
Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 205–208, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Semantic Role Labeling using libSVM

Necati Ercan Ozgencil Nancy McCracken

Center for Natural Language Processing Center for Natural Language Processing

School of Engineering and Computer Science School of Information Studies

Syracuse University Syracuse University
neozgenc@ecs.syr.edu njm@ecs.syr.edu

Abstract

We describe a system for the CoNLL-

2005 shared task of Semantic Role Label-

ing. The system implements a two-layer

architecture to first identify the arguments

and then to label them for each predicate.

The components are implemented as

SVM classifiers using libSVM. Features

were adapted and tuned for the system,

including a reduced set for the identifier

classifier. Experiments were conducted to

find kernel parameters for the Radial Ba-

sis Function (RBF) kernel. An algorithm

was defined to combine the results of the

argument labeling classifier according to

the constraints of the argument labeling

problem.

1 Introduction and Strategy

The Semantic Role Labeling (SRL) problem has

been the topic of the both the CoNLL-2004 and the

CoNLL-2005 Shared Tasks (Carreras and

Màrquez, 2005). The SRL system described here

depends on a full syntactic parse from the Charniak

parser, and investigates aspects of using Support

Vector Machines (SVMs) as the machine learning

technique for the SRL problem, using the libSVM

package.

In common with many other systems, this sys-

tem uses the two-level strategy of first identifying

which phrases can be arguments to predicates in

general, and then labeling the arguments according

to that predicate. The argument identification

phase is a binary classifier that decides whether

each constituent in the full syntax tree of the sen-

tence is a potential argument. These potential ar-

guments are passed into the argument labeling

classifier, which uses binary classifiers for each

label to decide if that label should be given to that

argument. A post-processing phase picks the best

labeling that satisfies the constraints of labeling the

predicate arguments.

For overall classification strategy and for

suggestions of features, we are indebted to the

work of Pradhan et al (2005) and to the work of

many authors in both the CoNLL-2004 shared task

and the similar semantic roles task of Senseval-3.

We used the results of their experiments with

features, and worked primarily on features for the

identifying classifier and with the constraint

satisfaction problem on the final argument output.

2 System Description

2.1 Input Data

In this system, we chose to use full syntax trees

from the Charniak parser, as the constituents of

those trees more accurately represented argument

phrases in the training data at the time of the data

release. Within each sentence, we first map the

predicate to a constituent in the syntax tree. In the

cases that the predicate is not represented by a con-

stituent, we found that these were verb phrases of

length two or more, where the first word was the

main verb (carry out, gotten away, served up, etc.).

In these cases, we used the first word constituent as

the representation of the predicate, for purposes of

computing other features that depended on a rela-

tive position in the syntax tree.

205

We next identify every constituent in the tree as

a potential argument, and label the training data

accordingly. Although approximately 97% of the

arguments in the training data directly matched

constituents in the Charniak tree, only 91.3% of the

arguments in the development set match constitu-

ents. Examination of the sentences with incorrect

parses show that almost all of these are due to

some form of incorrect attachment, e.g. preposi-

tional attachment, of the parser. Heuristics can be

derived to correct constituents with quotes, but this

only affected a small fraction of a percent of the

incorrect arguments. Experiments with corrections

to the punctuation in the Collins parses were also

unsuccessful in identifying additional constituents.

Our recall results on the development directory are

bounded by the 91.3% alignment figure.

We also did not use the the partial syntax,

named entities or the verb senses in the

development data.

2.2 Learning Components: SVM classifiers

For our system, we chose to use libSVM, an open

source SVM package (Chang and Lin, 2001).

In the SRL problem, the features are nominal,

and we followed the standard practice of represent-

ing a nominal feature with n discrete values as n

binary features. Many of the features in the SRL

problem can take on a large number of values, for

example, the head word of a constituent may take

on as many values as there are different words pre-

sent in the training set, and these large number of

features can cause substantial performance issues.

The libSVM package has several kernel func-

tions available, and we chose to use the radial basis

functions (RBF). For the argument labeling prob-

lem, we used the binary classifiers in libSVM, with

probability estimates of how well the label fits the

distribution. These are normally combined using

the “one-against-one” approach into a multi-class

classifier. Instead, we combined the binary classi-

fiers in our own post-processing phase to get a la-

beling satisfying the constraints of the problem.

2.3 The Identifier Classifier Features

One aspect of our work was to use fewer features

for the identifier classifier than the basic feature set

from (Gildea and Jurafsky, 2002). The intuition

behind the reduction is that whether a constituent

in the tree is an argument depends primarily on the

structure and is independent of the lexical items of

the predicate and headword. This reduced feature

set is:

Phrase Type: The phrase label of the argument.

Position: Whether the phrase is before or after

the predicate.

Voice: Whether the predicate is in active or

passive voice. Passive voice is recognized if a past

participle verb is preceded by a form of the verb

“be” within 3 words.

Sub-categorization: The phrase labels of the

children of the predicate’s parent in the syntax tree.

Short Path: The path from the parent of the

argument position in the syntax tree to the parent

of the predicate.

The first four features are standard, and the short

path feature is defined as a shorter version of the

standard path feature that does not use the

argument phrase type on one end of the path, nor

the predicate type on the other end.

The use of this reduced set of features was

confirmed experimentally by comparing the effect

of this reduced feature set on the F-measure of the

identifier classifier, compared to feature sets that

also added the predicate, the head word and the

path features, as normally defined.

 Reduced + Pred + Head + Path

F-measure 81.51 81.31 72.60 81.19

Table 1: Additional features reduce F-measure for the

identifier classifier.

2.4 Using the Identifier Classifier for Train-

ing and Testing

Theoretically, the input for training the identifier

classifier is that, for each predicate, all constituents

in the syntax tree are training instances, labeled

true if it is any argument of that predicate, and

false otherwise. However, this leads to too many

negative (false) instances for the training. To cor-

rect this, we experimented with two filters for

negative instances. The first filter is simply a ran-

dom filter; we randomly select a percentage of ar-

guments for each argument label. Experiments

with the percentage showed that 30% yielded the

best F-measure for the identifier classifier.

The second filter is based on phrase labels from

the syntax tree. The intent of this filter was to re-

move one word constituents of a phrase type that

was never used. We selected only those phrase

206

labels whose frequency in the training was higher

than a threshold. Experiments showed that the best

threshold was 0.01, which resulted in approxi-

mately 86% negative training instances.

However, in the final experimentation, compari-

son of these two filters showed that the random

filter was best for F-measure results of the identi-

fier classifier.

The final set of experiments for the identifier

classifier was to fine tune the RBF kernel training

parameters, C and gamma. Although we followed

the standard grid strategy of finding the best pa-

rameters, unlike the built-in grid program of

libSVM with its accuracy measure, we judged the

results based on the more standard F-measure of

the classifier. The final values are that C = 2 and

gamma = 0.125.

The final result of the identifier classifier trained

on the first 10 directories of the training set is:

Precision: 78.27% Recall: 89.01%

(F-measure: 83.47)

Training on more directories did not substan-

tially improve these precision and recall figures.

2.5 Labeling Classifier Features

The following is a list of the features used in the

labeling classifiers.

Predicate: The predicate lemma from the

training file.

Path: The syntactic path through the parse tree

from the argument constituent to the predicate.

Head Word: The head word of the argument

constituent, calculated in the standard way, but

also stemmed. Applying stemming reduces the

number of unique values of this feature

substantially, 62% in one directory of training data.

Phrase Type, Position, Voice, and Sub-
categorization: as in the identifier classifier.

In addition, we experimented with the following

features, but did not find that they increased the

labeling classifier scores.

Head Word POS: the part of speech tag of the

head word of the argument constituent.

Temporal Cue Words: These words were

compiled by hand from ArgM-TMP phrases in the

training data.

Governing Category: The phrase label of the

parent of the argument.

Grammatical Rule: The generalization of the

subcategorization feature to show the phrase labels

of the children of the node that is the lowest parent

of all arguments of the predicate.

In the case of the temporal cue words, we

noticed that using our definition of this feature

increased the number of false positives for the

ARGM-TMP label; we guess that our temporal cue

words included too many words that occured in

other labels. Due to lack of time, we were not

able to more fully pursue these features.

2.6 Using the Labeling Classifier for Train-

ing and Testing

Our strategy for using the labeling classifier is

that in the testing, we pass only those arguments to

the labeling classifier that have been marked as

true by the identifier classifier. Therefore, for

training the labeling classifier, instances were con-

stituents that were given argument labels in the

training set, i.e. there were no “null” training ex-

amples.

For the labeling classifier, we also found the

best parameters for the RBF kernel of the classi-

fier. For this, we used the grid program of libSVM

that uses the multi-class classifier, using the accu-

racy measure to tune the parameters, since this

combines the precision of the binary classifiers for

each label. The final values are that C = 0.5 and

gamma = 0.5.

In order to show the contribution of the labeling

classifier to the entire system, a final test was done

on the development set, but passing it the correct

arguments. We tested this with a labeling classi-

fier trained on 10 directories and one trained on 20

directories, showing the final F-measure:

10 directories: 83.27

20 directories: 84.51

2.7 Post-processing the classifier labels

The final part of our system was to use the results

of the binary classifiers for each argument label to

produce a final labeling subject to the labeling con-

straints.

For each predicate, the constraints are: two con-

stituents cannot have the same argument label, a

constituent cannot have more than one label, if two

constituents have (different) labels, they cannot

have any overlap, and finally, no argument can

overlap the predicate.

207

 Precision Recall Fβ=1

Development 73.57% 71.87% 72.71

Test WSJ 74.66% 74.21% 74.44

Test Brown 65.52% 62.93% 64.20

Test WSJ+Brown 73.48% 72.70% 73.09

Test WSJ Precision Recall Fβ=1

Overall 74.66% 74.21% 74.44

A0 83.59% 85.07% 84.32
A1 77.00% 74.35% 75.65
A2 66.97% 66.85% 66.91
A3 66.88% 60.69% 63.64
A4 77.66% 71.57% 74.49
A5 80.00% 80.00% 80.00
AM-ADV 55.13% 50.99% 52.98
AM-CAU 52.17% 49.32% 50.70
AM-DIR 27.43% 56.47% 36.92
AM-DIS 73.04% 72.81% 72.93
AM-EXT 57.69% 46.88% 51.72
AM-LOC 50.00% 49.59% 49.79
AM-MNR 54.00% 54.94% 54.47
AM-MOD 92.02% 94.19% 93.09
AM-NEG 96.05% 95.22% 95.63
AM-PNC 35.07% 40.87% 37.75
AM-PRD 50.00% 20.00% 28.57
AM-REC 0.00% 0.00% 0.00
AM-TMP 68.69% 63.57% 66.03
R-A0 77.61% 89.73% 83.23
R-A1 71.95% 75.64% 73.75
R-A2 87.50% 43.75% 58.33
R-A3 0.00% 0.00% 0.00
R-A4 0.00% 0.00% 0.00
R-AM-ADV 0.00% 0.00% 0.00
R-AM-CAU 100.00% 50.00% 66.67
R-AM-EXT 0.00% 0.00% 0.00
R-AM-LOC 66.67% 85.71% 75.00
R-AM-MNR 8.33% 16.67% 11.11
R-AM-TMP 66.67% 88.46% 76.03

V 97.32% 97.32% 97.32

Table 2: Overall results (top) and detailed results on the

WSJ test (bottom).

To achieve these constraints, we used the prob-

abilities produced by libSVM for each of the bi-

nary argument label classifiers. We produced a

constraint satisfaction module that uses a greedy

algorithm that uses probabilities from the matrix of

potential labeling for each constituent and label.

The algorithm iteratively chooses a label for a node

with the highest probability and removes any po-

tential labeling that would violate constraints with

that chosen label. It continues to choose labels for

nodes until all probabilities in the matrix are lower

than a threshold, determined by experiments to be

.3. In the future, it is our intent to replace this

greedy algorithm with a dynamic optimization al-

gorithm.

3 Experimental Results

3.1 Final System and Results

The final system used an identifier classifier

trained on (the first) 10 directories, in approxi-

mately 7 hours, and a labeling classifier trained on

20 directories, in approximately 23 hours. Testing

took approximately 3.3 seconds per sentence.

As a further test of the final system, we trained

both the identifier classifier and the labeling classi-

fier on the first 10 directories and used the second

10 directories as development tests. Here are some

of the results, showing the alignment and F-

measure on each directory, compared to 24.

Directory: 12 14 16 18 20 24

Alignment 95.7 96.1 95.9 96.5 95.9 91.3

F-measure 80.4 79.6 79.0 80.5 79.7 71.1

Table 3: Using additional directories for testing

Finally, we note that we did not correctly antici-

pate the final notation for the predicates in the test

set for two word verbs. Our system assumed that

two word verbs would be given a start and an end,

whereas the test set gives just the one word predi-

cate.

References

Xavier Carreras and Lluìs Màrquez, 2005. Introduction

to the CoNLL-2005 Shared Task: Semantic Role

Labeling, Proceedings of CoNLL-2005.

Chih-Chung Chang and Chih-Jen Lin, 2001. LIBSVM :

a library for support vector machines. Software

available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

Daniel Gildea and Daniel Jurafsky, 2002. Automatic

Labeling of Semantic Roles. Computational Linguis-

tics 28(3):245-288.

Sameer Pradhan, Kadri Hacioglu, Valerie Krugler,

Wayne Ward, James H. Martin, and Daniel Jurafsky,

2005. Support Vector Learning for Semantic Argu-

ment Classification, To appear in Machine Learning

journal, Special issue on Speech and Natural Lan-

guage Processing.

208

