discussion

The results for the alignment can be seen in Ta-
ble 2. As mentioned above, there is a certain prefer-
ence for recall over precision. For comparison, us-
ing GIZA++ on the split corpus yields a precision
of 0.6834 and a recall of 0.5601 for a total AER
of 0.3844.

Note that although the definition of the task al-
lowed to mark the alignment as eitherprobableor
sure, we marked all the alignments assure, so pre-
cision and recall measures are given only for sure
alignments.

There are aspects that deserve further experimen-
tation. The first is the split of the original corpus.
It would be important to evaluate its influence, and
to try to find methods of using MAR without any
split at all. A second aspect of great importance is
the method used for “flattening”. The way leaves
of the tree are treated probably could be improved
if the dictionary probabilities were somehow taken
into account.

7 Conclusions

We have presented the experiments done using a
new translation model for finding word alignments
in parallel corpora. Also, a method for splitting the
input before training the models has been presented.
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Abstract

Several algorithms are available for sen-
tence alignment, but there is a lack of
systematic evaluation and comparison of
these algorithms under different condi-
tions. In most cases, the factors which
can significantly affect the performance
of a sentence alignment algorithm have
not been considered while evaluating. We
have used a method for evaluation that
can give a better estimate about a sen-
tence alignment algorithm’s performance,
so that the best one can be selected. We
have compared four approaches using this
method. These have mostly been tried
on European language pairs. We have
evaluated manually-checked and validated
English-Hindi aligned parallel corpora un-
der different conditions. We also suggest
some guidelines on actual alignment.

1 Introduction
Aligned parallel corpora are collections of pairs of
sentences where one sentence is a translation of the
other. Sentence alignment means identifying which
sentence in the target language (TL) is a translation
of which one in the source language (SL). Such cor-
pora are useful for statistical NLP, algorithms based
on unsupervised learning, automatic creation of re-
sources, and many other applications.

Over the last fifteen years, several algorithms have
been proposed for sentence alignment. Their perfor-
mance as reported is excellent (in most cases not less

than 95%, and usually 98 to 99% and above). The
evaluation is performed in terms of precision, and
sometimes also recall. The figures are given for one
or (less frequently) more corpus sizes. While this
does give an indication of the performance of an al-
gorithm, the variation in performance under varying
conditions has not been considered in most cases.
Very little information is given about the conditions
under which evaluation was performed. This gives
the impression that the algorithm will perform with
the reported precision and recall under all condi-
tions.

We have tested several algorithms under differ-
ent conditions and our results show that the per-
formance of a sentence alignment algorithm varies
significantly, depending on the conditions of test-
ing. Based on these results, we propose a method
of evaluation that will give a better estimate of the
performance of a sentence alignment algorithm and
will allow a more meaningful comparison. Our view
is that unless this is done, it will not be possible to
pick up the best algorithm for certain set of con-
ditions. Those who want to align parallel corpora
may end up picking up a less suitable algorithm for
their purposes. We have used the proposed method
for comparing four algorithms under different con-
ditions. Finally, we also suggest some guidelines for
using these algorithms for actual alignment.

2 Sentence Alignment Methods
Sentence alignment approaches can be categorized
as based on sentence length, word correspondence,
and composite (where more than one approaches are
combined), though other techniques, such as cog-
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nate matching (Simard et al., 1992) were also tried.
Word correspondence was used by Kay (Kay, 1991;
Kay and Roscheisen, 1993). It was based on the idea
that words which are translations of each other will
have similar distributions in the SL and TL texts.
Sentence length methods were based on the intuition
that the length of a translated sentence is likely to be
similar to that of the source sentence. Brown, Lai
and Mercer (Brown et al., 1991) used word count as
the sentence length, whereas Gale and Church (Gale
and Church, 1991) used character count. Brown, Lai
and Mercer assumed prior alignment of paragraphs.
Gale and Church relied on some previously aligned
sentences as ‘anchors’. Wu (Wu, 1994) also used
lexical cues from corpus-specific bilingual lexicon
for better alignment.

Word correspondence was further developed in
IBM Model-1 (Brown et al., 1993) for statistical
machine translation. Melamed (Melamed, 1996)
also used word correspondence in a different (geo-
metric correspondence) way for sentence alignment.
Simard and Plamondon (Simard and Plamondon,
1998) used a composite method in which the first
pass does alignment at the level of characters as
in (Church, 1993) (itself based on cognate match-
ing) and the second pass uses IBM Model-1, fol-
lowing Chen (Chen, 1993). The method used by
Moore (Moore, 2002) also had two passes, the first
one being based on sentence length (word count) and
the second on IBM Model-1. Composite methods
are used so that different approaches can compli-
ment each other.

3 Factors in Performance

As stated above, the performance of a sentence
alignment algorithm depends on some identifiable
factors. We can even make predictions about
whether the performance will increase or decrease.
However, as the results given later show, the algo-
rithms don’t always behave in a predictable way. For
example, one of the algorithms did worse rather than
better on an ‘easier’ corpus. This variation in perfor-
mance is quite significant and it cannot be ignored
for actual alignment (table-1). Some of these factors
have been indicated in earlier papers, but these were
not taken into account while evaluating, nor were
their effects studied.

Translation of a text can be fairly literal or it can
be a recreation, with a whole range between these
two extremes. Paragraphs and/or sentences can be
dropped or added. In actual corpora, there can even
be noise (sentences which are not translations at all
and may not even be part of the actual text). This can
happen due to fact that the texts have been extracted
from some other format such as web pages. While
translating, sentences can also be merged or split.
Thus, the SL and TL corpora may differ in size.

All these factors affect the performance of an al-
gorithm in terms of, say, precision, recall and F-
measure. For example, we can expect the perfor-
mance to worsen if there is an increase in additions,
deletions, or noise. And if the texts were translated
fairly literally, statistical algorithms are likely to per-
form better. However, our results show that this does
not happen for all the algorithms.

The linguistic distance between SL and TL can
also play a role in performance. The simplest mea-
sure of this distance is in terms of the distance on
the family tree model. Other measures could be the
number of cognate words or some measure based
on syntactic features. For our purposes, it may not
be necessary to have a quantitative measure of lin-
guistic distance. The important point is that for lan-
guages that are distant, some algorithms may not
perform too well, if they rely on some closeness be-
tween languages. For example, an algorithm based
on cognates is likely to work better for English-
French or English-German than for English-Hindi,
because there are fewer cognates for English-Hindi.
It won’t be without a basis to say that Hindi is
more distant from English than is German. English
and German belong to the Indo-Germanic branch
whereas Hindi belongs to the Indo-Aryan branch.
There are many more cognates between English and
German than between English and Hindi. Similarly,
as compared to French, Hindi is also distant from
English in terms of morphology. The vibhaktis of
Hindi can adversely affect the performance of sen-
tence length (especially word count) as well as word
correspondence based algorithms. From the syntac-
tic point of view, Hindi is a comparatively free word
order language, but with a preference for the SOV
(subject-object-verb) order, whereas English is more
of a fixed word order and SVO type language. For
sentence length and IBM model-1 based sentence
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alignment, this doesn’t matter since they don’t take
the word order into account. However, Melamed’s
algorithm (Melamed, 1996), though it allows ‘non-
monotonic chains’ (thus taking care of some differ-
ence in word order), is somewhat sensitive to the
word order. As Melamed states, how it will fare
with languages with more word variation than En-
glish and French is an open question.

Another aspect of the performance which may not
seem important from NLP-research point of view, is
its speed. Someone who has to use these algorithms
for actual alignment of large corpora (say, more than
1000 sentences) will have to realize the importance
of speed. Any algorithm which does worse than
O(n) is bound to create problems for large sizes. Ob-
viously, an algorithm that can align 5000 sentences
in 1 hour is preferable to the one which takes three
days, even if the latter is marginally more accurate.
Similarly, the one which takes 2 minutes for 100 sen-
tences, but 16 minutes for 200 sentences will be dif-
ficult to use for practical purposes. Actual corpora
may be as large as a million sentences. As an esti-
mate of the speed, we also give the runtimes for the
various runs of all the four algorithms tested.

Some algorithms, like those based on cognate
matching, may even be sensitive to the encoding or
notation used for the text. One of the algorithms
tested (Melamed, 1996) gave worse performance
when we used a notation called ITRANS for the
Hindi text, instead of the WX-notation.1

4 Evaluation in Previous Work
There have been attempts to systematically evaluate
and compare word alignment algorithms (Och and
Ney, 2003) but, surprisingly, there has been a lack of
such evaluation for sentence alignment algorithms.
One obvious problem is the lack of manually aligned
and checked parallel corpora.

Two cases where a systematic evaluation was per-
formed are the ARCADE project (Langlais et al.,
1996) and Simard et al. (Simard et al., 1992). In the
ARCADE project, six alignment systems were eval-
uated on several different text types. Simard et al.
performed an evaluation on several corpus types and

1In this notation, capitalization roughly means aspiration for
consonants and longer length for vowels. In addition, ‘w’ rep-
resents ‘t’ as in French entre and ‘x’ means something similar
to ‘d’ in French de, hence the name of the notation.

corpus sizes. They, also compared the performance
of several (till then known) algorithms.

In most of the other cases, evaluation was per-
formed on only one corpus type and one corpus size.
In some cases, certain other factors were considered,
but not very systematically. In other words, there
wasn’t an attempt to study the effect of various fac-
tors described earlier on the performance. In some
cases, the size used for testing was too small. One
other detail is that size was sometimes mentioned in
terms of number of words, not number of sentences.

5 Evaluation Measures
We have used local (for each run) as well as global
(over all the runs) measures of performance of an
algorithm. These measures are:

• Precision (local and global)

• Recall (local and global)

• F-measure (local and global)

• 95% Confidence interval of F-measure (global)

• Runtime (local)

6 An Evaluation Scheme
Unless sentence alignment is correct, everything
else that uses aligned parallel corpora, such as word
alignment (for automatically creating bilingual dic-
tionaries) or statistical machine translation will be
less reliable. Therefore, it is important that the best
algorithm is selected for sentence alignment. This
requires that there should be a way to systemati-
cally evaluate and compare sentence alignment al-
gorithms.

To take into account the above mentioned factors,
we used an evaluation scheme which can give an
estimate of the performance under different condi-
tions. Under this scheme, we calculate the measures
given in the previous section along the following di-
mensions:

• Corpus type

• Corpus size

• Difference in sizes of SL and TL corpora

• Noise
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We are also considering the corpus size as a factor
in performance because the second pass in Moore’s
algorithm is based on IBM Model-1, which needs
training. This training is provided at runtime by us-
ing the tentative alignments obtained from the first
pass (a kind of unsupervised learning). This means
that larger corpus sizes (enough training data) are
likely to make word correspondence more effective.
Even for sentence length methods, corpus size may
play a role because they are based on the distribution
of the length variable. The distribution assumption
(whether Gaussian or Poisson) is likely to be more
valid for larger corpus sizes.

The following algorithms/approaches were evalu-
ated:

• Brn: Brown’s sentence length (word count)
based method, but with Poisson distribution

• GC: Church and Gale’s sentence length (char-
acter count) based method, but with Poisson
distribution

• Mmd: Melamed’s geometric correspondence
based method

• Mre: Moore’s two-pass method (word count
plus word correspondence)

For Brn and GC we used our own implemen-
tations. For Mmd we used the GMA alignment
tool and for Mre we used Moore’s implementation.
Only 1-to-1 mappings were extracted from the out-
put for calculating precision, recall and F-measure,
since the test sets had only 1-to-1 alignments. En-
glish and Hindi stop lists and a bilingual lexicon
were also supplied to the GMA tool. The parame-
ter settings for this tool were kept the same as for
English-Malay. For Brn and GC, the search method
was based on the one used by Moore, i.e., searching
within a growing diagonal band. Using this search
method meant that no prior segmentation of the cor-
pora was needed (Moore, 2002), either in terms
of aligned paragraphs (Gale and Church, 1991), or
some aligned sentences as anchors (Brown et al.,
1991).

We would have liked to study the effect of linguis-
tic distance more systematically, but we couldn’t get
equivalent manually-checked aligned parallel cor-
pora for other pairs of languages. We have to rely

on the reported results for other language pairs, but
those results, as mentioned before, do not mention
the conditions of testing which we are considering
for our evaluation and, therefore, cannot be directly
compared to our results for English-Hindi. Still, we
did an experiment on the English-French test data
(447 sentences) for the shared task in NAACL 2003
workshop on parallel texts (see table-1).

For all our experiments, the text in Hindi was in
WX-notation.

In the following sub-sections we describe the de-
tails of the data sets that were prepared to study the
variation in performance due to various factors.

6.1 Corpus Type
Three different types of corpora were used for the
same language pair (English-Hindi) and size. These
were EMILLE, ERDC and India Today. We took
2500 sentences from each of these, as this was the
size of the smallest corpus.

6.1.1 EMILLE
EMILLE corpus was constructed by the EMILLE

project (Enabling Minority Language Engineering),
Lancaster University, UK, and the Central Institute
of Indian Languages (CIIL), Mysore, India. It con-
sists of monolingual, parallel and annotated corpora
for fourteen South Asian languages. The parallel
corpus part has a text (200000 words) in English and
its translations in Hindi, Bengali, Punjabi, Gujarati
and Urdu. The text is from many different domains
like education, legal, health, social, and consumer
markets. The documents are mostly in simple, for-
mal language. The translations are quite literal and,
therefore, we expected this corpus to be the ‘easiest’.

6.1.2 ERDC
The ERDC corpus was prepared by Electronic

Research and Development Centre, NOIDA, India.
It also has text in different domains but it is an un-
aligned parallel corpus. A project is going on to pre-
pare an aligned and manually checked version of this
corpus. We have used a part of it that has already
been aligned and manually checked. It was our opin-
ion that the translations in this corpus are less literal
and should be more difficult for sentence alignment
than EMILLE. We used this corpus for studying the
effect of corpus size, in addition to corpus type.
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Table 1: Results for Various Corpus Types (Corpus Size = 2500)
Clean, Same Size Noisy, Same Size Noisy, Different Size

Type Brn GC Mmd Mre Brn GC Mmd Mre Brn GC Mmd Mre
EMILLE P 99.3 99.1 85.0 66.8 85.5 87.4 38.2 66.2 87.2 86.5 48.0 65.5

R 96.0 93.0 80.0 63.2 80.4 80.0 36.2 58.0 81.2 79.1 46.5 57.4
F 97.6 96.0 82.0 64.9 82.8 83.5 37.2 61.8 84.0 82.6 47.3 61.2
T 23 23 261 45 47 44 363 64 25 25 413 47

ERDC P 99.6 99.5 94.2 100.0 85.4 84.4 48.0 96.5 84.6 85.5 50.9 97.7
R 99.0 99.1 92.7 97.0 81.7 80.6 46.7 78.9 80.5 81.3 49.8 79.1
F 99.3 99.3 93.4 98.4 83.5 82.4 47.3 86.8 82.5 83.3 50.3 87.1
T 31 29 1024 85 92 90 2268 124 55 52 3172 101

India P 91.8 93.9 76.4 99.5 71.5 76.7 49.7 94.4 73.6 75.5 51.7 93.4
Today R 81.0 83.0 70.6 81.5 61.0 65.5 47.6 67.5 62.4 64.4 50.1 62.6

F 86.1 88.1 73.4 89.6 65.8 70.7 48.6 78.7 67.6 69.5 50.9 75.0
T 32 32 755 91 96 101 2120 159 60 68 987 134

English- P 100.0 100.0 100.0 100.0 87.4 87.5 77.2 95.2 91.2 93.3 77.7 96.6
French R 100.0 99.3 100.0 99.3 85.5 84.3 81.7 84.6 83.2 83.7 82.6 83.0

P: Precision, R: Recall, F: F-Measure, T: Runtime (seconds)

6.1.3 India Today
India Today is a magazine published in both En-

glish and Hindi. We used some parallel text col-
lected from the Internet versions of this magazine. It
consists of news reports or articles which appeared
in both languages. We expected this corpus to be the
most difficult because the translations are often more
like adaptations. They may even be rewritings of the
English reports or articles in Hindi. This corpus had
2500 sentences.

6.2 Corpus Size
To study the effect of corpus size, the sizes used
were 500, 1000, 5000 and 10000. All these data sets
were from ERDC corpus (which was expected to be
neither very easy nor very difficult).

6.3 Noise and Difference in Sizes of SL and TL
Corpora

To see the effect of noise and the difference in sizes
of SL and TL corpora, we took three cases for each
of the corpus types and sizes:

• Same size without noise

• Same size with noise

• Different size with noise

Three different data sets were prepared for each
corpus type and for each corpus size. To obtain
such data sets from the aligned, manually checked
and validated corpora, we added noise to the cor-
pora. The noise was in the form of sentences from
some other unrelated corpus. The number of such
sentences was 10% each of the corpus size in the
second case and 5% to SL and 15% to the TL in the
third case. The sentences were added at random po-
sitions in the SL and TL corpora and these positions
were recorded so that we could automatically cal-
culate precision, recall and F-measure even for data
sets with noise, as we did for other data sets. Thus,
each algorithm was tested on (3+4)(3) = 21 data sets.

7 A Limitation
One limitation of our work is that we are considering
only 1-to-1 alignments. This is partly due to prac-
tical constraints, but also because 1-to-1 alignments
are the ones that can be most easily and directly used
for linguistic analysis as well as machine learning.

Since we had to prepare a large number of data
sets of sizes up to 10000 sentences, manual check-
ing was a major constraint. We had four options.
The first was to take a raw unaligned corpus and
manually align it. This option would have allowed
consideration of 1-to-many, many-to-1, or partial

103



Table 2: Results for Various Corpus Sizes
Clean, Same Size Noisy, Same Size Noisy, Different Size

Size Brn GC Mmd Mre Brn GC Mmd Mre Brn GC Mmd Mre
500 P 99.2 99.2 93.9 99.8 75.4 78.2 57.4 94.3 83.5 87.2 45.4 92.4

R 98.8 98.8 91.8 95.0 71.0 73.4 56.8 70.0 77.0 80.8 44.8 70.8
F 99.0 99.0 92.8 97.3 73.1 75.7 57.1 80.4 80.1 83.9 45.1 80.2
T 9 9 126 14 10 10 148 13 10 10 181 14

1000 P 99.3 99.6 96.4 100.0 84.6 84.6 67.8 96.8 82.2 84.0 47.3 95.1
R 98.9 99.4 95.1 96.3 81.4 82.2 68.4 73.7 76.3 78.7 46.1 72.7
F 99.1 99.5 95.7 98.1 83.0 83.4 68.1 83.7 79.1 81.2 46.7 82.4
T 13 13 278 29 24 23 335 34 15 15 453 30

5000 P 99.8 99.8 93.2 99.9 88.5 88.6 56.1 98.5 85.9 86.6 57.6 97.8
R 99.4 99.5 91.6 98.2 83.2 83.3 54.9 86.0 81.7 81.3 56.7 86.3
F 99.6 99.7 92.4 99.1 85.7 85.9 55.4 91.8 83.7 83.9 57.2 91.7
T 54 53 3481 186 199 185 5248 274 185 174 3639 275

10000 P 99.8 99.9 93.2 100.0 88.0 88.9 59.6 98.5 86.8 88.7 57.2 98.4
R 99.4 99.6 91.4 98.6 82.9 83.7 58.9 89.9 81.3 82.8 56.2 89.2
F 99.6 99.7 92.3 99.3 85.4 86.2 59.2 94.0 84.0 85.6 56.6 94.0
T 102 96 4356 305 370 346 4477 467 345 322 4351 479

alignments. The second option was to pass the text
through an alignment tool and then manually check
the output for all kinds of alignment. The third op-
tion was to check only for 1-to-1 alignments from
this output. The fourth option was to evaluate on
much smaller sizes.

In terms of time and effort required, there is an
order of difference between the first and the second
and also between the second and the third option. It
is much easier to manually check the output of an
aligner for 1-to-1 alignments than to align a corpus
from the scratch. We couldn’t afford to use the first
two options. The fourth option was affordable, but
we decided to opt for a more thorough evaluation of
1-to-1 alignments, than for evaluation of all kinds of
alignments for smaller sizes. Thus, our starting data
sets had only 1-to-1 alignments.

In future, we might extend the evaluation to all
kinds of alignments, since the manual alignment
currently being done on ERDC corpus includes par-
tial and 1-to-2 or 2-to-1 alignments. Incidentally,
there are rarely any 2-to-1 alignments in English-
Hindi corpus since two English sentences are rarely
combined into one Hindi sentence (when translating
from English to Hindi), whereas the reverse is quite
possible.

8 Evaluation Results
The results for various corpus types are given in
table-1, for corpus sizes in table-2, and the global
measures in table-3. Among the four algorithms
tested, Moore’s (Mre) gives the best results (ex-
cept for the EMILLE corpus). This is as expected,
since Mre combines sentence length based method
with word correspondence. The results for Mmd are
the worst, but it should be noted that the results for
Mmd reported in this paper may not be the best that
can be obtained with it, because its performance de-
pends on some parameters. Perhaps with better tun-
ing for English-Hindi, it might perform better. An-
other expected outcome is that the results for GC
(character count) are better than Brn (word count).
One reason for this is that there are more of charac-
ters than words (Gale and Church, 1991).

Leaving aside the tuning aspect, the low perfor-
mance of Mmd may be due to the fact that it relies
on cognate matching, and there are fewer cognates
between Hindi and English. It might also be due to
the syntactic differences (word order) between Hindi
and English. This could, perhaps be taken care of
by increasing the maximum point dispersal thresh-
old (relaxing the linearity constraint), as suggested
by Melamed (Melamed, 1996).
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The results of experiment on English-French
(table-1) show that Mmd performs better for this
language pair than for English-Hindi, but it still
seems to be more sensitive to noise than the other
three algorithms. Mre performed the best for
English-French too.

With respect to speed, Brn and GC are the fastest,
Mre is marginally slower, and Mmd is much slower.

The effects of the previously mentioned factors on
performance have been summarized below.

8.1 Corpus Type

Brn, GC, and Mmd performed almost equally well
for EMILLE and ERDC corpora, but not that well
for India Today. However, surprisingly, Mre per-
formed much worse for EMILLE than it did for
the other two corpora. It could be because of the
fact that the EMILLE has a lot of very short (1-3
words) sentences, and word correspondence (in the
second pass) may not be that effective for such sen-
tences. The results don’t support our assumption
that EMILLE is easier than ERDC, but India Today
does turn out to be more difficult than the other two
for all the test cases. This is understandable since
the translations in this corpus are much less literal.

8.2 Corpus Size

Only in the case of Mre, the performance almost
consistently increased with size. This is as expected
since the second pass in Mre needs training from
the results of the first pass. The corpus size has to be
large for this training to be effective. There doesn’t
seem to be a clear relationship between size and per-
formance for the other three algorithms.

8.3 Noise and Difference in Sizes of SL and TL
Corpora

As expected, introducing noise led to a decrease
in performance for all the algorithms (table-1 and
table-2). However (barring EMILLE) Mre seems to
become less sensitive to noise as the corpus size in-
creases. This again could be due to the unsupervised
learning aspect of Mre.

Making the SL and TL corpora differ in size
tended to reduce the performance in most cases, but
sometimes the performance marginally improved.

Table 3: Global Evaluation Measures
Brn GC Mmd Mre

Clean, L 92.6 93.4 81.4 80.8
Same Size H 100.0 100.0 96.3 100.0

P 98.4 98.7 90.3 95.1
R 96.1 96.1 87.6 90.0
F 97.2 97.3 88.9 92.4

Noisy, L 73.1 75.8 44.1 72.6
Same Size H 87.5 86.4 62.4 92.3

P 82.7 84.1 53.8 92.2
R 77.4 78.4 52.8 74.9
F 79.8 81.1 53.3 82.5

Noisy, L 74.7 76.4 46.2 71.3
Different H 85.6 86.4 55.0 92.0
Size P 83.4 84.9 51.2 91.5

R 77.2 78.3 50.0 74.0
F 80.1 81.4 50.6 81.6

Overall L 81.1 82.4 55.4 80.0
H 90.4 90.8 73.1 91.0
P 88.2 89.2 65.1 92.9
R 83.6 84.3 63.5 79.6
F 85.7 86.6 64.6 85.5

L and H: Lower and higher limits of
95% confidence interval for F-measure

P, R, and F: Average precision,
recall, and F-measure

9 Some Notes on Actual Corpus Alignment

Based on the evaluation results and our experience
while manually checking alignments, we make some
observations below which could be useful to those
who are planning to create aligned parallel corpora.

Contrary to what we believed, sentence length
based algorithms turn out to be quite robust, but also
contrary to the commonly held view, there is scope
for improvement in the performance of these algo-
rithms by combining them with other techniques as
Moore has done. However, as the performance of
Mre on EMILLE shows, these additional techniques
might sometimes decrease the performance.

There is a tradeoff between precision and recall,
just as between robustness and accuracy (Simard and
Plamondon, 1998). If the corpus aligned automati-
cally is to be used without manual checking, then we
should opt for maximum precision. But if it’s going
to be manually checked before being used, then we
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should opt for maximum recall. It depends on the
application too (Langlais et al., 1996), but if man-
ual checking is to be done, we can as well try to
get the maximum number of alignments, since some
decrease in precision is not going to make manual
checking much more difficult.

If the automatically aligned corpus is not to be
checked manually, it becomes even more important
to perform a systematic evaluation before aligning
a corpus, otherwise the parallel corpus will not be
reliable either for machine learning or for linguistic
analysis.

10 Conclusion
We used a systematic evaluation method for select-
ing a sentence alignment algorithm with English and
Hindi as the language pair. We tested four algo-
rithms for different corpus types and sizes, for the
same and different sizes of SL and TL corpora, as
well as presence and absence of noise. The evalu-
ation scheme we have described can be used for a
more meaningful comparison of sentence alignment
algorithms. The results of the evaluation show that
the performance depends on various factors. The di-
rection of this variation (increase or decrease) was as
predicted in most of the cases, but some results were
unexpected. We also presented some suggestions on
using an algorithm for actual alignment.
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Abstract
 

We briefly describe a word alignment system 
that combines two different methods in bitext 
correspondences identification. The first one is 
a hypotheses testing approach (Gale and 
Church, 1991; Melamed, 2001; Tufiş 2002) 
while the second one is closer to a model 
estimating approach (Brown et al., 1993; Och 
and Ney, 2000). We show that combining the 
two aligners the results are significantly 
improved as compared to each individual 
aligner. 

 
Introduction 

In (Tufiş, 2002) we described a translation equivalence 
extraction program called TREQ the development of 
which was twofold motivated: to help enriching the 
synsets of the Romanian wordnet (Tufiş et al. 2004a) 
with new literals based on bilingual corpora evidence 
and to check the interlingual alignment of our wordnet 
against the Princeton Wordnet. The translation 
equivalence extractor has been also incorporated into a 
WSD system (Tufiş et al., 2004b) part of a semantic 
web annotation platform. It also constituted the 
backbone of our TREQ-AL word aligner which 
successfully participated in the previous HLT-NAACL 
2003 Shared Task1 on word alignment for Romanian-
English parallel texts. A detailed description of 
TREQ&TREQ-AL is given in (Tufiş et al. 2003b) and it 
will be very shortly overviewed. 

A quite different approach from our hypotheses 
testing implemented in the TREQ-AL aligner is taken 
by the model-estimating aligners, most of them relying 
on the IBM models (1 to 5) described in the (Brown et 
al. 1993) seminal paper. The first wide-spread and 
publicly available implementation of the IBM models 
was the GIZA program, which itself was part of the 
SMT toolkit EGYPT (Al-Onaizan et al., 1999). GIZA 
has been superseded by its recent extension GIZA++ 
(Och and Ney, 2000, 2003) publicly available2. We used 
the translation probabilities generated by GIZA++ for 
implementing a second aligner, MEBA, described in a 

                                                 
1 http://www.cs.unt.edu/~rada/wpt/index.html#shared  
2 http://www.fjoch.com/GIZA++.2003-09-30.tar.gz 

little more details in a subsequent section. The 
alignments produced by MEBA were compared to the 
ones produced by TREQ-AL. We used for comparison 
the Gold Standard3 annotation from the HLT-NAACL 
2003 Shared Task. In order to combine the two aligners 
we had to check whether their accuracy was comparable 
and that when they are wrong the set of mistakes made 
by one aligner is not a proper set of the errors made by 
the second one. The first check was performed by using 
McNamer’s test  (Dieterich, 1998) and for the second 
we used Brill &Wu test (Brill, Wu, 1998). Both tests 
confirmed that the conditions for combining were 
ensured so, we built the combiner.  

The Combined Word Aligner, COWAL, is a 
wrapper of the two aligners (TREQ-AL and MEBA) 
ensuring the pre- and post-processing. It is 
complemented by a graphical user interface that allows 
for the visualisation of the alignments (intermediary and 
the final ones) as well as for their editing. We should 
note that the corrections made by the user are stored by 
COWAL as positive and negative examples for word 
dependencies (in the monolingual context) and 
translation equivalencies (in the bilingual context). In 
the current version the editorial logs are used by the 
human developers but we plan to further extend 
COWAL for automatic learning from this extremely 
valuable kind of data.    
 
The bitext processing  

The two base aligners and their combination use the 
same format for the input data and provide the 
alignments in the same format. The input format is 
obtained from two raw texts which represent reciprocal 
translations. If not already sentence aligned, the two 
texts are aligned. In the shared task this step was not 
necessary since both the training data and evaluation 
data were provided in the sentence aligned format.  

The texts in each language are then tokenized with 
the MULTEXT multilingual tokenizer4. The tokenizer is 
a finite state automaton using language specific 

                                                 
3 We noticed in the Gold Standard two sentences where 
alignments were wrongly shifted by one position (due to an 
unprintable character) and we corrected them.  
4 http://aune.lpl.univ-aix.fr:16080/projects/multext/MtSeg/  
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resources. It recognizes several compounds (phrasal 
verbs, idioms, dates) and split contrasted or cliticized 
constructions. This tokenization considerably differs 
from the one prescribed by the Shared Task where a 
token is any character string delimited by a blank or a 
punctuation sign (which itself is considered a token).   

Since our processing tools (especially the tokeniser) 
were built with a different segmentation strategy in 
mind, we generated the alignments based on our own 
tokenization and, at the end, we “re-tokenised” the text 
according to original evaluation data (and consequently 
re-index) all the linking pairs. After tokenization, both 
texts are tagged and lemmatized.  We used in-house 
language models and lemmatizers and the Brants’s TnT 
tagger5. For both English and Romanian we used 
MULTEXT-EAST6 compliant tagsets. With different 
tags, a tagset mapping table becomes an obligatory 
external resource. Although, more often than not, the 
translation equivalents have the same part-of speech, 
relying on such a restriction would seriously affect the 
alignment recall. However, when the translation 
equivalents have different parts of speech, this 
difference is not arbitrary.  During the training phase we 
estimated bilingual POS affinities:{p(POSm

RO| POSn
EN)} 

and {p(POSn
EN|POSm

RO)}. POS affinities were used as 
one of the information sources in dealing with 
competitive alignments.  

The next preprocessing step is represented by a 
rather primitive form of sentence chunking in both 
languages. They roughly correspond to (non-recursive) 
noun phrases, adjectival phrases, prepositional phrases 
and verb complexes (analytical realization of tense, 
aspect mood and diathesis and phrasal verbs).  The 
“chunks” are recognized by a set of regular expressions 
defined over the tagsets. Finally, the bitext is assembled 
as an XML document (XCES-Align-ana format), as 
used in the MULTEXT-EAST corpus, which is the 
standard input for most of our tools, including COWAL 
alignment platform. 

 
The three aligners  

TREQ-AL generates translation equivalence hypotheses 
for the pairs of words (one for each language in the 
parallel corpus) which have been observed occurring in 
aligned sentences more than expected by chance. The 
hypotheses are filtered by a loglikelihood score 
threshold. Several heuristics (string similarity-cognates, 
POS affinities and alignments locality7) are used in a 

                                                 
5 http://acl.ldc.upenn.edu/A/A00/A00-1031.pdf  
6 http://nl.ijs.si/ME/V2/  
7 The alignments locality heuristics exploits the observation 
made by several researchers that adjacent words of a text in 
the source language tend to align to adjacent words in the 
target language. A more strict alignment locality constraint 

competitive linking manner (Melamed, 2001) to make 
the final decision on the most likely translation 
equivalents. Given that, initially, this program was 
designed for extracting translation equivalents for the 
alignment of the Romanian wordnet to the Princeton 
wordnet, it deals only with one to one mappings. To 
cope with the many to many mappings (especially for 
functional words alignment), the earlier version of the 
translation equivalence extractor encoded some general 
rules assumed to be valid over a large set of natural 
languages such as: auxiliaries and verbal particles 
(infinitive, subjunctive, aspectual and temporal) are 
related to the closest main verb, determiners (articles, 
pronominal adjectives, quantifiers) are related to the 
closest nominal category (noun or pronoun). Currently 
this part of the TREQ-AL code became redundant 
because the chunking module mentioned before does 
the same job in a more general and flexible way.  
MEBA is an iterative algorithm which uses the 
translation probabilities, distorsions and POS-affinities 
generated by GIZA++ and takes advantage of all 
preprocessing phases mentioned in the previous section. 
In each step are aligned different categories of tokens 
(content words, named entities, functional words) in 
decreasing order of statistical evidence. The score of a 
link is computed by a linear function of 7 parameters’ 
scores: translation probability, POS affinity, string 
similarity, alignments locality (both strict and weaker 
versions) distortions and the entropy of the translation 
equivalents. For all these parameters, in each processing 
step, we empirically set minimal thresholds and various 
weights. The tokens considered for the computing 
translation probabilities are the lemmas trailed by the 
grammatical categories (eg. plane_N, plane_V 
plane_A). This way we aimed at avoiding data 
sparseness and filtering noisy data. For highly 
inflectional languages (as Romanian is) the use of 
lemmas instead of word occurrences contributes 
significantly to the data sparseness reduction. For 
languages with weak inflectional character (as English 
is) the POS trailing contributes especially to the filtering 
the search space. Each processing step is controlled by 
above mentioned parameters, the weights and thresholds 
of which vary from step to step (even the order of the 
processing steps is one of the possible parameters). 

The first alignment step builds only links with a 
high level of certainty (that is cognates, pairs of high 
translation probability and high POS affinity). The 
grammatical categories which are considered in this step 
are user controlled (usually nouns, adjectives or non-
auxiliary verbs and which have the fewest competitive 
translations). The next processing steps try to align 

                                                                             
requires that all alignment links starting from a chunk, in the 
one language end in a chunk in the other language. This 
restricted form of locality is relevant for related languages.  
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content words (open class categories) as confidently as 
possible, following the alignments in previous steps as 
anchor points. In all steps the candidates are considered 
if and only if they meet the minimal threshold 
restrictions. If the input bitext is chunked, the strict 
alignment locality heuristics is very effective to 
determine the correct alignment even for unseen pairs of 
words (or for which the translation equivalence 
probability is below the considered threshold). When 
the pre-chunking of the parallel texts is not available, 
MEBA uses the weaker form of the locality heuristics 
by analyzing the alignments already existing in a 
window of N tokens centered on the focused token. The 
window size is variable, proportional to the sentence 
length. For all alignments in the window, an average 
displacement is computed and, among the competing 
alignments, preference will be given to the links with 
displacement values closer to the average one.  

The functional words and punctuation are processed 
in the last step and their alignments are guided by the 
POS-affinities and alignment locality heuristics. If none 
of the alignment clues or their combination (Tiedemann, 
2003) is strong enough, the functional words are 
automatically aligned with the word(s) their governor is 
aligned to. The governor is chunk-based defined: it is 
the content word of a chunk (if there are more content 
words in a chunk, then the governor is the grammatical 
head). If the chunking is not available, the closest 
content word is selected as the governor. Proximity is 
checked to the left or to the right according to the 
frequencies of the POS-ngram containing the current 
functional word.  

We should mention that the probabilities computed 
during the training phase are not re-estimated for each 
run-time processing step. At run-time only the weights 
and thresholds change from step to step.  
COWAL, the combined aligner takes advantage of the 
alignments independently provided by TREQ-AL and 
MEBA. The simplest combination method consists in 
computing either the union (high recall, low precision), 
or the intersection (lower recall, higher precision) of the 
independent alignments. We evaluated both these 
simple methods of combination and found that the best 
F-measure was provided by the union-based 
combination. Although for the shared task we submitted 
the union-based combined alignment (Baseline 
COWAL, see Table 1), there are various ways to 
improve it. We discuss three cases where improvement 
is possible (C1, C2 and C3, see below) and which were 
evaluated after the submission deadline. The results of 
this (unofficial) evaluation are summarized in Table 1 
by the f-COWAL line. These cases refer to competing 
links that appeared after the union of the independent 
alignments. The conflicts resolution is based on the 
(weak) locality and distortion heuristics discussed 

before. The currently identified competing links are 
only those for which the following conditions apply: 
C1) if one aligner found for a word W a non-null 

alignment and the other aligner generated for the 
same word W a null link, then the baseline alignment 
contains an impossible situation: the token W is 
recorded both as translated and not-translated in the 
other language. The translation probabilities, POS 
affinity and the relative displacement of the tokens in 
the non-null candidates were the strongest decision 
criteria. We found that in about 60% of the cases the 
null alignments were mistaken. So, for the time being, 
we simply eliminated the null competing alignments 
(this should be addressed in a more principled way by 
the future version of the combiner).  

C2) long distant competing links; this case appears 
when one aligner found for the word Ws the link to 
the target word Wtm, the other aligner found for Ws 
the target Wtn, and the distance between Wtm and 
Wtn, is more than 3 words (in a future version this 
maximum distance will be a dynamic parameter, 
depending on the sentence length and the POS of 
Ws). 

C3) competing links to the same target(s) of a word 
occurring several times in the same sentence; 
consider, for example, the Romanian fragment:  

     “…la1 Neptun, la2 Orastie si la3 Afumati, …   
     which in English is translated by the next segment: 
     “…in Neptun, Orastie and Afumati… 

In spite of the gold standard considering that all three 
occurrences of the preposition “la” in Romanian (la1, 
la2 ,la3) are aligned to the same word in English (“in”), 
the filtering, in this case, licensed only the alignment 
“la1 <-> in”. We consider that this filtered alignment 
is correct, since omitting “la2” and “la3” does not alter 
the syntactic correctness of the Romanian text, and 
also because the insertion in the English fragment of 
the preposition “in” before “Orastie” and before 
“Afumati” wouldn’t alter the grammaticality of the 
English fragment. Since both repetitions and 
omissions are optional, we consider that only the first 
occurrence of the preposition (“la1”) is translated in 
English, while the others are omitted. 

Another possible improvement (not implemented yet) 
was revealed by observing that the final result contained 
several incomplete n-m (phrasal) alignments. It is likely 
that even an elementary n-gram analysis (both sides of 
the bitext) would bring valuable evidence for improving 
the phrasal alignments.  
 
Post-processing  

As said in the second section, our tokenization was 
different from the tokenization in the training and test 
data. To comply with the evaluation protocol, we had to 
re-tokenize the aligned text and re-compute the indexes 
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of the links. Some multi-word expressions recognized 
by the tokenizer as one token, such as dates (25 
ianuarie, 2001), compound prepositions (de la, până 
la), conjunctions (pentru ca, de când, până când) or 
adverbs (de jur împrejur, în faţa) as well as the hyphen 
separated nominal compounds (mass-media, prim-
ministru) were split, their positions were re-indexed and 
the initial one link of a split compound was replaced 
with the set obtained by adding one link for each 
constituent of the compound to the target English word. 
The same hold for the other way around. Therefore if 
two multiword expressions were initially found to be 
translation equivalents (one alignment link) after the 
post-processing number of  generated links became 
N*M, where N represented the number of words in the 
first language compound and M the number of words in 
the second language compound.   

Evaluation and conclusions 

Neither TREQ-AL nor MEBA needs an a priori 
bilingual dictionary, as this will be automatically 
extracted by the TREQ or GIZA++. We made 
evaluation of the individual alignments in both 
experimental settings: without a startup bilingual 
lexicon and with an initial mid-sized bilingual lexicon. 
Surprisingly enough, we found that while the 
performance of TREQ-AL increases a little bit (approx. 
1% increase of the F-measure) MEBA is doing better 
without an additional lexicon. So, in the evaluation 
below MEBA uses only the training data vocabulary.  

 
Aligner Precision Recall F-

meas. 
AER 

TREQ-AL 81.71 60.57 69.57 30.43 
MEBA 82.85 60.41 69.87 30.13 

Baseline 
(union)COWAL 

70.84 76.67 73.64 26.36 

f-COWAL 
(H1+H2+H3) 

87.17 70.25 77.80 22.20 

         Table 1. Evaluation results against the official GS 

After the release of the official Gold Standard we 
noticed and corrected some obvious errors and also 
removed the controversial links of the type c) discussed 
in the previous section. The evaluations against this new 
“Gold Standard” showed, on average, 3.5% better 
figures (precision, recall, F-measure and AER) for the 
individual aligners, while for the combined classifiers, 
the performance scores were about 4% better. 

MEBA is very sensitive to the values of the 
parameters which control its behavior. Currently they 
are set according to the developers’ intuition and after 
the analysis of the results from several trials. Since this 
activity is pretty time consuming (human analysis plus 

re-training might take a couple of hours) we plan to 
extend MEBA with a supervised learning module, 
which would automatically determine the “optimal” 
parameters (thresholds and weights) values. 

 
References 

Al-Onaizan, Y., Curin, J., Jahr, M., Knight K., Lafferty, J., 
Melamed, D., Och, F. J., Purdy, D., Smith, N.A., 
Yarowsky, D. (1999) : Statistical Machine 
Translation, Final Report, JHU Workshop, 42 pages 

Brill, E., and Wu, J. (1998). “Classifier Combination for 
Improved Lexical Disambiguation” In Proceedings of 
COLING-ACL’98  Montreal, Canada, 191-195 

Brown, P. F., Della Pietra, S.A.,  Della Pietra, V. J., 
Mercer, R. L.(1993) “The mathematics of statistical 
machine translation: Parameter estimation”. 
Computational Linguistics, 19(2) pp. 263–311. 

Dietterich, T. G., (1998). “Approximate Statistical Tests 
for Comparing Supervised Classification Learning 
Algorithms”. Neural Computation, 10 (7) 1895-1924. 

Gale, W.A. and Church, K.W. (1991). „Identifying word 
correspondences in parallel texts”. Proceedings of the 
Fourth DARPA Workshop on Speech and Natural 
Language. Asilomar, CA, pp. 152–157. 

Melamed, D. (2001). Empirical Methods for Exploiting 
Parallel Texts. Cambridge, MA: MIT Press. 

Och, F.J., Ney, H. (2003) "A Systematic Comparison of 
Various Statistical Alignment Models", Computa-
tional Linguistics, 29(1), pp. 19-51 

Och, F.J., Ney, H.(2000) "Improved Statistical Alignment 
Models". Proceedings of the 38th ACL, Hongkong,  
pp. 440-447 

Tiedemann, J. (2003) “Combining clues for word 
alignment”. In Proceedings of the 10th EACL, 
Budapest, pp. 339–346 

Tufiş, D.(2002) ”A cheap and fast way to build useful 
translation lexicons”. Proceedings of COLING2002, 
Taipei, pp. 1030-1036. 

Tufiş, D., Barbu, A.M., Ion R (2003).: „TREQ-AL: A 
word-alignment system with limited language 
resources”, Proceedings of the NAACL 2003 
Workshop on Building and Using Parallel Texts; 
Romanian-English Shared Task, Edmonton, pp. 36-39 

Tufiş, D., Ion, R., Ide, N.(2004a): Fine-Grained Word 
Sense Disambiguation Based on Parallel Corpora, 
Word Alignment, Word Clustering and Aligned 
Wordnets. Proceedings of COLING2004, Geneva, pp. 
1312-1318 

Tufis, D., Barbu, E., Mititelu, V., Ion, R., Bozianu, 
L.(2004b): „The Romanian Wordnet”.  In Romanian 
Journal on Information Science and Technology, Dan 
Tufiş (ed.) Special Issue on BalkaNet, Romanian 
Academy, 7(2-3), pp. 105-122.  

110



Proceedings of the ACL Workshop on Building and Using Parallel Texts, pages 111–114,
Ann Arbor, June 2005.c©Association for Computational Linguistics, 2005

LIHLA: Shared task system description

Helena M. Caseli, Maria G. V. Nunes
NILC – ICMC – Univ. S̃ao Paulo

CP 668P, 13560-970 São Carlos–SP, Brazil
{helename,gracan }@icmc.usp.br

Mikel L. Forcada
Transducens – DLSI – Univ. d’Alacant

E-03071 Alacant, Spain
mlf@dlsi.ua.es

Abstract

In this paper we describe LIHLA, a lexical
aligner which uses bilingual probabilis-
tic lexicons generated by a freely availa-
ble set of tools (NATools) and language-
independent heuristics to find links be-
tween single words and multiword units
in sentence-aligned parallel texts. The
method has achieved an alignment error
rate of 22.72% and 44.49% on English–
Inuktitut and Romanian–English parallel
sentences, respectively.

1 Introduction

Alignment of words and multiword units plays an
important role in many natural language processing
(NLP) applications, such as example-based machine
translation (EBMT) (Somers, 1999) and statistical
machine translation (SMT) (Ayan et al., 2004; Och
and Ney, 2000), transfer rule learning (Carl, 2001;
Menezes and Richardson, 2001), bilingual lexi-
cography (Ǵomez Guinovart and Sacau Fontenla,
2004), and word sense disambiguation (Gale et al.,
1992), among others.

Aligning two (or more) texts means finding
correspondences (translation equivalences) between
segments (paragraphs, sentences, words, etc.) of the
source text and segments of its translation (the tar-
get text). Following the same idea of many recently
proposed approaches on lexical alignment (e.g., Wu
and Wang (2004) and Ayan et al. (2004)), the
method described in this paper, LIHLA (Language-
Independent Heuristics Lexical Aligner) starts from

statistical alignments between single words (de-
fined in bilingual lexicons) and applies language-
independent heuristics to them, aiming at finding the
best alignments between words or multiword units.

Although the most frequent alignment category is
1 : 1 (in which one source word is translated exactly
as one target word), other categories such as omis-
sions (1 : 0 or 0 : 1) or those involving multiword
units (n : m, withn and/orm ≥ 1) are also possible.

This paper is organized as follows: section 2 ex-
plains how LIHLA works; section 3 describes some
experiments carried out with LIHLA together with
their results and, in section 4, some concluding re-
marks are presented.

2 How LIHLA works

As the first step, LIHLA uses alignments between
single words defined in two bilingual lexicons
(source–target and target–source) generated from
sentence-aligned parallel texts using NATools.1

Given two sentence-aligned corpus files, the NA-
Tools word aligner —based on the Twenty-One sys-
tem (Hiemstra, 1998)— counts the co-occurrences
of words in all aligned sentence pairs and builds a
sparse matrix of word-to-word probabilities (Model
A) using an iterative expectation-maximization al-
gorithm (5 iterations by default). Finally, the ele-
ments with higher values in the matrix are cho-
sen to compose two probabilistic bilingual lexi-
cons (source–target and target–source) (Simões and
Almeida, 2003). For each word in the corpus, each

1NATools is a set of tools developed to work with parallel
corpora, which is freely available inhttp://natura.di.
uminho.pt/natura/natura/ .
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bilingual lexicon gives: the number of occurrences
of that word in the corpus (its absolute frequency)
and its most likely translations together with their
probabilities.

The construction of the bilingual lexicons is an
independent prior step for the alignment performed
by LIHLA and the same bilingual lexicons can be
used several times to align parallel sentences.

So, using the two bilingual lexicons generated
by NATools and some language-independent heuris-
tics, LIHLA tries to find the best alignment between
source and target tokens (words, numbers, special
characters, etc.) in a pair of parallel sentences. For
each source tokensj in source sentenceS, LIHLA
will look for the best tokenti in the target parallel
sentenceT applying these heuristics in sequence:

1. Exact match
LIHLA creates a1 : 1 alignment betweensj
andti if they are identical. This heuristic stays
for exact matches, for instance, between proper
names and numbers.

2. Best candidate according to the bilingual
lexicon
LIHLA looks for possible translations ofsj in
the source–target bilingual lexicon (BS) and
makes an intersection between them and the
words inT . In this intersection, if no candi-
date word identical to those inBS is found,
then LIHLA tries to look for cognates for
those words using the longest common subse-
quence ratio (LCSR).2 By doing this, LIHLA
can deal with small changes in possible trans-
lations such as different forms of the same verb,
changes in gender and/or number of nouns,
adjectives, and so on.
Then, LIHLA selects the best target candidate
word ti for sj —the best candidate word accor-
ding to BS among those in a position which
is favorably situated in relation tosj— and
looks for multiword units involvingsj and ti
—those words that occur immediately before
and/or aftersj (for source multiword units) or

2The LCSR of two words is computed by dividing the length
of their longest common subsequence by the length of the
longer word. For example, the LCSR of Portuguese wordalin-
hamentoand Spanish wordalineamientois 10

12
' 0.83 as their

longest common subsequence isa-l-i-n-a-m-e-n-t-o.

ti (for target multiword units) and are not pos-
sible translations for other words inT andS,
respectively. According to the multiword units
that have (or not) been found, a1 : 1, 1 : n,
m : 1 or m : n alignment is established. An
omission alignment forsj (1 : 0) can also be
established if no target candidate wordti that
satisfies this heuristic is available.

3. Cognates
If no possible translation forsj is found in the
bilingual lexicon and the target sentence (T ) at
the same time, LIHLA uses the LCSR to look
for cognates forsj in T and sets a1 : 1 align-
ment betweensj and its best cognate or a1 : 0
alignment if there is no cognate available.

These heuristics are applied while alignments can
still be produced and a maximum number of itera-
tions is not reached (see section 3 for the number
of iterations performed in the experiments described
in this paper). Furthermore, at the first iteration,
all words with a frequency higher than a set thres-
hold are ignored to avoid erroneous alignments since
all subsequent alignments are based on the previous
ones.

In its last step (which is optional and has not
been performed in the experiments described in
this paper), LIHLA aligns the remaining unaligned
source and target tokens between two pairs of al-
ready aligned tokens establishing several1 : 1 align-
ments when there are the same number of source
and target tokens, or just one alignment involving
all source and target tokens if they exist in different
quantities. The decision of creatingn 1 : 1 align-
ments in spite of just onen : n alignment when there
is the same number of source and target tokens is due
to the fact that a1 : 1 alignment is more likely to be
found than an : n one.

3 Experiments

In this section we present the experiments carried
out with LIHLA for the “Shared task on word align-
ment” in the Workshop on Building and Using Pa-
rallel Texts during ACL2005. Systems participa-
ting in this shared task were provided with training
data (consisting of sentence-aligned parallel texts)
for three pairs of languages: English–Inuktitut,
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Romanian–English and English–Hindi. Further-
more, the systems would choose to participate in one
or both subtasks of “limited resources” (where sys-
tems were allowed to use only the resources pro-
vided) and ”unlimited resources” (where systems
were allowed to use any resources in addition to
those provided). The system described in this pa-
per, LIHLA, participated in the subtask of limited re-
sources aligning English–Inuktitut and Romanian–
English test sets.

The training sets —composed of 338,343
English–Inuktitut aligned sentences (omission cases
were excluded from the whole set of 340,526 pairs)
and 48,478 Romanian–English aligned ones— were
used to build the bilingual lexicons. Then,
without changing any default parameter (threshold
for LCSR, maximum number of iterations, etc.),
LIHLA aligned the 75 English–Inuktitut and the 203
Romanian–English parallel sentences on test sets.
The whole alignment process (bilingual lexicon ge-
neration and alignment itself) did not take more than
17 minutes for English–Inuktitut (3 iterations per
sentence, on average) and 7 minutes for Romanian–
English (4 iterations per sentence, on average).

The evaluation was run with respect to precision,
recall,F -measure, and alignment error rate (AER)
considering sure and probable alignments but not
NULL ones (Mihalcea and Pedersen, 2003). Tables
1 and 2 present metric values for English–Inuktitut
and Romanian–English alignments, respectively, as
provided by the organization of the shared task.

Metric Sure Probable
Precision 46.55% 79.53%
Recall 73.72% 18.71%
F -measure 57.07% 30.30%
AER 22.72%

Table 1: LIHLA results for English–Inuktitut

Metric Sure Probable
Precision 57.68% 57.68%
Recall 53.51% 53.51%
F -measure 55.51% 55.51%
AER 44.49%

Table 2: LIHLA results for Romanian–English

The results obtained in these experiments were
not so good as those achieved by LIHLA on the
language pairs for which it was developed, that
is, 92.48% of precision and 88.32% of recall on
Portuguese–Spanish parallel texts and 84.35% of
precision and 76.39% of recall on Portuguese–
English ones.3

The poor performance in the English–Inuktikut
task may be partly due to the fact that Inuktikut is
a polysynthetic language, that is, one in which, un-
like in English, words are formed by long strings of
concatenated morphemes. This makes it difficult for
NATools to build reasonable dictionaries and lead
to a predominance ofn : 1 alignments, which are
harder to determine —this fact can be confirmed by
the better precision of LIHLA when probable align-
ments were considered (see table 1). The perfor-
mance in the English–Romanian task, not very far
from the English–Portuguese task used to tune up
the parameters of the algorithm, is harder to explain
without further analysis.

The difference in precision and recall between
the two language pairs is due to the fact that on
the English–Inuktitut reference corpus in addition to
sure alignments the probable ones were also anno-
tated while in Romanian–English only sure align-
ments are found. This indicates that evaluating
alignment systems is not a simple task since their
performance depends not only on the language pairs
and the quality of parallel corpora (constant criteria
in this shared task) but also the way the reference
corpus is built.

So, at this moment, it would be unfair to blame
the worse performance of LIHLA on its alignment
methodology since it has been applied to the new
language pairs without changing any of its default
parameters. Maybe a simple optimization of para-
meters for each pair of languages could bring better
results and also the impact of size and quality of
training and reference corpora used in these experi-
ments should be investigated. Then, the only conclu-
sion that can be taken at this moment is that LIHLA,
with its heuristics and/or default parameters, can not
be indistinctly applied to any pair of languages.

Despite of its performance, LIHLA has some

3For more details of these experiments see (Caseli et al., ac-
cepted paper).
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advantages when compared to other lexical align-
ment methods found in the literature, such as: it
does not need to be trained for a new pair of lan-
guages (as in Och and Ney (2000)) and neither does
it require pre-processing steps to handle texts (as
in Gómez Guinovart and Sacau Fontenla (2004)).
Furthermore, the whole alignment process (bilingual
lexical generation and alignment itself) has proved
to be very fast as mentioned previously.

4 Concluding remarks

This paper has presented a lexical alignment
method, LIHLA, which aligns words and multi-
word units based on initial statistical word-to-word
correspondences and language-independent heuris-
tics.

In the experiments carried out at the “Shared
task on word alignment” which took place at the
Workshop on Building and Using Parallel Texts
during ACL2005, LIHLA has been evaluated on
English–Inuktitut and Romanian–English parallel
texts achieving an AER of 22.72% and 44.49%,
respectively.

As future work, we aim at investigating the impact
of using additional linguistic information (such as
part-of-speech tags) on LIHLA’s performance. Also,
as a long-term goal, LIHLA will be part of a system
implemented to learn transfer rules from sequences
of aligned words.
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Abstract 

 
In this paper, we describe a word 
alignment algorithm for English-Hindi 
parallel data. The system was developed 
to participate in the shared task on word 
alignment for languages with scarce 
resources at the ACL 2005 workshop, on 
“Building and using parallel texts: data 
driven machine translation and beyond”.  
Our word alignment algorithm is based on 
a hybrid method which performs local 
word grouping on Hindi sentences and 
uses other methods such as dictionary 
lookup, transliteration similarity, expected 
English words and nearest aligned 
neighbours. We trained our system on the 
training data provided to obtain a list of 
named entities and cognates and to collect 
rules for local word grouping in Hindi 
sentences. The system scored 77.03% 
precision and 60.68% recall on the shared 
task unseen test data. 

 

1 Introduction 

 
This paper describes a word alignment system 
developed as a part of shared task on word 
alignment for languages with scarce resources at 
the ACL 2005 workshop on “building and using 
parallel texts: data driven machine translation and 
beyond”.  Participants in the shared task were 
provided with common sets of training data, 
consisting of English-Inuktitut, Romanian-English, 
and English-Hindi parallel texts and the 
participating teams could choose to evaluate their 
system on one, two, or all three language pairs.  

Our system is for aligning English-Hindi parallel 
data at the word level.  The word-alignment 
algorithm described here is based on a hybrid – 
multi-feature approach, which groups Hindi words 
locally within a Hindi sentence and uses dictionary 
lookup (DL) as the main method of aligning words 
along with other methods such as Transliteration 
Similarity (TS), Expected English Words (EEW) 
and Nearest Aligned Neighbors (NAN).  We used 
the training data supplied to derive rules for local 
word grouping in Hindi sentences and to find 
Named Entities (NE) and cognates using our TS 
approach.  In the following sections we briefly 
describe our approach. 
 

2 Training Data 

 
The training data set was composed of 
approximately 3441 English-Hindi parallel 
sentence pairs drawn from the EMILLE (Enabling 
Minority Language Engineering) corpus (Baker et 
al., 2004).  The data was pre-tokenized. For the 
English data, a token was a sequence of characters 
that matches any of the “Dr.”, “Mr.”, “Hon.”, 
“Mrs.”, “Ms.”, “etc.”, “i.e.”, “e.g.”, “[a-zA-Z0-
9]+”, words ending with apostrophe and all special 
characters except the currency symbols £ and $.  
Similarly for the Hindi, a token consisted of a 
sequence of characters with spaces on both ends 
and all special characters except the currency 
symbols £ and $.  
 

3 Word Alignment 
 
Given a pair of parallel sentences, the task of word 
alignment can be described as finding one-to-one, 
one-to-many, and many-to-many correspondences 
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between the words of source and target sentences.  
It becomes more complicated when aligning 
phrases of one language with the corresponding 
words or phrases in the target language.  For some 
words, it is also possible not to find any translation 
in the target language. Such words are aligned to 
null.   
 
The algorithm presented in this paper, is a blend of 
various methods. We categorize words of a Hindi 
sentence into one of four different categories and 
use different techniques to deal with each of them. 
These categories include: 1) NEs and cognates 2) 
Hindi words for which it is possible to predict their 
corresponding English words 3) Hindi words that 
match certain pre-specified regular expression 
patterns specified in a rule file (explained in 
section 3.3.) and finally 4) words which do not fit 
in any of the above categories.  In the following 
sections we explain different methods to deal with 
words from each of these categories. 
 
3.1 Named Entities and Cognates 
 
According to WWW1, the Named Entity Task is 
the process of annotating expressions in the text 
that are “unique identifiers” of entities (e.g. 
Organization, Person, Location etc.).  For example: 
“Mr. Niraj Aswani”, “United Kingdom”, and 
“Microsoft” are examples of NEs. In most text 
processing systems, this task is achieved by using 
local pattern-matching techniques e.g. a word that 
is in upper initial orthography or a Title followed 
by the two adjacent words that are in upper initial 
or in all upper case.  We use a Hindi gazetteer list 
that contains a large set of NEs.  This gazetteer list 
is distributed as a part of Hindi Gazetteer 
processing resource in GATE (Maynard et al., 
2003).  The Gazetteer list contains various NEs 
including person names, locations, organizations 
etc.  It also contains other entities such as time 
units – months, dates, and number expressions.   
Cognates can be defined as two words having a 
common etymology and thus are similar or 
identical.  In most cases they are pronounced in a 
similar way or with a minor change. For example 
“Bungalow” in English is derived from the word 

“बंगला” in Hindi, which means a house in the 

Bengali style (WWW2).  We use our TS method to 

locate such words.  Section 3.2 describes the TS 
approach. 
 
3.2 Transliteration Similarity 

 
For the English-Hindi alphabets, it is possible to 
come up with a table consisting of 
correspondences between the letters of the two 
alphabets.  This table is generated based on the 
various sounds that each letter can produce. For 
example a letter “c” can be mapped to two letters 

in Hindi, “क” and “स”. This mapping is not 

restricted to one-to-one but also includes many-to-
many correspondences.  It is also possible to map a 
sequence of two or more characters to a single 
character or to a sequence two or more characters.  
For example “tio” and “sh” in English correspond 

to the character “श” in Hindi.   

 
Prior to executing our word alignment algorithm, 
we use the TS approach to build a table of NEs and 
cognates. We consider one pair of parallel 
sentences at a time and for each word in a Hindi 
sentence, we generate different English words 
using our TS table.  We found that before 
comparing words of two languages, it is more 
accurate to eliminate vowels from the words 
except those that appear at the start of words.  We 
use a dynamic programming algorithm called 
“edit-distance” to measure the similarity between 
these words (WWW3). We calculate the similarity 
measure for each word in a Hindi sentence by 
comparing it with each and every word of an 
English sentence.  We come up with an m x n 
matrix, where m and n refer to the number of 
words in Hindi and English respectively. This 
matrix contains a similarity measure for each word 
in a Hindi sentence corresponding to each word in 
a parallel English sentence.  From our experiments 
of comparing more than 100 NE and cognate pairs, 
we found that the word pairs should be considered 
valid matches only if the similarity is greater than 
75%.  Therefore, we consider only those pairs 
which have the highest similarity among the other 
pairs with similarity greater than 75%.  The 
following example shows how TS is used to 
compare a pair of English-Hindi words. For 

example consider a pair “aswani � अ।सवानी” and 

the TS table entries as shown below:  
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A�अ,  S�स,  SS�स,  V�व,  W�व and N�न  

 
We remove vowels from both words: “aswn � 

असवन”, and then convert the Hindi word into 

possible English words. This gives four different 
combinations: “asvn”, “assvn”, “aswn” and 
“asswn”. These words are then compared with the 
actual English word “aswn”.  Since we are able to 
locate at least one word with similarity greater than 

75%, we consider “aswani � अ।सवानी” as a NE. 

Once a list of NEs and cognates is ready, we 
switch to our next step: local word grouping, 
where all words in Hindi sentences, either those 
available in the gazetteer list or in the list derived 
using TS approach, are aligned using TS approach.  
 
3.3 Local Word Grouping 
 
Hindi is a partially free order language (i.e. the 
order of the words in a Hindi sentence is not fixed 
but the order of words in a group/phrase is fixed).  
Unlike English where the verbs are used in 
different inflected forms to indicate different 
tenses, Hindi uses one or two extra words after the 
verb to indicate the tense.  Therefore, if the English 
verb is not in its base form, it needs to be aligned 
with one or more words in a parallel Hindi 
sentence.  Sometimes a phrase is aligned with 
another phrase. For example “customer benefits” 

aligns with “ᮕाहक के फायद”े.  In this example the 

first word “customer” aligns with the first word 

“ᮕाहक” and the second word “benefits” aligns with 

the third word “फायद”े. Considering “customer 

satisfaction” and “ᮕाहक के फायद”े as phrases to be 

aligned with each other, “के” is the word that 

indicates the relation between the two words 

“ᮕाहक” and “फायदे”, which means the “benefits of 

customer” in English.  These words in a phrase 
need to be grouped together in order to align them 
correctly. In the case of certain prepositions, 
pronouns and auxiliaries, it is possible to predict 
the respective Hindi postpositions, pronouns and 
other words. We derived a set of more than 250 
rules to group such patterns by consulting the 
provided training data and other grammar 
resources such as Bal Anand (2001).  The rule file 
contains the following information for each rule: 

1) Hindi Regular Expression for a word or 
phrase.  This must match one or more words in 
the Hindi sentence. 

2) Group name or a part-of-speech category. 
3) Expected English word(s) that this Hindi word 

group may align to. 
4) In case a group of one or more English words 

aligns with a group of one or more Hindi 
words, information about the key words in 
both groups.  Key words must match each 
other in order to align English-Hindi groups. 

5) A rule to convert Hindi word into its base 
form. 

 

We list some of the derived rules below: 
1) Group a sequence of [X + Postposition], where 

X can be any category in the above list except 
postposition or verb. For example: “For X” = 

“X के िलये”, where “For” = “के िलये”.  

2) Root Verb + (रहा, रही or रह)े + (PH).  Present 

continuous tense.  We use “PH” as an 
abbreviation to refer to the present/past tense 

conjunction of the verb “होना” - ᱟ,ं ह,ᱹ ह,ै हो, etc. 

3) Group two words that are identical to each 

other.  For example: "अलग अलग", which means 

“different” in English. Such bi-grams are 
common in Hindi and are used to stress the 
importance of a word/activity in a sentence. 

 

Once the words are grouped in a Hindi sentence, 
we identify those word groups which do not fit in 
any of the TS and EEW categories.  Such words 
are then aligned using the DL approach. 
 
3.3 Dictionary lookup 

 
Since the most dictionaries contain verbs in their 
base forms, we use a morphological analyzer to 
convert verbs in their base forms. The English-
Hindi dictionary is obtained from (WWW4).  The 
dictionary returns, on average, two to four Hindi 
words referring to a particular English word.  The 
formula for finding the lemma of any Hindi verb 

is: infinitive = root verb + “ना”.  Since in most 

cases, our dictionary contains Hindi verbs in their 
infinitive forms, prior to comparing the word with 

the unaligned words, we remove the word “ना” 

from the end of it.  Due to minor spelling mistakes 
it is also possible that the word returned from 
dictionary does not match with any of the words in 
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a Hindi sentence.  In this case, we use edit-distance 
algorithm to obtain similarity between the two 
words.  If the similarity is greater than 75%, we 
consider them similar.  We use EEW approach for 
the words which remain unaligned after the DL 
approach. 
 
3.4 Expected English words 
 
Candidates for the EEW approach are the Hindi 
word groups (HWG) that are created by our Hindi 
local word grouping algorithm (explained in 
section 3.3).  The HWGs such as postpositions, 
number expressions, month-units, day-units etc. 
are aligned using the EEW approach.  For 

example, for the Hind word “बावन” in a Hindi 

sentence, which means “fifty two” in English, the 
algorithm tries to locate “fifty two” in its parallel 
English sentence and aligns them if found. For the 
remaining unaligned Hindi words we use the NAN 
approach.  
 
3.5 Nearest Aligned Neighbors 
 
In certain cases, words in English-Hindi phrases 
follow a similar order.  The NAN approach works 
on this principle and aligns one or more words 
with one of the English words. Considering one 
HWG at a time, we find the nearest Hindi word 
that is already aligned with one or more English 
word(s). Aligning a phrase “customer benefits” 

with “ᮕाहक के फायद”े (example explained in section 

3.3) is an example of NAN approach.  Similarly 
consider a phrase “tougher controls”, where for its 

equivalent Hindi phrase “अिधक िनयंᮢण”, the 

dictionary returns a correct pair “controls � 

िनयंᮢण”, but fails to locate “tougher � अिधक”. For 

aligning the word “tougher”, NAN searches for the 
nearest aligned word, which, in this case, is 
“controls”. Since the word “controls” is already 

aligned with the word “िनयंᮢण”, the NAN method 

aligns the word “tougher” with the nearest 

unaligned word “अिधक”. 

 

4 Test Data results 

 
We executed our algorithm on the test data 
consisting of 90 English-Hindi sentence pairs. We 

obtained the following results for non-null 
alignment pairs.  
 

Word Alignment Evaluation 

Evaluation of SURE alignments 

Precision = 0.7703 

Recall    = 0.6068 

F-measure = 0.6788 

Evaluation of PROBABLE alignments 

Precision = 0.7703 

Recall    = 0.6068 

F-measure = 0.6788 

AER       = 0.3212 
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Abstract

The ACL-2005 Workshop on Paral-
lel Texts hosted a shared task on
building statistical machine translation
systems for four European language
pairs: French–English, German–English,
Spanish–English, and Finnish–English.
Eleven groups participated in the event.
This paper describes the goals, the task
definition and resources, as well as results
and some analysis.

Statistical machine translation is currently the
dominant paradigm in machine translation research.
Annual competitions are held for Chinese–English
and Arabic–English by NIST (sponsored by the US
military funding agency DARPA), which creates a
forum to present and compare novel ideas and leads
to steady progress in the field.

One of the advantages of statistical machine trans-
lation is that the currently applied methods are fairly
language-independent. Building a new machine
translation system for a new language pair is not
much more than a matter of running a training pro-
cess on a training corpus of parallel text (a text in
one language paired with a translation in another).

It is therefore possible to hold a competition
where research groups have only a few weeks to
build machine translation systems for language pairs
that they have not previously worked on. We effec-
tively demonstrated this with our shared task. For in-
stance, seven teams built Finnish–English machine
translation systems, a language pair that was cer-
tainly not of their immediate concern before.

In contrast to the bigger NIST competition, we
wanted to keep the barrier of entry as low as possi-
ble. We provided not only training data from the Eu-
roparl corpus (Koehn, 2005), but also additional re-
sources: sentence and word alignments, the decoder
Pharaoh1 (Koehn, 2004b), and a language model,
so that participation was feasible even as a graduate
level class project.

Using about 15 million words of translated text,
participants were asked to build a phrase-based sta-
tistical machine translation system. The focus of
the task was to build a probabilistic phrase transla-
tion table, since most of the other resources were
provided — for more on phrase-based statistical
machine translation, refer to Koehn et al. (2003).
The participants’ systems were compared by how
well they translated 2000 previously unseen test sen-
tences from the same domain.

The shared task operated within an extremely
short timeframe. The workshop and hence the
shared task was accepted on February 22, 2005 and
announced on March 3. The official test data was
made available on April 3, results were due one
week later. Despite this tight schedule, eleven re-
search groups participated and built a total of 32 ma-
chine translation systems for the four language pairs.

1 Goals

When setting up this competition, we were moti-
vated by a number of goals. We set out to:

Create a platform to demonstrate the effective-
ness of novel ideas:The research community is
easily balkanized, where different groups work on

1http://www.isi.edu/licensed-sw/pharaoh/
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different data sets and under different conditions,
so that it becomes often hard to assess, how effec-
tive a novel method is. By creating an environment
with common test and training sets, language model,
preprocessing, and even decoder, the effect of other
model choices can be more easily demonstrated.

Work on new language pairs, new problems:
Different language pairs pose different challenges.
We picked Finnish–English and German–English
for the special problems of rich morphology, word
order, which are a challenge to current phrase-based
SMT methods.

Enable more researchers to get engaged in
SMT research: One of our main goals with provid-
ing as many resources as possible was to keep the
barrier of entry low. Participants could use the word
alignment and other resources and focus on phrase
extraction. We hoped to attract researchers that are
relatively new to the field. We were satisfied to learn
that many entries are by graduate students working
on their own.

Promote and create free resources:Academic
research thrives on freely available resources. The
field of statistical machine translation has been
blessed with a long tradition of freely available soft-
ware tools — such as GIZA++ (Och and Ney, 2003)
— and parallel corpora — such as the Canadian
Hansards2. Following this lead, we made word
alignments and a language model available for this
competition in addition to our previously published
resources (Europarl and Pharaoh). The competition
created resources as well. Most teams agreed to
share system output and their model files. You can
download them from the competition web site3.

Promote work on European language pairs:
Finally, we wanted to promote work on European
languages. The increasing economic and political
ties within the European Union create a huge need
for translation services. We would like to see re-
searchers rise to the challenge of creating high qual-
ity machine translation systems to fill these needs.

We are very grateful for the strong participation,
especially by researchers who are relatively new to
the field.

2http://www.isi.edu/natural-language/download/hansard/
3http://www.statmt.org/wpt05/mt-shared-task/

2 Rules of Engagement

We set up a machine translation competition for
four language pairs. We chose Spanish–English and
French–English, because many researchers would
be familiar with these languages. We chose
German–English for its special problems with word
order (such as nested constructions and split verb
groups) and morphology. Finally, we picked
Finnish–English for the rich agglutinative morphol-
ogy of Finnish.

Statistical machine translation systems are typi-
cally trained on sentence-aligned parallel corpora.
We selected Europarl4, a freely available parallel
corpus in eleven languages. In addition, we also
made a word alignment available, which was de-
rived using a variant of the current default method
for word alignment – Och and Ney (2003)’s refined
method.

Figure 1 details some properties of the parallel
corpora. The training corpus is most of the Europarl
corpus, only the text of sessions from last quarter of
the year 2000 was reserved for testing. The corpus
has the size of roughly 15 million English words in
700,000 sentences – these numbers differ for each of
the four parallel corpora due to the different number
of discarded sentences during sentence alignment
and after enforcing a 40 word length limit for sen-
tences.

The number of foreign words differs even more
dramatically. The effect of Finnish morphology
manifests itself in a low number of words (just over
11 million), but a high number of distinct words
(more than 5 times as many as in the English half).

The test corpus consists of 2000 sentences aligned
across all five languages. Note that the output of
each system is compared against the same English
references for all source languages. The number of
total words, distinct words, and words not seen in the
training data reflects again the morphology effect.

For researchers willing to create their own word
alignment, we suggested the use of GIZA++5, an
implementation of the IBM word-based machine
translation models, which also assisted the creation
of the provided word alignments.

We trained a language model on the English part

4http://www.statmt.org/europarl/
5http://www.fjoch.com/GIZA++.html
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Spanish–English French–English Finnish–English German–English
Training corpus

Sentences 730,740 688,031 716,960 751,088
Source words 15,676,710 15,323,737 11,318,287 15,256,793
English words 15,222,105 13,808,104 15,492,903 16,052,269

Distinct source words 102,886 80,349 358,345 195,291
Distinct English words 64,123 61,627 64,662 65,889

Test corpus
Sentences 2,000

Source words 60,276 65,029 41,431 54,247
English words 57,945

Distinct source words 7,782 7,285 11,996 8,666
Distinct English words 6,054
Unseen source words 209 143 737 377

Figure 1: Properties of the Europarl training and test corpora used in the shared task

of the Europarl corpus using the SRI language mod-
eling toolkit (Stolke, 2002). Finally, we suggested
the use of Pharaoh (Koehn, 2004b), a phrase-based
machine translation decoder.

How well does this setup match the state of the
art? The MIT system using the Pharaoh decoder
(Koehn, 2004a) proved to be very competitive in
last year’s NIST evaluation. However, the field is
moving fast, and a number of steps help to improve
upon the provided baseline setup, e.g., larger lan-
guage models trained on general text (up to a bil-
lion words have been used), better reodering mod-
els (e.g., suggested by Tillman (2004) and Och
et al. (2004)), better language-specific preprocessing
(Koehn and Knight, 2003) and restructuring (Collins
et al., 2005), additional feature functions such as
word class language models, and minimum error
rate training (Och, 2003) to optimize parameters.

Some of these steps (e.g., improved reorder-
ing models) go beyond the current capabilities of
Pharaoh. However, we are hopeful that freely avail-
able software continues to match or at least follow
closely the state of the art.

We announced the shared task on March 3, and
provided all the resources mentioned above (also a
development test corpus to track the quality of sys-
tems being developed). The test schedule called for
the translation of 2000 sentence for each of the four
language pairs in the week between April 3–10. We
allowed late submissions up to April 17.

3 Results

Eleven teams from eight institutions in Europe and
North America participated, see Figure 2 for a com-
plete list. The figure also indicates, if a team used
the Pharaoh decoder (eight teams), the provided lan-
guage model (seven teams) and the provided word
alignment (four did, three of those with additional
preprocessing or additional data).

Translation performance was measured using the
BLEU score (Papineni et al., 2002), which measures
n-gram overlap with a reference translation. In our
case, we only used a single reference translation,
since the test set was taken from a held-out portion
of the Europarl corpus. On the other hand we used a
relatively large number of test sentences to guaran-
tee that the BLEU results are stable despite the fact
that we used only one reference translation for each
sentence.

Shared tasks like this one, of course, bring out the
competitive spirit of participants and can draw criti-
cisms about being a horse race. From an outside per-
spective, however, it is far more interesting to learn
which methods and ideas proved to be successful,
than who won the competition.

Taking stock of the results — see Figure 3 — one
observes a very packed field at the top. While the
participants from the University of Washington pro-
duced the best translations for every single language
pair, the distance to many other participant scores
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ID Team Pharaoh LM Word Al.
cmu-b Carnegie Mellon University, USA - Bing Zhao yes yes no
cmu-j Carnegie Mellon University, USA - Ying (Joy) Zhang yes yes no
glasgow University of Glasgow, UK yes yes yes+
nrc National Research Council, Canada no no no
rali University of Montreal / RALI, Canada yes yes no
saar Saarland University, Germany yes yes yes
uji University Jaume I, Spain yes yes yes+
upc-j Polytechnic University of Catalonia, Spain - Jesus Gimenezyes yes no
upc-m Polytechnic University of Catalonia, Spain - Marta Ruiz no no no
upc-r Polytechnic University of Catalonia, Spain - Rafael Banchs no no no
uw University of Washington, USA yes no yes+

Figure 2: The eleven participating teams: the table also lists, if the Pharaoh decoder, the provided language
model, and the provided word alignment was used (yes+ indicates additional preprocessing)

is within a BLEU percentage point or two. As one
might have expected, the scores are best for Spanish
and French, and worst for Finnish. Figure 4 shows
some typical output of the submitted systems.

The proceedings to the workshop include detailed
system descriptions of all participants. Novel phrase
extraction approaches were proposed, along with
better preprocessing, language modeling, rescoring,
and other ideas. We are certain that better perfor-
mance can be achieved by combining some of the
methods used by different participants.

And hence, we would like to pose the challenge to
the research community to build and test better sys-
tems using the provided resources. We will gladly
list additional results on the competition web site.

4 Survey

Following the end of the competition, we sent out a
questionnaire to the participants. One of the ques-
tions what they would like to see different in a po-
tential future competition.

We listed four potential changes: 70% of the re-
spondends checkedtranslation from English, 50%
checkedout of domain test data, 40% checkedmore
language pairs, 0% checkedfewer language pairs.

Additional suggestions were: alternatives to the
BLEU scoring method (maybe human judgment by
participants themselves), transitive translation using
pivot languages, translation of resource-poor lan-
guages, and more time to prepare for the task.

5 Outlook

Given the short timeframe, one should view the sys-
tem performances (albeit very competitive with the
state of the art) as a baseline effort on the task of
open domain text translation between European lan-
guages.

We hope that future researchers will use the pro-
vided environment as a test bed for their machine
translation systems. We will continue to publish any
scores reported to us.

Since we placed much of the systems’ output on-
line, the interested reader may be inspired to more
closely explore the quality and shortcomings. Even
some of the model files have been made available,
so it is even possible to download and install some
of the systems.
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Spanish-English

System BLEU 1/2/3/4-gram precision (bp)
uw 30.95 64.1/36.6/24.0/16.3 (1.000)

upc-r 30.07 63.1/35.8/23.2/15.6 (1.000)
upc-m 29.84 63.9/35.5/23.0/15.5 (0.995)

nrc 29.08 62.7/34.9/22.2/14.7 (1.000)
rali 28.49 62.4/34.5/21.9/14.4 (0.992)

upc-j 28.13 61.5/33.8/21.4/14.1 (1.000)
saar 26.69 61.0/33.1/20.7/13.5 (0.973)

cmu-j 26.14 61.2/32.4/19.8/12.6 (0.986)
uji 21.65 59.7/27.8/15.2/8.7 (1.000)

French-English

System BLEU 1/2/3/4-gram precision (bp)
uw 30.27 64.8/36.8/23.8/16.0 (0.981)

upc-r 30.20 63.9/36.2/23.3/15.6 (0.998)
nrc 29.53 63.7/35.8/22.7/14.9 (0.997)
rali 28.89 62.6/34.7/22.0/14.6 (1.000)

cmu-b 27.65 63.1/34.0/20.9/13.3 (0.995)
cmu-j 26.71 61.9/33.0/20.3/13.1 (0.984)
saar 26.29 60.8/32.5/20.1/12.9 (0.982)

glasgow 23.01 57.3/28.0/16.7/10.5 (1.000)
uji 21.25 59.8/27.7/14.8/8.3 (1.000)

Finnish-English

System BLEU 1/2/3/4-gram precision (bp)
uw 22.01 59.0/28.6/16.1/9.4 (0.979)
nrc 20.95 57.8/27.2/14.8/8.4 (0.996)

upc-r 20.31 56.6/26.0/14.3/8.3 (0.993)
rali 18.87 55.2/24.7/13.1/7.1 (0.998)
saar 16.76 58.4/26.3/14.2/8.0 (0.819)
uji 13.79 60.0/23.2/10.8/5.3 (0.821)

cmu-j 12.66 53.9/21.7/10.7/5.7 (0.775)

German-English

System BLEU 1/2/3/4-gram precision (bp)
uw 24.77 62.2/31.8/18.8/11.7 (0.965)

upc-r 24.26 59.7/30.1/17.6/11.0 (1.000)
nrc 23.21 60.3/29.8/17.1/10.3 (0.979)
rali 22.91 58.9/29.0/16.8/10.3 (0.982)
saar 20.48 58.0/27.5/15.5/9.2 (0.938)

cmu-j 18.93 59.2/26.8/14.3/8.1 (0.914)
uji 18.89 59.3/25.5/13.0/7.2 (0.976)

Figure 3: The scores for the participating systems
(BLEU and its components n-gram-precision and
brevity penalty)
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Reference
We know all too well that the present Treaties are inadequate and that the Union will need a better
and different structure in future , a more constitutional structure which clearly distinguishes the
powers of the Member States and those of the Union .

Input Spanish
Sabemos muy bien que los Tratados actuales no bastan y que , en el futuro , será necesario desarrol-
lar una estructura mejor y diferente para la Unión Europea , una estructura más constitucional que
tambíen deje bien claras cuáles son las competencias de los Estados miembros y cuáles pertenecen
a la Uníon .
Best system (Spanish–English)
we all know very well that the current treaties are not enough and that , in the future , it will
be necessary to develop a structure better and different for the european union , a structure more
constitutional also make it clear what the competences of the member states and what belongs to
the union .
Worst System (Spanish–English)
we know very well that the current treaties not enough and that , in the future , will be necessary
develop a better structure and different to the european union , a structure more constitutional that
also be well clear the powers of the member states and what belong to the union .

Input French
Nous savons tr̀es bien que les Traités actuels ne suffisent pas et qu ’ il sera nécessairèa l ’ avenir
de d́evelopper une structure plus efficace et différente pour l ’ Union , une structure plus consti-
tutionnelle qui indique clairement quelles sont les compétences deśetats membres et quelles sont
les comṕetences de l ’ Union .
Best system (French–English)
we know very well that the current treaties are not enough and that it will be needed in the future
to develop a structure more effective and different for the union , a structure more constitutional
which clearly indicates what are the competence of member states and what are the powers of the
union .

Input Finnish
Tiedämme oikein hyvin , että nykyiset perustamissopimukset eivät ole riitẗaviä ja etẗa tulevaisu-
udessa on tarpeen kehittää unionille parempi ja toisenlainen rakenne , siis perustuslaillisempi
rakenne , jossa mys ilmaistaan selkeämmin , miẗa jäsenvaltioiden ja unionin toimivaltaan kuuluu
Best system (Finnish–English)
we know very well that the existing founding treaties do not need to be developed for the union
and a different structure , therefore perustuslaillisempi structure , which also expresses clearly
what the member states and the union ’s competence is not sufficient and that better in the future .

Input German
Uns ist sehr wohl bewusst , dass die geltenden Verträge unzul̈anglich sind und k̈unftig eine andere
, effizientere Struktur f̈ur die Union entwickelt werden muss , nämlich eine sẗarker konstitutionell
ausgepr̈agte Struktur mit einer klaren Abgrenzung zwischen den Befugnissen der Mitgliedstaaten
und den Kompetenzen der Union .
Best system (German–English)
the union must be developed , with a major institutional structure with a clear demarcation
between the powers of the member states and the competences of the union is well aware that the
existing treaties are inadequate and in the future , a different , more efficient structure for us .

Figure 4: The first sentence of the test corpus and system translations
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Abstract

Statistical machine translation systems
use a combination of one or more transla-
tion models and a language model. While
there is a significant body of research ad-
dressing the improvement of translation
models, the problem of optimizing lan-
guage models for a specific translation
task has not received much attention. Typ-
ically, standard word trigram models are
used as an out-of-the-box component in
a statistical machine translation system.
In this paper we apply language model-
ing techniques that have proved benefi-
cial in automatic speech recognition to the
ACL05 machine translation shared data
task and demonstrate improvements over a
baseline system with a standard language
model.

1 Introduction

Statistical machine translation (SMT) makes use of
a noisy channel model where a sentence ē in the de-
sired language can be conceived of as originating as
a sentence f̄ in a source language. The goal is to
find, for every input utterance f̄ , the best hypothesis
ē∗ such that

ē∗ = argmaxēP (ē|f̄) = argmaxēP (f̄ |ē)P (ē)
(1)

P (f̄ |ē) is the translation model expressing proba-
bilistic constraints on the association of source and
target strings. P (ē) is a language model specifying

the probability of target language strings. Usually, a
standard word trigram model of the form

P (e1, ..., el) ≈
l

∏

i=3

P (ei|ei−1, ei−2) (2)

is used, where ē = e1, ..., el . Each word is predicted
based on a history of two preceding words.

Most work in SMT has concentrated on develop-
ing better translation models, decoding algorithms,
or minimum error rate training for SMT. Compara-
tively little effort has been spent on language mod-
eling for machine translation. In other fields, partic-
ularly in automatic speech recognition (ASR), there
exists a large body of work on statistical language
modeling, addressing e.g. the use of word classes,
language model adaptation, or alternative probabil-
ity estimation techniques. The goal of this study was
to use some of the language modeling techniques
that have proved beneficial for ASR in the past and
to investigate whether they transfer to statistical ma-
chine translation. In particular, this includes lan-
guage models that make use of morphological and
part-of-speech information, so-called factored lan-
guage models.

2 Factored Language Models

A factored language model (FLM) (Bilmes and
Kirchhoff, 2003) is based on a representation of
words as feature vectors and can utilize a variety of
additional information sources in addition to words,
such as part-of-speech (POS) information, morpho-
logical information, or semantic features, in a uni-
fied and principled framework. Assuming that each
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word w can be decomposed into k features, i.e. w ≡
f1:K , a trigram model can be defined as

p(f1:K
1 , f1:K

2 , ..., f 1:K
T ) ≈

T
∏

t=3

p(f1:K
t |f1:K

t−1 , f1:K
t−2 )

(3)
Each word is dependent not only on a single stream
of temporally preceding words, but also on addi-
tional parallel streams of features. This represen-
tation can be used to provide more robust probabil-
ity estimates when a particular word n-gram has not
been observed in the training data but its correspond-
ing feature combinations (e.g. stem or tag trigrams)
has been observed. FLMs are therefore designed to
exploit sparse training data more effectively. How-
ever, even when a sufficient amount of training data
is available, a language model utilizing morpholog-
ical and POS information may bias the system to-
wards selecting more fluent translations, by boost-
ing the score of hypotheses with e.g. frequent POS
combinations. In FLMs, word feature information
is integrated via a new generalized parallel back-
off technique. In standard Katz-style backoff, the
maximum-likelihood estimate of an n-gram with too
few observations in the training data is replaced with
a probability derived from the lower-order (n − 1)-
gram and a backoff weight as follows:

pBO(wt|wt−1, wt−2) (4)

=

{

dcpML(wt|wt−1, wt−2) if c > τ

α(wt−1, wt−2)pBO(wt|wt−1) otherwise

where c is the count of (wt, wt−1, wt−2), pML

denotes the maximum-likelihood estimate, τ is a
count threshold, dc is a discounting factor and
α(wt−1, wt−2) is a normalization factor. During
standard backoff, the most distant conditioning vari-
able (in this case wt−2) is dropped first, followed
by the second most distant variable etc., until the
unigram is reached. This can be visualized as a
backoff path (Figure 1(a)). If additional condition-
ing variables are used which do not form a tempo-
ral sequence, it is not immediately obvious in which
order they should be eliminated. In this case, sev-
eral backoff paths are possible, which can be sum-
marized in a backoff graph (Figure 1(b)). Paths in
this graph can be chosen in advance based on lin-
guistic knowledge, or at run-time based on statis-
tical criteria such as counts in the training set. It
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Figure 1: Standard backoff path for a 4-gram lan-
guage model over words (left) and backoff graph
over word features (right).

is also possible to choose multiple paths and com-
bine their probability estimates. This is achieved by
replacing the backed-off probability pBO in Equa-
tion 2 by a general function g, which can be any
non-negative function applied to the counts of the
lower-order n-gram. Several different g functions
can be chosen, e.g. the mean, weighted mean, prod-
uct, minimum or maximum of the smoothed prob-
ability distributions over all subsets of conditioning
factors. In addition to different choices for g, dif-
ferent discounting parameters can be selected at dif-
ferent levels in the backoff graph. One difficulty in
training FLMs is the choice of the best combination
of conditioning factors, backoff path(s) and smooth-
ing options. Since the space of different combina-
tions is too large to be searched exhaustively, we use
a guided search procedure based on Genetic Algo-
rithms (Duh and Kirchhoff, 2004), which optimizes
the FLM structure with respect to the desired crite-
rion. In ASR, this is usually the perplexity of the
language model on a held-out dataset; here, we use
the BLEU scores of the oracle 1-best hypotheses on
the development set, as described below. FLMs have
previously shown significant improvements in per-
plexity and word error rate on several ASR tasks
(e.g. (Vergyri et al., 2004)).

3 Baseline System

We used a fairly simple baseline system trained us-
ing standard tools, i.e. GIZA++ (Och and Ney, 2000)
for training word alignments and Pharaoh (Koehn,
2004) for phrase-based decoding. The training data
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was that provided on the ACL05 Shared MT task
website for 4 different language pairs (translation
from Finnish, Spanish, French into English); no
additional data was used. Preprocessing consisted
of lowercasing the data and filtering out sentences
with a length ratio greater than 9. The total num-
ber of training sentences and words per language
pair ranged between 11.3M words (Finnish-English)
and 15.7M words (Spanish-English). The develop-
ment data consisted of the development sets pro-
vided on the website (2000 sentences each). We
trained our own word alignments, phrase table, lan-
guage model, and model combination weights. The
language model was a trigram model trained us-
ing the SRILM toolkit, with modified Kneser-Ney
smoothing and interpolation of higher- and lower-
order ngrams. Combination weights were trained
using the minimum error weight optimization pro-
cedure provided by Pharaoh. We use a two-pass de-
coding approach: in the first pass, Pharaoh is run
in N-best mode to produce N-best lists with 2000
hypotheses per sentence. Seven different compo-
nent model scores are collected from the outputs,
including the distortion model score, the first-pass
language model score, word and phrase penalties,
and bidirectional phrase and word translation scores,
as used in Pharaoh (Koehn, 2004). In the second
pass, the N-best lists are rescored with additional
language models. The resulting scores are then com-
bined with the above scores in a log-linear fashion.
The combination weights are optimized on the de-
velopment set to maximize the BLEU score. The
weighted combined scores are then used to select
the final 1-best hypothesis. The individual rescoring
steps are described in more detail below.

4 Language Models

We trained two additional language models to be
used in the second pass, one word-based 4-gram
model, and a factored trigram model. Both were
trained on the same training set as the baseline sys-
tem. The 4-gram model uses modified Kneser-
Ney smoothing and interpolation of higher-order
and lower-order n-gram probabilities. The potential
advantage of this model is that it models n-grams
up to length 4; since the BLEU score is a combina-
tion of n-gram precision scores up to length 4, the

integration of a 4-gram language model might yield
better results. Note that this can only be done in a
rescoring framework since the first-pass decoder can
only use a trigram language model.

For the factored language models, a feature-based
word representation was obtained by tagging the text
with Rathnaparki’s maximum-entropy tagger (Rat-
naparkhi, 1996) and by stemming words using the
Porter stemmer (Porter, 1980). Thus, the factored
language models use two additional features per
word. A word history of up to 2 was considered (3-
gram FLMs). Rather than optimizing the FLMs on
the development set references, they were optimized
to achieve a low perplexity on the oracle 1-best hy-
potheses (the hypotheses with the best individual
BLEU scores) from the first decoding pass. This is
done to avoid optimizing the model on word combi-
nations that might never be hypothesized by the first-
pass decoder, and to bias the model towards achiev-
ing a high BLEU score. Since N-best lists differ for
different language pairs, a separate FLM was trained
for each language pair. While both the 4-gram lan-
guage model and the FLMs achieved a 8-10% reduc-
tion in perplexity on the dev set references compared
to the baseline language model, their perplexities on
the oracle 1-best hypotheses were not significantly
different from that of the baseline model.

5 N-best List Rescoring

For N-best list rescoring, the original seven model
scores are combined with the scores of the second-
pass language models using the framework of dis-
criminative model combination (Beyerlein, 1998).
This approach aims at an optimal (with respect to
a given error criterion) integration of different infor-
mation sources in a log-linear model, whose com-
bination weights are trained discriminatively. This
combination technique has been used successfully
in ASR, where weights are typically optimized to
minimize the empirical word error count on a held-
out set. In this case, we use the BLEU score of
the N-best hypothesis as an optimization criterion.
Optimization is performed using a simplex downhill
method known as amoeba search (Nelder and Mead,
1965), which is available as part of the SRILM
toolkit.
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Language pair 1st pass oracle

Fi-En 21.8 29.8
Fr-En 28.9 34.4
De-En 23.9 31.0
Es-En 30.8 37.4

Table 1: First-pass (left column) and oracle results
(right column) on the dev set (% BLEU).

Language pair 4-gram FLM both

Fi-En 22.2 22.2 22.3
Fr-En 30.2 30.2 30.4
De-En 24.6 24.2 24.6
Es-En 31.4 31.0 31.3

Table 2: Second-pass rescoring results (% BLEU)
on the dev set for 4-gram LM, 3-gram FLM, and
their combination.

6 Results

The results from the first decoding pass on the de-
velopment set are shown in Table 1. The second
column in Table 1 lists the oracle BLEU scores for
the N-best lists, i.e. the scores obtained by always
selecting the hypothesis known to have the highest
individual BLEU score. We see that considerable
improvements can in principle be obtained by a bet-
ter second-pass selection of hypotheses. The lan-
guage model rescoring results are shown in Table 2,
for both types of second-pass language models indi-
vidually, and for their combination. In both cases we
obtain small improvements in BLEU score, with the
4-gram providing larger gains than the 3-gram FLM.
Since their combination only yielded negligible ad-
ditional improvements, only 4-grams were used for
processing the final evaluation sets. The evaluation
results are shown in Table 3.

Language pair baseline 4-gram

Fi-En 21.6 22.0
Fr-En 29.3 30.3
De-En 24.2 24.8
Es-En 30.5 31.0

Table 3: Second-pass rescoring results (% BLEU)
on the evaluation set.

7 Conclusions

We have demonstrated improvements in BLEU
score by utilizing more complex language models
in the rescoring pass of a two-pass SMT system.
We noticed that FLMs performed worse than word-
based 4-gram models. However, only trigram FLM
were used in the present experiments; larger im-
provements might be obtained by 4-gram FLMs.
The weights assigned to the second-pass language
models during weight optimization were larger than
those assigned to the first-pass language model, sug-
gesting that both the word-based model and the FLM
provide more useful scores than the baseline lan-
guage model. Finally, we observed that the overall
improvement represents only a small portion of the
possible increase in BLEU score as indicated by the
oracle results, suggesting that better language mod-
els do not have a significant effect on the overall sys-
tem performance unless the translation model is im-
proved as well.
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Abstract 

This paper describes the participation of 
the Portage team at NRC Canada in the 
shared task1 of ACL 2005 Workshop on 
Building and Using Parallel Texts. We dis-
cuss Portage, a statistical phrase-based 
machine translation system, and present 
experimental results on the four language 
pairs of the shared task. First, we focus on 
the French-English task using multiple re-
sources and techniques. Then we describe 
our contribution on the Finnish-English, 
Spanish-English and German-English lan-
guage pairs using the provided data for the 
shared task.  

1 Introduction 

The rapid growth of the Internet has led to a rapid 
growth in the need for information exchange among 
different languages. Machine Translation (MT) and 
related technologies have become essential to the 
information flow between speakers of different lan-
guages on the Internet. Statistical Machine Transla-
tion (SMT), a data-driven approach to producing 
translation systems, is becoming a practical solution 
to the longstanding goal of cheap natural language 
processing.  

In this paper, we describe Portage, a statistical 
phrase-based machine translation system, which we 
evaluated on all different language pairs that were 
provided for the shared task.  As Portage is a very 
                                                           
1 http://www.statmt.org/wpt05/mt-shared-task/ 

new system, our main goal in participating in the 
workshop was to test it out on different language 
pairs, and to establish baseline performance for the 
purpose of comparison against other systems and 
against future improvements.  To do this, we used a 
fairly standard configuration for phrase-based SMT, 
described in the next section. 

Of the language pairs in the shared task, French-
English is particularly interesting to us in light of 
Canada’s demographics and policy of official bilin-
gualism. We therefore divided our participation into 
two parts: one stream for French-English and an-
other for Finnish-, German-, and Spanish-English. 
For the French-English stream, we tested the use of 
additional data resources along with hand-coded 
rules for translating numbers and dates. For the 
other streams, we used only the provided resources 
in a purely statistical framework (although we also 
investigated several automatic methods of coping 
with Finnish morphology). 

The remainder of the paper is organized as fol-
lows. Section 2 describes the architecture of the 
Portage system, including its hand-coded rules for 
French-English.  Experimental results for the four 
pairs of languages are reported in Section 3. Section 
4 concludes and gives pointers to future work. 

2 Portage  

Portage operates in three main phases: preprocess-
ing of raw data into tokens, with translation sugges-
tions for some words or phrases generated by rules; 
decoding to produce one or more translation hy-
potheses; and error-driven rescoring to choose the 
best final hypothesis. (A fourth postprocessing 
phase was not needed for the shared task.) 
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2.1 Preprocessing 

Preprocessing is a necessary first step in order to 
convert raw texts in both source and target lan-
guages into a format suitable for both model train-
ing and decoding (Foster et al., 2003).  For the 
supplied Europarl corpora, we relied on the existing 
segmentation and tokenization, except for French, 
which we manipulated slightly to bring into line 
with our existing conventions (e.g., converting l ’ 
an  into l’ an).  For the Hansard corpus used to 
supplement our French-English resources (de-
scribed in section 3 below), we used our own 
alignment based on Moore’s algorithm (Moore, 
2002), segmentation, and tokenization procedures. 

Languages with rich morphology are often prob-
lematic for statistical machine translation because 
the available data lacks instances of all possible 
forms of a word to efficiently train a translation sys-
tem. In a language like German, new words can be 
formed by compounding (writing two or more 
words together without a space or a hyphen in be-
tween). Segmentation is a crucial step in preproc-
essing languages such as German and Finnish texts.

In addition to these simple operations, we also 
developed a rule-based component to detect num-
bers and dates in the source text and identify their 
translation in the target text. This component was 
developed on the Hansard corpus, and applied to the 
French-English texts (i.e. Europarl and Hansard), on 
the development data in both languages, and on the 
test data. 

2.2 Decoding 

Decoding is the central phase in SMT, involving a 
search for the hypotheses t that have highest prob-
abilities of being translations of the current source 
sentence s according to a model for P(t|s). Our 
model for P(t|s) is a log-linear combination of four 
main components: one or more trigram language 
models, one or more phrase translation models, a 
distortion model, and a word-length feature. The 
trigram language model is implemented in the 
SRILM toolkit (Stolcke, 2002). The phrase-based 
translation model is similar to the one described in 
(Koehn, 2004), and relies on symmetrized IBM 
model 2 word-alignments for phrase pair induction. 
The distortion model is also very similar to 
Koehn’s, with the exception of a final cost to ac-
count for sentence endings.  

s

To set weights on the components of the log-
linear model, we implemented Och’s algorithm 
(Och, 2003).  This essentially involves generating, 
in an iterative process, a set of nbest translation hy-
potheses that are representative of the entire search 
space for a given set of source sentences. Once this 
is accomplished, a variant of Powell’s algorithm is 
used to find weights that optimize BLEU score 
(Papineni et al, 2002) over these hypotheses, com-
pared to reference translations. Unfortunately, our 
implementation of this algorithm converged only 
very slowly to a satisfactory final nbest list, so we 
used two different ad hoc strategies for setting 
weights: choosing the best values encountered dur-
ing

, with the exception of a 
ch as the ability to decode either 

w ards.  

 transla-
 

rent language pairs of the 
sha d t
hared t

- 

 the iterations of Och’s algorithm (French-
English), and a grid search (all other languages).  

To perform the actual translation, we used our 
decoder, Canoe, which implements a dynamic-
programming beam search algorithm based on that 
of Pharaoh (Koehn, 2004). Canoe is input-output 
compatible with Pharaoh
few extensions su
back ards or forw

2.3 Rescoring 

To improve raw output from Canoe, we used a 
rescoring strategy: have Canoe generate a list of 
nbest translations rather than just one, then reorder 
the list using a model trained with Och’s method to 
optimize BLEU score. This is identical to the final 
pass of the algorithm described in the previous sec-
tion, except for the use of a more powerful log-
linear model than would have been feasible to use 
inside the decoder. In addition to the four basic fea-
tures of the initial model, our rescoring model in-
cluded IBM2 model probabilities in both directions 
(i.e., P(s|t) and P(t|s)); and an IBM1-based feature 
designed to detect whether any words in one lan-
guage seemed to be left without satisfactory
tions in the other language. This missing-word
feature was also applied in both directions. 

3 Experiments on the Shared Task 

We conducted experiments and evaluations on 
Portage using the diffe

re ask. The training data was provided for the 
ask as follows:  
Training data of 688,031 sentences in 
French and English. A similarly sized cor-
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pus is provided for Finnish, Spanish and 
German with matched English translations. 

orpus was used to generate both 
lan

e translations into English, was 
 

 Portage for a comparative study ex-
ploiting and combining different resources and 
tec

 

3. arl corpus 

4. 
rd corpora as training data and 

 
t  mod est  
p icipation at th h-English tas 9.53. 

od D  Decoding+Rescoring

- Development test data of 2,000 sentences in 
the four languages.  

In addition to the provided data, a set of 
6,056,014 sentences extracted from Hansard corpus, 
the official record of Canada’s parliamentary de-
bates, was used in both French and English lan-
guages. This c

guage and translation models for use in decoding 
and rescoring. 

The development test data was split into two 
parts: The first part that includes 1,000 sentences in 
each language with reference translations into Eng-
lish served in the optimization of weights for both 
the decoding and rescoring models. In this study, 
number of n-best lists was set to 1,000. The second 
part, which includes 1,000 sentences in each lan-
guage with referenc
used in the evaluation of the performance of the
translation models. 

3.1 Experiments on the French-English Task 

Our goal for this language pair was to conduct ex-
periments on

hniques:  

1. Method E is based on the Europarl corpus 
as training data, 

2. Method E-H is based on both Europarl and 
Hansard corpora as training data, 
Method E-p is based on the Europ
as training data and parsing numbers and 
dates in the preprocessing phase, 
Method E-H-p is based on both Europarl 
and Hansa
parsing numbers and date in the preprocess-
ing phase. 

Results are shown in Table 1 for the French-
English task. The first column of Table 1 indicates 
the method, the second column gives results for 
decoding with Canoe only, and the third column for 
decoding and rescoring with Canoe. For comparison 
between the four methods, there was an improve-
ment in terms of BLEU scores when using two lan-
guage models and two translation models generated 
from Europarl and Hansard corpora; however, pars-
ing numbers and dates had a negative impact on the
ranslation els. The b  BLEU score for our
art e Frenc k was 2

Meth ecoding
E 27.71 29.22 
E-H 28.71 29.53 
E-p 26.45 28.21 
E-H-p 28.29 28.56 

Ta

ed 
f 

of increased trade within North 
merica but also functions as a good counterpoint 

for French-English. 
 

ble 1. BLEU scores for the French-English test 
sentences  
 

A noteworthy feature of these results is that the 
improvement given by the out-of-domain Hansard 
corpus was very slight. Although we suspect that 
somewhat better performance could have been 
achieved by better weight optimization, this result 
clearly underscores the importance of matching 
training and test domains. A related point is that our 
number and date translation rules actually caused a 
performance drop due to the fact that they were op-
timized for typographical conventions prevalent in 
Hansard, which are quite different from those used 
in Europarl. 

Our best result ranked third in the shared 
WPT05 French-English task , with a difference of 
0.74 in terms of BLEU score from the first rank
participant, and a difference of 0.67 in terms o
BLEU score from the second ranked participant. 

3.2 Experiments on other Pairs of Languages 

The WPT05 workshop provides a good opportunity 
to achieve our benchmarking goals with corpora 
that provide challenging difficulties. German and 
Finnish are languages that make considerable use of 
compounding. Finnish, in addition, has a particu-
larly complex morphology that is organized on 
principles that are quite different from any in Eng-
lish. This results in much longer word forms each of 
which occurs very infrequently. 
Our original intent was to propose a number of pos-
sible statistical approaches to analyzing and split-
ting these word forms and improving our results. 
Since none of these yielded results as good as the 
baseline, we will continue this work until we under-
stand what is really needed. We also care very 
much about translating between French and English 
in Canada and plan to spend a lot of extra effort on 
difficulties that occur in this case. Translation be-
tween Spanish and English is also becoming more 
mportant as a result i

A
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Language Pair Decoding+Rescoring
Finnish-English 20.95 
German-English 23.21 
Spanish English 29.08 

Ta

and 1.56 in 
m ores, respectively, compared to 
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ble 2 BLEU scores for the Finnish-English, Ger-
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To establish our baseline, the only preprocessing 

we did was lowercasing (using the provided tokeni-
zation). Canoe was run without any special settings, 
although weights for distortion, word penalty, lan-
guage model, and translation model were optimized 
using a grid search, as described above. Rescoring 
was also done, and usually resulted in at least an 
extra BLEU point.  

Our final results are shown in Table 2. Ranks at 
the shared WPT05 Finnish-, German-, and Spanish-
English tasks were assigned as second, third and 
fourth, with differences of 1.06, 1.87 
ter s of BLEU sc

4 Conclusion 

We have reported on our participation in the shared 
task of the ACL 2005 Workshop on Building and 
Using Parallel Texts, conducting evaluations of 
Portage, our statistical machine translation system, 
on all four language pairs. Our best BLEU scores 
for the French-, Finnish-, German-, and Spanish-
English at this stage were 29.5, 20.95, 23.21 and 
29.08, respectively. In total, eleven teams took part 
at the shared task and most of them submitted re-
sults for all pairs of languages.  Our results distin-
guished the NRC team at the third, second, third 
and fourth ranks with slight differences with the 
first ranked participants. 

A major goal of this work was to evaluate Port-
age at its first stage of implementation on different 
pairs of languages. This evaluation has served to 
identify some problems with our system in the areas 
of weight optimization and number and date rules. 
It has also indicated the limits of using out-of-
domain corpora, and the difficulty of morphologi-
cally complex languages like Finnish. 

Current and planned future work includes the 
exploitation of comparable corpora for statistica
machine transl
knowledge, and better features for nbest rescoring. 
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Abstract

This work discusses translation results for
the four Euparl data sets which were made
available for the shared task“Exploit-
ing Parallel Texts for Statistical Machine
Translation”. All results presented were
generated by using a statistical machine
translation system which implements a
log-linear combination of feature func-
tions along with a bilingual n-gram trans-
lation model.

1 Introduction

During the last decade, statistical machine transla-
tion (SMT) systems have evolved from the orig-
inal word-based approach (Brownet al., 1993)
into phrase-based translation systems (Koehnet al.,
2003). Similarly, the noisy channel approach has
been expanded to a more general maximum entropy
approach in which a log-linear combination of mul-
tiple models is implemented (Och and Ney, 2002).

The SMT approach used in this work implements
a log-linear combination of feature functions along
with a translation model which is based on bilingual
n-grams. This translation model was developed by
de Gispert and Mari˜no (2002), and it differs from the
well known phrase-based translation model in two
basic issues: first, training data is monotonously seg-
mented into bilingual units; and second, the model
considers n-gram probabilities instead of relative
frequencies. This model is described in section 2.

Translation results from the four source languages
made available for the shared task (es: Spanish, fr:

French, de: German, and fi: Finnish) into English
(en) are presented and discussed.

The paper is structured as follows. Section 2 de-
scribes the bilingual n-gram translation model. Sec-
tion 3 presents a brief overview of the whole SMT
procedure. Section 4 presents and discusses the
shared task results and other interesting experimen-
tation. Finally, section 5 presents some conclusions
and further work.

2 Bilingual N-gram Translation Model

As already mentioned, the translation model used
here is based on bilingual n-grams. It actually con-
stitutes a language model of bilingual units which
are referred to as tuples (de Gispert and Mari˜no,
2002). This model approximates the joint probabil-
ity between source and target languages by using3-
grams as it is described in the following equation:

p(T, S) ≈
N∏

n=1

p((t, s)n|(t, s)n−2, (t, s)n−1) (1)

wheret refers to target,s to source and(t, s)n to the
nth tuple of a given bilingual sentence pair.

Tuples are extracted from a word-to-word aligned
corpus according to the following two constraints:
first, tuple extraction should produce a monotonic
segmentation of bilingual sentence pairs; and sec-
ond, the produced segmentation is maximal in the
sense that no smaller tuples can be extracted with-
out violating the previous constraint (Cregoet al.,
2004). According to this, tuple extraction provides a
unique segmentation for a given bilingual sentence
pair alignment. Figure 1 illustrates this idea with a
simple example.
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We would like to achieve perfect translations

NULL quisieramos lograr traducciones perfectas

t
1

t
2

t
3

t
4

Figure 1: Example of tuple extraction from an
aligned sentence pair.

Two important issues regarding this translation
model must be mentioned. First, when extracting
tuples, some words always appear embedded into tu-
ples containing two or more words, so no translation
probability for an independent occurrence of such
words exists. To overcome this problem, the tuple
3-gram model is enhanced by incorporating1-gram
translation probabilities for all the embedded words
(de Gispertet al., 2004).

Second, some words linked to NULL end up pro-
ducing tuples with NULL source sides. This cannot
be allowed since no NULL is expected to occur in a
translation input. This problem is solved by prepro-
cessing alignments before tuple extraction such that
any target word that is linked to NULL is attached
to either its precedent or its following word.

3 SMT Procedure Description

This section describes the procedure followed for
preprocessing the data, training the models and op-
timizing the translation system parameters.

3.1 Preprocessing and Alignment

The Euparl data provided for this shared task (Eu-
parl, 2003) was preprocessed for eliminating all sen-
tence pairs with a word ratio larger than2.4. As a
result of this preprocessing, the number of sentences
in each training set was slightly reduced. However,
no significant reduction was produced.

In the case of French, a re-tokenizing procedure
was performed in which all apostrophes appearing
alone were attached to their corresponding words.
For example, pairs of tokens such asl ’ and qu ’
were reduced to single tokens such asl’ andqu’.

Once the training data was preprocessed, a word-
to-word alignment was performed in both direc-
tions, source-to-target and target-to-source, by us-
ing GIZA++ (Och and Ney, 2000). As an approxi-
mation to the most probable alignment, the Viterbi
alignment was considered. Then, the intersection
and union of alignment sets in both directions were
computed for each training set.

3.2 Feature Function Computation

The considered translation system implements a to-
tal of five feature functions. The first of these mod-
els is the tuple3-gram model, which was already de-
scribed in section 2. Tuples for the translation model
were extracted from the union set of alignments as
shown in Figure 1. Once tuples had been extracted,
the tuple vocabulary was pruned by using histogram
pruning. The same pruning parameter, which was
actually estimated for Spanish-English, was used for
the other three language pairs. After pruning, the
tuple 3-gram model was trained by using the SRI
Language Modeling toolkit (Stolcke, 2002). Finally,
the obtained model was enhanced by incorporating
1-gram probabilities for the embedded word tuples,
which were extracted from the intersection set of
alignments.

Table 1 presents the total number of running
words, distinct tokens and tuples, for each of the four
training data sets.

Table 1:Total number of running words, distinct to-
kens and tuples in training.

source running distinct tuple
language words tokens vocabulary

Spanish 15670801 113570 1288770
French 14844465 78408 1173424
German 15207550 204949 1391425
Finnish 11228947 389223 1496417

The second feature function considered was a tar-
get language model. This feature actually consisted
of a word3-gram model, which was trained from the
target side of the bilingual corpus by using the SRI
Language Modeling toolkit.

The third feature function was given by a word
penalty model. This function introduces a sentence
length penalization in order to compensate the sys-
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tem preference for short output sentences. More
specifically, the penalization factor was given by the
total number of words contained in the translation
hypothesis.

Finally, the fourth and fifth feature functions cor-
responded to two lexicon models based on IBM
Model 1 lexical parametersp(t|s) (Brown et al.,
1993). These lexicon models were calculated for
each tuple according to the following equation:

plexicon((t, s)n) =
1

(I + 1)J

J∏

j=1

I∑

i=0

p(tin|sj
n) (2)

wheresj
n and tin are thejth and ith words in the

source and target sides of tuple(t, s)n, beingJ and
I the corresponding total number words in each side
of it.

The forward lexicon model uses IBM Model1 pa-
rameters obtained from source-to-target alignments,
while the backward lexicon model uses parameters
obtained from target-to-source alignments.

3.3 Decoding and Optimization

The search engine for this translation system was
developed by Cregoet al. (2005). It implements
a beam-search strategy based on dynamic program-
ming and takes into account all the five feature func-
tions described above simultaneously. It also allows
for three different pruning methods: threshold prun-
ing, histogram pruning, and hypothesis recombina-
tion. For all the results presented in this work the
decoder’s monotonic search modality was used.

An optimization tool, which is based on a simplex
method (Presset al., 2002), was developed and used
for computing log-linear weights for each of the fea-
ture functions described above. This algorithm ad-
justs the log-linear weights so thatBLEU (Papineni
et al., 2002) is maximized over a given development
set. One optimization for each language pair was
performed by using the2000-sentence development
sets made available for the shared task.

4 Shared Task Results

Table 2 presents theBLEU scores obtained for the
shared task test data. Each test set consisted of2000
sentences. The computedBLEU scores were case
insensitive and used one translation reference.

Table 2:BLEU scores (shared task test sets).

es - en fr - en de - en fi - en

0.3007 0.3020 0.2426 0.2031

As can be seen from Table 2 the best ranked trans-
lations were those obtained for French, followed by
Spanish, German and Finnish. A big difference is
observed between the best and the worst results.

Differences can be observed from translation out-
puts too. Consider, for example, the following seg-
ments taken from one of the test sentences:

es-en: We know very well that the present Treaties are not

enough and that , in the future , it will be necessary to develop

a structure better and different for the European Union...

fr-en: We know very well that the Treaties in their current

are not enough and that it will be necessary for the future to

develop a structure more effective and different for the Union...

de-en: We very much aware that the relevant treaties are

inadequate and , in future to another , more efficient structure

for the European Union that must be developed...

fi-en: We know full well that the current Treaties are not

sufficient and that , in the future , it is necessary to develop the

Union better and a different structure...

It is evident from these translation outputs that
translation quality decreases when moving from
Spanish and French to German and Finnish. A
detailed observation of translation outputs reveals
that there are basically two problems related to this
degradation in quality. The first has to do with re-
ordering, which seems to be affecting Finnish and,
specially, German translations.

The second problem has to do with vocabulary. It
is well known that large vocabularies produce data
sparseness problems (Koehn, 2002). As can be con-
firmed from Tables 1 and 2, translation quality de-
creases as vocabulary size increases. However, it is
not clear yet, in which degree such degradation is
due to monotonic decoding and/or vocabulary size.

Finally, we also evaluated how much the full fea-
ture function system differs from the baseline tu-
ple 3-gram model alone. In this way,BLEU scores
were computed for translation outputs obtained for
the baseline system and the full system. Since the
English reference for the test set was not available,
we computed translations andBLEUscores over de-
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velopment sets. Table 3 presents the results for both
the full system and the baseline.1

Table 3: Baseline- and full-system BLEU scores
(computed over development sets).

language pair baseline full

es - en 0.2588 0.3004
fr - en 0.2547 0.2938
de - en 0.1844 0.2350
fi - en 0.1526 0.1989

From Table 3, it is evident that the four additional
feature functions produce important improvements
in translation quality.

5 Conclusions and Further Work

As can be concluded from the presented results, per-
formance of the translation system used is much bet-
ter for French and Spanish than for German and
Finnish. As some results suggest, reordering and
vocabulary size are the most important problems re-
lated to the low translation quality achieved for Ger-
man and Finnish.

It is also evident that the bilingual n-gram model
used requires the additional feature functions to pro-
duce better translations. However, more experimen-
tation is required in order to fully understand each
individual feature’s influence on the overall log-
linear model performance.
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Abstract

Thanks to the profusion of freely avail-
able tools, it recently became fairly
easy to built a statistical machine trans-
lation (SMT) engine given a bitext. The
expectations we can have on the quality
of such a system may however greatly
vary from one pair of languages to an-
other. We report on our experiments
in building phrase-based translation en-
gines for the four pairs of languages we
had to consider for the SMT shared-
task.

1 Introduction

Machine translation is nowadays mature enough
that it is possible without too much effort to de-
vise automatically a statistical translation system
from just a parallel corpus. This is possible
thanks to the dissemination of valuable packages.
The performance of such a system may however
greatly vary from one pair of languages to an-
other. Indeed, there is no free lunch for system
developers, and if a black box approach can some-
times be good enough for some applications (we
can surely accomplish translationgistingwith the
French-English and Spanish-English systems we
developed during this exercice), making use of
the output of such a system for, let’s say, qual-
ity translation is another kettle of fish (especially
in our case with the Finnish-English system we
ended-up with).

We devoted two weeks to the SMT shared task,
the aim of which was precisely to see how well

systems can do across different language families.
We began with a core system which is described
in the next section and from which we obtained
baseline performances that we tried to improve
upon.

Since the French- and Spanish-English sys-
tems produced output that were comprehensi-
ble enough1, we focussed on the two languages
whose translations were noticeably worse: Ger-
man and Finnish. For German, we tried to move
around words in order to mimic English word or-
der; and we tried to split compound words. This
is described in section 4. For the Finnish/English
pair, we tried to decompose Finnish words into
smaller substrings (see section 5).

In parallel to that, we tried to smooth a phrase-
based model (PBM) making use of WORDNET.
We report on this experiment in section 3. We de-
scribe in section 6 the final setting of the systems
we used for submitting translations and their of-
ficial results as computed by the organizers. Fi-
nally, we conclude our two weeks of efforts in
section 7.

2 The core system

We assembled up a phrase-based statistical engine
by making use of freely available packages. The
translation engine we used is the one suggested
within the shared task: PHARAOH (Koehn, 2004).
The input of this decoder is composed of a phrase-
based model (PBM), a trigram language model
and an optional set of coefficients and thresholds

1What we mean by this is nothing more than we were
mostly able to infer the original meaning of the source sen-
tence by reading its automatic translation.
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pair WER SER NIST BLEU

fi-en 66.53 99.20 5.3353 18.73
de-en 60.70 98.40 5.8411 21.11
fr-en 53.77 98.20 6.4717 27.69
es-en 53.84 98.60 6.5571 28.08

Table 1: Baseline performances measured on the
500 top sentences of theDEV corpus in terms of
WER (word error rate),SER (sentence error rate),
NIST andBLEU scores.

which control the decoder.
For acquiring a PBM, we followed the ap-

proach described by Koehn et al. (2003). In brief,
we relied on a bi-directional word alignment of
the training corpus to acquire the parameters of
the model. We used the word alignment pro-
duced by Giza (Och and Ney, 2000) out of an
IBM model 2. We did try to use the alignment
produced with IBM model 4, but did not notice
significant differences over our experiments; an
observation consistent with the findings of Koehn
et al. (2003). Each parameter in a PBM can be
scored in several ways. We considered its rela-
tive frequency as well as its IBM-model 1 score
(where the transfer probabilities were taken from
an IBM model 2 transfer table). The language
model we used was the one provided within the
shared task.

We obtained baseline performances by tuning
the engine on the top 500 sentences of the devel-
opment corpus. Since we only had a few param-
eters to tune, we did it by sampling the parameter
space uniformly. The best performance we ob-
tained, i.e., the one which maximizes theBLEU

metric as measured by themteval script2 is re-
ported for each pair of languages in Table 1.

3 Smoothing PBMs with WORDNET

Among the things we tried but which did not
work well, we investigated whether smoothing
the transfer table of an IBM model (2 in our case)
with WORDNET would produce better estimates
for rare words. We adapted an approach proposed
by Cao et al. (2005) for an Information Retrieval
task, and computed for any parameter(ei, fj) be-

2http://www.nist.gov/speech/tests/mt/
mt2001/resource

longing to the original model the following ap-
proximation:

ṗ(ei|fj) ≈
∑
e∈E

pwn(ei|e)× pn(e|fj)

whereE is the English vocabulary,pn desig-
nates the native distribution andpwn is the proba-
bility that two words in the English side are linked
together. We estimated this distribution by co-
occurrence counts over a large English corpus3.
To avoid taking into account unrelated but co-
occurring words, we used WORDNET to filter in
only the co-occurrences of words that are in re-
lation according to WORDNET. However, since
many words are not listed in this resource, we had
to smooth the bigram distribution, which we did
by applying Katz smoothing (Katz, 1997):

pkatz(ei|e) =

{
ċ(ei,e|W,L)P
ej

c(ej ,e|W,L) if c(ei, e|W,L) > 0

α(e)pkatz(ei) otherwise

where ċ(a, b|W,L) is the good-turing dis-
counted count of times two wordsa andb that are
linked together by a WORDNETrelation, co-occur
in a window of 2 sentences.

We used this smoothed model to score the pa-
rameters of our PBM instead of the native trans-
fer table. The results were however disappoint-
ing for both the G-E and S-E translation direc-
tions we tested. One reason for that, may be
that the English corpus we used for computing
the co-occurrence counts is an out-of-domain cor-
pus for the present task. Another possible ex-
planation lies in the fact that we considered both
synonymic and hyperonymic links in WORDNET;
the latter kind of links potentially introducing too
much noise for a translation task.

4 The German-English task

We identified two major problems with our ap-
proach when faced with this pair of languages.
First, the tendency in German to put verbs at the
end of a phrase happens to ruin our phrase acqui-
sition process, which basically collects any box
of aligned source and target adjacent words. This

3For this, we used the English side of the provided train-
ing corpus plus the English side of our in-house Hansard bi-
text; that is, a total of more than 7 million pairs of sentences.
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can be clearly seen in the alignment matrix of fig-
ure 1 where the verbal constructioncould clarify
is translated by two very distant German words
könntenand erläutern. Second, there are many
compound words in German that greatly dilute
the various counts embedded in the PBM table.

. . . . . . . . . . . . . ×
erläutern . . . . . . . × . . . . .
punkt . . . . . . . . . × . . .
einen . . . . . . . . × . " . .
mir . . . . . . . . . . . × .
sie . . . . . × . . . . . . .
oder . . . . × . . . . . . . .
kommission . . . × . . . . . . . . .
die . . × . . . . . . . . . .
könnten . . . . . . × . . . . . .
vielleicht . × . . . . . . . . . . .
NULL . . . . . . . . . . . . .

N p t c o y c c a p f m .
U e h o r o o l o o e
L r e m u u a i r
L h m l r n

English perhaps the commission or you could
clarify a point for me .

German vielleicht k̈onnten die kommission oder
sie mir einen punkt erläutern .

Figure 1: Bidirectional alignment matrix. A cross
in this matrix designates an alignment valid in
both directions, while the" symbol indicates an
uni-directional alignment (for has been aligned
with einen , but not the other way round).

4.1 Moving around German words

For the first problem, we applied a memory-based
approach to move around words in the German
side in order to better synchronize word order
in both languages. This involves, first, to learn-
ing transformation rules from the training corpus,
second, transforming the German side of this cor-
pus; then training a new translation model. The
same set of rules is then applied to the German
text to be translated.

The transformation rules we learned concern a
few (five in our case) verbal constructions that
we expressed with regular expressions built on
POS tags in the English side. Once thelocus

e
v

u of a pattern has been identified, a rule is col-
lected whenever the following conditions apply:
for each worde in the locus, there is a target word
f which is aligned toe in both alignment direc-
tions; these target words when moved can lead to
a diagonal going from the target word (l) associ-
ated toeu−1 to the target wordr which is aligned
to ev+1.

The rules we memorize are triplets(c, i, o)
wherec = (l, r) is the context of the locus andi
ando are the input and output German word order
(that is, the order in which the tokens are found,
and the order in which they should be moved).

For instance, in the example of Figure 1,
the Verb Verb pattern match the locuscould
clarify and the following rule is acquired:
(sie einen, k önnten erl äutern,
könnten erl äutern) , a paraphrase of
which is: ”whenever you find (in this order)
the word könnten and erläutern in a German
sentence containing also (in this order)sie and
einen, movekönntenand erläutern betweensie
andeinen.

A set of 124 271 rules have been acquired
this way from the training corpus (for a total of
157 970 occurrences). The most frequent rule ac-
quired is (ich herrn, m öchte danken,
m̈ochte danken) , which will transform a sen-
tence like ”ich möchte herrn wynn f̈ur seinen
bericht danken.” into ” ich möchte danken herrn
wynn f̈ur seinen bericht.”.

In practice, since this acquisition process does
not involve any generalization step, only a few
rules learnt really fire when applied to the test ma-
terial. Also, we devised a fairly conservative way
of applying the rules, which means that in prac-
tice, only 3.5% of the sentences of the test corpus
where actually modified.

The performance of this procedure as measured
on the development set is reported in Table 2. As
simple as it is, this procedure yields a relative gain
of 7% in BLEU. Given the crudeness of our ap-
proach, we consider this as an encouraging im-
provement.

4.2 Compound splitting

For the second problem, we segmented German
words before training the translation models. Em-
pirical methods for compound splitting applied to
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system WER SER NIST BLEU

baseline 60.70 98.40 5.8411 21.11
swap 60.73 98.60 5.9643 22.58
split 60.67 98.60 5.7511 21.99
swap+split 60.57 98.40 5.9685 23.10

Table 2: Performances of the swapping and the
compound splitting approaches on the top 500
sentences of the development set.

German have been studied by Koehn and Knight
(2003). They found that a simple splitting strat-
egy based on the frequency of German words was
the most efficient method of the ones they tested,
when embedded in a phrase-based translation en-
gine. Therefore, we applied such a strategy to
split German words in our corpora. The results
of this approach are shown in Table 2.

Note: Both the swapping strategy and the com-
pound splitting yielded improvements in terms of
BLEU score. Only after the deadline did we find
time to train new models with a combination of
both techniques; the results of which are reported
in the last line of Table 2.

5 The Finnish-English task

The worst performances were registered on the
Finnish-English pair. This is due to the aggluti-
native nature of Finnish. We tried to segment the
Finnish material into smaller units (substrings) by
making use of the frequency of all Finnish sub-
strings found in the training corpus. We main-
tained a suffix tree structure for that purpose.
We proceeded by recursively finding the most
promising splitting points in each Finnish token
of C charactersFC

1 by computingsplit(FC
1 )

where:

split(F j
i ) =


|F j

i | if j − i < 2
maxc∈[i+2,j−2] |F c

i |×
split(F j

c+1) otherwise

This approach yielded a significant degradation
in performance that we still have to analyze.

6 Submitted translations

At the time of the deadline, the best translations
we had were the baselines ones for all the lan-
guage pairs, except for the German-English one

where the moving of words ranked the best. This
defined the configuration we submitted, whose re-
sults (as provided by the organizers) are reported
in Table 3.

pair BLEU p1/p2/p3/p4

fi-en 18.87 55.2/24.7/13.1/7.1
de-en 22.91 58.9/29.0/16.8/10.3
es-en 28.49 62.4/34.5/21.9/14.4
fr-en 28.89 62.6/34.7/22.0/14.6

Table 3: Results measured by the organizers for
theTEST corpus.

7 Conclusion

We found that, while comprehensible translations
were produced for pairs of languages such as
French-English and Spanish-English; things did
not go as well for the German-English pair and
especially not for the Finnish-English pair. We
had a hard time improving our baseline perfor-
mance in such a tight schedule and only man-
aged to improve our German-English system. We
were less lucky with other attempts we imple-
mented, among them, the smoothing of a trans-
fer table with WORDNET, and the segmentation
of the Finnish corpus into smaller units.
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Abstract

In this paper, we present a phrase ex-
traction algorithm using a translation lex-
icon, a fertility model, and a simple dis-
tortion model. Except these models, we
do not need explicit word alignments for
phrase extraction. For each phrase pair (a
block), a bilingual lexicon based score is
computed to estimate the translation qual-
ity between the source and target phrase
pairs; a fertility score is computed to es-
timate how good the lengths are matched
between phrase pairs; a center distortion
score is computed to estimate the relative
position divergence between the phrase
pairs. We presented the results and our
experience in the shared tasks on French-
English.

1 Introduction

Phrase extraction becomes a key component in to-
day’s state-of-the-art statistical machine translation
systems. With a longer context than unigram, phrase
translation models have flexibilities of modelling lo-
cal word-reordering, and are less sensitive to the er-
rors made from preprocessing steps including word
segmentations and tokenization. However, most of
the phrase extraction algorithms rely on good word
alignments. A widely practiced approach explained
in details in (Koehn, 2004), (Och and Ney, 2003)
and (Tillmann, 2003) is to get word alignments from
two directions: source to target and target to source;
the intersection or union operation is applied to get
refined word alignment with pre-designed heuristics
fixing the unaligned words. With this refined word
alignment, the phrase extraction for a given source
phrase is essentially to extract the target candidate
phrases in the target sentence by searching the left
and right projected boundaries.

In (Vogel et al., 2004), they treat phrase align-
ment as a sentence splitting problem: given a source
phrase, find the boundaries of the target phrase such
that the overall sentence alignment lexicon probabil-
ity is optimal. We generalize it in various ways, esp.
by using a fertility model to get a better estimation of
phrase lengths, and a phrase level distortion model.

In our proposed algorithm, we do not need ex-
plicit word alignment for phrase extraction. Thereby
it avoids the burden of testing and comparing differ-
ent heuristics especially for some language specific
ones. On the other hand, the algorithm has such flex-
ibilities that one can incorporate word alignment and
heuristics in several possible stages within this pro-
posed framework to further improve the quality of
phrase pairs. In this way, our proposed algorithm
is more generalized than the usual word alignment
based phrase extraction algorithms.

The paper is structured as follows: in section 2,
The concept of blocks is explained; in section 3, a
dynamic programming approach is model the width
of the block; in section 4, a simple center distortion
of the block; in section 5, the lexicon model; the
complete algorithm is in section 6; in section 7, our
experience and results using the proposed approach.

2 Blocks

We consider each phrase pair as a block within a
given parallel sentence pair, as shown in Figure 1.

The y-axis is the source sentence, indexed word
by word from bottom to top; the x-axis is the target
sentence, indexed word by word from left to right.
The block is defined by the source phrase and its pro-
jection. The source phrase is bounded by the start
and the end positions in the source sentence. The
projection of the source phrase is defined as the left
and right boundaries in the target sentence. Usually,
the boundaries can be inferred according to word
alignment as the left most and right most aligned
positions from the words in the source phrase. In
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Figure 1: Blocks with “width” and “centers”

this paper, we provide another view of the block,
which is defined by the centers of source and target
phrases, and the width of the target phrase.

Phrase extraction algorithms in general search
for the left and right projected boundaries of each
source phrase according to some score metric com-
puted for the given parallel sentence pairs. We
present here three models: a phrase level fertility
model score for phrase pairs’ length mismatch, a
simple center-based distortion model score for the
divergence of phrase pairs’ relative positions, and
a phrase level translation score to approximate the
phrase pairs’ translational equivalence. Given a
source phrase, we can search for the best possible
block with the highest combined scores from the
three models.

3 Length Model: Dynamic Programming

Given the word fertility definitions in IBM Mod-
els (Brown et al., 1993), we can compute a prob-
ability to predict phrase length: given the candi-
date target phrase (English) eI

1, and a source phrase
(French) of length J , the model gives the estima-
tion of P (J |eI

1) via a dynamic programming algo-
rithm using the source word fertilities. Figure 2
shows an example fertility trellis of an English tri-
gram. Each edge between two nodes represents one
English word ei. The arc between two nodes rep-
resents one candidate non-zero fertility for ei. The
fertility of zero (i.e. generating a NULL word) cor-
responds to the direct edge between two nodes, and
in this way, the NULL word is naturally incorpo-
rated into this model’s representation. Each arc is

e1 e2 e3

1

3

2

0 0

2

0

e1 e2 e3

……

….

1

2

3

4

3

1

3

1

2

Figure 2: An example of fertility trellis for dynamic
programming

associated with a English word fertility probability
P (φi|ei). A path φI

1 through the trellis represents
the number of French words φi generated by each
English word ei. Thus, the probability of generating
J words from the English phrase along the Viterbi
path is:

P (J |eI
1) = max

{φI
1
,J=

∑I
i=1

φi}

I
∏

i=1

P (φi|ei) (1)

The Viterbi path is inferred via dynamic program-
ming in the trellis of the lower panel in Figure 2:

φ[j, i] = max















φ[j, i− 1] + log PNULL(0|ei)
φ[j − 1, i− 1] + log Pφ(1|ei)
φ[j − 2, i− 1] + log Pφ(2|ei)
φ[j − 3, i− 1] + log Pφ(3|ei)

where PNULL(0|ei) is the probability of generating
a NULL word from ei; Pφ(k = 1|ei) is the usual
word fertility model of generating one French word
from the word ei; φ[j, i] is the cost so far for gener-
ating j words from i English words ei

1 : e1, · · · , ei.
After computing the cost of φ[J, I], we can trace

back the Viterbi path, along which the probability
P (J |eI

1) of generating J French words from the En-
glish phrase eI

1 as shown in Eqn. 1.

142



With this phrase length model, for every candidate
block, we can compute a phrase level fertility score
to estimate to how good the phrase pairs are match
in their lengthes.

4 Distortion of Centers

The centers of source and target phrases are both il-
lustrated in Figure 1. We compute a simple distor-
tion score to estimate how far away the two centers
are in a parallel sentence pair in a sense the block is
close to the diagonal.

In our algorithm, the source center �
fj+l

j

of the

phrase f
j+l
j with length l +1 is simply a normalized

relative position defined as follows:

�
fj+l

j

=
1

|F |

j′=j+l
∑

j′=j

j′

l + 1
(2)

where |F | is the French sentence length.
For the center of English phrase ei+k

i in the target
sentence, we first define the expected corresponding
relative center for every French word fj′ using the
lexicalized position score as follows:

�ei+k
i

(fj′) =
1

|E|
·

∑(i+k)
i′=i i′ · P (fj′ |ei′)

∑(i+k)
i′=i P (fj′ |ei′)

(3)

where |E| is the English sentence length. P (fj′ |ei)
is the word translation lexicon estimated in IBM
Models. i is the position index, which is weighted
by the word level translation probabilities; the term
of

∑I
i=1 P (fj′ |ei) provides a normalization so that

the expected center is within the range of target sen-
tence length. The expected center for ei+k

i is simply
a average of �ei+k

i
(fj′):

�ei+k
i

=
1

l + 1

j+l
∑

j′=j

�ei+k
i

(fj′) (4)

This is a general framework, and one can certainly
plug in other kinds of score schemes or even word
alignments to get better estimations.

Given the estimated centers of �
fj+l

j

and

�ei+k
i

, we can compute how close they are by
the probability of P (�ei+k

i
|�

fj+l
j

). To estimate

P (�ei+k
i

|�
fj+l

j

), one can start with a flat gaussian

model to enforce the point of (�ei+k
i

,�
fj+l

j

) not too

far off the diagonal and build an initial list of phrase
pairs, and then compute the histogram to approxi-
mate P (�ei+k

i
|�

fj+l
j

).

5 Lexicon Model

Similar to (Vogel et al., 2004), we compute for each
candidate block a score within a given sentence pair
using a word level lexicon P (f |e) as follows:

P (f j+l
j |ei+k

i ) =
∏

j′∈[j,j+l]

∑

i′∈[i,i+k]

P (fj′ |ei′)

k + 1

·
∏

j′ /∈[j,j+l]

∑

i′ /∈[i,i+k]

P (fj′ |ei′)

|E| − k − 1

6 Algorithm

Our phrase extraction is described in Algorithm
1. The input parameters are essentially from IBM
Model-4: the word level lexicon P (f |e), the English
word level fertility Pφ(φe = k|e), and the center
based distortion P (�ei+k

i
|�

fj+l
j

).

Overall, for each source phrase f
j+l
j , the algo-

rithm first estimates its normalized relative center
in the source sentence, its projected relative cen-
ter in the target sentence. The scores of the phrase
length, center-based distortion, and a lexicon based
score are computed for each candidate block A lo-
cal greedy search is carried out for the best scored
phrase pair (f j+l

j , ei+k
i ).

In our submitted system, we computed the
following seven base scores for phrase pairs:
Pef (f j+l

j |ei+k
i ), Pfe(e

i+k
i |f j+l

j ), sharing similar
function form in Eqn. 5.

Pef (f j+l
j |ei+k

i ) =
∏

j′

∑

i′

P (fj′ |ei′)P (ei′ |e
i+k
i )

=
∏

j′

∑

i′

P (fj′ |ei′)

k + 1
(5)

We compute phrase level relative frequency in both
directions: Prf (f j+l

j |ei+k
i ) and Prf (ei+k

i |f j+l
j ). We

compute two other lexicon scores which were also
used in (Vogel et al., 2004): S1(f

j+l
j |ei+k

i ) and

S2(e
i+k
i |f j+l

j ) using the similar function in Eqn. 6:

S(f j+l
j |ei+k

i ) =
∏

j′

∑

i′

P (fj′ |ei′) (6)
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In addition, we put the phrase level fertility score
computed in section 3 via dynamic programming to
be as one additional score for decoding.

Algorithm 1 A Generalized Alignment-free Phrase
Extraction

1: Input: Pre-trained models: Pφ(φe = k|e) ,
P (�E |�F ) , and P (f |e).

2: Output: PhraseSet: Phrase pair collections.
3: Loop over the next sentence pair
4: for j : 0 → |F | − 1,
5: for l : 0 → MaxLength,
6: foreach f

j+l
j

7: compute �f and �E

8: left = �E · |E|-MaxLength,
9: right= �E · |E|+MaxLength,

10: for i : left → right,
11: for k : 0 → right,
12: compute �e of ei+k

i ,
13: score the phrase pair (f j+l

j , ei+k
i ), where

score = P (�e|�f )P (l|ei+k
i )P (f j+l

j |ei+k
i )

14: add top-n {(f j+l
j , ei+k

i )} into PhraseSet.

7 Experimental Results

Our system is based on the IBM Model-4 param-
eters. We train IBM Model 4 with a scheme of
1720h73043 using GIZA++ (Och and Ney, 2003).
The maximum fertility for an English word is 3. All
the data is used as given, i.e. we do not have any
preprocessing of the English-French data. The word
alignment provided in the workshop is not used in
our evaluations. The language model is provided
by the workshop, and we do not use other language
models.

The French phrases up to 8-gram in the devel-
opment and test sets are extracted with top-3 can-
didate English phrases. There are in total 2.6 mil-
lion phrase pairs 1 extracted for both development
set and the unseen test set. We did minimal tuning
of the parameters in the pharaoh decoder (Koehn,
2004) settings, simply to balance the length penalty
for Bleu score. Most of the weights are left as they
are given: [ttable-limit]=20, [ttable-threshold]=0.01,

1Our phrase table is to be released to public in this workshop

[stack]=100, [beam-threshold]=0.01, [distortion-
limit]=4, [weight-d]=0.5, [weight-l]=1.0, [weight-
w]=-0.5. Table 1 shows the algorithm’s performance
on several settings for the seven basic scores pro-
vided in section 6.

settings Dev.Bleu Tst.Bleu
s1 27.44 27.65
s2 27.62 28.25

Table 1: Pharaoh Decoder Settings

In Table 1, setting s1 was our submission
without using the inverse relative frequency of
Prf (ei+k

i |f j+l
j ). s2 is using all the seven scores.

8 Discussions

In this paper, we propose a generalized phrase ex-
traction algorithm towards word alignment-free uti-
lizing the fertility model to predict the width of the
block, a distortion model to predict how close the
centers of source and target phrases are, and a lex-
icon model for translational equivalence. The algo-
rithm is a general framework, in which one could
plug in other scores and word alignment to get bet-
ter results.
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Abstract

We describe the Spanish-to-EnglishLDV-

COMBO system for the Shared Task 2:
“Exploiting Parallel Texts for Statistical
Machine Translation” of the ACL-2005
Workshop on “Building and Using Par-
allel Texts: Data-Driven Machine Trans-
lation and Beyond”. Our approach ex-
plores the possibility of working with
alignments at different levels of abstrac-
tion, using different degrees of linguistic
annotation. Several phrase-based trans-
lation models are built out from these
alignments. Their combination significa-
tively outperforms any of them in isola-
tion. Moreover, we have built a word-
based translation model based on Word-
Net which is used for unknown words.

1 Introduction

The main motivation behind our work is to intro-
duce linguistic information, other than lexical units,
to the process of building word and phrase align-
ments. Many other authors have tried to do so. See
(Och and Ney, 2000), (Yamada and Knight, 2001),
(Koehn and Knight, 2002), (Koehn et al., 2003),
(Schafer and Yarowsky, 2003) and (Gildea, 2003).

Far from full syntactic complexity, we suggest to
go back to the simpler alignment methods first de-
scribed by (Brown et al., 1993). Our approach ex-
ploits the possibility of working with alignments at
two different levels of granularity, lexical (words)

and shallow parsing (chunks). In order to avoid con-
fusion so forth we will talk abouttokensinstead of
wordsas the minimal alignment unit.

Apart from redefining the scope of the alignment
unit, we may use different degrees of linguistic an-
notation. We introduce the general concept ofdata
view, which is defined as any possible representation
of the information contained in a bitext. We enrich
data view tokens with features further than lexical
such asPoS, lemma, andchunk label.

As an example of the applicability of data views,
suppose the case of the word‘plays’ being seen in
the training data acting as a verb. Representing this
information as‘playsV BZ ’ would allow us to distin-
guish it from its homograph‘playsNNS ’ for ‘plays’ as
a noun. Ideally, one would wish to have still deeper
information, moving through syntax onto semantics,
such asword senses. Therefore, it would be possible
to distinguish for instance between two realizations
of ‘plays’ with different meanings:‘heP RP playsV BG

guitarNN ’ and‘heP RP playsV BG basketballNN ’ .
Of course, there is a natural trade-off between the

use of data views and data sparsity. Fortunately, we
hava data enough so that statistical parameter esti-
mation remains reliable.

2 System Description

The LDV-COMBOsystem follows the SMT architec-
ture suggested by the workshop organizers.

First, training data are linguistically annotated for
the two languages involved (See subsection 2.1).
10 different data views have been built. Notice
that it is not necessary that the two parallel coun-
terparts of a bitext share the same data view, as
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long as they share the same granularity. How-
ever, in all our experiments we have annotated both
sides with the same linguistic information. See
token descriptions: (W) word, (WL) word and
lemma, (WP) word and PoS, (WC) word and chunk
label, (WPC) word, PoS and chunk label, (Cw)
chunk of words (Cwl), chunk of words and lem-
mas, (Cwp) chunk of words and PoS (Cwc) chunk
of words and chunk labels (Cwpc) chunk of words,
PoS and chunk labels. By chunk label we re-
fer to the IOB label associated to every word in-
side a chunk, e.g.‘I B−NP declareB−V P resumedI−V P

theB−NP sessionI−NP ofB−P P theB−NP EuropeanI−NP

ParliamentI−NP .O’). We build chunk tokens by ex-
plicitly connecting words in the same chunk, e.g.
‘(I) NP (declareresumed)V P (the session)NP (of)P P

(the EuropeanParliament)NP ’ . See examples of
some of these data views in Table 1.

Then, runningGIZA++, we obtain token align-
ments for each of the data views. Combined phrase-
based translation models are built on top of the
Viterbi alignments output byGIZA++. See details
in subsection 2.2.Combo-modelsmust be then post-
processed in order to remove the additional linguis-
tic annotation and split chunks back into words, so
they fit the format required byPharaoh.

Moreover, we have used the Multilingual Central
Repository (MCR), a multilingual lexical-semantic
database (Atserias et al., 2004), to build a word-
based translation model. We back-off to this model
in the case of unknown words, with the goal of im-
proving system recall. See subsection 2.3.

2.1 Data Representation

In order to achieve robustness the same tools have
been used to linguistically annotate both languages.
The SVMTool1 has been used for PoS-tagging
(Giménez and M̀arquez, 2004). TheFreeling2 pack-
age (Carreras et al., 2004) has been used for lemma-
tizing. Finally, thePhrecosoftware by (Carreras et
al., 2005) has been used for shallow parsing.

No additional tokenization or pre-processing
steps other than case lowering have been performed.
Special treatment of named entities, dates, numbers,

1The SVMTool may be freely downloaded at
http://www.lsi.upc.es/˜nlp/SVMTool/ .

2Freeling Suite of Language Analyzers may be downloaded
athttp://www.lsi.upc.es/˜nlp/freeling/

currency, etc., should be considered so as to further
enhance the system.

2.2 Building Combined Translation Models

Because data views capture different, possibly com-
plementary, aspects of the translation process it
seems reasonable to combine them. We consider
two different ways of building such combo-models:

LPHEX Local phrase extraction. To build a separate
phrase-based translation model for each data
view alignment, and then combine them. There
are two ways of combining translation models:

MRG Merging translation models. We work on
a weighted linear interpolation of models.
These weights may be tuned, although a
uniform weight selection yields good re-
sults. Additionally, phrase-pairs may be
filtered out by setting a score threshold.

noMRG Passing translation models directly to
the Pharaoh decoder. However, we en-
countered many problems with phrase-
pairs that were not seen in all single mod-
els. This obliged us to apply arbitrary
smoothing values to score these pairs.

GPHEX Global phrase extraction. To build a sin-
gle phrased-based translation model from the
union of alignments from several data views.

In its turn, anyMRG operation performed on a
combo-model results again in a valid combo-model.

In any case, phrase extraction3 is performed as de-
picted by (Och, 2002).

2.3 Using the MCR

Outer knowledge may be supplied to thePharaoh
decoder by annotating the input with alternative
translation options via XML-markup. We enrich
every unknown word by looking up every possi-
ble translation for all of its senses in the MCR.
These are scored by relative frequency according to
the number of senses that lexicalized in the same
manner. Letwf , pf be the source word and PoS,
and we be the target word, we define a function

3We always work with the union of alignments, no heuristic
refinement, and phrases up to 5 tokens. Phrase pairs appearing
only once have been discarded. Scoring is performed by relative
frequency. No smoothing is applied.
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It[P RP :B−NP ] would[MD:B−V P ] appear[V B:I−V P ] that[IN:B−SBAR] a[DT :B−NP ] speech[NN:I−NP ] made[V BN:B−V P ]

at[IN:B−P P ] the[DT :B−NP ] weekend[NN:I−NP ] by[IN:B−P P ] Mr[NNP :B−NP ] Fischler[NNP :I−NP ]

indicates[V BZ:B−V P ] a[DT :B−NP ] change[NN:I−NP ] of[IN:B−P P ] his[P RP$:B−NP ] position[NN:I−NP ] .[.:O]

WPC
Fischler[V MN:B−V P ] pronuncío[V MI:B−V P ] un[DI:B−NP ] discurso[NC:I−NP ] este[DD:B−NP ] fin[NC:I−NP ]

de[SP :B−P P ] semana[NC:B−NP ] en[SP :B−P P ] el[DA:B−SBAR] que[P R0:I−SBAR] parećıa[V MI:B−V P ]

haber[V AN:I−V P ] cambiado[V MP :I−V P ] de[SP :B−P P ] actitud[NC:B−NP ] .[F p:O]

(It[P RP :B−NP ]]) (would[MD:B−V P ]] appear[V B:I−V P ]) (that[IN:B−SBAR]) (a[DT :B−NP ] speech[NN:I−NP ])
(made[V BN:B−V P ]) (at[IN:B−P P ]) (the[DT :B−NP ] weekend[NN:I−NP ]) (by[IN:B−P P ])
(Mr[NNP :B−NP ] Fischler[NNP :I−NP ]) (indicates[V BZ:B−V P ]) (a[DT :B−NP ] change[NN:I−NP ])
(of[IN:B−P P ]) (his[P RP$:B−NP ] position[NN:I−NP ]) (.[.:O])

Cwpc
(Fischler[V MN:B−V P ]) (pronuncío[V MI:B−V P ]) (un[DI:B−NP ] discurso[NC:I−NP ]) (este[DD:B−NP ] fin[NC:I−NP ])
(de[SP :B−P P ]) (semana[NC:B−NP ]) (en[SP :B−P P ]) (el[DA:B−SBAR] que[P R0:I−SBAR])
(parećıa[V MI:B−V P ] haber[V AN:I−V P ] cambiado[V MP :I−V P ]) (de[SP :B−P P ]) (actitud[NC:B−NP ]) (.[F p:O])

Table 1:An example of 2 rich data views: (WPC) word, PoS and IOB chunk label (Cwpc) chunk of word, PoS and chunk label.

Scount(wf , pf , we) which counts the number of
senses for(wf , pf ) which can lexicalize aswe. A
translation pair is scored as:

score(wf , pf |we) =
Scount(wf , pf , we)∑

(wf ,pf ) Scount(wf , pf , we)
(1)

Better results would be expected working with
word sense disambiguated text. We are not at this
point yet. A first approach could be to work with the
most frequent sense heuristic.

3 Experimental Results

3.1 Data and Evaluation Metrics

We have used the data sets and language model pro-
vided by the organization. No extra training or de-
velopment data were used in our experiments.

We evaluate results with 3 different metrics: GTM
F1-measure (e = 1, 2), BLEU score (n = 4) as pro-
vided by organizers, and NIST score (n = 5).

3.2 Experimenting with Data Views

Table 2 presents MT results for the 10 elementary
data views devised in Section 2. Default parameters
are used forλtm, λlm, andλw. No tuning has been
performed. As expected, word-based views obtain
significatively higher results than chunk-based. All
data views at the same level of granularity obtain
comparable results.

In Table 3 MT results for different data view com-
binations are showed. Merged model weights are
set equiprobable, and no phrase-pair score filtering

data view GTM-1 GTM-2 BLEU NIST
W 0.6108 0.2609 25.92 7.1576
WL 0.6110 0.2601 25.77 7.1496
WP 0.6096 0.2600 25.74 7.1415
WC 0.6124 0.2600 25.98 7.1852
WPC 0.6107 0.2587 25.79 7.1595
Cw 0.5749 0.2384 22.73 6.6149
Cwl 0.5756 0.2385 22.73 6.6204
Cwp 0.5771 0.2395 23.06 6.6403
Cwc 0.5759 0.2390 22.86 6.6207
Cwpc 0.5744 0.2379 22.77 6.5949

Table 2:MT Results for the 10 elementary data views on the

development set.

is performed. We refer to theW model as our base-
line. In this view, only words are used. The5W-MRG

and 5W-GPHEX models use a combination of the 5
word-based data views, as inMRG and GPHEX, re-
spectively. The5C-MRG and 5C-GPHEXsystem use
a combination of the 5 chunk based data views, as
in MRG andGPHEX, respectively. The10-MRG sys-
tem uses all 10 data views combined as inMRG. The
10-GPHEX/MRGsystem uses the 5 word based views
combined as inGPHEX, the 5 chunk based views
combined as inGPHEX, and then a combination of
these two combo-models as inMRG.

data view GTM-1 GTM-2 BLEU NIST
W 0.6108 0.2609 25.92 7.1576
5W-MRG 0.6134 0.2631 26.25 7.2122
5W-GPHEX 0.6172 0.2615 26.95 7.2823
5C-MRG 0.5786 0.2407 23.18 6.6754
5C-GPHEX 0.5739 0.2368 22.80 6.5714
10-MRG 0.6130 0.2624 26.24 7.2196
10-GPHEX/MRG 0.6142 0.2600 26.58 7.2542

Table 3:MT Results without tuning, for some data view com-

binations on the development set.
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It can be seen that results improve by combining
several data views. Furthermore, global phrase ex-
traction (GPHEX) seems to work much finer than lo-
cal phrase extraction (LPHEX).

Table 4 shows MT results after optimizingλtm,
λlm, λw, and the weights for theMRG operation,
by means of theDownhill Simplex Method in Multi-
dimensions(William H. Press and Flannery, 2002).
Observe that tuning the system improves the perfor-
mance considerably. Theλw parameter is particu-
larly sensitive to tuning.

Even though the performance of chunk-based
models is poor, the best results are obtained by com-
binining the two levels of abstraction, thus proving
that syntactically motivated phrases may help.10-

MRG and 10-GPHEX models achieve a similar per-
formance. The10-MRG-bestW N system corresponds
to the10-MRG model using WordNet. The10-MRG-

subW N system is this same system at the time of sub-
mission. Results using WordNet, taking into account
that the number of unknown4 words in the develop-
ment set was very small, are very promising.

data view GTM-1 GTM-2 BLEU NIST
W 0.6174 0.2583 28.13 7.1540
5W-MRG 0.6206 0.2605 28.50 7.2076
5W-GPHEX 0.6207 0.2603 28.38 7.1992
5C-MRG 0.5882 0.2426 25.06 6.6773
5C-GPHEX 0.5816 0.2387 24.40 6.5595
10-MRG 0.6218 0.2623 28.88 7.2491
10-GPHEX/MRG 0.6229 0.2622 28.82 7.2414
10-MRGW N 0.6228 0.2625 28.90 7.2583
10-MRG-subW N 0.6228 0.2622 28.79 7.2528

Table 4: MT Results for some data view combinations after

tuning on the development set.

4 Conclusions

We have showed that it is possible to obtain better
phrase-based translation models by utilizing align-
ments built on top of different linguistic data views.
These models can be robustly combined, signifi-
cantly outperforming all of their components in iso-
lation. We leave for further work the experimen-
tation of new data views such as word senses and
semantic roles, as well as their natural porting and
evolution from the alignment step to phrase extrac-
tion and decoding.

4Translation for 349 unknown words was found in the MCR.
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Abstract

Nowadays, most of the statistical translation sys-
tems are based on phrases (i.e. groups of words).
In this paper we study different improvements to
the standard phrase-based translation system. We
describe a modified method for the phrase extrac-
tion which deals with larger phrases while keeping
a reasonable number of phrases. We also propose
additional features which lead to a clear improve-
ment in the performance of the translation. We
present results with the EuroParl task in the direc-
tion Spanish to English and results from the evalu-
ation of the shared task “Exploiting Parallel Texts
for Statistical Machine Translation” (ACL Work-
shop on Parallel Texts 2005).

1 Introduction

Statistical Machine Translation (SMT) is based on
the assumption that every sentence e in the target
language is a possible translation of a given sen-
tence f in the source language. The main difference
between two possible translations of a given sen-
tence is a probability assigned to each, which has
to be learned from a bilingual text corpus. Thus,
the translation of a source sentence f can be for-
mulated as the search of the target sentence e that
maximizes the translation probability P (e|f),

ẽ = argmax
e

P (e|f) (1)

0This work has been supported by the European Union
under grant FP6-506738 (TC-STAR project).

If we use Bayes rule to reformulate the transla-
tion probability, we obtain,

ẽ = argmax
e

P (f |e)P (e) (2)

This translation model is known as the source-
channel approach [1] and it consists on a lan-
guage model P (e) and a separate translation model
P (f |e) [5].

In the last few years, new systems tend to use
sequences of words, commonly called phrases [8],
aiming at introducing word context in the transla-
tion model. As alternative to the source-channel
approach the decision rule can be modeled through
a log-linear maximum entropy framework.

ẽ = argmax
e

{

M
∑

m=1

λmhm(e, f)

}

(3)

The features functions, hm, are the system mod-
els (translation model, language model and others)
and weigths, λi, are typically optimized to max-
imize a scoring function. It is derived from the
Maximum Entropy approach suggested by [13] [14]
for a natural language understanding task. It has
the advantatge that additional features functions
can be easily integrated in the overall system.

This paper addresses a modification of the
phrase-extraction algorythm in [11]. It also com-
bines several interesting features and it reports an
important improvement from the baseline. It is or-
ganized as follows. Section 2 introduces the base-
line; the following section explains the modification
in the phrase extraction; section 4 shows the differ-
ent features which have been taken into account;
section 5 presents the evaluation framework; and
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the final section shows some conclusions on the ex-
periments in the paper and on the results in the
shared task.

2 Baseline

The baseline is based on the source-channel ap-
proach, and it is composed of the following models
which later will be combined in the decoder.

The Translation Model. It is based on bilin-
gual phrases, where a bilingual phrase (BP ) is
simply two monolingual phrases (MP ) in which
each one is supposed to be the translation of each
other. A monolingual phrase is a sequence of words.
Therefore, the basic idea of phrase-based transla-
tion is to segment the given source sentence into
phrases, then translate each phrase and finally com-
pose the target sentence from these phrase transla-
tions [17].

During training, the system has to learn a dictio-
nary of phrases. We begin by aligning the training
corpus using GIZA++ [6], which is done in both
translation directions. We take the union of both
alignments to obtain a symmetrized word align-
ment matrix. This alignment matrix is the starting
point for the phrase based extraction.

Next, we define the criterion to extract the set of
BP of the sentence pair (f j2

j1
; ei2

i1
) and the alignment

matrix A ⊆ J∗I , which is identical to the alignment
criterion described in [11].

BP (fJ
1 , eI

1, A) = {(f j2
j1

, ei2
i1

) :

∀(j, i)εA : j1 ≤ j ≤ j2 ↔ i1 ≤ i ≤ i2

∧∃(j, i)εA : j1 ≤ j ≤ j2 ∧ i1 ≤ i ≤ i2}

The set of BP is consistent with the alignment
and consists of all BP pairs where all words within
the foreign language phrase are only aligned to the
words of the English language phrase and viceversa.
At least one word in the foreign language phrase has
to be aligned with at least one word of the English
language. Finally, the algorithm takes into account
possibly unaligned words at the boundaries of the
foreign or English language phrases.

The target language model. It is combined
with the translation probability as showed in equa-
tion (2). It gives coherence to the target text ob-
tained by the concatenated phrases.

3 Phrase Extraction

Motivation. The length of a MP is defined as
its number of words. The length of a BP is the
greatest of the lengths of its MP .

As we are working with a huge amount of data
(see corpus statistics), it is unfeasible to build a
dictionary with all the phrases longer than length
4. Moreover, the huge increase in computational
and storage cost of including longer phrases does
not provide a significant improve in quality [8].

X-length In our system we considered two length
limits. We first extract all the phrases of length 3
or less. Then, we also add phrases up to length
5 if they cannot be generated by smaller phrases.
Empirically, we chose 5, as the probability of reap-
pearence of larger phrases decreases.

Basically, we select additional phrases with
source words that otherwise would be missed be-
cause of cross or long alignments. For example,
from the following sentence,

Cuando el Parlamento Europeo , que tan fre-
cuentemente insiste en los derechos de los traba-
jadores y en la debida protección social , (...)

NULL ( ) When ( 1 ) the ( 2 ) European ( 4
) Parliament ( 3 4 ) , ( 5 ) that ( 6 ) so ( 7 )
frequently ( 8 ) insists ( 9 ) on ( 10 ) workers ( 11
15 ) ’ ( 14 ) rights ( 12 ) and ( 16 ) proper ( 19 )
social ( 21 ) protection ( 20 ) , ( 22 ) (...)

where the number inside the clauses is the
aligned word(s). And the phrase that we are look-
ing for is the following one.

los derechos de los trabajadores # workers ’
rights

which only could appear in the case the maximum
length was 5.
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4 Phrase ranking

4.1 Conditional probability P (f |e)

Given the collected phrase pairs, we estimated the
phrase translation probability distribution by rela-
tive frecuency.

P (f |e) =
N(f, e)

N(e)
(4)

where N(f,e) means the number of times the phrase
f is translated by e. If a phrase e has N > 1
possible translations, then each one contributes as
1/N [17].

Note that no smoothing is performed, which may
cause an overestimation of the probability of rare
phrases. This is specially harmful given a BP

where the source part has a big frecuency of ap-
pearence but the target part appears rarely. For
example, from our database we can extract the fol-
lowing BP : ”you # la que no”, where the English
is the source language and the Spanish, the tar-
get language. Clearly, ”la que no” is not a good
translation of ”you”, so this phrase should have a
low probability. However, from our aligned training
database we obtain,

P (f |e) = P (you|la que no) = 0.23

This BP is clearly overestimated due to sparse-
ness. On the other, note that ”la que no” can-
not be considered an unusual trigram in Spanish.
Hence, the language model does not penalise this
target sequence either. So, the total probability
(P (f |e)P (e)) would be higher than desired.

In order to somehow compensate these unreili-
able probabilities we have studied the inclusion of
the posterior [12] and lexical probabilities [1] [10]
as additional features.

4.2 Feature P (e|f)

In order to estimate the posterior phrase probabil-
ity, we compute again the relative frequency but re-
placing the count of the target phrase by the count
of the source phrase.

P (e|f) =
N ′(f, e)

N(f)
(5)

where N’(f,e) means the number of times the
phrase e is translated by f. If a phrase f has N > 1

possible translations, then each one contributes as
1/N.

Adding this feature function we reduce the num-
ber of cases in which the overall probability is over-
estimated. This results in an important improve-
ment in translation quality.

4.3 IBM Model 1

We used IBM Model 1 to estimate the probability
of a BP . As IBM Model 1 is a word translation and
it gives the sum of all possible alignment probabil-
ities, a lexical co-ocurrence effect is expected. This
captures a sort of semantic coherence in transla-
tions.

Therefore, the probability of a sentence pair is
given by the following equation.

P (f |e; M1) =
1

(I + 1)J

J
∏

j=1

I
∑

i=0

p(fj |ei) (6)

The p(fj |ei) are the source-target IBM Model 1
word probabilities trained by GIZA++. Because
the phrases are formed from the union of source-to-
target and target-to-source alignments, there can
be words that are not in the P (fj |ei) table. In this
case, the probability was taken to be 10−40.

In addition, we have calculated the IBM−1 Model
1.

P (e|f ; M1) =
1

(J + 1)I

I
∏

I=1

J
∑

j=0

p(ei|fj) (7)

4.4 Language Model

The English language model plays an important
role in the source channel model, see equation (2),
and also in its modification, see equation (3). The
English language model should give an idea of the
sentence quality that is generated.

As default language model feature, we use a stan-
dard word-based trigram language model generated
with smoothing Kneser-Ney and interpolation (by
using SRILM [16]).

4.5 Word and Phrase Penalty

To compensate the preference of the target lan-
guage model for shorter sentences, we added two

151



Spanish English
Train Sentences 1223443 1223443
Words 34794006 33379333
Vocabulary 168685 104975
Dev Sentences 504 504
Words 15353 15335
OOV 25 16
Test Sentences 504 504
Words 10305 10667
OOV 36 19

Table 1: Statistics of training and test corpus

simple features which are widely used [17] [7]. The
word penalty provides means to ensure that the
translations do not get too long or too short. Neg-
ative values for the word penalty favor longer out-
put, positive values favor shorter output [7].

The phrase penalty is a constant cost per pro-
duced phrase. Here, a negative weight, which
means reducing the costs per phrase, results in a
preference for adding phrases. Alternatively, by us-
ing a positive scaling factors, the system will favor
less phrases.

5 Evaluation framework

5.1 Corpus Statistics

Experiments were performed to study the effect
of our modifications in the phrases. The training
material covers the transcriptions from April 1996
to September 2004. This material has been dis-
tributed by the European Parlament. In our ex-
periments, we have used the distribution of RWTH
of Aachen under the project of TC-STAR 1. The
test material was used in the first evaluation of the
project in March 2005. In our case, we have used
the development divided in two sets. This mate-
rial corresponds to the transcriptions of the sessions
from October the 21st to October the 28th. It has
been distributed by ELDA2. Results are reported
for Spanish-to-English translations.

1http://www.tcstar.org/
2http://www.elda.org/

5.2 Experiments

The decoder used for the presented translation sys-
tem is reported in [2]. This decoder is called
MARIE and it takes into account simultaneously
all the 7 features functions described above. It im-
plements a beam-search strategy.

As evaluation criteria we use: the Word Error
Rate (WER), the BLEU score [15] and the NIST
score [3].

As follows we report the results for several ex-
periments that show the performance of: the base-
line, adding the posterior probability, IBM Model
1 and IBM1−1, and, finally, the modification of the
phrases extraction.

Optimisation. Significant improvements can be
obtained by tuning the parameters of the features
adequately. In the complet system we have 7 pa-
rameters to tune: the relatives frecuencies P (f |e)
and P (e|f), IBM Model 1 and its inverse, the word
penalty, the phrase penalty and the weight of the
language model. We applied the widely used algo-
rithm SIMPLEX to optimise [9]. In Table 2 (line
5th), we see the final results.

Baseline. We report the results of the baseline.
We use the union alignment and we extract the
BP of length 3. As default language model fea-
ture, we use the standard trigram with smoothing
Kneser-Ney and interpolation. Also we tune the
parameters (only two parameters) with the SIM-
PLEX algorithm (see Table 2).

Posterior probability. Table 2 shows the effect
of using the posterior probability: P (e|f). We use
all the features but the P (e|f) and we optimise the
parameters. We see the results without this feature
decrease around 1.1 points both in BLEU and WER
(see line 2rd and 5th in Table 2).

IBM Model 1. We do the same as in the para-
graph above, we do not consider the IBM Model
1 and the IBM1−1. Under these conditions, the
translation’s quality decreases around 1.3 points
both in BLEU and WER (see line 3th and 5th in
Table 2).
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Modification of the Phrase Extraction. Fi-
nally, we made an experiment without modification
of the phrases’ length. We can see the comparison
between: (1) the phrases of fixed maximum length
of 3; and (2) including phrases with a maximum
length of 5 which can not be generated by smaller
phrases. We can see it in Table 2 (lines 4th and
5th). We observe that there is no much difference
between the number of phrases, so this approach
does not require more resources. However, we get
slightly better scores.

5.3 Shared Task

This section explains the participation of “Exploit-
ing Parallel Texts for Statistical Machine Transla-
tion”. We used the EuroParl data provided for this
shared task [4]. A word-to-word alignment was per-
formed in both directions as explained in section
2. The phrase-based translation system which has
been considered implements a total of 7 features
(already explained in section 4). Notice that the
language model has been trained with the training
provided in the shared task. However, the opti-
mization in the parameters has not been repeated,
and we used the parameters obtained in the sub-
section above. We have obtained the results in the
Table 3.

6 Conclusions

We reported a new method to extract longer
phrases without increasing the quantity of phrases
(less than 0.5%).

We also reported several features as P (e|f)
which in combination with the functions of the
source-channel model provides significant improve-
ment. Also, the feature IBM1 in combination with
IBM1−1 provides improved scores, too.

Finally, we have optimized the parameters, and
we provided the final results which have been pre-
sented in the Shared Task: Exploiting Parallel
Texts for Statistical Machine Translation (June 30,
2005) in conjunction with ACL 2005 in Ann Arbor,
Michigan.
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Abstract

We motivate our contribution to the shared
MT task as a first step towards an inte-
grated architecture that combines advan-
tages of statistical and knowledge-based
approaches. Translations were generated
using the Pharaoh decoder with tables de-
rived from the provided alignments for all
four languages, and for three of them us-
ing web-based and locally installed com-
mercial systems. We then applied statis-
tical and heuristic algorithms to select the
most promising translation out of each set
of candidates obtained from a source sen-
tence. Results and possible refinements
are discussed.

1 Motivation and Long-term Perspective

”The problem of robust, efficient and reliable
speech-to-speech translation can only be cracked
by the combined muscle of deep and shallow pro-
cessing approaches.” (Wahlster, 2001) Although this
statement has been coined in the context of VerbMo-
bil, aiming at translation for direct communication,
it appears also realistic for many other translation
scenarios, where demands on robustness, coverage,
or adaptability on the input side and quality on the
output side go beyond today’s technological possi-
bilities. The increasing availability of MT engines
and the need for better quality has motivated con-
siderable efforts to combine multiple engines into
one “super-engine” that is hopefully better than any

of its ingredients, an idea pionieered in (Frederking
and Nirenburg, 1994). So far, the larger group of
related publications has focused on the task of se-
lecting, from a set of translation candidates obtained
from different engines, one translation that looks
most promising (Tidhar and K̈ussner, 2000; Akiba et
al., 2001; Callison-Burch and Flournoy, 2001; Ak-
iba et al., 2002; Nomoto, 2004). But also the more
challenging problem of decomposing the candidates
and re-assembling from the pieces a new sentence,
hopefully better than any of the given inputs, has
recently gained considerable attention (Rayner and
Carter, 1997; Hogan and Frederking, 1998; Banga-
lore et al., 2001; Jayaraman and Lavie, 2005).

Although statistical MT approaches currently
come out as winners in most comparative evalua-
tions, it is clear that the achievable quality of meth-
ods relying purely on lookup of fixed phrases will be
limited by the simple fact that for any given combi-
nation of topic, application scenario, language pair,
and text style there will never be sufficient amounts
of pre-existing translations to satisfy the needs of
purely data-driven approaches.

Rule-based approaches can exploit the effort that
goes into single entries in their knowledge reposi-
tories in a broader way, as these entries can be un-
folded, via rule applications, into large numbers of
possible usages. However, this increased generality
comes at significant costs for the acquisition of the
required knowledge, which needs to be encoded by
specialists in formalisms requiring extensive train-
ing to be used. In order to push the limits of today’s
MT technology, integrative approaches will have to
be developed that combine the relative advantages of
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both paradigms and use them to compensate for their
disadvantages. In particular, it should be possible
to turn single instances of words and constructions
found in training data into internal representations
that allow them to be used in more general ways.

In a first step towards the development of inte-
grated solutions, we need to investigate the relative
strengths and weaknesses of competing systems on
the level of the target text, i.e. find out which sen-
tences and which constructions are rendered well
by which type of engine. In a second step, such
an analysis will then make it possible to take the
outcomes of various engines apart and re-assemble
from the building blocks new translations that avoid
errors made by the individual engines, i.e. to find in-
tegrated solutions that improve over the best of the
candidates they have been built from. Once this can
be done, the third and final step will involve feed
back of corrections into the individual systems, such
that differences between system behaviour can trig-
ger (potentially after manual resolution of unclear
cases) system updates and mutual learning.

In the long term, one would hope to achieve a
setup where a group of MT engines can converge
to a committee that typically disagrees only in truly
difficult cases. In such a committee, remaining dis-
sent between the members would be a symptom of
unresolved ambiguity, that would warrant the cost
of manual intervention by the fact that the system as
a whole can actually learn from the additional ev-
idence. We expect this setup to be particularly ef-
fective when existing MT engines have to be ported
to new application domains. Here, a rule-based en-
gine would be able to profit from its more generic
knowledge during the early stages of the transition
and could teach unseen correspondences of known
words and phrases to the SMT engine, whereas the
SMT system would bring in its abilities to apply
known phrase pairs in novel contexts and quickly
learn new vocabulary from examples.

2 Collecting Translation Candidates

2.1 Setting up Statistical MT

In the general picture laid out in the preceding sec-
tion, statistical MT plays an important role for sev-
eral reasons. On one hand, the construction of a rel-
atively well-performing phrase-based SMT system

from a given set of parallel corpora is no more overly
difficult, especially if — as in the case in this shared
task — word alignments and a decoder are provided.
Furthermore, once the second task in our chain will
have been surmounted, it will be relatively easy to
feed back building blocks of improved translations
into the phrase table, which constitutes the central
resource of the SMT system Therefore, SMT facili-
tates experiments aiming at dynamic and interactive
adaptation, the results of which should then also be
applicable to MT engines that represent knowledge
in a more condensed form.

In order to collect material for testing these ideas,
we constructed phrase tables for all four languages,
following roughly the procedure given in (Koehn,
2004) but deviating in one detail related to the treat-
ment of unaligned words at the beginning or end of
the phrases1. We used the Pharaoh decoder as de-
scribed on http://www.statmt.org/wpt05/mt-shared-
task/ after normalization of all tables to lower case.

2.2 Using Commercial Engines

As our main interest is in the integration of statis-
tical and rule-based MT, we tried to collect results
from “conventional” MT systems that had more or
less uniform characteristics across the languages in-
volved. We could not find MT engines supporting all
four source languages, and therefore decided to drop
Finnish for this part of the experiment. We sent the
texts of the other three languages through several in-
carnations of Systran-based MT Web-services2 and
through an installation of Lernout & Hauspie Power
Translator Pro, Version 6.43.3

1We used slightly more restrictive conditions that resulted in
a 5.76% reduction of phrase table size

2The results were incomplete and different, but sufficiently
close to each other so that it did not seem worthwhile to explore
the differences systematically. Instead we ranked the services
according to errors in an informal comparison and took for each
sentence the first available translation in this order.

3After having collected or computed all translations, we ob-
served that in the case of French, both systems were quite sen-
sitive to the fact that the apostrophes were formatted as separate
tokens in the source texts (l ’ homme instead of l’homme). We
therefore modified and retranslated the French texts, but did not
explore possible effects of similar transformations in the other
languages.
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3 Heuristic Selection

3.1 Approach

We implemented two different ways to select, out
of a set of alternative translations of a given sen-
tence, one that looks most promising. The first ap-
proach is purely heuristic and is limited to the case
where more than two candidates are given. For each
candidate, we collect a set of features, consisting of
words and wordn-grams (n ∈ {2, 3, 4}). Each of
these features is weighted by the number of can-
didates it appears in, and the candidate with the
largest feature weight per word is taken. This can
be seen as the similarity of each of the candidate
to a prototypical version composed as a weighted
mixture of the collection, or as being remotely re-
lated to a sentence-specific language model derived
from the candidates. The heuristic measure was used
to select “favorite” from each group of competing
translations obtained from the same source sentence,
yielding a fourth set of translations for the sentences
given in DE, FR, and ES.

A particularity of the shared task is the fact that
the source sentences of the development and test sets
form a parallel corpus. Therefore, we can not only
integrate multiple translations of the same source
sentence into a hopefully better version, but we can
merge the translations of corresponding parts from
different source languages into a target form that
combines their advantages. This approach, called
triangulation in (Kay, 1997), can be motivated by
the fact that most cases of translation for dissemi-
nation involve multiple target languages; hence one
can assume that, except for the very first of them,
renderings in multiple languages exist and can be
used as input to the next step4. See also (Och and
Ney, 2001) for some related empirical evidence. In
order to obtain a first impression of the potential of
triangulation in the domain of parliament debates,
we applied the selection heuristics to a set of four
translations, one from Finnish, the other three the
result of the selections mentioned above.

3.2 Results and Discussion

The BLEU scores (Papineni et al., 2002) for 10 di-
rect translations and 4 sets of heuristic selections

4Admittedly, in typical instances of such chains, English
would appear earlier.

Source MT BLEU
Language Engine score
DE Pharaoh 20.48

L & H 13.97
Systran 14.92
heuristic selection 16.01
statistical selection 20.55

FR Pharaoh 26.29
L & H 17.82
Systran 20.29
heuristic selection 21.44
statistical selection 26.49

ES Pharaoh 26.69
L & H 17.28
Systran 17.38
heuristic selection 19.16
statistical selection 26.74

FI Pharaoh 16.76
all heuristic selection 22.83

statistical selection 25.80

Table 1: BLEU scores of various MT engines and
combinations

thereof are given in Table 1. These results show
that in each group of translations for a given source
language, the statistical engine came out best. Fur-
thermore, our heuristic approach for the selection
of the best among a small set of candidate transla-
tions did not result in an increase of the measured
BLEU score, but typically gave a score that was
only slightly better than the second best of the in-
gredients. This somewhat disappointing result can
be explained in two ways. Apparently, the selection
heuristic does not give effective estimates of trans-
lation quality for the candidates. Furthermore, the
granularity on which the choices have to bee made
is too coarse, i.e. the pieces for which the symbolic
engines do produce better translations than the SMT
engine are accompanied by too many bad choices so
that the net effect is negative.

4 Statistical Selection

The other score we used was based on probabilities
as computed by the trigram language model for En-
glish provided by the organizers of the task, in a
representation compatible with the SRI LM toolkit
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(Stolcke, 2002). However, a correct implementa-
tion for obtaining these estimates was not available
in time, so the selections generated from the statis-
tical language model could not be used for official
submissions, but were generated and evaluated af-
ter the closing date. The results, also displayed in
Table 1, show that this approach can lead to slight
improvements of the BLEU score, which however
turn out not to be statistically sigificant in then sense
of (Zhang et al., 2004).

5 Next Steps

When we started the experiments reported here, the
hope was to find relatively simple methods to select
the best among a small set of candidate translations
and to achieve significant improvements of a hybrid
architecture over a purely statistical approach. Al-
though we could indeed measure certain improve-
ments, these are not yet big enough for a conclu-
sive “proof of concept”. We have started a refine-
ment of our approach that can not only pick the best
among translations of complete sentences, but also
judge the quality of the building blocks from which
the translations are composed. First informal results
look very promising. Once we can replace single
phrases that appear in one translation by better alter-
natives taken from a competing candidate, chances
are good that a significant increase of the overall
translation quality can be achieved.
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Abstract

This article describes the competitive
grouping algorithm at the core of our Inte-
grated Segmentation and Alignment (ISA)
model. ISA extracts phrase pairs from a
bilingual corpus without requiring the pre-
calculated word alignment as many other
phrase alignment models do. Experiments
conducted within the WPT-05 shared task
on statistical machine translation demon-
strate the simplicity and effectiveness of
this approach.

1 Introduction

In recent years, various phrase translation ap-
proaches (Marcu and Wong, 2002; Och et al., 1999;
Koehn et al., 2003) have been shown to outper-
form word-to-word translation models (Brown et al.,
1993). Many of these phrase alignment strategies
rely on the pre-calculated word alignment and use
different heuristics to extract the phrase pairs from
the Viterbi word alignment path. The Integrated
Segmentation and Alignment (ISA) model (Zhang
et al., 2003) does not require such word alignment.
ISA segments the sentence into phrases and finds
their alignment simultaneously. ISA is simple and
fast. Translation experiments have shown compara-
ble performance to other phrase alignment strategies
which require complicated statistical model training.
In this paper, we describe the key idea behind this
model and connect it with the competitive linking al-
gorithm (Melamed, 1997) which was developed for
word-to-word alignment.

2 Translation Likelihood as a Statistical
Test

Given a bilingual corpus of language pairF (For-
eign, source language) andE (English, target lan-
guage), if we know the word alignment for each sen-
tence pair we can calculate the co-occurrence fre-
quency for each source/target word pair typeC(f, e)
and the marginal frequencyC(f) =

∑
e C(f, e) and

C(e) =
∑

f C(f, e). We can apply various sta-
tistical tests (Manning and Schütze, 1999) to mea-
sure how likely is the association betweenf and
e, in other words how likely they are mutual trans-
lations. In the following sections, we will useχ2

statistics to measure the the mutual translation like-
lihood (Church and Hanks, 1990).

3 The Core of the Integrated Phrase
Segmentation and Alignment

The competitive linking algorithm (CLA)
(Melamed, 1997) is a greedy word alignment
algorithm. It was designed to overcome the problem
of indirect associations using a simple heuristic:
whenever several word tokensfi in one half of the
bilingual corpus co-occur with a particular word to-
kene in the other half of the corpus, the word that is
most likely to bee’s translation is the one for which
the likelihoodL(f, e) of translational equivalence
is highest. The simplicity of this algorithm depends
on a one-to-one alignment assumption. Each word
translates to at most one other word. Thus when
one pair{f, e} is “linked”, neitherf nor e can be
aligned with any other words. This assumption
renders CLA unusable in phrase level alignment.
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We propose an extension, the competitive grouping,
as the core component in the ISA model.

3.1 Competitive Grouping Algorithm (CGA)

The key modification to the competitive linking al-
gorithm is to make it less greedy. When a word pair
is found to be the winner of the competition, we al-
low it to invite its neighbors to join the “winner’s
club” and group them together as an aligned phrase
pair. The one-to-one assumption is thus discarded
in CGA. In addition, we introduce thelocality as-
sumption for phrase alignment.Localitystates that a
source phrase of adjacent words can only be aligned
to a target phrase composed of adjacent words. This
is not true of most language pairs in cases such as
the relative clause, passive tense, and prepositional
clause, etc.; however this assumption renders the
problem tractable. Here is a description of CGA:

For a sentence pair{f , e}, represent the word pair
statistics for each word pair{f, e} in a two dimen-
sional matrixLI×J , whereL(i, j) = χ2(fi, ej) in
our implementation.1

Figure 1: Expanding the current phrase pair

Denote an aligned phrase pair{f̃ , ẽ} as
a tuple [istart, iend, jstart, jend] where f̃ is
fistart , fistart+1 , . . . , fiend

and similarly forẽ.

1. Findi∗ andj∗ such thatL(i∗, j∗) is the highest.
Create aseedphrase pair[i∗, i∗, j∗, j∗] which is
simply the word pair{fi∗ , ej∗} itself.

2. Expand the current phrase pair
[istart, iend, jstart, jend] to the neighboring
territory to include adjacent source and target
words in the phrase alignment group. There

1χ2 statistics were found to be more discriminative in our
experiments than other symmetric word association measures,
such as the averaged mutual information,φ2 statistics and Dice-
coefficient.

are 8 ways to group new words into the phrase
pair. For example, one can expand to the
north by including an additional source word
fistart−1 to be aligned with all the target words
in the current group; or one can expand to the
northeast by includingfistart−1 and ejend+1

(Figure 1).

Two criteria have to be satisfied for each expan-
sion:

(a) If a new source wordfi′ is to be grouped,
maxjstart≤j≤jend

L(i′, j) should be no
smaller thanmax1≤j≤J L(i′, j). Since
CGA is a greedy algorithm as described
below, this is to guarantee thatfi′ will not
“regret” the decision of joining the phrase
pair because it does not have other “better”
target words to be aligned with. Similar
constraint is applied if a new target word
ej′ is to be grouped.

(b) The highest value in the newly-expanded
area needs to be “similar” to the seed value
L(i∗, j∗).

Expand the current phrase pair to the largest ex-
tend possible as long as both criteria are satis-
fied.

3. The locality assumption means that the aligned
phrase cannot be aligned again. Therefore, all
the source and target words in the phrase pair
are marked as “invalid” and will be skipped in
the following steps.

4. If there is another valid pair{fi, ej}, then re-
peat from Step 1.

Figure 2 and Figure 3 show a simple example
of applying CGA on the sentence pair{je déclare
reprise la session/i declare resumed the session}.

Figure 2: Seed pair{je / i}, no expansion allowed
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Figure 3: Seed pair{session/session}, expanded to
{la session/the session}

3.2 Exploring all possible groupings

The similarity criterion 2-(b) described previously
is used to control the granularity of phrase pairs.
In cases where the pairs{f1f2, e1e2}, {f1, e1} and
{f2, e2} are all valid translations pairs, similar-
ity is used to control whether we want to align
{f1f2, e1e2} as one phrase pair or two shorter ones.

The granularity of the phrase pairs is hard to op-
timize especially when the test data is unknown. On
the one hand, we prefer long phrases since inter-
action among the words in the phrase, for example
word sense, morphology and local reordering could
be encapsulated. On the other hand, long phrase
pairs are less likely to occur in the test data than the
shorter ones and may lead to low coverage. To have
both long and short phrases in the alignment, we ap-
ply a range of similarity thresholds for each of the
expansion operations. By applying a low similarity
threshold, the expanded phrase pairs tend to be large,
while a higher similarity threshold results in shorter
phrase pairs. As described above, CGA is a greedy
algorithm and the expansion of the seed pair restricts
the possible alignments for the rest of the sentence.
Figure 4 shows an example as we explore all the pos-
sible grouping choices in a depth-first search. In the
end, all unique phrase pairs along the path traveled
are output as phrase translation candidates for the
current sentence pair.

3.3 Phrase translation probabilities

Each aligned phrase pair{f̃ , ẽ} is assigned a likeli-
hood scoreL(f̃ , ẽ), defined as:

∑
i maxj log L(fi, ej) +

∑
j maxi log L(fi, ej)

|f̃ |+ |ẽ|

wherei ranges over all words iñf and similarlyj in
ẽ.

Given the collected phrase pairs and their likeli-
hood, we estimate the phrase translation probability

Figure 4: Depth-first itinerary of all possible group-
ing choices.

by their weighted frequency:

P (f̃ |ẽ) =
count(f̃ , ẽ) · L(f̃ , ẽ)

∑
f̃ count(f̃ , ẽ) · L(f̃ , ẽ)

No smoothing is applied to the probabilities.

4 Learning co-occurrence information

In most cases, word alignment information is not
given and is treated as a hidden parameter in the
training process. We initialize a word pair co-
occurrence frequency by assuming uniform align-
ment for each sentence pair, i.e. for sentence pair
(f , e) wheref hasI words ande hasJ words, each
word pair{f, e} is considered to be aligned with fre-
quency 1

I×J . These co-occurrence frequencies will
be accumulated over the whole corpus to calculate
the initialL(f, e). Then we iterate the ISA model:

1. Apply the competitive grouping algorithm to
each sentence pair to find all possible phrase
pairs.

2. For each identified phrase pair{f̃ , ẽ}, increase
the co-occurrence counts for all word pairs in-
side{f̃ , ẽ} with weight 1

|f̃ |·|ẽ| .

3. CalculateL(f, e) again and goto Step 1 for sev-
eral iterations.

5 Experiments

We participated the shared task in the WPT05 work-
shop2 and applied ISA to all four language pairs

2http://www.statmt.org/wpt05/mt-shared-task/
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(French-English, Finnish-English, German-English
and Spanish-English). Table 1 shows then-gram
coverage of the dev-test set. French and Spanish
data are better covered by the training data com-
pared to the German and Finnish sets. Since our
phrase alignment is constrained by the locality as-
sumption and we can only extract phrase pairs of
adjacent words, lowern-gram coverage will result in
lower translation scores. We used the training data

Dev-test DE ES FI FR

N=1 99.2 99.6 98.2 99.8
N=2 88.2 93.3 73.0 94.7
N=3 59.4 71.7 38.2 76.0
N=4 30.0 42.9 17.0 50.6
N=5 13.0 21.7 6.8 29.8

N=16 (8) (65) (1) (101)
N=19 (1) (23) (34)
N=23 (1) (1)

Table 1: Percentage of dev-testn-grams covered by
the training data. Numbers in parenthesis are the
actual counts ofn-gram tokens in the dev-test data.

and the language model as provided and manually
tuned the parameters of the Pharaoh decoder3 to op-
timize BLEU scores. Table 2 shows the translation
results on the dev-test and the test set of WPT05.
The BLEU scores appear comparable to those of
other state-of-the-art phrase alignment systems, in
spite of the simplicity of the ISA model and ease of
training.

DE ES FI FR

Dev-test 18.63 26.20 12.88 26.20
Test 18.93 26.14 12.66 26.71

Table 2: BLEU scores of ISA in WPT05

6 Conclusion

In this paper, we introduced the competitive group-
ing algorithm which is at the core of the ISA phrase
alignment model. As an extension to the competitive
linking algorithm which is used for word-to-word
alignment, CGA overcomes the assumption of one-
to-one mapping and makes it possible to align phrase

3http://www.isi.edu/licensed-sw/pharaoh/

pairs. Despite its simplicity, the ISA model has
achieved competitive translation results. We plan to
release ISA toolkit4 to the community in the near
future.
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Abstract 

Part-of-Speech patterns extracted from 
parallel corpora have been used to en-
hance a translation resource for statistical 
phrase-based machine translation. 

1 Introduction 

The use of structural and syntactic information in 
language processing implementations in recent 
years has been producing contradictory results. 
Whereas language generation has benefited from 
syntax [Wu, 1997; Alshawi et al., 2000], the per-
formance of statistical phrase-based machine trans-
lation when relying solely on syntactic phrases has 
been reported to be poor [Koehn et al., 2003].  

We carry out a set of experiments to explore 
whether heuristic learning of part-of-speech pat-
terns from a parallel corpus can be used to enhance 
phrase-based translation resources.   

2 System 

The resources used for our experiments are as fol-
lows. The statistical machine translation GIZA++ 
toolkit was used to generate a bilingual translation 
table from the French-English parallel and sen-
tence-aligned Europarl corpus. Additionally, a 
phrase table generated from the Europarl French-
English corpus, and a training test set of 2000 
French and English sentences that were made 
available on the webpage of the ACL 2005 work-

shop1 were also used. Syntactic tagging was real-
ized by the TreeTagger, which is a probabilistic 
part-of-speech tagger and lemmatizer. The decoder 
used to produce machine translations was Pharaoh, 
version 1.2.3.  

We used GIZA++ to generate a translation table 
from the parallel corpus. The table produced con-
sisted of individual words and phrases, followed by 
their corresponding translation and a unique prob-
ability value. Specifically, every line of the said 
table consisted of a French entry (in the form of 
one or more tokens), followed by an English entry 
(in the form of one or more tokens), followed by 
P(f|e), which is the probability P of translation to 
the French entry f given the English entry e. We 
added the GIZA++-generated table to the phrase-
based translation table downloaded from the work-
shop webpage. During this merging of translation 
tables, no word or phrase was omitted, replaced or 
altered. We chose to combine the two aforemen-
tioned translation tables in order to achieve better 
coverage. We called the resulting merged transla-
tion table lexical phrase table.  

In order to utilize the syntactic information 
stemming from our resources, we used the Tree-
Tagger to tag both the parallel corpus and the lexi-
cal phrase table. The probability values included 
in the lexical phrase table were not tagged. The 
TreeTagger uses a slightly modified version of the 
Penn Treebank tagset, different for each language. 
In order to achieve tag-uniformity, we performed 
the following dual tag-smoothing operation. 

                                                      
1 The Europarl French-English corpus and phrase table, and 
the training test set are available at: 
http://www.statmt.org/wpt05/mt-shared-
task/ 
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Firstly, we changed the French tags into their Eng-
lish equivalents, i.e. NOM (noun – French) became 
NN (noun – English). Secondly, we simplified the 
tags, so that they reflected nothing more than gen-
eral part-of-speech information. For example, tags 
denoting predicate-argument structures, wh-
movement, passive voice, inflectional variation, 
and so on, were simplified. For example, NNS 
(noun – plural) became NN (noun). 

Once our resources were uniformly tagged, we 
used them to extract part-of-speech correspon-
dences between the two languages. Specifically, 
we extracted a sentence-aligned parallel corpus of 
French and English part-of-speech patterns from 
the tagged Europarl parallel corpus. We called this 
corpus of parallel and corresponding part-of-
speech patterns pos-corpus. The format of the pos-
corpus remained identical to the format of the 
original parallel corpus, with the sole difference 
that individual words were replaced by their corre-
sponding part-of-speech tag. Similarly, we ex-
tracted a translation table of part-of-speech patterns 
from the tagged lexical phrase table. We called 
this part-of-speech translation table pos-table. The 
pos-table had exactly the same format as the lexi-
cal phrase table, with the unique difference that 
individual words were replaced by their corre-
sponding part-of-speech tag. The translation prob-
ability values included in the lexical phrase table 
were copied onto the pos-table intact.  

Each of the part-of-speech patterns contained in 
the pos-corpus was matched against the part-of-
speech patterns contained in the pos-table. Match-
ing was realized similarly to conventional left-to-
right string matching operations. Matching was 
considered to be successful not simply when a 
part-of-speech pattern was found to be contained 
in, or part of a longer pattern, but when patterns 
were found to be absolutely identical. When a per-
fect match was found, the translation probability 
value of the specific pattern in the pos-table was 
increased to the maximum value of 1. If the score 
were already 1, it remained unchanged. When 
there were no matches, values remained un-
changed. We chose to match identical part-of-
speech patterns, and not to accept partial pattern 
matches, because the latter would require a revi-
sion of our probability recomputation method. This 
point is discussed in section 3 of this paper. 

Once all matching was complete, the newly en-
hanced pos-table, which now contained translation 

probability scores reflecting the syntactic features 
of the relevant languages, was used to update the 
original lexical phrase table. This update consisted 
in matching each and every part-of-speech pattern 
with its original lexical phrase, and replacing the 
initial translation probability score with the values 
contained in the pos-table. The identification of the 
original lexical phrases that generated each and 
every part-of-speech pattern was facilitated by the 
use of pattern-identifiers (pos-ids) and phrase-
identifiers (phrase-ids), which were introduced at a 
very early stage in the process for that purpose. 
The resulting translation phrase table contained 
exactly the same entries as the lexical phrase table, 
but had different probability scores assigned to 
some of these entries, in line with the parallel part-
of-speech co-occurrences and correspondences 
found in the Europarl corpus. We called this table 
enhanced phrase table. Table 1 illustrates the 
process described above with the example of a 
phrase, the part-of-speech analysis of which has 
been used to increase its original translation prob-
ability value from 0.333333 to 1. 

 
Lexical phrase table 

actions extérieures | external action | 0.333333 
Tagged lexical phrase table  

actions_NN extérieures_JJ | external_JJ action_NN 
| 0.333333 

pos-corpus 
NN JJ | JJ NN 

Enhanced phrase table 
actions extérieures | external action | 1 
 
Table 1: Extracting and matching a part-of-

speech pattern to increase translation probability. 
 
We used the Pharaoh decoder firstly with our 

lexical phrase table, and secondly with our en-
hanced phrase table in order to generate statistical 
machine translations of source and target language 
variations of the French and English training test 
set. We measured performance using the BLEU 
score [Papineri et al., 2001], which estimates the 
accuracy of translation output with respect to a 
reference translation. For both source-target lan-
guage combinations, the use of the lexical phrase 
table received a slightly lower score than the score 
achieved when using the enhanced phrase table. 
The difference between these two approaches is 
not significant (p-value > 0.05). The results of our 
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experiments are displayed in Table 2 and discussed 
in Section 3.  

 
Language Pair Lexical  Enhanced  
English-French 25.50 25.63 
French-English 26.59 26.89 

 
Table 2: Our translation performance 

(measured with BLEU) 
 

3 Discussion 

The motivation behind this investigation has been 
to test whether syntactic or structural language as-
pects can be reflected or represented in the re-
sources used in statistical phrase-based machine 
translation.  

We adopted a line of investigation that concen-
trates on the correspondence of part-of-speech pat-
terns between French and English. We measured 
the usability of syntactic structures for statistical 
phrase-based machine translation by comparing 
translation performance when a standard phrase 
table was used, and when a syntactically enhanced 
phrase table was used. Both approaches scored 
very similarly. This similarity in the performance 
is justified by the following three factors. 

Firstly, the difference between the two transla-
tion resources, namely the lexical phrase table and 
the enhanced phrase table, does not relate to their 
entries, and thus their coverage, but to a simple 
alteration of the translation probability values of 
some of their entries.  The coverage of these re-
sources is exactly identical. 

Secondly, a closer examination of the transla-
tion probability value alterations that took place in 
order to reflect part-of-speech correspondences 
reveals that the proportion of the entries of the 
phrase table that were matched syntactically to 
phrases from the parallel corpus, and thus under-
went a modification in their translation probability 
score, was very low (less than 1%). The reason 
behind this is the fact that the part-of-speech pat-
terns produced by the parallel corpus were long 
strings in their vast majority, while the part-of-
speech patterns found in the phrase table were sig-
nificantly shorter strings. The inclusion of phrases 
longer than three words in translation resources has 
been avoided, as it has been shown not to have a 

strong impact on translation performance [Koehn 
et al., 2003].  

Thirdly, the above described translation prob-
ability value modifications were not parameterized, 
but consisted in a straightforward increase of the 
translation probability to its maximum value. It 
remains to be seen how these probability value 
alterations can be expanded to a type of probability 
value ‘reweighing’, in line with specific parame-
ters, such as the size of the resources involved, the 
frequency of part-of-speech patterns in the re-
sources, the length of part-of-speech patterns, as 
well as the syntactic classification of the members 
of part-of-speech patterns. If one is to compare the 
impact that such parameters have had upon the 
performance of automatic information summarisa-
tion [Mani, 2001] and retrieval technology [Belew, 
2000], it may be worth experimenting with such 
parameter tuning when refining machine transla-
tion resources. 

A note should be made to the choice of tagger 
for our experiments. A possible risk when attempt-
ing any syntactic examination of a large set of data 
may stem from the overriding role that syntax of-
ten assumes over semantics. Statistical phrase-
based machine translation has been faced with in-
stances of this phenomenon, often disguised as 
linguistic idiosyncrasies. This phenomenon ac-
counts for such instances as when nouns appear in 
pronominal positions, or as adverbial modifiers. 
On these occasions, and in order for the syntactic 
examination to be precise, words would have to be 
defined on the basis of their syntactic distribution 
rather than their semantic function. The TreeTag-
ger abides by this convention, which is one of the 
main reasons why we chose it over a plethora of 
other freely available taggers, the remaining rea-
sons being its high speed and low error rate. In ad-
dition, it should be clarified that there is no 
statistical, linguistic, or other reason why we chose 
to adopt the English version of the Penn TreeBank 
tagset over the French, as they are both equally 
conclusive and transparent. 

The overall driving force behind our investiga-
tion has been to test whether part-of-speech struc-
tures can be of assistance to the enhancement of 
translation resources for statistical phrase-based 
machine translation. We view our use of part-of-
speech patterns as a natural extension to the intro-
duction of structural elements to statistical machine 
translation by Wang [1998] and Och et al. [1999]. 
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Our empirical results suggest that the use of part-
of-speech pattern correspondences to enhance ex-
isting translation resources does not damage ma-
chine translation performance. What remains to be 
investigated is how this approach can be opti-
mized, and how it would respond to known statis-
tical machine translation issues, such as mapping 
nested structures, or the handling of ‘unorthodox’ 
language pairs, i.e. agglutinative-fusion languages. 

4 Conclusion 

Syntactic and structural language information con-
tained in a bilingual parallel corpus has been ex-
tracted and used to refine the translation 
probability values of a translation phrase table, 
using simple heuristics. The usability of the said 
translation table in statistical phrase-based machine 
translation has been tested in the shared task of the 
second track of the ACL 2005 Workshop on Build-
ing and Using Parallel Corpora. Findings suggest 
that using part-of-speech information to alter trans-
lation probabilities has had no significant effect 
upon translation performance. Further investiga-
tion is required to reveal how our approach can be 
optimized in order to produce significant perform-
ance improvement. 
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Abstract

This paper presents novel approaches to
reordering in phrase-based statistical ma-
chine translation. We perform consistent
reordering of source sentences in train-
ing and estimate a statistical translation
model. Using this model, we follow a
phrase-based monotonic machine transla-
tion approach, for which we develop an ef-
ficient and flexible reordering framework
that allows to easily introduce different re-
ordering constraints. In translation, we
apply source sentence reordering on word
level and use a reordering automaton as in-
put. We show how to compute reordering
automata on-demand using IBM or ITG
constraints, and also introduce two new
types of reordering constraints. We further
add weights to the reordering automata.
We present detailed experimental results
and show that reordering significantly im-
proves translation quality.

1 Introduction

Reordering is of crucial importance for machine
translation. Already (Knight et al., 1998) use full un-
weighted permutations on the level of source words
in their early weighted finite-state transducer ap-
proach which implemented single-word based trans-
lation using conditional probabilities. In a refine-
ment with additional phrase-based models, (Kumar
et al., 2003) define a probability distribution over
all possible permutations of source sentence phrases
and prune the resulting automaton to reduce com-
plexity.

A second category of finite-state translation ap-
proaches uses joint instead of conditional probabili-
ties. Many joint probability approaches originate in
speech-to-speech translation as they are the natural
choice in combination with speech recognition mod-
els. The automated transducer inference techniques
OMEGA (Vilar, 2000) and GIATI (Casacuberta et
al., 2004) work on phrase level, but ignore the re-
ordering problem from the view of the model. With-
out reordering both in training and during search,
sentences can only be translated properly into a lan-
guage with similar word order. In (Bangalore et al.,
2000) weighted reordering has been applied to tar-
get sentences since defining a permutation model on
the source side is impractical in combination with
speech recognition. In order to reduce the computa-
tional complexity, this approach considers only a set
of plausible reorderings seen on training data.

Most other phrase-based statistical approaches
like the Alignment Template system of Bender
et al. (2004) rely on (local) reorderings which are
implicitly memorized with each pair of source and
target phrases in training. Additional reorderings on
phrase level are fully integrated into the decoding
process, which increases the complexity of the sys-
tem and makes it hard to modify. Zens et al. (2003)
reviewed two types of reordering constraints for this
type of translation systems.

In our work we follow a phrase-based transla-
tion approach, applying source sentence reordering
on word level. We compute a reordering graph on-
demand and take it as input for monotonic trans-
lation. This approach is modular and allows easy
introduction of different reordering constraints and
probabilistic dependencies. We will show that it per-
forms at least as well as the best statistical machine
translation system at the IWSLT Evaluation.
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In the next section we briefly review the basic
theory of our translation system based on weighted
finite-state transducers (WFST). In Sec. 3 we in-
troduce new methods for reordering and alignment
monotonization in training. To compare differ-
ent reordering constraints used in the translation
search process we develop an on-demand com-
putable framework for permutation models in Sec. 4.
In the same section we also define and analyze un-
restricted and restricted permutations with some of
them being first published in this paper. We con-
clude the paper by presenting and discussing a rich
set of experimental results.

2 Machine Translation using WFSTs

Let fJ
1 andeI

i be two sentences from a source and
target language. Assume that we have word level
alignmentsA of all sentence pairs from a bilingual
training corpus. We denote with̃eJ

1 the segmenta-
tion of a target sentenceeI

1 into J phrases such that
fJ
1 and ẽJ

1 can be aligned to form bilingual tuples
(fj , ẽj). If alignments are onlyfunctions of target
wordsA′ : {1, . . . , I} → {1, . . . , J}, the bilingual
tuples(fj , ẽj) can be inferred with e. g. the GIATI
method of (Casacuberta et al., 2004), or with our
novel monotonization technique (see Sec. 3). Each
source word will be mapped to a target phrase of one
or more words or an “empty” phraseε. In particular,
the source words which will remain non-aligned due
to the alignment functionality restriction are paired
with the empty phrase.

We can then formulate the problem of finding the
best translation̂eI

1 of a source sentencefJ
1 :

êI
1 = argmax

eI
1

Pr(fJ
1 , eI

1)

= argmax
ẽJ
1

∑
A∈A

Pr(fJ
1 , ẽJ

1 , A)

∼= argmax
ẽJ
1

max
A∈A

Pr(A) · Pr(fJ
1 , ẽJ

1 |A)

∼= argmax
ẽJ
1

max
A∈A

∏
fj :j=1...J

Pr(fj , ẽj |f j−1
1 , ẽj−1

1 , A)

= argmax
ẽJ
1

max
A∈A

∏
fj :j=1...J

p(fj , ẽj |f j−1
j−m, ẽj−1

j−m, A)

In other words: if we assume a uniform distri-
bution for Pr(A), the translation problem can be
mapped to the problem of estimating anm-gram lan-
guage model over a learned set of bilingual tuples

(fj , ẽj). Mapping the bilingual language model to a
WFSTT is canonical and it has been shown in (Kan-
thak et al., 2004) that the search problem can then be
rewritten using finite-state terminology:

êI
1 = project-output (best (fJ

1 ◦ T )) .

This implementation of the problem as WFSTs may
be used to efficiently solve the search problem in
machine translation.

3 Reordering in Training

When the alignment functionA′ is not monotonic,
target language phrases̃e can become very long.
For example in a completely non-monotonic align-
ment all target words are paired with the last aligned
source word, whereas all other source words form
tuples with the empty phrase. Therefore, for lan-
guage pairs with big differences in word order, prob-
ability estimates may be poor.

This problem can be solved by reordering either
source or target training sentences such that align-
ments become monotonic for all sentences. We
suggest the following consistent source sentence re-
ordering and alignment monotonization approach in
which we compute optimal, minimum-cost align-
ments.

First, we estimate a cost matrixC for each sen-
tence pair(fJ

1 , eI
1). The elements of this matrixcij

are the local costs of aligning a source wordfj to a
target wordei. Following (Matusov et al., 2004), we
compute these local costs by interpolating state oc-
cupation probabilities from the source-to-target and
target-to-source training of the HMM and IBM-4
models as trained by the GIZA++ toolkit (Och et al.,
2003). For a given alignmentA ⊆ I × J , we define
the costs of this alignmentc(A) as the sum of the
local costs of all aligned word pairs:

c(A) =
∑

(i,j)∈A

cij (1)

The goal is to find an alignment with the minimum
costs which fulfills certain constraints.

3.1 Source Sentence Reordering

To reorder a source sentence, we require the
alignment to be afunction of source words A1:
{1, . . . , J} → {1, . . . , I}, easily computed from the
cost matrixC as:

A1(j) = argmini cij (2)

168



We do not allow for non-aligned source words.A1

naturally defines a new order of the source wordsfJ
1

which we denote by̆fJ
1 . By computing this permu-

tation for each pair of sentences in training and ap-
plying it to each source sentence, we create a corpus
of reordered sentences.

3.2 Alignment Monotonization

In order to create a “sentence” of bilingual tuples
(f̆J

1 , ẽJ
1 ) we required alignments between reordered

source and target words to be afunction of target
wordsA2 : {1, . . . , I} → {1, . . . , J}. This align-
ment can be computed in analogy to Eq. 2 as:

A2(i) = argminj c̆ij (3)

where c̆ij are the elements of the new cost matrix
C̆ which corresponds to the reordered source sen-
tence. We can optionally re-estimate this matrix by
repeating EM training of state occupation probabili-
ties with GIZA++ using the reordered source corpus
and the original target corpus. Alternatively, we can
get the cost matrix̆C by reordering the columns of
the cost matrixC according to the permutation given
by alignmentA1.

In alignmentA2 some target words that were pre-
viously unaligned inA1 (like “the” in Fig. 1) may
now still violate the alignment monotonicity. The
monotonicity of this alignment can not be guaran-
teed forall words if re-estimation of the cost matri-
ces had been performed using GIZA++.

The general GIATI technique (Casacuberta et al.,
2004) is applicable and can be used to monotonize
the alignmentA2. However, in our experiments
the following method performs better. We make
use of the cost matrix representation and compute
a monotonic minimum-cost alignment with a dy-
namic programming algorithm similar to the Lev-
enshtein string edit distance algorithm. As costs of
each “edit” operation we consider the local align-
ment costs. The resulting alignmentA3 represents
a minimum-cost monotonic “path” through the cost
matrix. To makeA3 a function of target words we
do not consider the source words non-aligned inA2

and also forbid “deletions” (“many-to-one” source
word alignments) in the DP search.

An example of such consistent reordering and
monotonization is given in Fig. 1. Here, we re-
order the German source sentence based on the ini-
tial alignmentA1, then compute the function of tar-
get wordsA2, and monotonize this alignment toA3

the very beginning of May would suit me .

the very beginning of May would suit me .

sehr gut Anfang Mai würde passen mir .

sehr gut Anfang Mai würde passen mir .

the very beginning of May would suit me .

mir sehrwürde gut Anfang Mai passen .

.Mai|of_May würde|would passen|suit mir|me |.
sehr|the_very gut|$ Anfang|beginning

A

A

A1

2

3

Figure 1: Example of alignment, source sentence re-
ordering, monotonization, and construction of bilin-
gual tuples.

with the dynamic programming algorithm. Fig. 1
also shows the resulting bilingual tuples(f̆j , ẽj).

4 Reordering in Search

When searching the best translationẽJ
1 for a given

source sentencefJ
1 , we permute the source sentence

as described in (Knight et al., 1998):

êI
1 = project-output (best (permute (fJ

1 ) ◦ T ))

Permuting an input sequence ofJ symbols re-
sults in J ! possible permutations and representing
the permutations as a finite-state automaton requires
at least2J states. Therefore, we opt for computing
the permutation automaton on-demand while apply-
ing beam pruning in the search.

4.1 Lazy Permutation Automata

For on-demand computation of an automaton in the
flavor described in (Kanthak et al., 2004) it is suffi-
cient to specify a state description and an algorithm
that calculates all outgoing arcs of a state from the
state description. In our case, each state represents
a permutation of a subset of the source wordsfJ

1 ,
which are already translated.

This can be described by a bit vectorbJ
1 (Zens

et al., 2002). Each bit of the state bit vector corre-
sponds to an arc of the linear input automaton and is
set to one if the arc has been used on any path from
the initial to the current state. The bit vectors of two
states connected by an arc differ only in a single bit.
Note that bit vectors elegantly solve the problem of
recombining paths in the automaton as states with
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the same bit vectors can be merged. As a result, a
fully minimized permutation automaton has only a
single initial and final state.

Even with on-demand computation, complexity
using full permutations is unmanagable for long sen-
tences. We further reduce complexity by addition-
ally constraining permutations. Refer to Figure 2 for
visualizations of the permutation constraints which
we describe in the following.

4.2 IBM Constraints

The IBM reordering constraints are well-known in
the field of machine translation and were first de-
scribed in (Berger et al., 1996). The idea behind
these constraints is to deviate from monotonic trans-
lation by postponing translations of a limited num-
ber of words. More specifically, at each state we
can translate any of thefirst l yet uncovered word
positions. The implementation using a bit vector is
straightforward. For consistency, we associate win-
dow size with the parameterl for all constraints pre-
sented here.

4.3 Inverse IBM Constraints

The original IBM constraints are useful for a large
number of language pairs where the ability to skip
some words reflects the differences in word order
between the two languages. For some other pairs,
it is beneficial to translate some words at the end of
the sentence first and to translate the rest of the sen-
tence nearly monotonically. Following this idea we
can define theinverse IBM constraints. Let j be the
first uncovered position. We can choose any posi-
tion for translation, unlessl − 1 words on positions
j′ > j have been translated. If this is the case we
must translate the word in positionj. The inverse
IBM constraints can also be expressed by

invIBM (x) = transpose (IBM(transpose (x))) .

As thetranspose operation can not be computed
on-demand, our specialized implementation uses bit
vectorsbJ

1 similar to the IBM constraints.

4.4 Local Constraints

For some language pairs, e.g. Italian – English,
words are moved only a few words to the left or
right. The IBM constraints provide too many alter-
native permutations to chose from as each word can
be moved to the end of the sentence. A solution that
allows only for local permutations and therefore has
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Figure 2: Permutations of a) positionsj = 1, 2, 3, 4
of a source sentencef1f2f3f4 using a window size
of 2 for b) IBM constraints, c) inverse IBM con-
straints and d) local constraints.

very low complexity is given by the following per-
mutation rule: the next word for translation comes
from the window ofl positions1 counting from the
first yet uncovered position. Note, that the local con-
straints define a true subset of the permutations de-
fined by the IBM constraints.

4.5 ITG Constraints

Another type of reordering can be obtained using In-
version Transduction Grammars (ITG) (Wu, 1997).
These constraints are inspired by bilingual bracket-
ing. They proved to be quite useful for machine
translation, e.g. see (Bender et al., 2004). Here,
we interpret the input sentence as a sequence of seg-
ments. In the beginning, each word is a segment of
its own. Longer segments are constructed by recur-
sively combining two adjacent segments. At each

1both covered and uncovered
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Chinese English Japanese English Italian English

train sentences 20 000 20 000 66107
words 182 904 160 523 209 012 160 427 410 275 427 402
singletons 3 525 2 948 4 108 2 956 6 386 3 974
vocabulary 7 643 6 982 9 277 6 932 15 983 10 971

dev sentences 506 506 500
words 3 515 3 595 4 374 3 595 3 155 3 253
sentence length (avg/max)6.95 / 24 7.01 / 29 8.64 / 30 7.01 / 29 5.79 / 24 6.51 / 25

test sentences 500 500 506
words 3 794 – 4 370 – 2 931 3 595
sentence length (avg/max)7.59 / 62 7.16 / 71 8.74 / 75 7.16 / 71 6.31 / 27 6.84 / 28

Table 1: Statistics of the Basic Travel Expression (BTEC) corpora.

combination step, we either keep the two segments
in monotonic order or invert the order. This pro-
cess continues until only one segment for the whole
sentence remains. The on-demand computation is
implemented in spirit of Earley parsing.

We can modify the original ITG constraints to
further limit the number of reorderings by forbid-
ding segment inversions which violate IBM con-
straints with a certain window size. Thus, the re-
sulting reordering graph contains the intersection of
the reorderings with IBM and the original ITG con-
straints.

4.6 Weighted Permutations

So far, we have discussed how to generate the per-
mutation graphs under different constraints, but per-
mutations were equally probable. Especially for the
case of nearly monotonic translation it is make sense
to restrict the degree of non-monotonicity that we
allow when translating a sentence. We propose a
simple approach which gives a higher probability
to the monotone transitions and penalizes the non-
monotonic ones.

A state descriptionbJ
1 , for which the following

condition holds:

Mon(j) : bj′ = δ(j′ ≤ j) ∀ 1 ≤ j′ ≤ J

represents the monotonic path up to the wordfj . At
each state we assign the probabilityα to that out-
going arc where the target state description fullfills
Mon(j+1) and distribute the remaining probability
mass1− α uniformly among the remaining arcs. In
case there is no such arc, all outgoing arcs get the
same uniform probability. This weighting scheme
clearly depends on the state description and the out-
going arcs only and can be computed on-demand.

5 Experimental Results

5.1 Corpus Statistics

The translation experiments were carried out on the
Basic Travel Expression Corpus(BTEC), a multilin-
gual speech corpus which contains tourism-related
sentences usually found in travel phrase books.
We tested our system on the so called Chinese-to-
English (CE) and Japanese-to-English (JE) Supplied
Tasks, the corpora which were provided during the
International Workshop on Spoken Language Trans-
lation (IWSLT 2004) (Akiba et al., 2004). In ad-
dition, we performed experiments on the Italian-to-
English (IE) task, for which a larger corpus was
kindly provided to us by ITC/IRST. The corpus
statistics for the three BTEC corpora are given in
Tab. 1. The development corpus for the Italian-to-
English translation had only one reference transla-
tion of each Italian sentence. A set of506 source
sentences and 16 reference translations is used as
a development corpus for Chinese-to-English and
Japanese-to-English and as a test corpus for Italian-
to-English tasks. The 500 sentence Chinese and
Japanese test sets of the IWSLT 2004 evaluation
campaign were translated and automatically scored
against 16 reference translations after the end of the
campaign using the IWSLT evaluation server.

5.2 Evaluation Criteria

For the automatic evaluation, we used the crite-
ria from the IWSLT evaluation campaign (Akiba et
al., 2004), namely word error rate (WER), position-
independent word error rate (PER), and the BLEU
and NIST scores (Papineni et al., 2002; Doddington,
2002). The two scores measure accuracy, i. e. larger
scores are better. The error rates and scores were
computed with respect tomultiple reference transla-
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Figure 3: Word error rate [%] as a function of the reordering window size for different reordering constraints:
Japanese-to-English (left) and Chinese-to-English (right) translation.

tions, when they were available. To indicate this, we
will label the error rate acronyms with anm. Both
training and evaluation were performed using cor-
pora and references in lowercase and without punc-
tuation marks.

5.3 Experiments

We used reordering and alignment monotonization
in training as described in Sec. 3. To estimate the
matrices of local alignment costs for the sentence
pairs in the training corpus we used the state occupa-
tion probabilities of GIZA++ IBM-4 model training
and interpolated the probabilities of source-to-target
and target-to-source training directions. After that
we estimated a smoothed4-gram language model on
the level of bilingual tuplesfj , ẽj and represented it
as a finite-state transducer.

When translating, we applied moderate beam
pruning to the search automaton only when using re-
ordering constraints with window sizes larger than3.
For very large window sizes we also varied the prun-
ing thresholds depending on the length of the input
sentence. Pruning allowed for fast translations and
reasonable memory consumption without a signifi-
cant negative impact on performance.

In our first experiments, we tested the four re-
ordering constraints with various window sizes. We
aimed at improving the translation results on the de-
velopment corpora and compared the results with
two baselines: reordering only the source training
sentences and translation of the unreordered test sen-
tences; and the GIATI technique for creating bilin-
gual tuples(fj , ẽj) without reordering of the source
sentences, neither in training nor during translation.

5.3.1 Highly Non-Monotonic Translation (JE)
Fig. 3 (left) shows word error rate on the

Japanese-to-English task as a function of the win-
dow size for different reordering constraints. For
each of the constraints, good results are achieved
using a window size of 9 and larger. This can be
attributed to the Japanese word order which is very
different from English and often follows a subject-
object-verb structure. For small window sizes, ITG
or IBM constraints are better suited for this task, for
larger window sizes, inverse IBM constraints per-
form best. The local constraints perform worst and
require very large window sizes to capture the main
word order differences between Japanese and En-
glish. However, their computational complexity is
low; for instance, a system with local constraints
and window size of 9 is as fast (25 words per sec-
ond) as the same system with IBM constraints and
window size of 5. Using window sizes larger than
10 is computationally expensive and does not sig-
nificantly improve the translation quality under any
of the constraints.

Tab. 2 presents the overall improvements in trans-
lation quality when using the best setting: inverse
IBM constraints, window size9. The baseline with-
out reordering in training and testing failed com-
pletely for this task, producing empty translations
for 37 % of the sentences2. Most of the original
alignments in training were non-monotonic which
resulted in mapping of almost all Japanese words to
ε when using only the GIATI monotonization tech-
nique. Thus, the proposed reordering methods are of
crucial importance for this task.

2Hence a NIST score of 0 due to the brevity penalty.
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mWER mPER BLEU NIST
Reordering: [%] [%] [%]

BTEC Japanese-to-English (JE) dev
none 59.7 58.8 13.0 0.00
in training 57.8 39.4 14.7 3.27
+ 9-inv-ibm 40.3 32.1 45.1 8.59
+ rescoring* 39.1 30.9 53.2 9.93

BTEC Chinese-to-English (CE) dev
none 55.2 52.1 24.9 1.34
in training 54.0 42.3 23.0 4.18
+ 7-inv-ibm 47.1 39.4 34.5 6.53
+ rescoring* 48.3 40.7 39.1 8.11

Table 2: Translation results with optimal reorder-
ing constraints and window sizes for the BTEC
Japanese-to-English and Chinese-to-English devel-
opment corpora.* Optimized for the NIST score.

mWER mPER BLEU NIST
[%] [%] [%]

BTEC Japanese-to-English (JE) test
AT 41.9 33.8 45.3 9.49
WFST 42.1 35.6 47.3 9.50

BTEC Chinese-to-English (CE) test
AT 45.6 39.0 40.9 8.55
WFST 46.4 38.8 40.8 8.73

Table 3: Comparison of the IWSLT-2004 automatic
evaluation results for the described system (WFST)
with those of the best submitted system (AT).

Further improvements were obtained with a
rescoring procedure. For rescoring, we produced
a k-best list of translation hypotheses and used the
word penalty and deletion model features, the IBM
Model 1 lexicon score, and target languagen-gram
models of the order up to9. The scaling factors for
all features were optimized on the development cor-
pus for the NIST score, as described in (Bender et
al., 2004).

5.3.2 Moderately Non-Mon. Translation (CE)

Word order in Chinese and English is usually sim-
ilar. However, a few word reorderings over quite
large distances may be necessary. This is especially
true in case of questions, in which question words
like “where” and “when” are placed at the end of
a sentence in Chinese. The BTEC corpora contain
many sentences with questions.

The inverse IBM constraints are designed to per-
form this type of reordering (see Sec. 4.3). As shown
in Fig. 3, the system performs well under these con-

mWER mPER BLEU NIST
Reordering: [%] [%] [%]
none 25.6 22.0 62.1 10.46
in training 28.0 22.3 58.1 10.32
+ 4-local 26.3 20.3 62.2 10.81
+ weights 25.3 20.3 62.6 10.79
+ 3-ibm 27.2 20.5 61.4 10.76
+ weights 25.2 20.3 62.9 10.80
+ rescoring* 22.2 19.0 69.2 10.47

Table 4: Translation results with optimal reordering
constraints and window sizes for the test corpus of
the BTEC IE task.* Optimized for WER.

straints already with relatively small window sizes.
Increasing the window size beyond4 for these con-
straints only marginally improves the translation er-
ror measures for both short (under 8 words) and long
sentences. Thus, a suitable language-pair-specific
choice of reordering constraints can avoid the huge
computational complexity required for permutations
of long sentences.

Tab. 2 includes error measures for the best setup
with inverse IBM constraints with window size of7,
as well as additional improvements obtained by ak-
best list rescoring.

The best settings for reordering constraints and
model scaling factors on the development corpora
were then used to produce translations of the IWSLT
Japanese and Chinese test corpora. These trans-
lations were evaluated against multiple references
which were unknown to the authors. Our system
(denoted with WFST, see Tab. 3) produced results
competitive with the results of the best system at the
evaluation campaign (denoted with AT (Bender et
al., 2004)) and, according to some of the error mea-
sures, even outperformed this system.

5.3.3 Almost Monotonic Translation (IE)
The word order in the Italian language does not

differ much from the English. Therefore, the abso-
lute translation error rates are quite low and translat-
ing without reordering in training and search already
results in a relatively good performance. This is re-
flected in Tab. 4. However, even for this language
pair it is possible to improve translation quality by
performing reordering both in training and during
translation. The best performance on the develop-
ment corpus is obtained when we constrain the re-
odering with relatively small window sizes of 3 to 4
and use either IBM or local reordering constraints.

173



On the test corpus, as shown in Tab. 4, all error mea-
sures can be improved with these settings.

Especially for languages with similar word order
it is important to useweightedreorderings (Sec. 4.6)
in order to prefer the original word order. Introduc-
tion of reordering weights for this task results in no-
table improvement of most error measures using ei-
ther the IBM or local constraints. The optimal prob-
ability α for the unreordered path was determined
on the development corpus as0.5 for both of these
constraints. The results on the test corpus using this
setting are also given in Tab. 4.

6 Conclusion
In this paper, we described a reordering framework
which performs source sentence reordering on word
level. We suggested to use optimal alignment func-
tions for monotonization and improvement of trans-
lation model training. This allowed us to translate
monotonically taking a reordering graph as input.
We then described known and novel reordering con-
straints and their efficient finite-state implementa-
tions in which the reordering graph is computed on-
demand. We also utilized weighted permutations.
We showed that our monotonic phrase-based trans-
lation approach effectively makes use of the reorder-
ing framework to produce quality translations even
from languages with significantly different word or-
der. On the Japanese-to-English and Chinese-to-
English IWSLT tasks, our system performed at least
as well as the best machine translation system.
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Abstract

Translation memories provide assis-
tance to human translators in produc-
tion settings, and are sometimes used
as first-pass machine translation in as-
similation settings because they pro-
duce highly fluent output very rapidly.
In this paper, we describe and eval-
uate a simple whole-segment transla-
tion memory, placing it as a new lower
bound in the well-populated space of
machine translation systems. The re-
sult is a new way to gauge how far ma-
chine translation has progressed com-
pared to an easily understood baseline
system.

The evaluation also sheds light on the
evaluation metric and gives evidence
showing that gaming translation with
perfect fluency does not fool bleu the
way it fools people.

1 Introduction and background

Translation Memory (TM) systems provide
roughly concordanced results from an archive of
previously translated materials. They are typ-
ically used by translators who want computer
assistance for searching large archives for tricky
translations, and also to help ensure a group
of translators rapidly arrive at similar terminol-
ogy (Macklovitch et al., 2000). Several compa-
nies provide commercial TMs and systems for
using and sharing them. TMs can add value to

computer assisted translation services (Drugan,
2004).

Machine Translation (MT) developers make
use of similar historical archives (parallel texts,
bitexts), to produce systems that perform a task
very similar to TMs. But while TM systems
and MT systems can appear strikingly simi-
lar, (Marcu, 2001) key differences exist in how
they are used.

TMs often need to be fast because they are
typically used interactively. They aim to pro-
duce highly readable, fluent output, usable in
document production settings. In this setting,
errors of omission are more easily forgiven than
errors of commission so, just like MT, TM out-
put must look good to users who have no access
to the information in source texts.

MT, on the other hand, is often used in as-
similation settings, where a batch job can of-
ten be run on multiple processors. This permits
variable rate output and allows slower systems
that produce better translations to play a part.
Batch MT serving a single user only needs to run
at roughly the same rate the reader can consume
its output.

Simple TMs operate on an entire translation
segment, roughly the size of a sentence or two,
while more sophisticated TMs operate on units
of varying size: a word, a phrase, or an entire
segment (Callison-Burch et al., 2004). Mod-
ern approaches to MT, especially statistical MT,
typically operate on more fine-grained units,
words and phrases (Och and Ney, 2004). The re-
lationship between whole segment TM and MT
can be viewed as a continuum of translation
granularity:
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Simple TM systems, focusing on segment-level
granularity, lie at one extreme, and word-
for-word, IBM-model MT systems on the
other. Example-Based MT (EBMT), phrase-
based, and commercial TM systems likely lie
somewhere in between.

This classification motivates our work here.
MT systems have well-studied and popular eval-
uation techniques such as bleu (Papineni et al.,
2001). In this paper we lay out a methodology
for evaluating TMs along the lines of MT evalu-
ation. This allows us to measure the raw relative
value of TM and MT as translation tools, and to
develop expectations for how TM performance
increases as the size of the memory increases.

There are many ways to perform TM segmen-
tation and phrase extraction. In this study, we
use the most obvious and simple condition—a
full segment TM. This gives a lower bound on
real TM performance, but a lower bound which
is not trivial.

Section 2 details the architecture of our simple
TM. Section 3 describes experiments involving
different strategies for IR, oracle upper bounds
on TM performance as the memory grows, and
techniques for rescoring the retrievals. Section 4
discusses the results of the experiments.

2 A Simple Chinese-English

Translation Memory

For our experiments below, we constructed a
simple translation memory from a sentence-
aligned parallel corpus. The system consists of
three stages. A source-language input string is
rewritten to form an information retrieval (IR)
query. The IR engine is called to return a list
of candidate translation pairs. Finally a single
target-language translation as output is chosen.

2.1 Query rewriting

To retrieve a list of translation candidates from
the IR engine, we first create a query which is
a concatenation of all possible ngrams of the

source sentence, for all ngram sizes from 1 to
a fixed n.

We rely on the fact that the Chinese data
in the translation memory is tokenized and in-
dexed at the unigram level. Each Chinese char-
acter in the source sentence is tokenized indi-
vidually, and we make use of the IR engine’s
phrase query feature, which matches documents
in which all terms in the phrase appear in con-
secutive order, to create the ngrams. For exam-
ple, to produce a trigram + bigram + unigram
query for a Chinese sentence of 10 characters, we
would create a query consisting of eight three-
character phrases, nine two-character phrases,
and 10 single-character “phrases”. All phrases
are weighted equally in the query.

This approach allows us to perform lookups
for arbitrary ngram sizes. Depending on the
specifics of how idf is calculated, this may yield
different results from indexing ngrams directly,
but it is advantageous in terms of space con-
sumed and scalability to different ngram sizes
without reindexing.

This is a slight generalization of the success-
ful approach to Chinese information retrieval us-
ing bigrams (Kwok, 1997). Unlike that work,
we perform no second stage IR after query ex-
pansion. Using a segmentation-independent en-
gineering approach to Chinese IR allows us to
sidestep the lack of a strong segmentation stan-
dard for our heterogeneous parallel corpus and
prepares us to rapidly move to other languages
with segmentation or lemmatization challenges.

2.2 The IR engine

Simply for performance reasons, an IR engine,
or some other sort of index, is needed to imple-
ment a TM (Brown, 2004). We use the open-
source Lucene v1.4.3, (Apa, 2004) as our IR en-
gine. Lucene scores candidate segments from
the parallel text using a modified tf-idf formula
that includes normalizations for the input seg-
ment length and the candidate segment length.
We did not modify any Lucene defaults for these
experiments.

To form our translation memory, we indexed
all sentence pairs in the translation memory cor-
pora, each pair as a separate document. We
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Source

TM output
However , everything depended on the missions to be decided by the Security Council .
The presentations focused on the main lessons learned from their activities in the field .
It is wrong to commit suicide or to use ones own body as a weapon of destruction .
There was practically full employment in all sectors .

One reference translation (of four)
Doug Collins said, “He may appear any time. It really depends on how he feels.”
At present, his training is defense oriented but he also practices shots.
He is elevating the intensity to test whether his body can adapt to it.
So far as his knee is concerned, he thinks it heals a hundred percent after the surgery.”

Table 1: Typical TM output. Excerpt from a story about athlete Michael Jordan.

indexed in such a way that IR searches can be
restricted to just the source language side or just
the target language side.

2.3 Rescoring

The IR engine returns a list of candidate trans-
lation pairs based on the query string, and the
final stage of the TM process is the selection of
a single target-language output sentence from
that set.

We consider a variety of selection metrics in
the experiments below. For each metric, the
source-language side of each pair in the candi-
date list is evaluated against the original source
language input string. The target language seg-
ment of the pair with the highest score is then
output as the translation.

In the case of automated MT evaluation met-
rics, which are not necessarily symmetric, the
source-language input string is treated as the
reference and the source-language side of each
pair returned by the IR engine as the hypothe-
sis.

All tie-breaking is done via tf-idf , i.e. if multi-
ple entries share the same score, the one ranked
higher by the search engine will be output.

Table 1 gives a typical example of how the TM
performs. Four contiguous source segments are

presented, followed by TM output and finally
one of the reference translations for those source
segments. The only indicator of the translation
quality available to monolingual English speak-
ers is the awkwardness of the segments as a
group. By design, the TM performs with perfect
fluency at the segment level.

3 Experiments

We performed several experiments in the course
of optimizing this TM, all using the same set
of parallel texts for the TM database and
multiple-reference translation corpus for eval-
utation. The parallel texts for the TM come
from several Chinese-English parallel corpora,
all available from the Linguistic Data Consor-
tium (LDC). These corpora are described in Ta-
ble 2. We discarded any sentence pairs that
seemed trivially incomplete, corrupt, or other-
wise invalid. In the case of LDC2002E18, in
which sentences were aligned automatically and
confidence scores produced for each alignment,
we dropped all pairs with scores above 9, indi-
cating poor alignment. No duplication checks
were performed. Our final corpus contained ap-
proximately 7 million sentence pairs and con-
tained 3.2 GB of UTF-8 data.

Our evaluation corpus and reference corpus
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come from the data used in the NIST 2002 MT
competition. (NIST, 2002). The evaluation cor-
pus is 878 segments of Chinese source text. The
reference corpus consists of four independent
human-generated reference English translations
of the evaluation corpus.

All performance measurements were made us-
ing a fast reimplementation of NIST’s bleu.
bleu exhibits a high correlation with human
judgments of translation quality when measur-
ing on large sections of text (Papineni et al.,
2001). Furthermore, using bleu allowed us to
compare our performance to that of other sys-
tems that have been tested with the same eval-
uation data.

3.1 An upper bound on whole-segment
translation memory

Our first experiment was to determine an upper
bound for the entire translation memory corpus.
In other words, given an oracle that picks the
best possible translation from the translation
memory corpus for each segment in the evalu-
ation corpus, what is the bleu score for the re-
sulting document? This score is unlikely to ap-
proach the maximum, bleu =100 because this
oracle is constrained to selecting a translation
from the target language side of the parallel cor-
pus. All of the calculations for this experiment
are performed on the target language side of the
parallel text.

We were able to take advantage of a trait
particular to bleu for this experiment, avoid-
ing many of bleu score calculations required
to assess all of the 878 × 7.5 million combina-
tions. bleu produces a score of 0 for any hy-
pothesis string that doesn’t share at least one
4-gram with one reference string. Thus, for
each set of four references, we created a Lucene
query that returned all translation pairs which
matched at least one 4-gram with one of the ref-
erences. We picked the top segment by calcu-
lating bleu scores against the references, and
created a hypothesis document from these seg-
ments.

Note that, for document scores, bleu’s
brevity penalty (BP) is applied globally to an
entire document and not to individual segments.

Thus, the document score does not necessarily
increase monotonically with increases in scores
of individual segments. As more than 99% of
the segment pairs we evaluated yielded scores of
zero, we felt this would not have a significant
effect on our experiments. Also, the TM does
not have much liberty to alter the length of the
returned segments. Individual segments were
chosen to optimize bleu score, and the result-
ing documents exhibited appropriately increas-
ing scores. While there is no efficient strategy
for whole-document bleu maximization, an it-
erative rescoring of the entire document while
optimizing the choice of only one candidate seg-
ment at a time could potentially yield higher
scores than those we report here.

3.2 TM performance with varied
Ngram length

The second experiment was to determine the ef-
fect that different ngram sizes in the Chinese IR
query have on the IR engine’s ability to retrieve
good English translations.

We considered cumulative ngram sizes from 1
to 7, i.e. unigram, unigram + bigram, unigram
+ bigram + trigram, and so on. For each set
of ngram sizes, we created a Lucene query for
every segment of the (Chinese) evaluation cor-
pus. We then produced a hypothesis document
by combining the English sides of the top re-
sults returned by Lucene for each query. The
hypothesis document was evaluated against the
reference corpora by calculating a bleu score.

While it was observed that IR perfor-
mance is maximized by performing bigram
queries (Kwok, 1997), we had reason to believe
the TM would not be similar. TMs must at-
tempt to match short sequences of stop words
that indicate grammar as well as more tradi-
tional content words. Note that our system
performed neither stemming nor stop word (or
ngram) removal on the input Chinese strings.

3.3 An upper bound on TM N-best list
rescoring

The next experiment was to determine an upper
bound on the performance of tf-idf for differ-
ent result set sizes, i.e. for different (maximum)

178



LDC Id Description Pairs

LDC2002E18 Xinhua Chinese-English Parallel News Text v. 1.0 beta 2 64,371

LDC2002E58 Sinorama Chinese-English Parallel Text 103,216

LDC2003E25 Hong Kong News Parallel Text 641,308

LDC2004E09 Hong Kong Hansard Parallel Text 1,247,294

LDC2004E12 UN Chinese-English Parallel Text v. 2 4,979,798

LDC2000T47 Hong Kong Laws Parallel Text 302,945

Total 7,338,932

Table 2: Sentence-aligned parallel corpora used for the creation of the translation memory. The
“pairs” column gives the number of translation pairs available after trivial pruning.

numbers of translation pairs returned by the IR
engine. This experiment describes the trade-off
between more time spent in the IR engine cre-
ating a longer list of returns and the potential
increase in translation score.

To determine how much IR was “enough” IR,
we performed an oracle experiment on different
IR query sizes. For each segment of the evalua-
tion corpus, we performed a cumulative 4-gram
query as described in Section 4.2. We produced
the n-best list oracle’s hypothesis document by
selecting the English translation from this result
set with the highest bleu score when evaluated
against the corresponding segment from the ref-
erence corpus. We then evaluated the hypoth-
esis documents against the reference corpus by
computing bleu scores.

3.4 N-best list rescoring with several
MT evaluation metrics

The fourth experiment was to determine
whether we could improve upon tf-idf by apply-
ing automated MT metrics to pick the best sen-
tence from the top n translation pairs returned
by the IR engine. We compared a variety of
metrics from MT evaluation literatures. All of
these were run on the tokens in the source lan-
guage side of the IR result, comparing against
the single pseudo-reference, the original source
language segment. While many of these metrics
aren’t designed to perform well with one refer-
ence, they stand in as good approximate string
matching algorithms.

The score that the IR engine associates with
each segment is retained and marked as tf-idf

in this experiment. Naturally, bleu (Papineni
et al., 2001) was the first choice metric, as it
was well-matched to the target language evalu-
ation function. rouge was a reimplementation
of ROUGE-L from (Lin and Och, 2004). It com-
putes an F-measure from precision and recall
that are both based on the longest common sub-
sequence of the hypothesis and reference strings.
wer-g is a variation on traditional word error
rate that was found to correlate very well with
human judgments (Foster et al., 2003), and per

is the traditional position-independent error rate
that was also shown to correlate well with hu-
man judgments (Leusch et al., 2003). Finally,
a random metric was added to show the bleu

value one could achieve by selecting from the top
n strictly by chance.

After the individual metrics are calculated
for these segments, a uniform-weight log-linear
combination of the metrics is calculated and
used to produce a new rank ordering under the
belief that the different metrics will make pre-
dictions that are constructive in aggregate.

4 Results

4.1 An upper bound for whole-sentence
TM

Figure 1 shows the maximum possible bleu

score that can an oracle can achieve by selecting
the best English-side segment from the parallel
text. The upper bound achieved here is a bleu

score of 17.7, and this number is higher than
the best performing system in the correspond-
ing NIST evaluation.

Note the log-linear growth in the resulting
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Figure 2: bleu scores for different cumulative
ngram sizes, when retrieving only the first trans-
lation pair.

bleu score of the TM with increasing database
size. As the database is increased by a factor
of ten, the TM gains approximately 5 points of
bleu. While this trend has a natural limit at
20 orders of magnitude, it is unlikely that this
amount of text, let alone parallel text, will be a
indexed in the foreseeable future. This rate is
more useful in interpolation, giving an idea of
how much could be gained from adding to cor-
pora that are smaller than 7.5 million segments.

4.2 The effect of ngram size on Chinese
tf-idf retrieval

Figure 2 shows that our best performance is
realized when IR queries are composed of cu-
mulative 4-grams (i.e. unigrams + bigrams +
trigrams + 4-grams). As hypothesized, while
longer sequences are not important in document
retrieval in Chinese IR, they convey information
that is useful in segment retrieval in the trans-
lation memory. For the remainder of the ex-
periments, we restrict ourselves to cumulative
4-gram queries.

Note that the 4-gram result here (bleu of
5.87) provides the baseline system performance
measure as well as the value when the segments
are reranked according to tf-idf .

4.3 Upper bounds for tf-idf

Figure 3 gives the n-best list rescoring bounds.
The upper bound continues to increase up to
the top 1000 results. The plateau achieved af-
ter 1000 IR results suggests that is little to be
gained from further IR engine retrieval.

Note the log-linear growth in the bleu score
the oracle achieves as the n-best list extends on
the left side of the figure. As the list length
is increased by a factor of ten, the oracle up-
per bound on performance increases by roughly
3 points of bleu. Of course, for a system to
perform as well as the oracle does becomes pro-
gressively harder as the n-best list size increases.

Comparing this result with the experiment
in section 4.1 indicates that making the oracle
choose among Chinese source language IR re-
sults and limiting its view to the 1000 results
given by the IR engine incurs only a minor re-
duction of the oracle’s bleu score, from 17.7 to
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16.3. This is one way to measure the impact
of crossing this particular language barrier and
using IR rather than exhaustive search.
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Figure 3: bleu scores for different (maximum)
numbers of translation pairs returned by IR en-
gine, where the optimal segment is chosen from
the results by an oracle.

4.4 Using automated MT metrics to
pick the best TM sentence

Each metric was run on the top 1000 results
from the IR engine, on cumulative 4-gram
queries. Each metric was given the (Chinese)
evaluation corpus segment as the single refer-
ence, and scored the Chinese side of each of the
1000 resulting translation pairs against that ref-
erence. The hypothesis document for each met-
ric consisted of the English side of the transla-
tion pair with the best score for each segment.
These documents were scored with bleu against
the reference corpus. Ties (e.g. cases where a
metric gave all 1000 pairs the same score) were
broken with tf-idf .

Results of the rescoring experiment run on

Metric bleu

bleu 6.20

wer-g 5.90

rouge 5.88

tf-idf 5.87

per 5.72

random 3.32

log(tf-idf )
+log(bleu)
+log(rouge)
-log(wer-g)
-log(per) 6.56

Table 3: bleu scores for different metrics when
picking the best translation from 100 translation
pairs returned by the IR engine.

an n-best list of size 100 are given in Table 3.
Choosing from 1000 pairs did not give better
results. Choosing from only 10 gave worse re-
sults. The random baseline given in the table
represents the expected score from choosing ran-
domly among the top 100 IR returns. While the
scores of the individual metrics aside from per

and bleu reveal no differences, bleu and the
combination metric performed better than the
individual metrics.

Surprisingly, tf-idf was outperformed only by
bleu and the combination metric. While we
hoped to gain much more from n-best list rescor-
ing on this task, reaching toward the limits dis-
covered in section 4.3, the combination metric
was less than 0.5 bleu points below the lower
range of systems that were entered in the NIST
2002 evals. The bleu scores of research systems
in that competition roughly ranged between 7
and 15. Of course, each of the segments pro-
duced by the TM exhibit perfect fluency.

5 Discussion

The maximum bleu score attained by a TM we
describe (6.56) would place it in last place in the
NIST 2002 evals, but by less than 0.5 bleu. Suc-
cessive NIST competitions have exhibited im-
pressive system progress, but each year there
have been newcomers who score near (or in some
cases lower than) our simple TM baseline.
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We have presented several experiments that
quantitatively describe how well a simple TM
performs when measured with a standard MT
evaluation measure, bleu. We showed that the
translation performance of a TM grows as a log-
linear function of corpus size below 7.5 million
segments. We showed, somewhat surprisingly,
only 1000 IR returns need be evaluated by a
rescorer to get within 1 bleu point of the max-
imum possible score attainable by the TM.

In future work, we expect to validate these
results with other language pairs. One question
is: how well does this simple IR query expansion
address segmented languages and languages that
allow more liberal word order? Supervised train-
ing of n-best reranking schemes would also de-
termine how far the oracle bound can be pushed.
The computationally more expensive reranking
procedure that attempts to optimize bleu on
the entire document should be investigated to
determine how much can be gained by better
global management of the brevity penalty.

Finally, we believe it’s worth noting the degree
to which high fluency of the TM output could
potentially mislead target-language-only readers
in their estimation of the system’s performance.
Table 1 is representative of system output, and
is a good example of why translations should not
be judged solely on the fluency of a few segments
of target language output.
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Abstract

(Way and Gough, 2005) provide an in-
depth comparison of their Example-Based
Machine Translation (EBMT) system with
a Statistical Machine Translation (SMT)
system constructed from freely available
tools. According to a wide variety of au-
tomatic evaluation metrics, they demon-
strated that their EBMT system outper-
formed the SMT system by a factor of two
to one.

Nevertheless, they did not test their EBMT
system against a phrase-based SMT sys-
tem. Obtaining their training and test
data for English–French, we carry out a
number of experiments using the Pharaoh
SMT Decoder. While better results are
seen when Pharaoh is seeded with Giza++
word- and phrase-based data compared to
EBMT sub-sentential alignments, in gen-
eral better results are obtained when com-
binations of this ‘hybrid’ data is used
to construct the translation and probabil-
ity models. While for the most part the
EBMT system of (Gough & Way, 2004b)
outperforms any flavour of the phrase-
based SMT systems constructed in our
experiments, combining the data sets au-
tomatically induced by both Giza++ and
their EBMT system leads to a hybrid sys-
tem which improves on the EBMT system
per sefor French–English.

1 Introduction

(Way and Gough, 2005) provide what are to our
knowledge the first published results comparing
Example-Based and Statistical models of Machine
Translation (MT). Given that most MT research car-
ried out today is corpus-based, it is somewhat sur-
prising that until quite recently no qualitative re-
search existed on the relative performance of the two
approaches. This may be due to a number of factors:
the relative unavailability of EBMT systems, the
lack of participation of EBMT researchers in com-
petitive evaluations or the dominance in the MT re-
search community of the SMT approach—whenever
one paradigm finds favour with the clear majority of
MT practitioners, the assumption made by most of
the community is that this way of doing things is
clearly better than the alternatives.

Like (Way and Gough, 2005), we find this regret-
table: the only basis on which such views should
be allowed to permeate our field is following exten-
sive testing and evaluation. Nonetheless, given that
no EBMT systems are freely available, very few re-
search groups are in the position of being able to
carry out such work.

This paper extends the work of (Way and Gough,
2005) by testing EBMT against phrase-based mod-
els of SMT, rather than the word-based models used
in this previous work. In so doing, it provides a
more complete evaluation of the main question at
hand, namely whether an SMT system outperforms
an EBMT system on reasonably large training and
test sets.

We obtained the same training and test data used
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in (Way and Gough, 2005), and evaluated a num-
ber of SMT systems which use the Pharaoh decoder1

against the Marker-Based EBMT system of (Gough
& Way, 2004b), for French–English and English–
French. We provide results using a range of au-
tomatic evaluation metrics: BLEU (Papineni et al.,
2002), Precision and Recall (Turian et al., 2003), and
Word- and Sentence Error Rates. (Way and Gough,
2005) observe that EBMT tends to outperform a
word-based SMT model, and our experiments show
that a number of different phrase-based SMT sys-
tems still tend to fall short of the quality obtained
via EBMT for these evaluation metrics. However,
when Pharaoh is seeded with the data sets automati-
cally induced by both Giza++ and their EBMT sys-
tem, better results are seen for French–English than
for the EBMT systemper se.

The remainder of the paper is constructed as fol-
lows. In section 2, we summarize the main ideas be-
hind typical models of SMT and EBMT, as well as
the EBMT system of (Gough & Way, 2004b) used in
our experiments. In section 3, we revisit the exper-
iments and results carried out by (Way and Gough,
2005). In section 4, we describe our extensions to
their work, and compare their findings to ours, and
in section 5, present a number of hybrid SMT mod-
els. Finally, we conclude and offer some thoughts
for future work in section 6, and in section 7 present
some further comments on the narrowing gap be-
tween EBMT and phrase-based SMT.

2 Example-Based and Statistical Models of
Translation

A sine qua nonfor both EBMT and SMT is a set of
sentences in one language aligned with their trans-
lations in another. Although similar in that both
models of translation automatically induce transla-
tion knowledge from this resource, there are signifi-
cant differences regarding both the type of informa-
tion learnt and how this is brought to bear in dealing
with new input.

2.1 EBMT

Given a new input string, EBMT models use three
separate processes in order to derive translations:

1http://www.isi.edu/licensed-sw/pharaoh/

1. Searching the source side of the bitext for
‘close’ matches and their translations;

2. Determining the sub-sentential translation links
in those retrieved examples;

3. Recombining relevant parts of the target trans-
lation links to derive the translation.

Searching for the best matches involves determin-
ing a similarity metric based on word occurrences
and part-of-speech labels, generalised templates and
bilingual dictionaries. The recombination process
depends on the nature of the examples used in
the first place, which may include aligning phrase-
structure (sub-)trees (Hearne & Way, 2003) or de-
pendency trees (Watanabe et al., 2003), or using
placeables (Brown, 1999) as indicators of chunk
boundaries.

Another method—and the one used in the EBMT
system used in our experiments—is to use a set
of closed-class words to segment aligned source
and target sentences and to derive an additional set
of lexical and phrasal resources. (Gough & Way,
2004b) base their work on the ‘Marker Hypothe-
sis’ (Green, 1979), a universal psycholinguistic con-
straint which posits that languages are ‘marked’
for syntactic structure at surface level by a closed
set of specific lexemes and morphemes. In a pre-
processing stage, (Gough & Way, 2004b) use 7 sets
of marker words for English and French (e.g. de-
terminers, quantifiers, conjunctions etc.), which to-
gether with cognate matches and mutual information
scores are used to derive three new data sources: sets
of marker chunks, generalised templates and a lexi-
con.

In order to describe this in more detail, we revisit
an example from (Gough & Way, 2004a), namely:

(1) each layer has a layer number=⇒chaque
couche a un nombre de la couche

From the sentence pair in (1), the strings in (2)
are generated, where marker words are automati-
cally tagged with their marker categories:
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(2) <QUANT> each layer has<DET> a
layer number =⇒<QUANT> chaque
couche a<DET> un nombre<PREP>
de la couche

Taking into account marker tag information (label,
and relative sentence position), and lexical similar-
ity, the marker chunks in (3) are automatically gen-
erated from the marker-tagged strings in (2):

(3) a. <QUANT> each layer has:<QUANT>
chaque couche a

b. <DET> a layer number: <DET> un
nombre de la couche

(3b) shows thatn:malignments are possible (the two
French marker chunksun nombreandde la couche
are absorbed into one following the lexical similari-
ties betweenlayerandcoucheandnumberandnom-
bre, respectively) given the sub-sentential alignment
algorithm of (Gough & Way, 2004b).

By generalising over the marker lexicon, a set
of marker templates is produced by replacing the
marker word by its relevant tag. From the examples
in (3), the generalised templates in (4) are derived:

(4) a. <QUANT> layer has: <QUANT>
couche a

b. <DET> layer number:<DET> nombre
de la couche

These templates increase the robustness of the sys-
tem and make the matching process more flexible.
Now any marker word can be inserted after the rele-
vant tag if it appears with its translation in the lexi-
con, so that (say)the layer numbercan now be han-
dled by the generalised template in (4b) and insert-
ing a (or all) translation(s) forthe in the system’s
lexicon.

2.2 Word- and Phrase-Based SMT

SMT systems require two large probability tables in
order to generate translations of new input:

1. a translation model induced from a large
amount of bilingual data;

2. a target language model induced from a(n even)
large(r) quantity of separate monolingual text.

Essentially, the translation model establishes the
set of target language words (and more recently,
phrases) which are most likely to be useful in trans-
lating the source string, while the language model
tries to assemble these words (and phrases) in the
most likely target word order. The language model
is trained by determining all bigram and/or trigram
frequency distributions occurring in the training
data, while the translation model takes into account
source and target word (and phrase) co-occurrence
frequencies, sentence lengths and the relative sen-
tence positions of source and target words.

Until quite recently, SMT models of translation
were based on the simple word alignment models
of (Brown et al., 1990). Nowadays, however, SMT
practitioners also get their systems to learn phrasal
as well as lexical alignments (e.g. (Koehn et al.,
2003); (Och, 2003)). Unsurprisingly, the quality
obtained by today’s phrase-based SMT systems is
considerably better than that obtained by the poorer
word-based models.

3 Comparing EBMT and Word-Based
SMT

(Way and Gough, 2005) obtained a large translation
memory fromSun Microsystemscontaining 207,468
English–French sentence pairs, of which 3,939 sen-
tence pairs were randomly extracted as a test set,
with the remaining 203,529 sentences used as train-
ing data. The average sentence length for the En-
glish test set was 13.1 words and 15.2 words for the
corresponding French test set. The EBMT system
used was their Marker-based system as described in
section 2.1 above. In order to create the necessary
SMT language and translation models, they used:

• Giza++ (Och & Ney, 2003);2

• the CMU-Cambridge statistical toolkit;3

• the ISI ReWrite Decoder.4

Translation was performed from English–French
and French–English, and the resulting translations
were evaluated using a range of automatic metrics:
BLEU (Papineni et al., 2002), Precision and Recall

2http://www.isi.edu/∼och/Giza++.html
3http://mi.eng.cam.ac.uk/∼prc14/toolkit.html
4http://www.isi.edu/licensed-sw/rewrite-decoder/
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(Turian et al., 2003), and Word- and Sentence Error
Rates. In order to see whether the amount of train-
ing data affected the (relative) performance of the
EBMT and SMT systems, (Way and Gough, 2005)
split the training data into three sets, of 50K (1.1M
words), 100K (2.4M words) and 203K (4.8M words)
sentence pairs (TS1–TS3 in what follows).

3.1 English–French Results

Table 1: Comparing the EBMT system of (Gough &
Way, 2004b) with a Word-Based SMT (WB-SMT) system for
English–French.

BLEU Prec. Recall WER SER
TS1 WB-SMT .2971 .6739 .5912 54.9 90.8

EBMT .3318 .6525 .6183 54.3 89.2

TS2 WB-SMT .3375 .6824 .5962 51.1 89.9
EBMT .4534 .7355 .6983 44.8 77.5

TS3 WB-SMT .3223 .6513 .5704 53.5 89.1
EBMT .4409 .6727 .6877 52.4 65.6

The results obtained by (Gough & Way, 2004b)
for English–French for their EBMT system and
word-based SMT (WB-SMT) are given in Table 1.
Essentially, all the automatic evaluation metrics bar
one (Precision) suggest that EBMT can outperform
SMT from English–French. Surprisingly, however,
apart from SER, all evaluation scores are higher us-
ing 100K sentence pairs as training data rather than
the full 203K sentences. It is generally assumed that
increasing the size of the training data for corpus-
based MT systems will improve the quality of the
output translations. (Way and Gough, 2005) observe
that while this dip in performance may be due to a
degree of over–fitting, they intend to carry out some
variance analysis on these results (e.g. performing
bootstrap-resampling on the test set (Koehn, 2004)),
or re-test with different sample test sets in order
to investigate whether the same phenomenon is ob-
served.

With respect to SER, however, for both SMT and
EBMT, the figures improve as more training data is
made available. However, the improvement is much
more significant for EBMT (20.6%) than for SMT
(0.1%). While the WER scores are much the same,
indicating that both systems are identifying reason-
able target vocabulary that should appear in the out-
put translation, the vast differences in SER using
TS3 indicate that a system containing essentially no
information about target syntax has very little hope

of arranging these target words in the right order.
On the contrary, even a system containing some ba-
sic knowledge of how phrases fit together such as
the Marker-based EBMT system of (Gough & Way,
2004b) will generate translations of far higher qual-
ity.

3.2 French–English Results

Table 2: Comparing the EBMT system of (Gough & Way,
2004b) with a WB-SMT system for French–English.

BLEU Prec. Recall WER SER
TS1 WB-SMT .3794 .7096 .7355 52.5 86.5

EBMT .2571 .5419 .6314 69.7 89.2

TS2 WB-SMT .3924 .7206 .7433 46.2 81.3
EBMT .4262 .6731 .7962 55.2 66.2

TS3 WB-SMT .4462 .7035 .7240 46.8 80.8
EBMT .4611 .6782 .7441 50.8 51.2

The results obtained by (Way and Gough, 2005)
for French–English translations are presented in Ta-
ble 2. Translating in this language direction is inher-
ently ‘easier’ than for English–French as far fewer
agreement errors and cases of boundary friction are
likely. Accordingly, all WB-SMT results in Table 2
are better than for the reverse direction, while for
EBMT, improved results are to be seen for BLEU,
Recall and SER.

While the majority of metrics obtained for
English–French indicate that EBMT outperforms
WB-SMT, the results for French–English are by no
means as conclusive. Of the 15 tests, WB-SMT out-
performs EBMT in nine.

4 Comparing EBMT and Phrase-Based
SMT

From the results in the previous sections for French–
English and for English–French, (Way and Gough,
2005) observe that EBMT outperforms WB-SMT in
the majority of tests. If we are to treat each of the
metrics as being equally significant, it can be said
that EBMT appears to outperform WB-SMT by a
factor of two to one. In fact, the only metric for
which EBMT seems to consistently underperform
is precision for French–English which, when we
examine WER, indicates that the EBMT system’s
knowledge of word correspondences is incomplete
and not as comprehensive as that of the WB-SMT
system.
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However, it has been apparent for some time now
that phrase-based SMT outperforms previous sys-
tems using word-based models. The results obtained
by (Way and Gough, 2005) for SER also indicate
that if phrase-based SMT were used, then improve-
ments in translation quality ought to be seen.

Accordingly, in this section we describe a set
of experiments which extends the work of (Way
and Gough, 2005) by evaluating the Marker-based
EBMT system of (Gough & Way, 2004b) against a
phrase-based SMT system built using the following
components:

• Giza++, to extract the word-level correspon-
dences;

• The Giza++ word alignments are then refined
and used to extract phrasal alignments ((Och &
Ney, 2003); or (Koehn et al., 2003) for a more
recent implementation);

• Probabilities of the extracted phrases are calcu-
lated from relative frequencies;

• The resulting phrase translation table is passed
to the Pharaoh phrase-based SMT decoder
which along with SRI language modelling
toolkit5 performs translation.

4.1 English–French Results

Table 3: Seeding Pharaoh with Giza++ and EBMT sub-
sentential alignments for English–French.

BLEU Prec. Recall WER SER
TS3 GIZA-DATA .3753 .6598 .5879 58.5 86.82

EBMT-DATA .3643 .6661 .5759 61.33 87.99

We seeded the phrase-based SMT system con-
structed from the publicly available resources listed
above with the word- and phrase-alignments derived
via both Giza++ and the Marker-Based EBMT sys-
tem of (Gough & Way, 2004b). Using the full 203K
training set of (Gough & Way, 2004b), and testing
on their near 4K test set, the results are given in Ta-
ble 3. It is clear to see that the Giza++ alignments
obtain better scores than the EBMT sub-sentential
data. Before one considers the full impact of these
results, one should take into account that the size of

5http://www.speech.sri.com/projects/srilm/

the EBMT data set (word- and phrase-alignments)
is 403,317, while there are over four times as many
SMT sub-sentential alignments (1,732,715).

Comparing these results with those in Table 1,
we can see that for the same training-test data,
the phrase-based SMT system outperforms the WB-
SMT system on most metrics, considerably so with
respect to BLEU score (.3753 vs. .3223). WER,
however, is somewhat worse (.585 vs. .535), and
SER remains disappointingly high. Compared to
the EBMT system of (Gough & Way, 2004b), the
phrase-based SMT system still falls well short with
respect to BLEU score (.4409 for EBMT vs. .3573
for SMT), and again, notably for SER (.656 EBMT,
.868 SMT).

4.2 French–English Results

Table 4: Seeding Pharaoh with Giza++ and EBMT sub-
sentential alignments for French–English.

BLEU Prec. Recall WER SER
TS3 GIZA-DATA .4198 .6527 .7100 62.93 82.84

EBMT-DATA .3952 .6151 .6643 74.77 86.21

Again, the phrase-based SMT system was seeded
with the Giza++ and EBMT alignments, trained on
the full 203K training set, and tested on the 4K test
set. The results are given in Table 4. As for English–
French, the Giza++ alignments obtain better scores
than when the EBMT sub-sentential data is used.

Comparing these results with those in Table 2, we
see that the phrase-based SMT system actually does
worse than WB-SMT, which is an unexpected re-
sult6. As expected, therefore, the results for phrase-
based SMT here are worse still compared to EBMT.

5 Towards Hybridity: Merging SMT and
EBMT Alignments

We decided to experiment further by combining
parts of the EBMT sub-sentential alignments with
parts of the data induced by Giza++. In the follow-
ing sections, for both English–French and French–
English, we seed the Pharaoh phrase-based SMT
system with:

6The Pharaoh system is untuned, so as to provide an easily
replicable baseline for other similar research. It is quite possible
that with tuning the phrase-based SMT system will outperform
the word-based system.
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1. the EBMT phrase-alignments with the Giza++
word-alignments;

2. all the EBMT and Giza++ sub-sentential align-
ments (both words and phrases).

5.1 Giza++ Words and EBMT Phrases

Here we seeded Pharaoh with the word-alignments
induced by Giza++ and the EBMT phrasal chunks
only (i.e. no Giza++ phrases and no EBMT lexical
alignments).

5.1.1 English–French Results

Table 5: Seeding Pharaoh with Giza++ word and EBMT
phrasal alignments for English–French.

BLEU Prec. Recall WER SER
TS3 .3962 .6773 .5913 59.32 85.43

Using the full 203K training set of (Gough &
Way, 2004b), and testing on their near 4K test set,
the results are given in Table 5. Comparing these
figures to those in Table 3, we can see that all au-
tomatic evaluation metrics improve with this hybrid
system configuration. Note that the data set size is
430,336, compared to 1.73M for the phrase-based
SMT system seeded solely with Giza++ alignments.
With respect to the EBMT systemper sein Table 1,
these results remain slightly below those figures (ex-
cept for precision).

5.1.2 French–English Results

Table 6: Seeding Pharaoh with Giza++ word and EBMT
phrasal alignments for French–English.

BLEU Prec. Recall WER SER
TS3 .4265 .6424 .6918 68.05 83.40

Running the same experimental set up for the re-
verse language direction gives the results in Table 6.
While recall drops slightly, all the other metrics
show a slight increase compared to the performance
obtained when Pharaoh is seeded with Giza++ word-
and phrase-alignments (cf. Table 4).

5.2 Merging All Data

The following two experiments were carried out by
seeding Pharaoh withall the EBMT and Giza++
sub-sentential alignments, i.e. both words and
phrases.

5.2.1 English–French Results

Table 7: Seeding Pharaoh with all Giza++ and EBMT sub-
sentential alignments for English–French.

BLEU Prec. Recall WER SER
TS3 .4259 .7026 .6099 54.26 83.63

Inserting all Giza++ and EBMT data into
Pharaoh’s knowledge sources gives the results in Ta-
ble 7. These are considerably better than the scores
for the ‘semi-hybrid’ system described in section
5.1.1. This indicates that a phrase-based SMT sys-
tem is likely to perform better when EBMT word-
and phrase-alignments are used in the calculation of
the translation and target language probability mod-
els. Note, however, that the size of the data set in-
creases to over 2M items. Despite this, compared to
the results for the EBMT system of (Gough & Way,
2004b) shown in Table 1, these results for the ‘fully
hybrid’ SMT system still fall somewhat short (ex-
cept for Precision: .6727 vs. .7026).

5.2.2 French–English Results

Table 8: Seeding Pharaoh with all Giza++ and EBMT sub-
sentential alignments for French–English.

BLEU Prec. Recall WER SER
TS3 .4888 .6927 .7173 56.37 78.42

Carrying out a similar experiment for the reverse
language direction gives the results in Table 8. This
time this hybrid SMT system does outperform the
EBMT system of (Gough & Way, 2004b), with re-
spect to BLEU score (.4888 vs .4611) and Precision
(.6927 vs. 6782), but the EBMT system still wins
out where Recall, WER and SER are concerned. Re-
garding this latter, it seems that the correlation be-
tween low SER and high BLEU score is not as im-
portant as is claimed in (Way and Gough, 2005).

6 Conclusions

(Way and Gough, 2005) carried out a number of ex-
periments designed to test their large-scale Marker-
Based EBMT system described in (Gough & Way,
2004b) against a WB-SMT system constructed from
publicly available tools. While the results were a lit-
tle mixed, the EBMT system won out overall.
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Nonetheless, WB-SMT has long been abandoned
in favour of phrase-based models. We extended
the work of (Way and Gough, 2005) by performing
a range of experiments using the Pharaoh phrase-
based decoder. Our main observations are as fol-
lows:

• Seeding Pharaoh with word- and phrase-
alignments induced via Giza++ generates bet-
ter results than if EBMT sub-sentential data is
used.

• Seeding Pharaoh with a ‘hybrid’ dataset of
Giza++ word alignments and EBMT phrases
improves over the baseline phrase-based SMT
system primed solely with Giza++ data. This
would appear to indicate that the quality of the
EBMT phrases is better than the SMT phrases,
and that SMT practitioners should use EBMT
phrasal data in the calculating of their language
and translation models, if available.

• Seeding Pharaoh withall data induced by
Giza++ and the EBMT system leads to the best-
performing hybrid SMT system: for English–
French, as well as EBMT phrasal data, EBMT
word alignments also contribute positively, but
the EBMT systemper sestill wins out (except
for Precision); for French–English, however,
our hybrid Example-Based SMT system out-
performs the EBMT system of (Gough & Way,
2004b) (cf. Table 9).

Table 9:Comparing the hybrid phrase-based SMT system us-
ing both the full Giza++ and full EBMT data against the EBMT
system of (Gough & Way, 2004b) for the full training set (TS3).

BLEU Prec. Recall WER SER
EN-FR HYBRID .2971 .6739 .5912 54.9 90.8

EBMT .3318 .6525 .6183 54.3 89.2

FR-EN HYBRID .2971 .6739 .5912 54.9 90.8
EBMT .3318 .6525 .6183 54.3 89.2

A number of avenues of further work remain open
to us. We would like to extend our investigations
into hybrid example-based statistical approaches to
machine translation by experiment with seeding the
Marker-Based system of (Gough & Way, 2004b)
with the SMT data, and combinations thereof with
the EBMT sub-sentential alignments, to investigate

the effect on translation quality. Given our find-
ings here, we are optimistic that ‘hybrid statistical
EBMT’ will outperform the baseline EBMT system,
and that our findings will prompt EBMT practition-
ers to augment their data resources with SMT align-
ments, something which to our knowledge is cur-
rently not done. In addition, we intend to continue
this line of research on different and larger data sets,
and for other language pairs.

7 Final Remarks

Finally, as (Way and Gough, 2005) observe, it is dif-
ficult to explain why to this day SMT practitioners
have not made full use of the large body of existing
work on EBMT, from (Nagao, 1984) to (Carl & Way,
2003) and beyond, which has contributed greatly to
the field of corpus-based MT.

From its very inception EBMT has made use of a
range of sub-sentential data – both phrasal and lexi-
cal – to perform translations whereas, until quite re-
cently, SMT models of translation were based on the
relatively simple word alignment models of (Brown
et al., 1990). With the advent of phrase-based SMT
systems the line between EBMT and SMT has be-
come significantly blurred, yet we are still unaware
of any papers on SMT which acknowledge their
debt to EBMT or which describe their approach as
‘example–based’.

Despite it becoming increasingly difficulty to dis-
tinguish between EBMT and (phrase–based) SMT
models of translation, some differences still exist.
Rather than using models of syntax in apost hoc
fashion, as is the case with most SMT systems, an
EBMT model of translation builds in syntaxat its
core. Given this, a phrase–based SMT system is
more likely to ‘learn’ chunks that an EBMT sys-
tem would not, as the system learnsn-gram se-
quences rather than syntactically-motivated phrases
per se. Furthermore, our research here has demon-
strated quite clearly that if available, merging SMT
and EBMT data improves the quality of the result-
ing hybrid SMT system, as phrases extracted by both
methods that are more likely to function as syntac-
tic units (and therefore be more beneficial during
the translation process) are given a higher statistical
significance. Conversely, the probabilities of those
‘less useful’ SMTn-grams that are not also gener-
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ated by the EBMT system are reduced. Essentially,
the EBMT data helps the SMT system to make the
best use of phrase alignments during translation.

Moreover, we see the fact that it is becoming in-
creasingly difficult to describe the differences be-
tween EBMT and SMT as a good thing, and that
as here, this convergence can lead to hybrid systems
capable of outperforming leading EBMT systems as
well as state-of-the-art phrase-based SMT.

We hope that the research presented here,
together with that begun by (Way and Gough,
2005), will lead to new areas of collaboration
between both sets of researchers, to the clear benefit
of the MT research community and the wider public.
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Abstract

Word graphs have various applications in
the field of machine translation. Therefore
it is important for machine translation sys-
tems to produce compact word graphs of
high quality. We will describe the gen-
eration of word graphs for state of the
art phrase-based statistical machine trans-
lation. We will use these word graph
to provide an analysis of the search pro-
cess. We will evaluate the quality of the
word graphs using the well-known graph
word error rate. Additionally, we intro-
duce the two novel graph-to-string crite-
ria: the position-independent graph word
error rate and the graph BLEU score.
Experimental results are presented for two
Chinese–English tasks: the small IWSLT
task and the NIST large data track task.
For both tasks, we achieve significant re-
ductions of the graph error rate already
with compact word graphs.

1 Introduction

A statistical machine translation system usually pro-
duces the single-best translation hypotheses for a
source sentence. For some applications, we are also
interested in alternative translations. The simplest
way to represent these alternatives is a list with the
N -best translation candidates. These N -best lists
have one major disadvantage: the high redundancy.
The translation alternatives may differ only by a sin-
gle word, but still both are listed completely. Usu-
ally, the size of the N -best list is in the range of a few

hundred up to a few thousand candidate translations
per source sentence. If we want to use larger N -best
lists the processing time gets very soon infeasible.

Word graphs are a much more compact represen-
tation that avoid these redundancies as much as pos-
sible. The number of alternatives in a word graph is
usually an order of magnitude larger than in an N -
best list. The graph representation avoids the com-
binatorial explosion that make large N -best lists in-
feasible.

Word graphs are an important data structure with
various applications:

• Word Filter.
The word graph is used as a compact repre-
sentation of a large number of sentences. The
score information is not contained.

• Rescoring.
We can use word graphs for rescoring with
more sophisticated models, e.g. higher-order
language models.

• Discriminative Training.
The training of the model scaling factors as de-
scribed in (Och and Ney, 2002) was done on
N -best lists. Using word graphs instead could
further improve the results. Also, the phrase
translation probabilities could be trained dis-
crimatively, rather than only the scaling factors.

• Confidence Measures.
Word graphs can be used to derive confidence
measures, such as the posterior probability
(Ueffing and Ney, 2004).
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• Interactive Machine Translation.
Some interactive machine translation systems
make use of word graphs, e.g. (Och et al.,
2003).

State Of The Art. Although there are these many
applications, there are only few publications directly
devoted to word graphs. The only publication, we
are aware of, is (Ueffing et al., 2002). The short-
comings of (Ueffing et al., 2002) are:

• They use single-word based models only. Cur-
rent state of the art statistical machine transla-
tion systems are phrase-based.

• Their graph pruning method is suboptimal as it
considers only partial scores and not full path
scores.

• The N -best list extraction does not eliminate
duplicates, i.e. different paths that represent the
same translation candidate.

• The rest cost estimation is not efficient. It has
an exponential worst-case time complexity. We
will describe an algorithm with linear worst-
case complexity.

Apart from (Ueffing et al., 2002), publications on
weighted finite state transducer approaches to ma-
chine translation, e.g. (Bangalore and Riccardi,
2001; Kumar and Byrne, 2003), deal with word
graphs. But to our knowledge, there are no publica-
tions that give a detailed analysis and evaluation of
the quality of word graphs for machine translation.

We will fill this gap and give a systematic descrip-
tion and an assessment of the quality of word graphs
for phrase-based machine translation. We will show
that even for hard tasks with very large vocabulary
and long sentences the graph error rate drops signif-
icantly.

The remaining part is structured as follows: first
we will give a brief description of the translation sys-
tem in Section 2. In Section 3, we will give a def-
inition of word graphs and describe the generation.
We will also present efficient pruning and N -best
list extraction techniques. In Section 4, we will de-
scribe evaluation criteria for word graphs. We will
use the graph word error rate, which is well known
from speech recognition. Additionally, we introduce
the novel position-independent word graph error rate

and the graph BLEU score. These are generaliza-
tions of the commonly used string-to-string evalua-
tion criteria in machine translation. We will present
experimental results in Section 5 for two Chinese–
English tasks: the first one, the IWSLT task, is in the
domain of basic travel expression found in phrase-
books. The vocabulary is limited and the sentences
are short. The second task is the NIST Chinese–
English large data track task. Here, the domain is
news and therefore the vocabulary is very large and
the sentences are with an average of 30 words quite
long.

2 Translation System

In this section, we give a brief description of the
translation system. We use a phrase-based transla-
tion approach as described in (Zens and Ney, 2004).
The posterior probability Pr(eI

1|f
J
1 ) is modeled di-

rectly using a weighted log-linear combination of
a trigram language model and various translation
models: a phrase translation model and a word-
based lexicon model. These translation models are
used for both directions: p(f |e) and p(e|f). Addi-
tionally, we use a word penalty and a phrase penalty.
With the exception of the language model, all mod-
els can be considered as within-phrase models as
they depend only on a single phrase pair, but not on
the context outside of the phrase. The model scaling
factors are optimized with respect to some evalua-
tion criterion (Och, 2003).

We extended the monotone search algorithm from
(Zens and Ney, 2004) such that reorderings are pos-
sible. In our case, we assume that local reorder-
ings are sufficient. Within a certain window, all
possible permutations of the source positions are al-
lowed. These permutations are represented as a re-
ordering graph, similar to (Zens et al., 2002). Once
we have this reordering graph, we perform a mono-
tone phrase-based translation of this graph. More
details of this reordering approach are described in
(Kanthak et al., 2005).

3 Word Graphs

3.1 Definition
A word graph is a directed acyclic graph G = (V, E)
with one designated root node n0 ∈ V . The edges
are labeled with words and optionally with scores.
We will use (n, n′, w) to denote an edge from node
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n to node n′ with word label w. Each path through
the word graph represents a translation candidate. If
the word graph contains scores, we accumulate the
edge scores along a path to get the sentence or string
score.

The score information the word graph has to con-
tain depends on the application.

If we want to use the word graph as a word fil-
ter, we do not need any score information at all. If
we want to extract the single- or N -best hypotheses,
we have to retain the string or sentence score infor-
mation. The information about the hidden variables
of the search, e.g. the phrase segmentation, is not
needed for this purpose. For discriminative training
of the phrase translation probabilities, we need all
the information, even about the hidden variables.

3.2 Generation
In this section, we analyze the search process in de-
tail. Later, in Section 5, we will show the (experi-
mental) complexity of each step. We start with the
source language sentence that is represented as a lin-
ear graph. Then, we introduce reorderings into this
graph as described in (Kanthak et al., 2005). The
type of reordering should depend on the language
pair. In our case, we assume that only local reorder-
ings are required. Within a certain window, all pos-
sible reorderings of the source positions are allowed.
These permutations are represented as a reordering
graph, similar to (Knight and Al-Onaizan, 1998) and
(Zens et al., 2002).

Once we have this reordering graph, we perform
a monotone phrase-based translation of this graph.
This translation process consists of the following
steps that will be described afterward:

1. segment into phrase

2. translate the individual phrases

3. split the phrases into words

4. apply the language model

Now, we will describe each step. The first step is
the segmentation into phrases. This can be imag-
ined as introducing “short-cuts” into the graph. The
phrase segmentation does not affect the number of
nodes, because only additional edges are added to
the graph.

In the segmented graph, each edge represents a
source phrase. Now, we replace each edge with one

edge for each possible phrase translation. The edge
scores are the combination of the different transla-
tion probabilities, namely the within-phrase models
mentioned in Section 2. Again, this step does not
increase the number of nodes, but only the number
of edges.

So far, the edge labels of our graph are phrases. In
the final word graph, we want to have words as edge
labels. Therefore, we replace each edge representing
a multi-word target phrase with a sequence of edges
that represent the target word sequence. Obviously,
edges representing a single-word phrase do not have
to be changed.

As we will show in the results section, the word
graphs up to this point are rather compact. The
score information in the word graph so far consists
of the reordering model scores and the phrase trans-
lation model scores. To obtain the sentence posterior
probability p(eI

1|f
J
1 ), we apply the target language

model. To do this, we have to separate paths accord-
ing to the language model history. This increases the
word graph size by an order of magnitude.

Finally, we have generated a word graph with full
sentence scores. Note that the word graph may con-
tain a word sequence multiple times with different
hidden variables. For instance, two different seg-
mentations into source phrases may result in the
same target sentence translation.

The described steps can be implemented using
weighted finite state transducer, similar to (Kumar
and Byrne, 2003).

3.3 Pruning

To adjust the size of the word graph to the desired
density, we can reduce the word graph size using
forward-backward pruning, which is well-known in
the speech recognition community, e.g. see (Mangu
et al., 2000). This pruning method guarantees that
the good strings (with respect to the model scores)
remain in the word graph, whereas the bad ones are
removed. The important point is that we compare
the full path scores and not only partial scores as, for
instance, in the beam pruning method in (Ueffing et
al., 2002).

The forward probabilities F (n) and backward
probabilities B(n) of a node n are defined by the
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following recursive equations:

F (n) =
∑

(n′,n,w)∈E

F (n′) · p(n′, n, w)

B(n) =
∑

(n,n′,w)∈E

B(n′) · p(n, n′, w)

The forward probability of the root node and the
backward probabilities of the final nodes are initial-
ized with one. Using a topological sorting of the
nodes, the forward and backward probabilities can
be computed with linear time complexity. The pos-
terior probability q(n, n′, w) of an edge is defined
as:

q(n, n′, w) =
F (n) · p(n, n′, w) · B(n′)

B(n0)

The posterior probability of an edge is identical to
the sum over the probabilities of all full paths that
contain this edge. Note that the backward probabil-
ity of the root node B(n0) is identical to the sum
over all sentence probabilities in the word graph.
Let q∗ denoted the maximum posterior probability
of all edges and let τ be a pruning threshold, then
we prune an edge (n, n′, w) if:

q(n, n′, w) < q∗ · τ

3.4 N -Best List Extraction
In this section, we describe the extraction of the N -
best translation candidates from a word graph.

(Ueffing et al., 2002) and (Mohri and Riley, 2002)
both present an algorithm based on the same idea:
use a modified A* algorithm with an optimal rest
cost estimation. As rest cost estimation, the negated
logarithm of the backward probabilities is used. The
algorithm in (Ueffing et al., 2002) has two disadvan-
tages: it does not care about duplicates and the rest
cost computation is suboptimal as the described al-
gorithm has an exponential worst-case complexity.
As mentioned in the previous section, the backward
probabilities can be computed in linear time.

In (Mohri and Riley, 2002) the word graph is rep-
resented as a weighted finite state automaton. The
word graph is first determinized, i.e. the nondeter-
ministic automaton is transformed in an equivalent
deterministic automaton. This process removes the
duplicates from the word graph. Out of this deter-
minized word graph, the N best candidates are ex-
tracted. In (Mohri and Riley, 2002), ε-transitions are

ignored, i.e. transitions that do not produce a word.
These ε-transitions usually occur in the backing-off
case of language models. The ε-transitions have to
be removed before using the algorithm of (Mohri
and Riley, 2002). In the presence of ε-transitions,
two path representing the same string are considered
equal only if the ε-transitions are identical as well.

4 Evaluation Criteria

4.1 String-To-String Criteria

To evaluate the single-best translation hypotheses,
we use the following string-to-string criteria: word
error rate (WER), position-independent word error
rate (PER) and the BLEU score. More details on
these standard criteria can be found for instance in
(Och, 2003).

4.2 Graph-To-String Criteria

To evaluate the quality of the word graphs, we
generalize the string-to-string criteria to work on
word graphs. We will use the well-known graph
word error rate (GWER), see also (Ueffing et al.,
2002). Additionally, we introduce two novel graph-
to-string criteria, namely the position-independent
graph word error rate (GPER) and the graph BLEU
score (GBLEU). The idea of these graph-to-string
criteria is to choose a sequence from the word graph
and compute the corresponding string-to-string cri-
terion for this specific sequence. The choice of the
sequence is such that the criterion is the optimum
over all possible sequences in the word graph, i.e.
the minimum for GWER/GPER and the maximum
for GBLEU.

The GWER is a generalization of the word er-
ror rate. It is a lower bound for the WER. It can be
computed using a dynamic programming algorithm
which is quite similar to the usual edit distance com-
putation. Visiting the nodes of the word graph in
topological order helps to avoid repeated computa-
tions.

The GPER is a generalization of the position-
independent word error rate. It is a lower bound for
the PER. The computation is not as straightforward
as for the GWER.

In (Ueffing and Ney, 2004), a method for com-
puting the string-to-string PER is presented. This
method cannot be generalized for the graph-to-string
computation in a straightforward way. Therefore,
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we will first describe an alternative computation for
the string-to-string PER and then use this idea for
the graph-to-string PER.

Now, we want to compute the number of position-
independent errors for two strings. As the word or-
der of the strings does not matter, we represent them
as multisets1 A and B. To do this, it is sufficient to
know how many words are in A but not in B, i.e.
a := |A−B|, and how many words are in B but not
in A, i.e. b := |B−A|. The number of substitutions,
insertions and deletions are then:

sub = min{a, b}

ins = a − sub

del = b − sub

error = sub + ins + del

= a + b − min{a, b}

= max{a, b}

It is obvious that there are either no insertions or no
deletions. The PER is then computed as the num-
ber of errors divided by the length of the reference
string.

Now, back to the graph-to-string PER computa-
tion. The information we need at each node of the
word graph are the following: the remaining multi-
set of words of the reference string that are not yet
produced. We denote this multiset C. The cardinal-
ity of this multiset will become the value a in the
preceding notation. In addition to this multiset, we
also need to count the number of words that we have
produced on the way to this node but which are not
in the reference string. The identity of these words is
not important, we simply have to count them. This
count will become the value b in the preceding nota-
tion.

If we make a transition to a successor node along
an edge labeled w, we remove that word w from the
set of remaining reference words C or, if the word
w is not in this set, we increase the count of words
that are in the hypothesis but not in the reference.

To compute the number of errors on a graph, we
use the auxiliary quantity Q(n, C), which is the
count of the produced words that are not in the refer-
ence. We use the following dynamic programming
recursion equations:

1A multiset is a set that may contain elements multiple
times.

Q(n0, C0) = 0

Q(n, C) = min
n′,w:(n′,n,w)∈E

{

Q(n′, C ∪ {w}),

Q(n′, C) + 1
}

Here, n0 denote the root node of the word graph,
C0 denotes the multiset representation of the refer-
ence string. As already mentioned in Section 3.1,
(n′, n, w) denotes an edge from node n′ to node n

with word label w.
In the implementation, we use a bit vector to rep-

resent the set C for efficiency reasons. Note that in
the worst-case the size of the Q-table is exponen-
tial in the length of the reference string. However, in
practice we found that in most cases the computation
is quite fast.

The GBLEU score is a generalization of the
BLEU score. It is an upper bound for the BLEU
score. The computation is similar to the GPER com-
putation. We traverse the word graph in topologi-
cal order and store the following information: the
counts of the matching n-grams and the length of the
hypothesis, i.e. the depth in the word graph. Addi-
tionally, we need the multiset of reference n-grams
that are not yet produced.

To compute the BLEU score, the n-gram counts
are collected over the whole test set. This results in
a combinatorial problem for the computation of the
GBLEU score. We process the test set sentence-wise
and accumulate the n-gram counts. After each sen-
tence, we take a greedy decision and choose the n-
gram counts that, if combined with the accumulated
n-gram counts, result is the largest BLEU score.
This gives a conservative approximation of the true
GBLEU score.

4.3 Word Graph Size
To measure the word graph size we use the word
graph density, which we define as the number of
edges in the graph divided by the source sentence
length.

5 Experimental Results

5.1 Tasks
We will show experimental results for two Chinese–
English translation tasks.
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Table 1: IWSLT Chinese–English Task: corpus
statistics of the bilingual training data.

Chinese English
Train Sentences 20 000

Running Words 182 904 160 523
Vocabulary 7 643 6 982

Test Sentences 506
Running Words 3 515 3 595
avg. SentLen 6.9 7.1

Table 2: NIST Chinese English task: corpus statis-
tics of the bilingual training data.

Chinese English
Train Sentences 3.2M

Running Words 51.4M 55.5M
Vocabulary 80 010 170 758

Lexicon Entries 81 968
Test Sentences 878

Running Words 26 431 23 694
avg. SentLen 30.1 27.0

IWSLT Chinese–English Task. The first task is
the Chinese–English supplied data track task of the
International Workshop on Spoken Language Trans-
lation (IWSLT 2004) (Akiba et al., 2004). The do-
main is travel expressions from phrase-books. This
is a small task with a clean training and test corpus.
The vocabulary is limited and the sentences are rel-
atively short. The corpus statistics are shown in Ta-
ble 1. The Chinese part of this corpus is already
segmented into words.

NIST Chinese–English Task. The second task
is the NIST Chinese–English large data track task.
For this task, there are many bilingual corpora avail-
able. The domain is news, the vocabulary is very
large and the sentences have an average length of 30
words. We train our statistical models on various
corpora provided by LDC. The Chinese part is seg-
mented using the LDC segmentation tool. After the
preprocessing, our training corpus consists of about
three million sentences with somewhat more than 50
million running words. The corpus statistics of the
preprocessed training corpus are shown in Table 2.
We use the NIST 2002 evaluation data as test set.
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Figure 1: IWSLT Chinese–English: Graph error rate
as a function of the word graph density for different
window sizes.

5.2 Search Space Analysis

In Table 3, we show the search space statistics of the
IWSLT task for different reordering window sizes.
Each line shows the resulting graph densities after
the corresponding step in our search as described in
Section 3.2. Our search process starts with the re-
ordering graph. The segmentation into phrases in-
creases the graph densities by a factor of two. Doing
the phrase translation results in an increase of the
densities by a factor of twenty. Unsegmenting the
phrases, i.e. replacing the phrase edges with a se-
quence of word edges doubles the graph sizes. Ap-
plying the language model results in a significant in-
crease of the word graphs.

Another interesting aspect is that increasing the
window size by one roughly doubles the search
space.

5.3 Word Graph Error Rates

In Figure 1, we show the graph word error rate for
the IWSLT task as a function of the word graph den-
sity. This is done for different window sizes for
the reordering. We see that the curves start with a
single-best word error rate of about 50%. For the
monotone search, the graph word error rate goes
down to about 31%. Using local reordering during
the search, we can further decrease the graph word
error rate down to less than 17% for a window size
of 5. This is almost one third of the single-best word
error rate. If we aim at halving the single-best word
error rate, word graphs with a density of less than
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Table 3: IWSLT Chinese–English: Word graph densities for different window sizes and different stages of
the search process.

language level graph type window size
1 2 3 4 5

source word reordering 1.0 2.7 6.2 12.8 24.4
phrase segmented 2.0 5.0 12.1 26.8 55.6

target translated 40.8 99.3 229.0 479.9 932.8
word TM scores 78.6 184.6 419.2 869.1 1 670.4

+ LM scores 958.2 2874.2 7649.7 18 029.7 39 030.1
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Figure 2: NIST Chinese–English: Graph error rate
as a function of the word graph density for different
window sizes.

200 would already be sufficient.
In Figure 2, we show the same curves for the

NIST task. Here, the curves start from a single-best
word error rate of about 64%. Again, dependent on
the amount of reordering the graph word error rate
goes down to about 36% for the monotone search
and even down to 23% for the search with a window
of size 5. Again, the reduction of the graph word er-
ror rate compare to the single-best error rate is dra-
matic. For comparison we produced an N -best list
of size 10 000. The N -best list error rate (or oracle-
best WER) is still 50.8%. A word graph with a den-
sity of only 8 has about the same GWER.

In Figure 3, we show the graph position-
independent word error rate for the IWSLT task. As
this error criterion ignores the word order it is not
affected by reordering and we show only one curve.
We see that already for small word graph densities
the GPER drops significantly from about 42% down
to less than 14%.
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Figure 3: IWSLT Chinese–English: Graph position-
independent word error rate as a function of the
word graph density.

In Figure 4, we show the graph BLEU scores for
the IWSLT task. We observe that, similar to the
GPER, the GBLEU score increases significantly al-
ready for small word graph densities. We attribute
this to the fact that the BLEU score and especially
the PER are less affected by errors of the word or-
der than the WER. This also indicates that produc-
ing translations with correct word order, i.e. syntac-
tically well-formed sentences, is one of the major
problems of current statistical machine translation
systems.

6 Conclusion

We have described word graphs for statistical ma-
chine translation. The generation of word graphs
during the search process has been described in de-
tail. We have shown detailed statistics of the in-
dividual steps of the translation process and have
given insight in the experimental complexity of each
step. We have described an efficient and optimal
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Figure 4: IWSLT Chinese–English: Graph BLEU
score as a function of the word graph density.

pruning method for word graphs. Using these tech-
nique, we have generated compact word graphs for
two Chinese–English tasks. For the IWSLT task, the
graph error rate drops from about 50% for the single-
best hypotheses to 17% of the word graph. Even for
the NIST task, with its very large vocabulary and
long sentences, we were able to reduce the graph er-
ror rate significantly from about 64% down to 23%.
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Abstract

A new model for statistical translation is
presented. A novel feature of this model
is that the alignments it produces are hier-
archically arranged. The generative pro-
cess begins by splitting the input sen-
tence in two parts. Each of the parts is
translated by a recursive application of
the model and the resulting translation
are then concatenated. If the sentence
is small enough, a simpler model (in our
case IBM’s model 1) is applied.

The training of the model is explained. Fi-
nally, the model is evaluated using the cor-
pora from a large vocabulary shared task.

1 Introduction

Suppose you were to find an English translation for
a Spanish sentence. One possible approach is to as-
sume that every English sentence is a candidate but
that different English sentences have different prob-
abilities of being the correct translation. Then, the
translation task can be divided in two parts: define
an adequate probability distribution that answers to
the question “given this English sentence, which is
the probability that it is a good translation of that
Spanish sentence?”; and use that distribution in or-
der to find the most likely translation of your input
sentence.

∗Work partially supported by Bancaixa through the project
“Sistemas Inductivos, Estadı́sticos y Estructurales, para la Tra-
duccíon Autoḿatica (Siesta)”.

This approach is referred to as the statistical ap-
proach to machine translation. The usual approach
is to define an statistical model and train its parame-
ters from a training corpus consisting in pairs of sen-
tences that are known to be translation of each other.
Different models have been presented in the litera-
ture, see for instance (Brown et al., 1993; Och and
Ney, 2004; Vidal et al., 1993; Vogel et al., 1996).
Most of them rely on the concept of alignment: a
mapping from words or groups of words in a sen-
tence into words or groups in the other (in the case
of (Vidal et al., 1993) the mapping goes from rules
in a grammar for a language into rules of a grammar
for the other language). This concept of alignment
has been also used for tasks like authomatic vocab-
ulary derivation and corpus alignment (Dagan et al.,
1993).

A new statistical model is proposed in this pa-
per, which was initially introduced in (Vilar Torres,
1998). This model is designed so that the align-
ment between two sentences can be seen in an struc-
tured manner: each sentence is divided in two parts
and they are put in correspondence; then each of
those parts is similarly divided and related to its
translation. This way, the alignment can be seen as
a tree structure which aligns progressively smaller
segments of the sentences. This recursive procedure
gives its name to the model: MAR, which comes
from “Modelo de Alineamiento Recursivo”, which
is Spanish for “Recursive Alignment Model”.

The rest of the paper is structured as follows: af-
ter a comment on previous works, we introduce the
notation that we will use throughout the paper, then
we briefly explain the model 1 from IBM, next we
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introduce our model, then we explain the process
of parameter estimation, and how to use the model
to translate new test sentences. Finally, we present
some experiments and results, together with conclu-
sions.

2 Previous works

The initial formulation of the proposed model,
including the training procedures, was presented
in (Vilar Torres, 1998), along with preliminary ex-
periments in a small translation task which provided
encouraging results.

This model shares some similarities with the
stochastic inversion transduction grammars (SITG)
presented by Wu in (Wu, 1997). The main point
in common is the type of possible alignments con-
sidered in both models. Some of the properties
of these alignments are studied in (Zens and Ney,
2003). However, the parametrizations of SITGs and
the MAR are completely different. The generative
process of SITGs produces simultaneously the in-
put and output sentences and the parameters of the
model refer to the rules of the nonterminals. This
provides a symmetry to both input and output sen-
tences. In contrast, our model clearly distinguishes
the input and output sentences and the parameters
are based on observable properties of the strings
(their lengths and the words composing them). On
the other hand, the MAR idea of splitting the sen-
tences until a simple structure is found, also ap-
pears in the Divisive Clustering approach presented
in (Deng et al., 2004). Again, the main difference
lies in the probabilistic modeling of the alignments.
In Divisive Clustering a uniform distribution on the
alignments is assumed while MAR uses a explicit
parametrization.

3 Some notation

In the rest of the paper, we use the following nota-
tion. Sentences are taken as concatenations of sym-
bols (words) and represented using a letter and a
small bar, like inx̄. The individual words are de-
signed by the name of the sentence and a subindex
indicating the position, sōx = x1x2 . . . xn. The
length of a sentence is indicated by|x̄|. Segments
of a sentence are denoted byx̄ji = xi . . . xj . For the

substrings of the form̄x|x̄|i we use the notation̄x.
i.

Consistently,̄x denotes the input sentence andȳ
its translation and both are assumed to have at least
one word. The input and output vocabularies areX
andY, respectively. Finally, we assume that we are
presentend a setM for training our models. The ele-
ments of this set are pairs(x̄, ȳ) whereȳ is a possible
translation for̄x.

4 IBM’s model 1

IBM’s model 1 is the simplest of a hierarchy of five
statistical models introduced in (Brown et al., 1993).
Each model of the hierarchy can be seen as a refine-
ment of the previous ones. Although model 1, which
we study here, relies on the concept of alignment,
its formulation allows an interpretation of it as a re-
lationship between multisets of words (the order of
the words is irrelevant in the final formula).

A word of warning is in order here. The model we
are going to present has an important difference with
the original: we do not use the empty word. This is
a virtual word which does not belong to the vocabu-
lary of the task and that is added to the beginning of
each sentence in order to allow words in the output
that cannot be justified by the words in the input. We
have decided not to incorporate it because of the use
we are going to make of the model. As we will see,
model 1 is going to be used repeatedly over different
substrings of the input sentence in order to analyze
their contribution to the total translation. This means
that we would have an empty word in each of these
substrings. We have decided to avoid this “prolifer-
ation” of empty words. Future work may introduce
the concept in a more appropriate way.

The model 1 makes two assumptions. That a
stochastic dictionarycan be employed to model the
probability that wordy is the translation of wordx
and that all the words in the input sentence have the
same weight in producing a word in the output. This
leads to:

pI(ȳ | x̄) =
ε(|x̄|, |ȳ|)
|x̄||ȳ|

|ȳ|∏
j=1

|x̄|∑
i=1

t(yj | xi). (1)

Wheret is the stochastic dictionary andε represents
a table that relates the length of the alignment with
the length of the input sentence (we assume that
there is a finite range of possible lengths). This ex-
plicit relations between the lengths is not present in
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the original formulation of the model, but we prefer
to include it so that the probabilities are adequately
normalized.

Clearly, this model is not adequate to describe
complex translations in which complicated patterns
and word order changes may appear. Nevertheless,
this model can do a good job to describe the transla-
tion of short segments of texts. For example, it can
be adequate to model the translation of the Spanish
“gracias” into the English “thank you”.

5 A Recursive Alignment Model

To overcome that limitation of the model we will
take the following approach: if the sentence is com-
plex enough, it will be divided in two and the two
halves will be translated independently and joined
later; if the sentence is simple, the model 1 will be
used.

Let us formalize this intuition for the generative
model. We are given an input sentencex̄ and the first
decission is whether̄x is going to be translated by
IBM’s model 1 or it is complex enough to be trans-
lated by MAR. In the second case, three steps are
taken: a cut point of̄x is defined, each of the result-
ing parts are translated, and the corresponding trans-
lations are concatenated. For the translation of the
second step, the same process isrecursivelyapplied.
The concatenation of the third step can be done in
a “direct” way (the translation of the first part and
then the translation of the second) or in an “inverse”
way (the translation of the second part and then the
translation of the first). The aim of this choice is to
allow for the differences in word order between the
input and ouput languages.

So, we are proposing an alignment model in
which IBM’s model 1 will account for translation
of elementary segments or individual words while
translation of larger and more complex segments or
whole sentences will rely on a hierarchical align-
ment pattern in which model 1 alignments will be
on the lowest level of the hierarchy.

Following this discussion, the model can be for-
mally described through a series of four random ex-
periments:

• The first is the selection of the model. It has
two possible outcomes: IBM and MAR, with
obvious meanings.

• The second is the choice ofb, a cut point ofx̄.
The segment̄xb1 will be used to generate one of
the parts of the translation, the segmentx̄.

b+1

will generate the other. It takes values from1
to |x̄| − 1.

• The third is the decision about the order of the
concatenation. It has two possible outcomes:
D (for direct) andI (for inverse).

• The fourth is the translation of each of the
halves ofx̄. They take values inY+.

The translation probability can be approximated
as follows:

pT (ȳ | x̄) = Pr(M = IBM | x̄)pI(ȳ | x̄)
+ Pr(M = MAR | x̄)pM (ȳ | x̄).

The value of pI(ȳ | x̄) corresponds to IBM’s
model 1 (Equation 1). To derivepM (ȳ | x̄), we ob-
serve that:

pM (ȳ | x̄) =
|x̄|−1∑
b=1

Pr(b | x̄)∑
d∈{D,I}

Pr(d | b, x̄)

∑
ȳ1∈Y+

Pr(ȳ1 | b, d, x̄)

∑
ȳ2∈Y+

Pr(ȳ2 | b, d, x̄, ȳ1) Pr(ȳ | d, b, x̄, ȳ1, ȳ2).

Note that the probability that̄y is generated from
a pair(ȳ1, ȳ2) is 0 if ȳ 6= ȳ1ȳ2 and1 if ȳ = ȳ1ȳ2, so
the last two lines can be rewritten as:∑
ȳ1∈Y+

Pr(ȳ1 | b, d, x̄)

∑
ȳ2∈Y+

Pr(ȳ2 | b, d, x̄, ȳ1) Pr(ȳ | b, d, x̄, ȳ1, ȳ2)

=
∑

ȳ1,ȳ2∈Y
+

ȳ=ȳ1ȳ2

Pr(ȳ1 | b, d, x̄) Pr(ȳ2 | b, d, x̄, ȳ1)

=
∑

ȳ1 ∈ pref(ȳ)− ȳ

Pr(ȳ1 | b, d, x̄) Pr(ȳ−1
1 ȳ | b, d, x̄, ȳ1)

=
|ȳ|−1∑
c=1

Pr(ȳc1 | b, d, x̄) Pr(ȳ.
c+1 | b, d, x̄, ȳc1),
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wherepref(ȳ) is the set ofprefixesof ȳ. And finally:

pM (ȳ | x̄) =
|x̄|−1∑
b=1

Pr(b | x̄)∑
d∈{D,I}

Pr(d | b, x̄)

|ȳ|−1∑
c=1

Pr(ȳc1 | b, d, x̄) Pr(ȳ.
c+1 | b, d, x̄, ȳc1).

(2)

The number of parameters of this model is very
large, so it is necessary to introduce some simplifi-
cations in it. The first one relates to the decision of
thetranslation model: we assume that it can be done
just on the basis of the length of the input sentence.
That is, we cat set up two tables,MI andMM , so
that

Pr(M = IBM | x̄) ≈MI(|x̄|),
Pr(M = MAR | x̄) ≈MM (|x̄|).

Obviously, for anȳx ∈ X+, we will haveMI(|x̄|)+
MM (|x̄|) = 1. On the other hand, since it is not
possible to break a one word sentence, we define
MI(1) = 1. This restriction comes in the line men-
tioned before: the translation of longer sentences
will be structured whereas shorter ones can be trans-
lated directly.

In order to decide thecut point, we will assume
that the probability of cutting the input sentence at
a given positionb is most influenced by the words
around it:xb andxb+1. We use a tableB such that:

Pr(b | x̄) ≈ B(xb, xb+1)∑|x̄|−1
i=1 B(xi, xi+1)

.

This can be interpreted as having a weight for each
pair of words and normalizing these weights in each
sentence in order to obtaing a proper probability dis-
tribution.

Two more tables,DD andDI , are used to store the
probabilities that thealignment be direct or inverse.
As before, we assume that the decission can be made
on the basis of the symbols around the cut point:

Pr(d = D | b, x̄) = DD(xb, xb+1),
Pr(d = I | b, x̄) = DI(xb, xb+1).

Again, we haveDD(xb, xb+1) + DI(xb, xb+1) = 1
for every pair of words(xb, xb+1).

Finally, a probability must be assigned to the
translation of the two halves. Assuming that they are
independent we can apply the model in a recursive
manner:

Pr(ȳc1 | b, d, x̄) ≈

{
pT (ȳc1 | x̄b1) if d = D,

pT (ȳc1 | x̄.
b+1) if d = I,

Pr(ȳ.
c+1 | b, d, x̄, ȳc1) ≈

{
pT (ȳ.

c+1 | x̄.
b+1) if d = D,

pT (ȳ.
c+1 | x̄b1) if d = I.

Finally, we can rewrite (2) as:

pM (ȳ | x̄) =
|x̄|−1∑
b=1

B(xb, xb+1)∑|x̄|−1
i=1 B(xi, xi+1)

·

(
DD(xb, xb+1)

|ȳ|−1∑
c=1

pT (ȳc1 | x̄b1)pT (ȳ.
c+1 | x̄.

b+1)

+DI(xb, xb+1)
|ȳ|−1∑
c=1

pT (ȳ.
c+1 | x̄b1)pT (ȳc1 | x̄.

b+1)

)
.

The final form of the complete model is then:

pT (ȳ | x̄) =
MI(|x̄|)pI(ȳ | x̄)

+MM (|x̄|)
|x̄|−1∑
b=1

B(xb, xb+1)∑|x̄|−1
i=1 B(xi, xi+1)

·

(
DD(xb, xb+1)

|ȳ|−1∑
c=1

pT (ȳc1 | x̄b1)pT (ȳ.
c+1 | x̄.

b+1)

+DI(xb, xb+1)
|ȳ|−1∑
c=1

pT (ȳ.
c+1 | x̄b1)pT (ȳc1 | x̄.

b+1)

)
.

(3)

6 Parameter estimation

Once the model is defined, it is necessary to find
a way of estimating its parameters given a training
corpusM. We will use maximun likelihood estima-
tion. In our case, the likelihood of the sample corpus
is:

V =
∏

(x̄,ȳ)∈M

pT (ȳ | x̄).
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In order to maximizeV , initial values are given
to the parameters and they are reestimated using re-
peatedly Baum-Eagon’s (Baum and Eagon, 1967)
and Gopalakrishnan’s (Gopalakrishnan et al., 1991)
inequalities. LetP be a parameter of the model (ex-
cept for those inB) and letF(P ) be its “family” (i.e.
the set of parameters such that

∑
Q∈F(P )Q = 1).

Then, a new value ofP can be computed as follows:

N (P ) =
P
∂ V

∂ P∑
Q∈F(P )

Q
∂ V

∂ Q

=

∑
(x̄,ȳ)∈M

P

pT (ȳ | x̄)
∂ pT (ȳ | x̄)

∂ P∑
Q∈F(P )

∑
(x̄,ȳ)∈M

Q

pT (ȳ | x̄)
∂ pT (ȳ | x̄)

∂ Q

=
C(P )∑

Q∈F(P )

C(Q)
,

(4)

where

C(P ) =
∑

(x̄,ȳ)∈M

P

pT (ȳ | x̄)
∂ pT (ȳ | x̄)

∂ P
, (5)

are the “counts” of parameterP . This is correct as
long asV is a polynomial inP . However, we have a
problem forB sinceV is a rational function of these
parameters. We can solve it by assuming, without
lose of generality, that

∑
x1,x2∈X B(x1, x2) = 1.

Then Gopalakrishnan’s inequality can be applied
similarly and we get:

N (P ) =
C + C(P )∑

Q∈F(P )

C + C(Q)
, (6)

whereC is an adequate constant. Now it is easy
to design a reestimation algorithm. The algorithm
gives arbitrary initial values to the parameters (typi-
cally those corresponding to uniform probabilities),
computes the counts of the parameters for the corpus
and, using either (4) or (6), gets new values for the
parameters. This cycle is repeated until a stopping
criterion (in our case a prefixed number of iterations)
is met. This algorithm can be seen in Figure 1

7 Some notes on efficiency

Estimating the parameters as discussed above entails
high computational costs: computingpT (ȳ | x̄) re-
quiresO(mn) arithmetic operations involving the
values ofpT (ȳji | x̄lk) for every possible value of
i, j, k andl, which areO(m2n2). This results in a
global cost ofO(m3n3). On the other hand, com-
puting ∂ pT

∂ P costs as much as computingpT . So it is
interesting to keep the number of computed deriva-
tives low.

7.1 Reduction of the parameters to train

In the experiments we have followed some heuristics
in order not to reestimate certain parameters:

• The values of MI —and, consequently,
of MM— for lengths higher than a threshold
are assumed to be0 and therefore there is no
need to estimate them.

• As a consequence, the values ofε for lengths
above the same threshold, need not be reesti-
mated.

• The values oft for pairs of words with counts
under a certain threshold are not reestimated.

Furthermore, during the computation of counts, the
recursion is cut on those substring pairs where the
value of the probability for the translation is very
small.

7.2 Efficient computation of model 1

Other source of optimization is the realization that
for computingpT (ȳ | x̄), it is necessary to com-
pute the value ofpI for each possible pair(x̄ieib, ȳ

oe
ob)

(whereib, ie, ob andoe stand forinput begin, in-
put end, output beginandoutput end, respectively).
Fortunately, it is possible to accelerate this compu-
tations. First, define:

I(ib, ie, ob, oe) =
pI(x̄ieib, ȳ

oe
ob)

ε(ie− ib+ 1, oe− ob+ 1)

=
1

(ie− ib+ 1)oe−ob+1

oe∏
j=ob

ie∑
i=ib

t(ȳj | x̄i).

Now let

S(ib, ie, j) =
ie∑
i=ib

t(ȳj | x̄i).
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Algorithm Maximum likelihood estimation
give initial values to the parameters;
repeat

initialize the counts to0;
for each (x̄, ȳ) ∈M do

computepT (ȳ | x̄);
for eachparameterP involved in the alignment of(x̄, ȳ) do

CP := CP +
P

pT (ȳ | x̄)
∂ pT (ȳ | x̄)

∂ P
;

endfor
endfor
for eachparameterP do

reestimateP using (4) or (6);
endfor

until the stopping criterion is met;
End Maximum likelihood estimation

Figure 1: Algorithm for maximum likelihood estimation of the parameters of MAR

This leads to

I(ib, ie, ob, oe) = S(ib, ie, ob),

if ob = oe, and to

I(ib, ie, ob, oe) =
I(ib, ie, ob, oe− 1)S(ib, ie, ob)

(ie− ib+ 1)
,

if ob 6= oe.
So we can compute all values ofI with the algo-

rithm in Figure 2.

7.3 Splitting the corpora

Another way of reducing the costs of training has
been the use of a heuristic to split long sentences
into smaller parts with a length less thanl words.

Suppose we are to split sentencesx̄ and ȳ. We
begin by aligning each word in̄y to a word in x̄.
Then, a score and a translation is assigned to each
substrinḡxji with a length belowl. The translation is
produced by looking for the substring ofȳ which has
a length belowl and which has the largest number
of words aligned to positions betweeni andj. The
pair so obtained is given a score equal to sum of: (a)
the square of the length of̄xji ; (b) the square of the
number of words in the output aligned to the input;
and (c) minus ten times the sum of the square of the
number of words aligned to a nonempty position out
of x̄ji and the number of words outside the segment
chosen that are aligned tōxji .

After the segments of̄x are so scored, the partition
of x̄ that maximizes the sum of scores is computed
by dynamic programming.

8 Translating the test sentences

The MAR model can be used to obtain adequate
bilingual templates which can be used to translate
new test sentences using an appropriate template-
based translation system. Here we have adopted the
pharaoh program (Koehn, 2004).

8.1 Finding the templates

The parameters of the MAR were trained using the
algorithm above: first ten IBM model 1 iterations
were used for giving initial values to the dictionary
probabilities and then five more iterations for re-
training the dictionary together with the rest of the
parameters.

The alignment of a pair has the form of a tree sim-
ilar to the one in Figure 3 (this is one of the sen-
tences from the Spanish-English part of the training
corpus). Each interior node has two children corre-
sponding to the translation of the two parts in which
the input sentence is divided. The leaves of the tree
correspond to those segments that were translated by
model 1. The templates generated were those de-
fined by the leaves. Further templates were obtained
by interpreting each pair of words in the dictionary
as a template.
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Algorithm all IBM
for ob := 1 to |ȳ| do

for oe := ob to |ȳ| do
for ib := 1 to |x̄| do

S := 0;
for ie := ib to |x̄| do

S := S + t(yoe | xie);

I(ib, ie, ob, oe) :=

{
S/(ie− ib+ 1) if ob = oe,

I(ib, ie, ob, oe− 1)× S/(ie− ib+ 1) otherwise;
End all IBM

Figure 2: Efficient computation of different values of IBM’s model 1.

Equipos a presión transportables

Transportable pressure equipment

Equipos

equipment

a presión transportables

Transportable pressure

a presión

pressure

transportables

Transportable

Figure 3: A sample alignment represented as a tree.

Each template was assigned four weights1 in or-
der to use thepharaoh program. For the templates
obtained from the alignments, the first weight was
the probability assigned to it by MAR, the second
weight was the count for the template, i.e., the num-
ber of times that template was found in the corpus,
the third weight was the normalized count, i.e., the
number of times the template appeared in the corpus
divided by the number of times the input part was
present in the corpus, finally, the fourth weight was
a small constant (10−30). The intention of this last
weight was to ease the combination with the tem-
plates from the dictionary. For these, the first three
weights were assigned the same small constant and
the fourth was the probability of the translation of
the pair obtained from the stochastic dictionary. This
weighting schema allowed to separate the influence
of the dictionary in smoothing the templates.

1They should have been probabilities, but in two of the cases
there was no normalization and in one they were even greater
than one!

Table 1: Statistics of the training corpora. The
languages are German (De), English (En), Span-
ish (Es), Finnish (Fi) and French (Fr).

Languages Sentences Words (input/output)

De-En 751 088 15 257 871 / 16 052 702
Es-En 730 740 15 725 136 / 15 222 505
Fi-En 716 960 11 318 863 / 15 493 334
Fr-En 688 031 15 599 184 / 13 808 505

9 Experiments

In order to test the model, we have decided to par-
ticipate in the shared task for this workshop.

9.1 The task

The aim of the task was to translate a set of 2,000
sentences from German, Spanish, Finnish and
French into English. Those sentences were ex-
tracted from the Europarl corpus (Koehn, Unpub-
lished). As training material, four different corpora
were provided, one for each language pair, compris-
ing around700 000 sentence pairs each. Some de-
tails about these corpora can be seen in Table 1. An
automatic alignment for each corpus was also pro-
vided.

The original sentence pairs were splitted using the
techniques discussed in section 7.3. The total num-
ber of sentences after the split is presented in Ta-
ble 2. Two different alignments were used: (a) the
one provided in the definition of the task and (b)
one obtained using GIZA++ (Och and Ney, 2003)
to train an IBM’s model 4. As it can be seen, the
number of parts is very similar in both cases. The
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Table 2: Number of training pairs after splitting to
a maximum length of ten. “Provided” refers to the
alignment provided in the task, “GIZA++” to those
obtained with GIZA++.

Sentence pairs
Languages Provided GIZA++

De-En 2 351 121 2 282 316
Es-En 2 160 039 2 137 301
Fi-En 2 099 634 2 017 130
Fr-En 2 112 931 2 080 200

Table 3: Number of templates for each language
pair: “Alignment” shows the number of templates
derived from the alignments; “dictionary”, those ob-
tained from the dictionary; and “total” is the sum.

(a) Using the alignments provided with the task.

Lang. Alignment Dictionary Total

De-En 2 660 745 1 840 582 4 501 327
Es-En 2 241 344 1 385 086 3 626 430
Fi-En 2 830 433 2 852 583 5 683 016
Fr-En 2 178 890 1 222 266 3 401 156

(b) Using GIZA++.

Lang. Alignment Dictionary Total

De-En 2 672 079 1 796 887 4 468 966
Es-En 2 220 533 1 350 526 3 571 059
Fi-En 2 823 769 2 769 929 5 593 698
Fr-En 2 140 041 1 181 990 3 322 031

number of pairs after splitting is roughly three times
the original.

Templates were extracted as described in sec-
tion 8.1. The number of templates we obtained can
be seen in Table 3. Again, the influence of the
type of alignment was small. Except for Finnish,
the number of dictionary templates was roughly two
thirds of the templates extracted from the align-
ments.

9.2 Obtaining the translations

Once the templates were obtained, the development
corpora were used to search for adequate values of

Table 4: Best weights for each language pair. The
columns are for the probability given by the model,
the counts of the templates, the normalized counts
and the weight given to the dictionary.

(a) Using the alignments provided with the task.

Languages Model Count Norm Dict

De-En 0.0 3.0 0.0 0.3
Es-En 0.0 2.9 0.0 0.4
Fi-En 0.0 7.0 0.0 0.0
Fr-En 0.0 7.0 1.0 1.0

(b) Using GIZA++.

Languages Model Count Norm Dict

De-En 0.0 3.0 0.0 0.0
Es-En 0.0 2.9 0.0 0.4
Fi-En 0.0 3.0 1.5 0.0
Fr-En 0.0 3.0 1.0 0.4

Table 5: BLEU scores of the translations.

BLEU
Languages Provided GIZA++

De-En 18.08 18.89
Es-En 21.65 21.48
Fi-En 13.31 13.79
Fr-En 21.25 19.86

the weights thatpharaoh uses for each template
(these are the weights passed to optionweight-t ,
the other weights were not changed as an initial ex-
ploration seemed to indicate that they had little im-
pact). As expected, the best weights differed be-
tween language pairs. The values can be seen in
table 4.

It is interesting to note that the probabilities as-
signed by the model to the templates seemed to
be better not taken into account. The most impor-
tant feature was the counts of the templates, which
sometimes were helped by the use of the dictionary,
although that effect was small. Normalization of
counts also had little impact.
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10 Results and discussion

The results over the test sets can be seen in Table 5.
It can be seen that, except for French, the influence
of the initial alignment is very small. Also, the best
results are obtained for Spanish and French, which
are more similar to English that German or Finnish.

There are still many open questions that deserve
more experimentation. The first is the influence of
the split of the original corpora. Although the simi-
larity of results seem to indicate that it has little in-
fluence, this has to be tested. Two more relevant as-
pects are whether the weighting schema is the best
for the decoder. In particular, it is surprising that the
normalization of counts had so little effect.

Finally, the average number of words per template
is below two, which probably is too low. It is inter-
esting to find alternate ways of obtaining the tem-
plates, for instance using internal nodes up to a given
height or covering portions of the sentences up to a
predefined number of words.

11 Conclusions

A new translation model has been presented. This
model produces translations in a recursive way: the
input sentence is divided in two parts, each is trans-
lated using the same procedure recursively and the
translations are concatenated. The model has been
used for finding the templates in a large vocabulary
translation task. This involved using several heuris-
tics to improve training time, including a method for
splitting the input before training the models. Fi-
nally, the influence of using a stochastic dictionary
together with the templates as a means of smoothing
has been explored.
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Abstract

Decision rules that explicitly account for
non-probabilistic evaluation metrics in
machine translation typically require spe-
cial training, often to estimate parame-
ters in exponential models that govern the
search space and the selection of candi-
date translations. While the traditional
Maximum A Posteriori (MAP) decision
rule can be optimized as a piecewise lin-
ear function in a greedy search of the pa-
rameter space, the Minimum Bayes Risk
(MBR) decision rule is not well suited to
this technique, a condition that makes past
results difficult to compare. We present a
novel training approach for non-tractable
decision rules, allowing us to compare and
evaluate these and other decision rules on
a large scale translation task, taking ad-
vantage of the high dimensional parame-
ter space available to the phrase based
Pharaoh decoder. This comparison is
timely, and important, as decoders evolve
to represent more complex search space
decisions and are evaluated against in-
novative evaluation metrics of translation
quality.

1 Introduction

State of the art statistical machine translation takes
advantage of exponential models to incorporate a
large set of potentially overlapping features to se-
lect translations from a set of potential candidates.

As discussed in (Och, 2003), the direct translation
model represents the probability of target sentence
’English’ e = e1 . . . eI being the translation for a
source sentence ’French’f = f1 . . . fJ through an
exponential, or log-linearmodel

pλ(e|f) =
exp(

∑m
k=1 λk ∗ hk(e, f))∑

e′∈E exp(
∑m

k=1 λk ∗ hk(e′, f))
(1)

where e is a single candidate translation forf
from the set of all English translationsE, λ is the
parameter vector for the model, and eachhk is a
feature function ofe andf . In practice, we restrict
E to the setGen(f) which is a set of highly likely
translations discovered by a decoder (Vogel et al.,
2003). Selecting a translation from this model under
the Maximum A Posteriori (MAP) criteria yields

translλ(f) = arg max
e

pλ(e|f) . (2)

This decision rule is optimal under the zero-
one loss function, minimizing the Sentence Error
Rate (Mangu et al., 2000). Using the log-linear
form to modelpλ(e|f) gives us the flexibility to
introduce overlapping features that can represent
global context while decoding (searching the space
of candidate translations) and rescoring (ranking a
set of candidate translations before performing the
arg max operation), albeit at the cost of the tradi-
tional source-channel generative model of transla-
tion proposed in (Brown et al., 1993).

A significant impact of this paradigm shift, how-
ever, has been the movement to leverage the flex-
ibility of the exponential model to maximize per-
formance with respect to automatic evaluation met-
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rics. Each evaluation metric considers different as-
pects of translation quality, both at the sentence and
corpus level, often achieving high correlation to hu-
man evaluation (Doddington, 2002). It is clear that
the decision rule stated in (1) does not reflect the
choice of evaluation metric, and substantial work
has been done to correct this mismatch in crite-
ria. Approaches include integrating the metric into
the decision rule, and learningλ to optimize the
performance of the decision rule. In this paper
we will compare and evaluate several aspects of
these techniques, focusing on Minimum Error Rate
(MER) training (Och, 2003) and Minimum Bayes
Risk (MBR) decision rules, within a novel training
environment that isolates the impact of each compo-
nent of these methods.

2 Addressing Evaluation Metrics

We now describe competing strategies to address the
problem of modeling the evaluation metric within
the decoding and rescoring process, and introduce
our contribution towards training non-tractable error
surfaces. The methods discussed below make use
of Gen(f), the approximation to the complete can-
didate translation spaceE, referred to as ann-best
list. Details regardingn-best listgeneration from
decoder output can be found in (Ueffing et al., 2002).

2.1 Minimum Error Rate Training

The predominant approach to reconciling the mis-
match between the MAP decision rule and the eval-
uation metric has been to train the parametersλ of
the exponential model to correlate theMAP choice
with the maximum score as indicated by the evalu-
ation metric on a development set with known ref-
erences (Och, 2003). We differentiate between the
decision rule

translλ(f) = arg max
e∈Gen(f)

pλ(e|f) (3a)

and the training criterion

λ̂ = arg min
λ

Loss(translλ(~f),~r) (3b)

where theLoss function returns an evaluation re-
sult quantifying the difference between the English
candidate translationtranslλ(f) and its correspond-
ing referencer for a source sentencef . We indicate

that this loss function is operating on a sequence of
sentences with the vector notation. To avoid overfit-
ting, and since MT researchers are generally blessed
with an abundance of data, these sentences are from
a separate development set.

The optimization problem (3b) is hard since the
arg max of (3a) causes the error surface to change
in steps inRm, precluding the use of gradient based
optimization methods. Smoothed error counts can
be used to approximate thearg max operator, but the
resulting function still contains local minima. Grid-
based line search approaches like Powell’s algorithm
could be applied but we can expect difficultly when
choosing the appropriate grid size and starting pa-
rameters. In the following, we summarize the opti-
mization algorithm for the unsmoothed error counts
presented in (Och, 2003) and the implementation de-
tailed in (Venugopal and Vogel, 2005).

• RegardLoss(translλ(~f),~r) as defined in (3b)
as a function of the parameter vectorλ to
optimize and take thearg max to compute
translλ(~f) over the translationsGen(f) accord-
ing to then-bestlist generated with an initial
estimateλ0.

• The error surface defined byLoss (as a func-
tion of λ) is piecewise linear with respect to a
single model parameterλk, hence we can deter-
mine exactly where it would be useful (values
that change the result of thearg max) to evalu-
ateλk for a given sentence using a simple line
intersection method.

• Merge the list of useful evaluation points
for λk and evaluate the corpus level
Loss(translλ(~f),~r) at each one.

• Select the model parameter that represents the
lowestLoss ask varies, setλk and consider the
parameterλj for another dimensionj.

This training algorithm, referred to as minimum er-
ror rate (MER) training, is a greedy search in each
dimension ofλ, made efficient by realizing that
within each dimension, we can compute the points
at which changes inλ actually have an impact on
Loss. The appropriate considerations for termina-
tion and initial starting points relevant to any greedy
search procedure must be accounted for. From the
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nature of the training procedure and theMAP de-
cision rule, we can expect that the parameters se-
lected by MER training will strongly favor a few
translations in then-bestlist, namely for each source
sentence the one resulting in the best score, moving
most of the probability mass towards the translation
that it believes should be selected. This is due to the
decision rule, rather than the training procedure, as
we will see when we consider alternative decision
rules.

2.2 The Minimum Bayes Risk Decision Rule

The Minimum Bayes Risk Decision Rule as pro-
posed by (Mangu et al., 2000) for the Word Error
Rate Metric in speech recognition, and (Kumar and
Byrne, 2004) when applied to translation, changes
the decision rule in (2) to select the translation that
has the lowest expected lossE[Loss(e, r)], which
can be estimated by considering a weightedLoss
betweene and the elements of then-best list, the
approximation toE, as described in (Mangu et al.,
2000). The resulting decision rule is:

translλ(f) = arg min
e∈Gen(f)

∑
e′∈Gen(f)

Loss(e, e′)pλ(e′|f) .

(4)
(Kumar and Byrne, 2004) explicitly consider select-
ing both e anda, an alignment between the Eng-
lish and French sentences. Under a phrase based
translation model (Koehn et al., 2003; Marcu and
Wong, 2002), this distinction is important and will
be discussed in more detail. The representation of
the evaluation metric or theLoss function is in the
decision rule, rather than in the training criterion for
the exponential model. This criterion is hard to op-
timize for the same reason as the criterion in (3b):
the objective function is not continuous inλ. To
make things worse, it is more expensive to evalu-
ate the function at a givenλ, since the decision rule
involves a sum over all translations.

2.3 MBR and the Exponential Model

Previous work has reported the success of the MBR
decision rule with fixed parameters relating indepen-
dent underlying models, typically including only the
language model and the translation model as fea-
tures in the exponential model.

We extend the MBR approach by developing a

training method to optimize the parametersλ in the
exponential model as an explicit form for the condi-
tional distribution in equation (1). The training task
under the MBR criterion is

λ∗ = arg min
λ

Loss(translλ(~f),~r) (5a)

where

translλ(f) = arg min
e∈Gen(f)

∑
e′∈Gen(f)

Loss(e, e′)pλ(e′|f) .

(5b)
We begin with several observations about this opti-
mization criterion.

• The MAP optimalλ∗ are not the optimal para-
meters for this training criterion.

• We can expect the error surface of the MBR
training criterion to contain larger sections of
similar altitude, since the decision rule empha-
sizes consensus.

• The piecewise linearity observation made in
(Papineni et al., 2002) is no longer applicable
since we cannot move thelog operation into the
expected value.

3 Score Sampling

Motivated by the challenges that the MBR training
criterion presents, we present a training method that
is based on the assumption that the error surface is
locally non-smooth but consists of local regions of
similar Loss values. We would like to focus the
search within regions of the parameter space that re-
sult in low Loss values, simulating the effect that
the MER training process achieves when it deter-
mines the merged error boundaries across a set of
sentences.

Let Score(λ) be some function of
Loss(translλ(~f),~r) that is greater or equal
zero, decreases monotonically withLoss, and for
which

∫
(Score(λ) − minλ′ Score(λ′))dλ is finite;

e.g., 1 − Loss(translλ(~f),~r) for the word-error
rate (WER) loss and a bounded parameter space.
While sampling parameter vectorsλ and estimating
Loss in these points, we will constantly refine
our estimate of the error surface and thereby of
the Score function. The main idea in our score
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sampling algorithm is to make use of thisScore
estimate by constructing a probability distribution
over the parameter space that depends on theScore
estimate in the current iteration stepi and sample
the parameter vectorλi+1 for the next iteration from

that distribution. More precisely, let̂Sc
(i)

be the
estimate ofScore in iterationi (we will explain how
to obtain this estimate below). Then the probability
distribution from which we sample the parameter
vector to test in the next iteration is given by:

p(λ) =
Ŝc

(i)
(λ) − minλ′ Ŝc

(i)
(λ′)∫

(Ŝc
(i)

(λ) − minλ′ Ŝc
(i)

(λ′)) dλ
. (6)

This distribution produces a sequenceλ1, . . . , λn of
parameter vectors that are more concentrated in ar-
eas that result in a highScore. We can select the
value from this sequence that generates the highest
Score, just as in the MER training process.

The exact method of obtaining theScore estimate
Ŝc is crucial: If we are not careful enough and guess
too low values of̂Sc(λ) for parameter regions that
are still unknown to us, the resulting sampling dis-
tribution p might be zero in those regions and thus
potentially optimal parameters might never be sam-
pled. Rather than aiming for a consistent estimator
of Score (i.e., an estimator that converges toScore
when the sample size goes to infinity), we designŜc
with regard to yielding a suitable sampling distribu-
tion p.

Assume that the parameter space is bounded such
that mink ≤ λk ≤ maxk for each dimensionk,
We then define a set of pivotsP, forming a grid of
points inRm that are evenly spaced betweenmink

andmaxk for each dimensionk. Each pivot repre-
sents a region of the parameter space where we ex-
pect generally consistent values ofScore. We do not
restrict the values ofλm to be at these pivot points
as a grid search would do, rather we treat the pivots
as landmarks within the search space.

We approximate the distributionp(λ) with the
discrete distributionp(λ ∈ P), leaving the problem
of estimating|P| parameters. Initially, we setp to
be uniform, i.e.,p(0)(λ) = 1/|P|. For subsequent
iterations, we now need an estimate ofScore(λ) for
each pivotλ ∈ P in the discrete version of equation
(6) to obtain the new sampling distributionp. Each
iterationi proceeds as follows.

• Sample λ̃i from the discrete distribution
p(i−1)(λ ∈ P) obtained by the previous it-
eration.

• Sample the new parameter vectorλi by choos-

ing for eachk ∈ {1, . . . ,m}, λi
k := λ̃i

k + εk,
whereεk is sampled uniformly from the inter-
val (−dk/2, dk/2) and dk is the distance be-
tween neighboring pivot points along dimen-
sion k. Thus, λi is sampled from a region
around the sampled pivot.

• EvaluateScore(λi) and distribute this score to

obtain new estimateŝSc
(i)

(λ) for all pivotsλ ∈
P as described below.

• Use the updated estimateŝSc
(i)

to generate the
sampling distributionp(i) for the next iteration
according to

p(i)(λ) =
Ŝc

(i)
(λ) − minλ′ Ŝc

(i)
(λ′)∑

λ∈P(Ŝc
(i)

(λ) − minλ′ Ŝc
(i)

(λ′))
.

The scoreScore(λi) of the currently evaluated pa-
rameter vector does not only influence the score es-
timate at the pivot point of the respective region, but
the estimates at all pivot points. The closest piv-
ots are influenced most strongly. More precisely, for

each pivotλ ∈ P, Ŝc
(i)

(λ) is a weighted average
of Score(λ1), . . . , Score(λi), where the weights
w(i)(λ) are chosen according to

w(i)(λ) = infl(i)(λ) × corr(i)(λ) with

infl(i)(λ) = mvnpdf(λ, λi,Σ) and

corr(i)(λ) = 1/p(i−1)(λ) .

Here,mvnpdf(x, µ,Σ) denotes them-dimensional
multivariate-normal probability density function
with meanµ and covariance matrixΣ, evaluated
at point x. We chose the covariance matrixΣ =
diag(d2

1, . . . , d
2
m), where againdk is the distance be-

tween neighboring grid points along dimensionk.
The terminfl(i)(λ) quantifies the influence of the
evaluated pointλi on the pivotλ, while corr(i)(λ)
is a correction term for the bias introduced by hav-
ing sampledλi from p(i−1).
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Smoothing uncertain regions In the beginning of
the optimization process, there will be pivot regions
that have not yet been sampled from and for which
not even close-by regions have been sampled yet.
This will be reflected in the low sum of influence
termsinfl(1)(λ) + · · · + infl(i)(λ) of the respective
pivot pointsλ. It is therefore advisable to discount
some probability mass fromp(i) and distribute it
over pivots with low influence sums (reflecting low
confidence in the respective score estimates) accord-
ing to some smoothing procedure.

4 N-Best lists in Phrase Based Decoding

The methods described above make extensive use of
n-bestlists to approximate the search space of can-
didate translations. In phrase based decoding we of-
ten interpret the MAP decision rule to select the top
scoring path in the translation lattice. Selecting a
particular path means in fact selecting the pair〈e, s〉,
wheres is a segmentation of the the source sentence
f into phrases and alignments onto their translations
in e. Kumar and Byrne (2004) represent this deci-
sion explicitly, since theLoss metrics considered in
their work evaluate alignment information as well as
lexical (word) level output. When considering lexi-
cal scores as we do here, the decision rule minimiz-
ing 0/1 loss actually needs to take the sum over all
potential segmentations that can generate the same
word sequence. In practice, we only consider the
high probability segmentation decisions, namely the
ones that were found in then-bestlist. This gives
the0/1 losscriterion shown below.

translλ(f) = arg max
e

∑
s

pλ(e, s|f) (7)

The 0/1 losscriterion favors translations that are
supported by several segmentation decisions. In the
context of phrase-based translations, this is a useful
criterion, since a given lexical target word sequence
can be correctly segmented in several different ways,
all of which would be scored equally by an evalua-
tion metric that only considers the word sequence.

5 Experimental Framework

Our goal is to evaluate the impact of the three de-
cision rules discussed above on a large scale trans-
lation task that takes advantage of multidimensional

features in the exponential model. In this section
we describe the experimental framework used in this
evaluation.

5.1 Data Sets and Resources

We perform our analysis on the data provided by the
2005 ACL Workshop in Exploiting Parallel Texts for
Statistical Machine Translation, working with the
French-English Europarl corpus. This corpus con-
sists of 688031 sentence pairs, with approximately
156 million words on the French side, and 138 mil-
lion words on the English side. We use the data as
provided by the workshop and run lower casing as
our only preprocessing step. We use the 15.5 mil-
lion entry phrase translation table as provided for the
shared workshop task for the French-English data
set. Each translation pair has a set of 5 associated
phrase translation scores that represent the maxi-
mum likelihood estimate of the phrase as well as in-
ternal alignment probabilities. We also use the Eng-
lish language model as provided for the shared task.
Since each of these decision rules has its respective
training process, we split the workshop test set of
2000 sentences into a development and test set using
random splitting. We tried two decoders for trans-
lating these sets. The first system is the Pharaoh de-
coder provided by (Koehn et al., 2003) for the shared
data task. The Pharaoh decoder has support for mul-
tiple translation and language model scores as well
as simple phrase distortion and word length models.
The pruning and distortion limit parameters remain
the same as in the provided initialization scripts,
i.e., DistortionLimit = 4, BeamThreshold =
0.1, Stack = 100. For further information on
these parameter settings, confer (Koehn et al., 2003).
Pharaoh is interesting for our optimization task be-
cause its eight different models lead to a search
space with seven free parameters. Here, a princi-
pled optimization procedure is crucial. The second
decoder we tried is the CMU Statistical Translation
System (Vogel et al., 2003) augmented with the four
translation models provided by the Pharaoh system,
in the following called CMU-Pharaoh. This system
also leads to a search space with seven free parame-
ters.
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5.2 N-Best lists

As mentioned earlier, the model parametersλ play
a large role in the search space explored by a prun-
ing beam search decoder. These parameters affect
the histogram and beam pruning as well as the fu-
ture cost estimation used in the Pharaoh and CMU
decoders. The initial parameter file for Pharaoh pro-
vided by the workshop provided a very poor esti-
mate ofλ, resulting in an n-best list of limited po-
tential. To account for this condition, we ran Min-
imum Error Rate training on the development data
to determine scaling factors that can generate an-
best list with high quality translations. We realize
that this step biases then-bestlist towards the MAP
criteria, since its parameters will likely cause more
aggressive pruning. However, since we have cho-
sen a large N=1000, and retrain the MBR, MAP, and
0/1 loss parameters separately, we do not feel that
the bias has a strong impact on the evaluation.

5.3 Evaluation Metric

This paper focuses on the BLEU metric as presented
in (Papineni et al., 2002). The BLEU metric is de-
fined on a corpus level as follows.

Score(~e,~r) = BP (~e,~r) ∗ exp(
1
N

N∑
1

(log pn))

wherepn represent the precision ofn-grams sug-
gested in~e and BP is a brevity penalty measur-
ing the relative shortness of~e over the whole cor-
pus. To use the BLEU metric in the candidate pair-
wise loss calculation in (4), we need to make a de-
cision regarding cases where higher order n-grams
matches are not found between two candidates. Ku-
mar and Byrne (2004) suggest that if any n-grams
are not matched then the pairwise BLEU score is set
to zero. As an alternative we first estimate corpus-
wide n-gram counts on the development set. When
the pairwise counts are collected between sentences
pairs, they are added onto the baseline corpus counts
to and scored by BLEU. This scoring simulates the
process of scoring additional sentences after seeing
a whole corpus.

5.4 Training Environment

It is important to separate the impact of the decision
rule from the success of the training procedure. To

appropriately compare the MAP, 0/1 loss and MBR
decisions rules, they must all be trained with the
same training method, here we use the Score Sam-
pling training method described above. We also re-
port MAP scores using the MER training described
above to determine the impact of the training algo-
rithm for MAP. Note that the MER training approach
cannot be performed on the MBR decision rule, as
explained in Section 2.3. MER training is initialized
at random values ofλ and run (successive greedy
search over the parameters) until there is no change
in the error for three complete cycles through the pa-
rameter set. This process is repeated with new start-
ing parameters as well as permutations of the para-
meter search order to ensure that there is no bias in
the search towards a particular parameter. To im-
prove efficiency, pairwise scores are cached across
requests for the score at different values ofλ, and
for MBR only theE[Loss(e, r)] for the top twenty
hypotheses as ranked by the model are computed.

6 Results

The results in Table 1 compare the BLEU score
achieved by each training method on the develop-
ment and test data for both Pharaoh and CMU-
Pharaoh. Score-sampling training was run for 150
iterations to findλ for each decision rule. The MAP-
MER training was performed to evaluate the effect
of the greedy search method on the generalization
of the development set results. Each row represents
an alternative training method described in this pa-
per, while the test set columns indicate the criteria
used to select the final translation output~e. The
bold face scores are the scores for matching train-
ing and testing methods. The underlined score is
the highest test set score, achieved by MBR decod-
ing using the CMU-Pharaoh system trained for the
MBR decision rule with the score-sampling algo-
rithm. When comparing MER training for MAP-
decoding with score-sampling training for MAP-
decoding, score-sampling surprisingly outperforms
MER training for both Pharaoh and CMU-Pharaoh,
although MER training is specifically tailored to
the MAP metric. Note, however, that our score-
sampling algorithm has a considerably longer run-
ning time (several hours) than the MER algorithm
(several minutes). Interestingly, within MER train-
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training method Dev. set sc. test set sc. MAP test set sc. 0/1 loss test set sc. MBR
MAP MER (Pharaoh) 29.08 29.30 29.42 29.36

MAP score-sampl. (Pharaoh) 29.08 29.41 29.24 29.30
0/1 loss sc.-s. (Pharaoh) 29.08 29.16 29.28 29.30
MBR sc.-s. (Pharaoh) 29.00 29.11 29.08 29.17

MAP MER (CMU-Pharaoh) 28.80 29.02 29.41 29.60
MAP sc.-s. (CMU-Ph.) 29.10 29.85 29.75 29.55

0/1 loss sc.-s. (CMU-Ph.) 28.36 29.97 29.91 29.72
MBR sc.-s. (CMU-Ph.) 28.36 30.18 30.16 30.28

Table 1. Comparing BLEU scores generated by alternative training methods and decision rules

ing for Pharaoh, the 0/1 loss metric is the top per-
former; we believe the reason for this disparity be-
tween training and test methods is the impact of
phrasal consistency as a valuable measure within the
n-bestlist.

The relative performance of MBR score-sampling
w.r.t. MAP and 0/1-loss score sampling is quite dif-
ferent between Pharaoh and CMU-Pharaoh: While
MBR score-sampling performs worse than MAP
and 0/1-loss score sampling for Pharaoh, it yields the
best test scores across the board for CMU-Pharaoh.
A possible reason is that the n-best lists generated by
Pharaoh have a large percentage of lexically iden-
tical translations, differing only in their segmenta-
tions. As a result, the 1000-best lists generated by
Pharaoh contain only a small percentage of unique
translations, a condition that reduces the potential
of the Minimum Bayes Risk methods. The CMU
decoder, contrariwise, prunes away alternatives be-
low a certain score-threshold during decoding and
does not recover them when generating the n-best
list. The n-best lists of this system are therefore typi-
cally more diverse and in particular contain far more
unique translations.

7 Conclusions and Further Work

This work describes a general algorithm for the ef-
ficient optimization of error counts for an arbitrary
Loss function, allowing us to compare and evalu-
ate the impact of alternative decision rules for sta-
tistical machine translation. Our results suggest
the value and sensitivity of the translation process
to the Loss function at the decoding and reorder-
ing stages of the process. As phrase-based trans-
lation and reordering models begin to dominate

the state of the art in machine translation, it will
become increasingly important to understand the
nature and consistency ofn-best list training ap-
proaches. Our results are reported on a complete
package of translation tools and resources, allow-
ing the reader to easily recreate and build upon our
framework. Further research might lie in finding
efficient representations of Bayes Risk loss func-
tions within the decoding process (rather than just
using MBR to rescore n-best lists), as well as
analyses on different language pairs from the avail-
able Europarl data. We have shown score sam-
pling to be an effective training method to con-
duct these experiments and we hope to establish its
use in the changing landscape of automatic trans-
lation evaluation. The source code is available at:
www.cs.cmu.edu/˜zollmann/scoresampling/
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Martin, Joel,65, 129
Matusov, Evgeny,167
Mihalcea, Rada,65
Monz, Christof,119
Moore, Robert C.,1
Morgan, William,175
Müller, Karin,33

Ney, Hermann,41, 167, 191
Nunes, Maria G. V.,111

Ounis, Iadh,163

Pedersen, Ted,65
Popovíc, Maja,41

Resnik, Philip,83
Ruiz Costa-juss̀a, Marta,149

Sadat, Fatiha,129
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