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Abstract 

In this paper, we propose a method that 
exploits full parsing information by repre-
senting it as features of argument classifi-
cation models and as constraints in integer 
linear learning programs. In addition, to 
take advantage of SVM-based and Maxi-
mum Entropy-based argument classifica-
tion models, we incorporate their scoring 
matrices, and use the combined matrix in 
the above-mentioned integer linear pro-
grams. The experimental results show that 
full parsing information not only in-
creases the F-score of argument classifi-
cation models by 0.7%, but also 
effectively removes all labeling inconsis-
tencies, which increases the F-score by 
0.64%. The ensemble of SVM and ME 
also boosts the F-score by 0.77%. Our 
system achieves an F-score of 76.53% in 
the development set and 76.38% in Test 
WSJ. 

1 Introduction 

The Semantic Role Labeling problem can be for-
mulated as a sentence tagging problem. A sentence 
can be represented as a sequence of words, as 
phrases (chunks), or as a parsing tree. The basic 
units of a sentence are words, phrases, and con-
stituents in these representations, respectively.. 
Pradhan et al. (2004) established that Constituent-
by-Constituent (C-by-C) is better than Phrase-by-
Phrase (P-by-P), which is better than Word-by-
Word (W-by-W).  This is probably because the 

boundaries of the constituents coincide with the 
arguments; therefore, C-by-C has the highest ar-
gument identification F-score among the three ap-
proaches.  

In addition, a full parsing tree also provides 
richer syntactic information than a sequence of 
chunks or words. Pradhan et al. (2004) compared 
the seven most common features as well as several 
features related to the target constituent’s parent 
and sibling constituents. Their experimental results 
show that using other constituents’ information 
increases the F-score by 6%. Punyakanok et al. 
(2004) represent full parsing information as con-
straints in integer linear programs. Their experi-
mental results show that using such information 
increases the argument classification accuracy by 
1%. 

In this paper, we not only add more full parsing 
features to argument classification models, but also 
represent full parsing information as constraints in 
integer linear programs (ILP) to resolve label in-
consistencies. We also build an ensemble of two 
argument classification models: Maximum Entropy 
and SVM by combining their argument classifica-
tion results and applying them to the above-
mentioned ILPs. 

2 System Architecture 

Our SRL system is comprised of four stages: prun-
ing, argument classification, classification model 
incorporation, and integer linear programming. 
This section describes how we build these stages, 
including the features used in training the argu-
ment classification models. 

2.1 Pruning 
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When the full parsing tree of a sentence is avail-
able, only the constituents in the tree are consid-
ered as argument candidates. In CoNLL-2005, full 
parsing trees are provided by two full parsers: the 
Collins parser (Collins, 1999)  and the Charniak 
parser (Charniak, 2000). According to Punyakanok 
et al. (2005), the boundary agreement of Charniak 
is higher than that of Collins; therefore, we choose 
the Charniak parser’s results. However, there are 
two million nodes on the full parsing trees in the 
training corpus, which makes the training time of 
machine learning algorithms extremely long. Be-
sides, noisy information from unrelated parts of a 
sentence could also affect the training of machine 
learning models. Therefore, our system exploits the 
heuristic rules introduced by Xue and Palmer 
(2004) to filter out simple constituents that are 
unlikely to be arguments. Applying pruning heuris-
tics to the output of Charniak’s parser effectively 
eliminates 61% of the training data and 61.3% of 
the development data, while still achieves 93% and 
85.5% coverage of the correct arguments in the 
training and development sets, respectively. 

2.2 Argument Classification 

This stage assigns the final labels to the candidates 
derived in Section 2.1. A multi-class classifier is 
trained to classify the types of the arguments sup-
plied by the pruning stage. In addition, to reduce 
the number of excess candidates mistakenly output 
by the previous stage, these candidates can be la-
beled as null (meaning “not an argument”). The 
features used in this stage are as follows. 

Basic Features 

• Predicate – The predicate lemma. 
• Path – The syntactic path through the 

parsing tree from the parse constituent be-
ing classified to the predicate. 

• Constituent Type 
• Position – Whether the phrase is located 

before or after the predicate. 
• Voice – passive: if the predicate has a POS 

tag VBN, and its chunk is not a VP, or it is 
preceded by a form of “to be” or “to get” 
within its chunk; otherwise, it is active. 

• Head Word – calculated using the head 
word table described by Collins (1999). 

• Head POS – The POS of the Head Word. 

• Sub-categorization – The phrase structure 
rule that expands the predicate’s parent 
node in the parsing tree. 

• First and Last Word/POS 
• Named Entities – LOC, ORG, PER, and 

MISC. 
• Level – The level in the parsing tree. 

Combination Features 

• Predicate Distance Combination 
• Predicate Phrase Type Combination 
• Head Word and Predicate Combination 
• Voice Position Combination 

Context Features 

• Context Word/POS – The two words pre-
ceding and the two words following the 
target phrase, as well as their correspond-
ing POSs.  

• Context Chunk Type – The two chunks 
preceding and the two chunks following 
the target phrase. 

Full Parsing Features 

We believe that information from related constitu-
ents in the full parsing tree helps in labeling the 
target constituent. Denote the target constituent by 
t. The following features are the most common 
baseline features of t’s parent and sibling constitu-
ents. For example, Parent/ Left Sibling/ Right Sib-
ling Path denotes t’s parents’, left sibling’s, and 
right sibling’s Path features.  

• Parent / Left Sibling / Right Sibling 
Path 

• Parent / Left Sibling / Right Sibling 
Constituent Type 

• Parent / Left Sibling / Right Sibling Po-
sition 

• Parent / Left Sibling / Right Sibling 
Head Word 

• Parent / Left Sibling / Right Sibling 
Head POS 

• Head of PP parent – If the parent is a PP, 
then the head of this PP is also used as a 
feature. 

Argument Classification Models 
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We use all the features of the SVM-based and ME-
based argument classification models. All SVM 
classifiers are realized using SVM-Light with a 
polynomial kernel of degree 2. The ME-based 
model is implemented based on Zhang’s MaxEnt 
toolkit1 and L-BFGS (Nocedal and Wright, 1999) 
method to perform parameter estimation. 

2.3 Classification Model Incorporation  

We now explain how we incorporate the SVM-
based and ME-based argument classification mod-
els. After argument classification, we acquire two 
scoring matrices, PME and PSVM, respectively. In-
corporation of these two models is realized by 
weighted summation of PME and PSVM as follows: 

P’ = wMEPME + wSVMPSVM
We use P’ for the objective coefficients of the 

ILP described in Section 2.4. 

2.4 Integer Linear Programming (ILP) 

To represent full parsing information as features, 
there are still several syntactic constraints on a 
parsing tree in the SRL problem. For example, on a 
path of the parsing tree, there can be only one con-
stituent annotated as a non-null argument. How-
ever, it is difficult to encode this constraint in the 
argument classification models. Therefore, we ap-
ply integer linear programming to resolve inconsis-
tencies produced in the argument classification 
stage.  

According to Punyakanok et al. (2004), given a 
set of constituents, S, and a set of semantic role 
labels, A, the SRL problem can be formulated as 
an ILP as follows: 

Let zia be the indicator variable that represents 
whether or not an argument,  a, is assigned to any 
Si ∈ S; and let pia = score(Si = a). The scoring ma-
trix P composed of all pia is calculated by the ar-
gument classification models. The goal of this ILP 
is to find a set of assignments for all zia that maxi-
mizes the following function: 

∑∑
∈ ∈S AiS a

iaia zp . 

Each Si∈  S should have one of these argument 
types, or no type (null). Therefore, we have  

∑
∈

=
Aa

iaz 1 . 

Next, we show how to transform the constraints in 
                                                           
1 http://homepages.inf.ed.ac.uk/s0450736/maxent_toolkit.html 

the filter function into linear equalities or inequali-
ties, and use them in this ILP. 
Constraint I: No overlapping or embedding  
For arguments Sj1 , . . . , Sjk  on the same path in a 
full parsing tree, only one argument can be as-
signed to an argument type. Thus, at least k − 1 
arguments will be null, which is represented by φ  
in the following linear equality: 

∑
=

−≥
k

i
j k
i

1

1z φ .                                                     

Constraint II: No duplicate argument classes 
Within the same sentence, A0-A5 cannot appear 
more than once. The inequality for A0 is therefore: 

∑
=

≤
k

i
iz

1
A0 1. 

Constraint III: R-XXX arguments  
The linear inequalities that represent A0 and its 
reference type R-A0 are: 

∑
=

−≥∈∀
k

i
mi zzMm

1
A0RA0:},...,1{ . 

Constraint IV: C-XXX arguments  
The continued argument XXX has to occur before 
C-XXX. The linear inequalities for A0 are: 

∑
−

=
−≥∈∀

1

1
A0CA0:},...,2{

m

i
mj zzMm

i
. 

Constraint V: Illegal arguments  
For each verb, we look up its allowed roles. This 
constraint is represented by summing all the corre-
sponding indicator variables to 0. 

3 Experiment Results  

3.1 Data and Evaluation Metrics 

The data, which is part of the PropBank corpus, 
consists of sections from the Wall Street Journal 
part of the Penn Treebank. All experiments were 
carried out using Section 2 to Section 21 for train-
ing, Section 24 for development, and Section 23 
for testing. Unlike CoNLL-2004, part of the Brown 
corpus is also included in the test set.  

3.2 Results 

Table 1 shows that our system makes little differ-
ence to the development set and Test WSJ. How-
ever, due to the intrinsic difference between the 
WSJ and Brown corpora, our system performs bet-
ter on Test WSJ than on Test Brown. 
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Precision Recall Fβ=1

Development 81.13% 72.42% 76.53
Test WSJ 82.77% 70.90% 76.38
Test Brown 73.21% 59.49% 65.64
Test WSJ+Brown 81.55% 69.37% 74.97

Test WSJ Precision Recall Fβ=1

Overall 82.77% 70.90% 76.38
A0 88.25% 84.93% 86.56
A1 82.21% 72.21% 76.89
A2 74.68% 52.34% 61.55
A3 78.30% 47.98% 59.50
A4 84.29% 57.84% 68.60
A5 100.00% 60.00% 75.00
AM-ADV 64.19% 47.83% 54.81
AM-CAU 70.00% 38.36% 49.56
AM-DIR 38.20% 40.00% 39.08
AM-DIS 83.33% 71.88% 77.18
AM-EXT 86.67% 40.62% 55.32
AM-LOC 63.71% 41.60% 50.33
AM-MNR 63.36% 48.26% 54.79
AM-MOD 98.00% 97.64% 97.82
AM-NEG 99.53% 92.61% 95.95
AM-PNC 44.44% 17.39% 25.00
AM-PRD 50.00% 20.00% 28.57
AM-REC 0.00% 0.00% 0.00
AM-TMP 83.21% 61.09% 70.45
R-A0 91.08% 86.61% 88.79
R-A1 79.49% 79.49% 79.49
R-A2 87.50% 43.75% 58.33
R-A3 0.00% 0.00% 0.00
R-A4 0.00% 0.00% 0.00
R-AM-ADV 0.00% 0.00% 0.00
R-AM-CAU 100.00% 25.00% 40.00
R-AM-EXT 0.00% 0.00% 0.00
R-AM-LOC 92.31% 57.14% 70.59
R-AM-MNR 25.00% 16.67% 20.00
R-AM-TMP 72.73% 61.54% 66.67
V 97.32% 97.32% 97.32  

Table 1. Overall results (top) and detailed results 
on the WSJ test (bottom). 

Precision Recall Fβ=1

ME w/o parsing 77.28% 70.55% 73.76%
ME 78.19% 71.08% 74.46%
ME with ILP 79.57% 71.11% 75.10%
SVM 79.88% 72.03% 75.76%
Hybrid 81.13% 72.42% 76.53%

 

Table 2. Results of all configurations on the devel-
opment set. 

From Table 2, we can see that the model with 
full parsing features outperforms the model with-
out the features in all three performance matrices. 
After applying ILP, the performance is improved 
further. We also observe that SVM slightly outper-

forms ME. However, the hybrid argument classifi-
cation model achieves the best results in all three 
metrics. 

4 Conclusion  

In this paper, we add more full parsing features to 
argument classification models, and represent full 
parsing information as constraints in ILPs to re-
solve labeling inconsistencies. We also integrate 
two argument classification models, ME and SVM, 
by combining their argument classification results 
and applying them to the above-mentioned ILPs. 
The results show full parsing information increases 
the total F-score by 1.34%. The ensemble of SVM 
and ME also boosts the F-score by 0.77%. Finally, 
our system achieves an F-score of 76.53% in the 
development set and 76.38% in Test WSJ. 
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